xref: /linux-6.15/include/uapi/linux/bpf.h (revision c75bec79)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_JMP32	0x06	/* jmp mode in word width */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_XADD	0xc0	/* exclusive add */
23 
24 /* alu/jmp fields */
25 #define BPF_MOV		0xb0	/* mov reg to reg */
26 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
27 
28 /* change endianness of a register */
29 #define BPF_END		0xd0	/* flags for endianness conversion: */
30 #define BPF_TO_LE	0x00	/* convert to little-endian */
31 #define BPF_TO_BE	0x08	/* convert to big-endian */
32 #define BPF_FROM_LE	BPF_TO_LE
33 #define BPF_FROM_BE	BPF_TO_BE
34 
35 /* jmp encodings */
36 #define BPF_JNE		0x50	/* jump != */
37 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
38 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
39 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
42 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
43 #define BPF_CALL	0x80	/* function call */
44 #define BPF_EXIT	0x90	/* function return */
45 
46 /* Register numbers */
47 enum {
48 	BPF_REG_0 = 0,
49 	BPF_REG_1,
50 	BPF_REG_2,
51 	BPF_REG_3,
52 	BPF_REG_4,
53 	BPF_REG_5,
54 	BPF_REG_6,
55 	BPF_REG_7,
56 	BPF_REG_8,
57 	BPF_REG_9,
58 	BPF_REG_10,
59 	__MAX_BPF_REG,
60 };
61 
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG	__MAX_BPF_REG
64 
65 struct bpf_insn {
66 	__u8	code;		/* opcode */
67 	__u8	dst_reg:4;	/* dest register */
68 	__u8	src_reg:4;	/* source register */
69 	__s16	off;		/* signed offset */
70 	__s32	imm;		/* signed immediate constant */
71 };
72 
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
76 	__u8	data[0];	/* Arbitrary size */
77 };
78 
79 struct bpf_cgroup_storage_key {
80 	__u64	cgroup_inode_id;	/* cgroup inode id */
81 	__u32	attach_type;		/* program attach type */
82 };
83 
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 	BPF_MAP_CREATE,
87 	BPF_MAP_LOOKUP_ELEM,
88 	BPF_MAP_UPDATE_ELEM,
89 	BPF_MAP_DELETE_ELEM,
90 	BPF_MAP_GET_NEXT_KEY,
91 	BPF_PROG_LOAD,
92 	BPF_OBJ_PIN,
93 	BPF_OBJ_GET,
94 	BPF_PROG_ATTACH,
95 	BPF_PROG_DETACH,
96 	BPF_PROG_TEST_RUN,
97 	BPF_PROG_GET_NEXT_ID,
98 	BPF_MAP_GET_NEXT_ID,
99 	BPF_PROG_GET_FD_BY_ID,
100 	BPF_MAP_GET_FD_BY_ID,
101 	BPF_OBJ_GET_INFO_BY_FD,
102 	BPF_PROG_QUERY,
103 	BPF_RAW_TRACEPOINT_OPEN,
104 	BPF_BTF_LOAD,
105 	BPF_BTF_GET_FD_BY_ID,
106 	BPF_TASK_FD_QUERY,
107 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 	BPF_MAP_FREEZE,
109 	BPF_BTF_GET_NEXT_ID,
110 	BPF_MAP_LOOKUP_BATCH,
111 	BPF_MAP_LOOKUP_AND_DELETE_BATCH,
112 	BPF_MAP_UPDATE_BATCH,
113 	BPF_MAP_DELETE_BATCH,
114 };
115 
116 enum bpf_map_type {
117 	BPF_MAP_TYPE_UNSPEC,
118 	BPF_MAP_TYPE_HASH,
119 	BPF_MAP_TYPE_ARRAY,
120 	BPF_MAP_TYPE_PROG_ARRAY,
121 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
122 	BPF_MAP_TYPE_PERCPU_HASH,
123 	BPF_MAP_TYPE_PERCPU_ARRAY,
124 	BPF_MAP_TYPE_STACK_TRACE,
125 	BPF_MAP_TYPE_CGROUP_ARRAY,
126 	BPF_MAP_TYPE_LRU_HASH,
127 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
128 	BPF_MAP_TYPE_LPM_TRIE,
129 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
130 	BPF_MAP_TYPE_HASH_OF_MAPS,
131 	BPF_MAP_TYPE_DEVMAP,
132 	BPF_MAP_TYPE_SOCKMAP,
133 	BPF_MAP_TYPE_CPUMAP,
134 	BPF_MAP_TYPE_XSKMAP,
135 	BPF_MAP_TYPE_SOCKHASH,
136 	BPF_MAP_TYPE_CGROUP_STORAGE,
137 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
138 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
139 	BPF_MAP_TYPE_QUEUE,
140 	BPF_MAP_TYPE_STACK,
141 	BPF_MAP_TYPE_SK_STORAGE,
142 	BPF_MAP_TYPE_DEVMAP_HASH,
143 	BPF_MAP_TYPE_STRUCT_OPS,
144 };
145 
146 /* Note that tracing related programs such as
147  * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
148  * are not subject to a stable API since kernel internal data
149  * structures can change from release to release and may
150  * therefore break existing tracing BPF programs. Tracing BPF
151  * programs correspond to /a/ specific kernel which is to be
152  * analyzed, and not /a/ specific kernel /and/ all future ones.
153  */
154 enum bpf_prog_type {
155 	BPF_PROG_TYPE_UNSPEC,
156 	BPF_PROG_TYPE_SOCKET_FILTER,
157 	BPF_PROG_TYPE_KPROBE,
158 	BPF_PROG_TYPE_SCHED_CLS,
159 	BPF_PROG_TYPE_SCHED_ACT,
160 	BPF_PROG_TYPE_TRACEPOINT,
161 	BPF_PROG_TYPE_XDP,
162 	BPF_PROG_TYPE_PERF_EVENT,
163 	BPF_PROG_TYPE_CGROUP_SKB,
164 	BPF_PROG_TYPE_CGROUP_SOCK,
165 	BPF_PROG_TYPE_LWT_IN,
166 	BPF_PROG_TYPE_LWT_OUT,
167 	BPF_PROG_TYPE_LWT_XMIT,
168 	BPF_PROG_TYPE_SOCK_OPS,
169 	BPF_PROG_TYPE_SK_SKB,
170 	BPF_PROG_TYPE_CGROUP_DEVICE,
171 	BPF_PROG_TYPE_SK_MSG,
172 	BPF_PROG_TYPE_RAW_TRACEPOINT,
173 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
174 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
175 	BPF_PROG_TYPE_LIRC_MODE2,
176 	BPF_PROG_TYPE_SK_REUSEPORT,
177 	BPF_PROG_TYPE_FLOW_DISSECTOR,
178 	BPF_PROG_TYPE_CGROUP_SYSCTL,
179 	BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
180 	BPF_PROG_TYPE_CGROUP_SOCKOPT,
181 	BPF_PROG_TYPE_TRACING,
182 	BPF_PROG_TYPE_STRUCT_OPS,
183 	BPF_PROG_TYPE_EXT,
184 };
185 
186 enum bpf_attach_type {
187 	BPF_CGROUP_INET_INGRESS,
188 	BPF_CGROUP_INET_EGRESS,
189 	BPF_CGROUP_INET_SOCK_CREATE,
190 	BPF_CGROUP_SOCK_OPS,
191 	BPF_SK_SKB_STREAM_PARSER,
192 	BPF_SK_SKB_STREAM_VERDICT,
193 	BPF_CGROUP_DEVICE,
194 	BPF_SK_MSG_VERDICT,
195 	BPF_CGROUP_INET4_BIND,
196 	BPF_CGROUP_INET6_BIND,
197 	BPF_CGROUP_INET4_CONNECT,
198 	BPF_CGROUP_INET6_CONNECT,
199 	BPF_CGROUP_INET4_POST_BIND,
200 	BPF_CGROUP_INET6_POST_BIND,
201 	BPF_CGROUP_UDP4_SENDMSG,
202 	BPF_CGROUP_UDP6_SENDMSG,
203 	BPF_LIRC_MODE2,
204 	BPF_FLOW_DISSECTOR,
205 	BPF_CGROUP_SYSCTL,
206 	BPF_CGROUP_UDP4_RECVMSG,
207 	BPF_CGROUP_UDP6_RECVMSG,
208 	BPF_CGROUP_GETSOCKOPT,
209 	BPF_CGROUP_SETSOCKOPT,
210 	BPF_TRACE_RAW_TP,
211 	BPF_TRACE_FENTRY,
212 	BPF_TRACE_FEXIT,
213 	__MAX_BPF_ATTACH_TYPE
214 };
215 
216 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
217 
218 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
219  *
220  * NONE(default): No further bpf programs allowed in the subtree.
221  *
222  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
223  * the program in this cgroup yields to sub-cgroup program.
224  *
225  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
226  * that cgroup program gets run in addition to the program in this cgroup.
227  *
228  * Only one program is allowed to be attached to a cgroup with
229  * NONE or BPF_F_ALLOW_OVERRIDE flag.
230  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
231  * release old program and attach the new one. Attach flags has to match.
232  *
233  * Multiple programs are allowed to be attached to a cgroup with
234  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
235  * (those that were attached first, run first)
236  * The programs of sub-cgroup are executed first, then programs of
237  * this cgroup and then programs of parent cgroup.
238  * When children program makes decision (like picking TCP CA or sock bind)
239  * parent program has a chance to override it.
240  *
241  * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
242  * programs for a cgroup. Though it's possible to replace an old program at
243  * any position by also specifying BPF_F_REPLACE flag and position itself in
244  * replace_bpf_fd attribute. Old program at this position will be released.
245  *
246  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
247  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
248  * Ex1:
249  * cgrp1 (MULTI progs A, B) ->
250  *    cgrp2 (OVERRIDE prog C) ->
251  *      cgrp3 (MULTI prog D) ->
252  *        cgrp4 (OVERRIDE prog E) ->
253  *          cgrp5 (NONE prog F)
254  * the event in cgrp5 triggers execution of F,D,A,B in that order.
255  * if prog F is detached, the execution is E,D,A,B
256  * if prog F and D are detached, the execution is E,A,B
257  * if prog F, E and D are detached, the execution is C,A,B
258  *
259  * All eligible programs are executed regardless of return code from
260  * earlier programs.
261  */
262 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
263 #define BPF_F_ALLOW_MULTI	(1U << 1)
264 #define BPF_F_REPLACE		(1U << 2)
265 
266 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
267  * verifier will perform strict alignment checking as if the kernel
268  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
269  * and NET_IP_ALIGN defined to 2.
270  */
271 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
272 
273 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
274  * verifier will allow any alignment whatsoever.  On platforms
275  * with strict alignment requirements for loads ands stores (such
276  * as sparc and mips) the verifier validates that all loads and
277  * stores provably follow this requirement.  This flag turns that
278  * checking and enforcement off.
279  *
280  * It is mostly used for testing when we want to validate the
281  * context and memory access aspects of the verifier, but because
282  * of an unaligned access the alignment check would trigger before
283  * the one we are interested in.
284  */
285 #define BPF_F_ANY_ALIGNMENT	(1U << 1)
286 
287 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
288  * Verifier does sub-register def/use analysis and identifies instructions whose
289  * def only matters for low 32-bit, high 32-bit is never referenced later
290  * through implicit zero extension. Therefore verifier notifies JIT back-ends
291  * that it is safe to ignore clearing high 32-bit for these instructions. This
292  * saves some back-ends a lot of code-gen. However such optimization is not
293  * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
294  * hence hasn't used verifier's analysis result. But, we really want to have a
295  * way to be able to verify the correctness of the described optimization on
296  * x86_64 on which testsuites are frequently exercised.
297  *
298  * So, this flag is introduced. Once it is set, verifier will randomize high
299  * 32-bit for those instructions who has been identified as safe to ignore them.
300  * Then, if verifier is not doing correct analysis, such randomization will
301  * regress tests to expose bugs.
302  */
303 #define BPF_F_TEST_RND_HI32	(1U << 2)
304 
305 /* The verifier internal test flag. Behavior is undefined */
306 #define BPF_F_TEST_STATE_FREQ	(1U << 3)
307 
308 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
309  * two extensions:
310  *
311  * insn[0].src_reg:  BPF_PSEUDO_MAP_FD   BPF_PSEUDO_MAP_VALUE
312  * insn[0].imm:      map fd              map fd
313  * insn[1].imm:      0                   offset into value
314  * insn[0].off:      0                   0
315  * insn[1].off:      0                   0
316  * ldimm64 rewrite:  address of map      address of map[0]+offset
317  * verifier type:    CONST_PTR_TO_MAP    PTR_TO_MAP_VALUE
318  */
319 #define BPF_PSEUDO_MAP_FD	1
320 #define BPF_PSEUDO_MAP_VALUE	2
321 
322 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
323  * offset to another bpf function
324  */
325 #define BPF_PSEUDO_CALL		1
326 
327 /* flags for BPF_MAP_UPDATE_ELEM command */
328 #define BPF_ANY		0 /* create new element or update existing */
329 #define BPF_NOEXIST	1 /* create new element if it didn't exist */
330 #define BPF_EXIST	2 /* update existing element */
331 #define BPF_F_LOCK	4 /* spin_lock-ed map_lookup/map_update */
332 
333 /* flags for BPF_MAP_CREATE command */
334 #define BPF_F_NO_PREALLOC	(1U << 0)
335 /* Instead of having one common LRU list in the
336  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
337  * which can scale and perform better.
338  * Note, the LRU nodes (including free nodes) cannot be moved
339  * across different LRU lists.
340  */
341 #define BPF_F_NO_COMMON_LRU	(1U << 1)
342 /* Specify numa node during map creation */
343 #define BPF_F_NUMA_NODE		(1U << 2)
344 
345 #define BPF_OBJ_NAME_LEN 16U
346 
347 /* Flags for accessing BPF object from syscall side. */
348 #define BPF_F_RDONLY		(1U << 3)
349 #define BPF_F_WRONLY		(1U << 4)
350 
351 /* Flag for stack_map, store build_id+offset instead of pointer */
352 #define BPF_F_STACK_BUILD_ID	(1U << 5)
353 
354 /* Zero-initialize hash function seed. This should only be used for testing. */
355 #define BPF_F_ZERO_SEED		(1U << 6)
356 
357 /* Flags for accessing BPF object from program side. */
358 #define BPF_F_RDONLY_PROG	(1U << 7)
359 #define BPF_F_WRONLY_PROG	(1U << 8)
360 
361 /* Clone map from listener for newly accepted socket */
362 #define BPF_F_CLONE		(1U << 9)
363 
364 /* Enable memory-mapping BPF map */
365 #define BPF_F_MMAPABLE		(1U << 10)
366 
367 /* Flags for BPF_PROG_QUERY. */
368 
369 /* Query effective (directly attached + inherited from ancestor cgroups)
370  * programs that will be executed for events within a cgroup.
371  * attach_flags with this flag are returned only for directly attached programs.
372  */
373 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
374 
375 enum bpf_stack_build_id_status {
376 	/* user space need an empty entry to identify end of a trace */
377 	BPF_STACK_BUILD_ID_EMPTY = 0,
378 	/* with valid build_id and offset */
379 	BPF_STACK_BUILD_ID_VALID = 1,
380 	/* couldn't get build_id, fallback to ip */
381 	BPF_STACK_BUILD_ID_IP = 2,
382 };
383 
384 #define BPF_BUILD_ID_SIZE 20
385 struct bpf_stack_build_id {
386 	__s32		status;
387 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
388 	union {
389 		__u64	offset;
390 		__u64	ip;
391 	};
392 };
393 
394 union bpf_attr {
395 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
396 		__u32	map_type;	/* one of enum bpf_map_type */
397 		__u32	key_size;	/* size of key in bytes */
398 		__u32	value_size;	/* size of value in bytes */
399 		__u32	max_entries;	/* max number of entries in a map */
400 		__u32	map_flags;	/* BPF_MAP_CREATE related
401 					 * flags defined above.
402 					 */
403 		__u32	inner_map_fd;	/* fd pointing to the inner map */
404 		__u32	numa_node;	/* numa node (effective only if
405 					 * BPF_F_NUMA_NODE is set).
406 					 */
407 		char	map_name[BPF_OBJ_NAME_LEN];
408 		__u32	map_ifindex;	/* ifindex of netdev to create on */
409 		__u32	btf_fd;		/* fd pointing to a BTF type data */
410 		__u32	btf_key_type_id;	/* BTF type_id of the key */
411 		__u32	btf_value_type_id;	/* BTF type_id of the value */
412 		__u32	btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
413 						   * struct stored as the
414 						   * map value
415 						   */
416 	};
417 
418 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
419 		__u32		map_fd;
420 		__aligned_u64	key;
421 		union {
422 			__aligned_u64 value;
423 			__aligned_u64 next_key;
424 		};
425 		__u64		flags;
426 	};
427 
428 	struct { /* struct used by BPF_MAP_*_BATCH commands */
429 		__aligned_u64	in_batch;	/* start batch,
430 						 * NULL to start from beginning
431 						 */
432 		__aligned_u64	out_batch;	/* output: next start batch */
433 		__aligned_u64	keys;
434 		__aligned_u64	values;
435 		__u32		count;		/* input/output:
436 						 * input: # of key/value
437 						 * elements
438 						 * output: # of filled elements
439 						 */
440 		__u32		map_fd;
441 		__u64		elem_flags;
442 		__u64		flags;
443 	} batch;
444 
445 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
446 		__u32		prog_type;	/* one of enum bpf_prog_type */
447 		__u32		insn_cnt;
448 		__aligned_u64	insns;
449 		__aligned_u64	license;
450 		__u32		log_level;	/* verbosity level of verifier */
451 		__u32		log_size;	/* size of user buffer */
452 		__aligned_u64	log_buf;	/* user supplied buffer */
453 		__u32		kern_version;	/* not used */
454 		__u32		prog_flags;
455 		char		prog_name[BPF_OBJ_NAME_LEN];
456 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
457 		/* For some prog types expected attach type must be known at
458 		 * load time to verify attach type specific parts of prog
459 		 * (context accesses, allowed helpers, etc).
460 		 */
461 		__u32		expected_attach_type;
462 		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
463 		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
464 		__aligned_u64	func_info;	/* func info */
465 		__u32		func_info_cnt;	/* number of bpf_func_info records */
466 		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
467 		__aligned_u64	line_info;	/* line info */
468 		__u32		line_info_cnt;	/* number of bpf_line_info records */
469 		__u32		attach_btf_id;	/* in-kernel BTF type id to attach to */
470 		__u32		attach_prog_fd; /* 0 to attach to vmlinux */
471 	};
472 
473 	struct { /* anonymous struct used by BPF_OBJ_* commands */
474 		__aligned_u64	pathname;
475 		__u32		bpf_fd;
476 		__u32		file_flags;
477 	};
478 
479 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
480 		__u32		target_fd;	/* container object to attach to */
481 		__u32		attach_bpf_fd;	/* eBPF program to attach */
482 		__u32		attach_type;
483 		__u32		attach_flags;
484 		__u32		replace_bpf_fd;	/* previously attached eBPF
485 						 * program to replace if
486 						 * BPF_F_REPLACE is used
487 						 */
488 	};
489 
490 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
491 		__u32		prog_fd;
492 		__u32		retval;
493 		__u32		data_size_in;	/* input: len of data_in */
494 		__u32		data_size_out;	/* input/output: len of data_out
495 						 *   returns ENOSPC if data_out
496 						 *   is too small.
497 						 */
498 		__aligned_u64	data_in;
499 		__aligned_u64	data_out;
500 		__u32		repeat;
501 		__u32		duration;
502 		__u32		ctx_size_in;	/* input: len of ctx_in */
503 		__u32		ctx_size_out;	/* input/output: len of ctx_out
504 						 *   returns ENOSPC if ctx_out
505 						 *   is too small.
506 						 */
507 		__aligned_u64	ctx_in;
508 		__aligned_u64	ctx_out;
509 	} test;
510 
511 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
512 		union {
513 			__u32		start_id;
514 			__u32		prog_id;
515 			__u32		map_id;
516 			__u32		btf_id;
517 		};
518 		__u32		next_id;
519 		__u32		open_flags;
520 	};
521 
522 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
523 		__u32		bpf_fd;
524 		__u32		info_len;
525 		__aligned_u64	info;
526 	} info;
527 
528 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
529 		__u32		target_fd;	/* container object to query */
530 		__u32		attach_type;
531 		__u32		query_flags;
532 		__u32		attach_flags;
533 		__aligned_u64	prog_ids;
534 		__u32		prog_cnt;
535 	} query;
536 
537 	struct {
538 		__u64 name;
539 		__u32 prog_fd;
540 	} raw_tracepoint;
541 
542 	struct { /* anonymous struct for BPF_BTF_LOAD */
543 		__aligned_u64	btf;
544 		__aligned_u64	btf_log_buf;
545 		__u32		btf_size;
546 		__u32		btf_log_size;
547 		__u32		btf_log_level;
548 	};
549 
550 	struct {
551 		__u32		pid;		/* input: pid */
552 		__u32		fd;		/* input: fd */
553 		__u32		flags;		/* input: flags */
554 		__u32		buf_len;	/* input/output: buf len */
555 		__aligned_u64	buf;		/* input/output:
556 						 *   tp_name for tracepoint
557 						 *   symbol for kprobe
558 						 *   filename for uprobe
559 						 */
560 		__u32		prog_id;	/* output: prod_id */
561 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
562 		__u64		probe_offset;	/* output: probe_offset */
563 		__u64		probe_addr;	/* output: probe_addr */
564 	} task_fd_query;
565 } __attribute__((aligned(8)));
566 
567 /* The description below is an attempt at providing documentation to eBPF
568  * developers about the multiple available eBPF helper functions. It can be
569  * parsed and used to produce a manual page. The workflow is the following,
570  * and requires the rst2man utility:
571  *
572  *     $ ./scripts/bpf_helpers_doc.py \
573  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
574  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
575  *     $ man /tmp/bpf-helpers.7
576  *
577  * Note that in order to produce this external documentation, some RST
578  * formatting is used in the descriptions to get "bold" and "italics" in
579  * manual pages. Also note that the few trailing white spaces are
580  * intentional, removing them would break paragraphs for rst2man.
581  *
582  * Start of BPF helper function descriptions:
583  *
584  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
585  * 	Description
586  * 		Perform a lookup in *map* for an entry associated to *key*.
587  * 	Return
588  * 		Map value associated to *key*, or **NULL** if no entry was
589  * 		found.
590  *
591  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
592  * 	Description
593  * 		Add or update the value of the entry associated to *key* in
594  * 		*map* with *value*. *flags* is one of:
595  *
596  * 		**BPF_NOEXIST**
597  * 			The entry for *key* must not exist in the map.
598  * 		**BPF_EXIST**
599  * 			The entry for *key* must already exist in the map.
600  * 		**BPF_ANY**
601  * 			No condition on the existence of the entry for *key*.
602  *
603  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
604  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
605  * 		elements always exist), the helper would return an error.
606  * 	Return
607  * 		0 on success, or a negative error in case of failure.
608  *
609  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
610  * 	Description
611  * 		Delete entry with *key* from *map*.
612  * 	Return
613  * 		0 on success, or a negative error in case of failure.
614  *
615  * int bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
616  * 	Description
617  * 		For tracing programs, safely attempt to read *size* bytes from
618  * 		kernel space address *unsafe_ptr* and store the data in *dst*.
619  *
620  * 		Generally, use bpf_probe_read_user() or bpf_probe_read_kernel()
621  * 		instead.
622  * 	Return
623  * 		0 on success, or a negative error in case of failure.
624  *
625  * u64 bpf_ktime_get_ns(void)
626  * 	Description
627  * 		Return the time elapsed since system boot, in nanoseconds.
628  * 	Return
629  * 		Current *ktime*.
630  *
631  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
632  * 	Description
633  * 		This helper is a "printk()-like" facility for debugging. It
634  * 		prints a message defined by format *fmt* (of size *fmt_size*)
635  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
636  * 		available. It can take up to three additional **u64**
637  * 		arguments (as an eBPF helpers, the total number of arguments is
638  * 		limited to five).
639  *
640  * 		Each time the helper is called, it appends a line to the trace.
641  * 		Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
642  * 		open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
643  * 		The format of the trace is customizable, and the exact output
644  * 		one will get depends on the options set in
645  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
646  * 		*README* file under the same directory). However, it usually
647  * 		defaults to something like:
648  *
649  * 		::
650  *
651  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
652  *
653  * 		In the above:
654  *
655  * 			* ``telnet`` is the name of the current task.
656  * 			* ``470`` is the PID of the current task.
657  * 			* ``001`` is the CPU number on which the task is
658  * 			  running.
659  * 			* In ``.N..``, each character refers to a set of
660  * 			  options (whether irqs are enabled, scheduling
661  * 			  options, whether hard/softirqs are running, level of
662  * 			  preempt_disabled respectively). **N** means that
663  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
664  * 			  are set.
665  * 			* ``419421.045894`` is a timestamp.
666  * 			* ``0x00000001`` is a fake value used by BPF for the
667  * 			  instruction pointer register.
668  * 			* ``<formatted msg>`` is the message formatted with
669  * 			  *fmt*.
670  *
671  * 		The conversion specifiers supported by *fmt* are similar, but
672  * 		more limited than for printk(). They are **%d**, **%i**,
673  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
674  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
675  * 		of field, padding with zeroes, etc.) is available, and the
676  * 		helper will return **-EINVAL** (but print nothing) if it
677  * 		encounters an unknown specifier.
678  *
679  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
680  * 		only be used for debugging purposes. For this reason, a notice
681  * 		bloc (spanning several lines) is printed to kernel logs and
682  * 		states that the helper should not be used "for production use"
683  * 		the first time this helper is used (or more precisely, when
684  * 		**trace_printk**\ () buffers are allocated). For passing values
685  * 		to user space, perf events should be preferred.
686  * 	Return
687  * 		The number of bytes written to the buffer, or a negative error
688  * 		in case of failure.
689  *
690  * u32 bpf_get_prandom_u32(void)
691  * 	Description
692  * 		Get a pseudo-random number.
693  *
694  * 		From a security point of view, this helper uses its own
695  * 		pseudo-random internal state, and cannot be used to infer the
696  * 		seed of other random functions in the kernel. However, it is
697  * 		essential to note that the generator used by the helper is not
698  * 		cryptographically secure.
699  * 	Return
700  * 		A random 32-bit unsigned value.
701  *
702  * u32 bpf_get_smp_processor_id(void)
703  * 	Description
704  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
705  * 		all programs run with preemption disabled, which means that the
706  * 		SMP processor id is stable during all the execution of the
707  * 		program.
708  * 	Return
709  * 		The SMP id of the processor running the program.
710  *
711  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
712  * 	Description
713  * 		Store *len* bytes from address *from* into the packet
714  * 		associated to *skb*, at *offset*. *flags* are a combination of
715  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
716  * 		checksum for the packet after storing the bytes) and
717  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
718  * 		**->swhash** and *skb*\ **->l4hash** to 0).
719  *
720  * 		A call to this helper is susceptible to change the underlying
721  * 		packet buffer. Therefore, at load time, all checks on pointers
722  * 		previously done by the verifier are invalidated and must be
723  * 		performed again, if the helper is used in combination with
724  * 		direct packet access.
725  * 	Return
726  * 		0 on success, or a negative error in case of failure.
727  *
728  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
729  * 	Description
730  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
731  * 		associated to *skb*. Computation is incremental, so the helper
732  * 		must know the former value of the header field that was
733  * 		modified (*from*), the new value of this field (*to*), and the
734  * 		number of bytes (2 or 4) for this field, stored in *size*.
735  * 		Alternatively, it is possible to store the difference between
736  * 		the previous and the new values of the header field in *to*, by
737  * 		setting *from* and *size* to 0. For both methods, *offset*
738  * 		indicates the location of the IP checksum within the packet.
739  *
740  * 		This helper works in combination with **bpf_csum_diff**\ (),
741  * 		which does not update the checksum in-place, but offers more
742  * 		flexibility and can handle sizes larger than 2 or 4 for the
743  * 		checksum to update.
744  *
745  * 		A call to this helper is susceptible to change the underlying
746  * 		packet buffer. Therefore, at load time, all checks on pointers
747  * 		previously done by the verifier are invalidated and must be
748  * 		performed again, if the helper is used in combination with
749  * 		direct packet access.
750  * 	Return
751  * 		0 on success, or a negative error in case of failure.
752  *
753  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
754  * 	Description
755  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
756  * 		packet associated to *skb*. Computation is incremental, so the
757  * 		helper must know the former value of the header field that was
758  * 		modified (*from*), the new value of this field (*to*), and the
759  * 		number of bytes (2 or 4) for this field, stored on the lowest
760  * 		four bits of *flags*. Alternatively, it is possible to store
761  * 		the difference between the previous and the new values of the
762  * 		header field in *to*, by setting *from* and the four lowest
763  * 		bits of *flags* to 0. For both methods, *offset* indicates the
764  * 		location of the IP checksum within the packet. In addition to
765  * 		the size of the field, *flags* can be added (bitwise OR) actual
766  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
767  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
768  * 		for updates resulting in a null checksum the value is set to
769  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
770  * 		the checksum is to be computed against a pseudo-header.
771  *
772  * 		This helper works in combination with **bpf_csum_diff**\ (),
773  * 		which does not update the checksum in-place, but offers more
774  * 		flexibility and can handle sizes larger than 2 or 4 for the
775  * 		checksum to update.
776  *
777  * 		A call to this helper is susceptible to change the underlying
778  * 		packet buffer. Therefore, at load time, all checks on pointers
779  * 		previously done by the verifier are invalidated and must be
780  * 		performed again, if the helper is used in combination with
781  * 		direct packet access.
782  * 	Return
783  * 		0 on success, or a negative error in case of failure.
784  *
785  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
786  * 	Description
787  * 		This special helper is used to trigger a "tail call", or in
788  * 		other words, to jump into another eBPF program. The same stack
789  * 		frame is used (but values on stack and in registers for the
790  * 		caller are not accessible to the callee). This mechanism allows
791  * 		for program chaining, either for raising the maximum number of
792  * 		available eBPF instructions, or to execute given programs in
793  * 		conditional blocks. For security reasons, there is an upper
794  * 		limit to the number of successive tail calls that can be
795  * 		performed.
796  *
797  * 		Upon call of this helper, the program attempts to jump into a
798  * 		program referenced at index *index* in *prog_array_map*, a
799  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
800  * 		*ctx*, a pointer to the context.
801  *
802  * 		If the call succeeds, the kernel immediately runs the first
803  * 		instruction of the new program. This is not a function call,
804  * 		and it never returns to the previous program. If the call
805  * 		fails, then the helper has no effect, and the caller continues
806  * 		to run its subsequent instructions. A call can fail if the
807  * 		destination program for the jump does not exist (i.e. *index*
808  * 		is superior to the number of entries in *prog_array_map*), or
809  * 		if the maximum number of tail calls has been reached for this
810  * 		chain of programs. This limit is defined in the kernel by the
811  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
812  * 		which is currently set to 32.
813  * 	Return
814  * 		0 on success, or a negative error in case of failure.
815  *
816  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
817  * 	Description
818  * 		Clone and redirect the packet associated to *skb* to another
819  * 		net device of index *ifindex*. Both ingress and egress
820  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
821  * 		value in *flags* is used to make the distinction (ingress path
822  * 		is selected if the flag is present, egress path otherwise).
823  * 		This is the only flag supported for now.
824  *
825  * 		In comparison with **bpf_redirect**\ () helper,
826  * 		**bpf_clone_redirect**\ () has the associated cost of
827  * 		duplicating the packet buffer, but this can be executed out of
828  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
829  * 		efficient, but it is handled through an action code where the
830  * 		redirection happens only after the eBPF program has returned.
831  *
832  * 		A call to this helper is susceptible to change the underlying
833  * 		packet buffer. Therefore, at load time, all checks on pointers
834  * 		previously done by the verifier are invalidated and must be
835  * 		performed again, if the helper is used in combination with
836  * 		direct packet access.
837  * 	Return
838  * 		0 on success, or a negative error in case of failure.
839  *
840  * u64 bpf_get_current_pid_tgid(void)
841  * 	Return
842  * 		A 64-bit integer containing the current tgid and pid, and
843  * 		created as such:
844  * 		*current_task*\ **->tgid << 32 \|**
845  * 		*current_task*\ **->pid**.
846  *
847  * u64 bpf_get_current_uid_gid(void)
848  * 	Return
849  * 		A 64-bit integer containing the current GID and UID, and
850  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
851  *
852  * int bpf_get_current_comm(void *buf, u32 size_of_buf)
853  * 	Description
854  * 		Copy the **comm** attribute of the current task into *buf* of
855  * 		*size_of_buf*. The **comm** attribute contains the name of
856  * 		the executable (excluding the path) for the current task. The
857  * 		*size_of_buf* must be strictly positive. On success, the
858  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
859  * 		it is filled with zeroes.
860  * 	Return
861  * 		0 on success, or a negative error in case of failure.
862  *
863  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
864  * 	Description
865  * 		Retrieve the classid for the current task, i.e. for the net_cls
866  * 		cgroup to which *skb* belongs.
867  *
868  * 		This helper can be used on TC egress path, but not on ingress.
869  *
870  * 		The net_cls cgroup provides an interface to tag network packets
871  * 		based on a user-provided identifier for all traffic coming from
872  * 		the tasks belonging to the related cgroup. See also the related
873  * 		kernel documentation, available from the Linux sources in file
874  * 		*Documentation/admin-guide/cgroup-v1/net_cls.rst*.
875  *
876  * 		The Linux kernel has two versions for cgroups: there are
877  * 		cgroups v1 and cgroups v2. Both are available to users, who can
878  * 		use a mixture of them, but note that the net_cls cgroup is for
879  * 		cgroup v1 only. This makes it incompatible with BPF programs
880  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
881  * 		only hold data for one version of cgroups at a time).
882  *
883  * 		This helper is only available is the kernel was compiled with
884  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
885  * 		"**y**" or to "**m**".
886  * 	Return
887  * 		The classid, or 0 for the default unconfigured classid.
888  *
889  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
890  * 	Description
891  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
892  * 		*vlan_proto* to the packet associated to *skb*, then update
893  * 		the checksum. Note that if *vlan_proto* is different from
894  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
895  * 		be **ETH_P_8021Q**.
896  *
897  * 		A call to this helper is susceptible to change the underlying
898  * 		packet buffer. Therefore, at load time, all checks on pointers
899  * 		previously done by the verifier are invalidated and must be
900  * 		performed again, if the helper is used in combination with
901  * 		direct packet access.
902  * 	Return
903  * 		0 on success, or a negative error in case of failure.
904  *
905  * int bpf_skb_vlan_pop(struct sk_buff *skb)
906  * 	Description
907  * 		Pop a VLAN header from the packet associated to *skb*.
908  *
909  * 		A call to this helper is susceptible to change the underlying
910  * 		packet buffer. Therefore, at load time, all checks on pointers
911  * 		previously done by the verifier are invalidated and must be
912  * 		performed again, if the helper is used in combination with
913  * 		direct packet access.
914  * 	Return
915  * 		0 on success, or a negative error in case of failure.
916  *
917  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
918  * 	Description
919  * 		Get tunnel metadata. This helper takes a pointer *key* to an
920  * 		empty **struct bpf_tunnel_key** of **size**, that will be
921  * 		filled with tunnel metadata for the packet associated to *skb*.
922  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
923  * 		indicates that the tunnel is based on IPv6 protocol instead of
924  * 		IPv4.
925  *
926  * 		The **struct bpf_tunnel_key** is an object that generalizes the
927  * 		principal parameters used by various tunneling protocols into a
928  * 		single struct. This way, it can be used to easily make a
929  * 		decision based on the contents of the encapsulation header,
930  * 		"summarized" in this struct. In particular, it holds the IP
931  * 		address of the remote end (IPv4 or IPv6, depending on the case)
932  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
933  * 		this struct exposes the *key*\ **->tunnel_id**, which is
934  * 		generally mapped to a VNI (Virtual Network Identifier), making
935  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
936  * 		() helper.
937  *
938  * 		Let's imagine that the following code is part of a program
939  * 		attached to the TC ingress interface, on one end of a GRE
940  * 		tunnel, and is supposed to filter out all messages coming from
941  * 		remote ends with IPv4 address other than 10.0.0.1:
942  *
943  * 		::
944  *
945  * 			int ret;
946  * 			struct bpf_tunnel_key key = {};
947  *
948  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
949  * 			if (ret < 0)
950  * 				return TC_ACT_SHOT;	// drop packet
951  *
952  * 			if (key.remote_ipv4 != 0x0a000001)
953  * 				return TC_ACT_SHOT;	// drop packet
954  *
955  * 			return TC_ACT_OK;		// accept packet
956  *
957  * 		This interface can also be used with all encapsulation devices
958  * 		that can operate in "collect metadata" mode: instead of having
959  * 		one network device per specific configuration, the "collect
960  * 		metadata" mode only requires a single device where the
961  * 		configuration can be extracted from this helper.
962  *
963  * 		This can be used together with various tunnels such as VXLan,
964  * 		Geneve, GRE or IP in IP (IPIP).
965  * 	Return
966  * 		0 on success, or a negative error in case of failure.
967  *
968  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
969  * 	Description
970  * 		Populate tunnel metadata for packet associated to *skb.* The
971  * 		tunnel metadata is set to the contents of *key*, of *size*. The
972  * 		*flags* can be set to a combination of the following values:
973  *
974  * 		**BPF_F_TUNINFO_IPV6**
975  * 			Indicate that the tunnel is based on IPv6 protocol
976  * 			instead of IPv4.
977  * 		**BPF_F_ZERO_CSUM_TX**
978  * 			For IPv4 packets, add a flag to tunnel metadata
979  * 			indicating that checksum computation should be skipped
980  * 			and checksum set to zeroes.
981  * 		**BPF_F_DONT_FRAGMENT**
982  * 			Add a flag to tunnel metadata indicating that the
983  * 			packet should not be fragmented.
984  * 		**BPF_F_SEQ_NUMBER**
985  * 			Add a flag to tunnel metadata indicating that a
986  * 			sequence number should be added to tunnel header before
987  * 			sending the packet. This flag was added for GRE
988  * 			encapsulation, but might be used with other protocols
989  * 			as well in the future.
990  *
991  * 		Here is a typical usage on the transmit path:
992  *
993  * 		::
994  *
995  * 			struct bpf_tunnel_key key;
996  * 			     populate key ...
997  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
998  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
999  *
1000  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
1001  * 		helper for additional information.
1002  * 	Return
1003  * 		0 on success, or a negative error in case of failure.
1004  *
1005  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
1006  * 	Description
1007  * 		Read the value of a perf event counter. This helper relies on a
1008  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
1009  * 		the perf event counter is selected when *map* is updated with
1010  * 		perf event file descriptors. The *map* is an array whose size
1011  * 		is the number of available CPUs, and each cell contains a value
1012  * 		relative to one CPU. The value to retrieve is indicated by
1013  * 		*flags*, that contains the index of the CPU to look up, masked
1014  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1015  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1016  * 		current CPU should be retrieved.
1017  *
1018  * 		Note that before Linux 4.13, only hardware perf event can be
1019  * 		retrieved.
1020  *
1021  * 		Also, be aware that the newer helper
1022  * 		**bpf_perf_event_read_value**\ () is recommended over
1023  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
1024  * 		quirks where error and counter value are used as a return code
1025  * 		(which is wrong to do since ranges may overlap). This issue is
1026  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
1027  * 		time provides more features over the **bpf_perf_event_read**\
1028  * 		() interface. Please refer to the description of
1029  * 		**bpf_perf_event_read_value**\ () for details.
1030  * 	Return
1031  * 		The value of the perf event counter read from the map, or a
1032  * 		negative error code in case of failure.
1033  *
1034  * int bpf_redirect(u32 ifindex, u64 flags)
1035  * 	Description
1036  * 		Redirect the packet to another net device of index *ifindex*.
1037  * 		This helper is somewhat similar to **bpf_clone_redirect**\
1038  * 		(), except that the packet is not cloned, which provides
1039  * 		increased performance.
1040  *
1041  * 		Except for XDP, both ingress and egress interfaces can be used
1042  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
1043  * 		to make the distinction (ingress path is selected if the flag
1044  * 		is present, egress path otherwise). Currently, XDP only
1045  * 		supports redirection to the egress interface, and accepts no
1046  * 		flag at all.
1047  *
1048  * 		The same effect can be attained with the more generic
1049  * 		**bpf_redirect_map**\ (), which requires specific maps to be
1050  * 		used but offers better performance.
1051  * 	Return
1052  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
1053  * 		**XDP_ABORTED** on error. For other program types, the values
1054  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1055  * 		error.
1056  *
1057  * u32 bpf_get_route_realm(struct sk_buff *skb)
1058  * 	Description
1059  * 		Retrieve the realm or the route, that is to say the
1060  * 		**tclassid** field of the destination for the *skb*. The
1061  * 		indentifier retrieved is a user-provided tag, similar to the
1062  * 		one used with the net_cls cgroup (see description for
1063  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
1064  * 		held by a route (a destination entry), not by a task.
1065  *
1066  * 		Retrieving this identifier works with the clsact TC egress hook
1067  * 		(see also **tc-bpf(8)**), or alternatively on conventional
1068  * 		classful egress qdiscs, but not on TC ingress path. In case of
1069  * 		clsact TC egress hook, this has the advantage that, internally,
1070  * 		the destination entry has not been dropped yet in the transmit
1071  * 		path. Therefore, the destination entry does not need to be
1072  * 		artificially held via **netif_keep_dst**\ () for a classful
1073  * 		qdisc until the *skb* is freed.
1074  *
1075  * 		This helper is available only if the kernel was compiled with
1076  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
1077  * 	Return
1078  * 		The realm of the route for the packet associated to *skb*, or 0
1079  * 		if none was found.
1080  *
1081  * int bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
1082  * 	Description
1083  * 		Write raw *data* blob into a special BPF perf event held by
1084  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
1085  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
1086  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
1087  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
1088  *
1089  * 		The *flags* are used to indicate the index in *map* for which
1090  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
1091  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
1092  * 		to indicate that the index of the current CPU core should be
1093  * 		used.
1094  *
1095  * 		The value to write, of *size*, is passed through eBPF stack and
1096  * 		pointed by *data*.
1097  *
1098  * 		The context of the program *ctx* needs also be passed to the
1099  * 		helper.
1100  *
1101  * 		On user space, a program willing to read the values needs to
1102  * 		call **perf_event_open**\ () on the perf event (either for
1103  * 		one or for all CPUs) and to store the file descriptor into the
1104  * 		*map*. This must be done before the eBPF program can send data
1105  * 		into it. An example is available in file
1106  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
1107  * 		tree (the eBPF program counterpart is in
1108  * 		*samples/bpf/trace_output_kern.c*).
1109  *
1110  * 		**bpf_perf_event_output**\ () achieves better performance
1111  * 		than **bpf_trace_printk**\ () for sharing data with user
1112  * 		space, and is much better suitable for streaming data from eBPF
1113  * 		programs.
1114  *
1115  * 		Note that this helper is not restricted to tracing use cases
1116  * 		and can be used with programs attached to TC or XDP as well,
1117  * 		where it allows for passing data to user space listeners. Data
1118  * 		can be:
1119  *
1120  * 		* Only custom structs,
1121  * 		* Only the packet payload, or
1122  * 		* A combination of both.
1123  * 	Return
1124  * 		0 on success, or a negative error in case of failure.
1125  *
1126  * int bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
1127  * 	Description
1128  * 		This helper was provided as an easy way to load data from a
1129  * 		packet. It can be used to load *len* bytes from *offset* from
1130  * 		the packet associated to *skb*, into the buffer pointed by
1131  * 		*to*.
1132  *
1133  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1134  * 		by "direct packet access", enabling packet data to be
1135  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1136  * 		pointing respectively to the first byte of packet data and to
1137  * 		the byte after the last byte of packet data. However, it
1138  * 		remains useful if one wishes to read large quantities of data
1139  * 		at once from a packet into the eBPF stack.
1140  * 	Return
1141  * 		0 on success, or a negative error in case of failure.
1142  *
1143  * int bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
1144  * 	Description
1145  * 		Walk a user or a kernel stack and return its id. To achieve
1146  * 		this, the helper needs *ctx*, which is a pointer to the context
1147  * 		on which the tracing program is executed, and a pointer to a
1148  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1149  *
1150  * 		The last argument, *flags*, holds the number of stack frames to
1151  * 		skip (from 0 to 255), masked with
1152  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1153  * 		a combination of the following flags:
1154  *
1155  * 		**BPF_F_USER_STACK**
1156  * 			Collect a user space stack instead of a kernel stack.
1157  * 		**BPF_F_FAST_STACK_CMP**
1158  * 			Compare stacks by hash only.
1159  * 		**BPF_F_REUSE_STACKID**
1160  * 			If two different stacks hash into the same *stackid*,
1161  * 			discard the old one.
1162  *
1163  * 		The stack id retrieved is a 32 bit long integer handle which
1164  * 		can be further combined with other data (including other stack
1165  * 		ids) and used as a key into maps. This can be useful for
1166  * 		generating a variety of graphs (such as flame graphs or off-cpu
1167  * 		graphs).
1168  *
1169  * 		For walking a stack, this helper is an improvement over
1170  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1171  * 		but is not efficient and consumes a lot of eBPF instructions.
1172  * 		Instead, **bpf_get_stackid**\ () can collect up to
1173  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1174  * 		this limit can be controlled with the **sysctl** program, and
1175  * 		that it should be manually increased in order to profile long
1176  * 		user stacks (such as stacks for Java programs). To do so, use:
1177  *
1178  * 		::
1179  *
1180  * 			# sysctl kernel.perf_event_max_stack=<new value>
1181  * 	Return
1182  * 		The positive or null stack id on success, or a negative error
1183  * 		in case of failure.
1184  *
1185  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1186  * 	Description
1187  * 		Compute a checksum difference, from the raw buffer pointed by
1188  * 		*from*, of length *from_size* (that must be a multiple of 4),
1189  * 		towards the raw buffer pointed by *to*, of size *to_size*
1190  * 		(same remark). An optional *seed* can be added to the value
1191  * 		(this can be cascaded, the seed may come from a previous call
1192  * 		to the helper).
1193  *
1194  * 		This is flexible enough to be used in several ways:
1195  *
1196  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1197  * 		  checksum, it can be used when pushing new data.
1198  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1199  * 		  checksum, it can be used when removing data from a packet.
1200  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1201  * 		  can be used to compute a diff. Note that *from_size* and
1202  * 		  *to_size* do not need to be equal.
1203  *
1204  * 		This helper can be used in combination with
1205  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1206  * 		which one can feed in the difference computed with
1207  * 		**bpf_csum_diff**\ ().
1208  * 	Return
1209  * 		The checksum result, or a negative error code in case of
1210  * 		failure.
1211  *
1212  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1213  * 	Description
1214  * 		Retrieve tunnel options metadata for the packet associated to
1215  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1216  * 		of *size*.
1217  *
1218  * 		This helper can be used with encapsulation devices that can
1219  * 		operate in "collect metadata" mode (please refer to the related
1220  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1221  * 		more details). A particular example where this can be used is
1222  * 		in combination with the Geneve encapsulation protocol, where it
1223  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1224  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1225  * 		the eBPF program. This allows for full customization of these
1226  * 		headers.
1227  * 	Return
1228  * 		The size of the option data retrieved.
1229  *
1230  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1231  * 	Description
1232  * 		Set tunnel options metadata for the packet associated to *skb*
1233  * 		to the option data contained in the raw buffer *opt* of *size*.
1234  *
1235  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1236  * 		helper for additional information.
1237  * 	Return
1238  * 		0 on success, or a negative error in case of failure.
1239  *
1240  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1241  * 	Description
1242  * 		Change the protocol of the *skb* to *proto*. Currently
1243  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1244  * 		IPv4. The helper takes care of the groundwork for the
1245  * 		transition, including resizing the socket buffer. The eBPF
1246  * 		program is expected to fill the new headers, if any, via
1247  * 		**skb_store_bytes**\ () and to recompute the checksums with
1248  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1249  * 		(). The main case for this helper is to perform NAT64
1250  * 		operations out of an eBPF program.
1251  *
1252  * 		Internally, the GSO type is marked as dodgy so that headers are
1253  * 		checked and segments are recalculated by the GSO/GRO engine.
1254  * 		The size for GSO target is adapted as well.
1255  *
1256  * 		All values for *flags* are reserved for future usage, and must
1257  * 		be left at zero.
1258  *
1259  * 		A call to this helper is susceptible to change the underlying
1260  * 		packet buffer. Therefore, at load time, all checks on pointers
1261  * 		previously done by the verifier are invalidated and must be
1262  * 		performed again, if the helper is used in combination with
1263  * 		direct packet access.
1264  * 	Return
1265  * 		0 on success, or a negative error in case of failure.
1266  *
1267  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1268  * 	Description
1269  * 		Change the packet type for the packet associated to *skb*. This
1270  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1271  * 		the eBPF program does not have a write access to *skb*\
1272  * 		**->pkt_type** beside this helper. Using a helper here allows
1273  * 		for graceful handling of errors.
1274  *
1275  * 		The major use case is to change incoming *skb*s to
1276  * 		**PACKET_HOST** in a programmatic way instead of having to
1277  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1278  * 		example.
1279  *
1280  * 		Note that *type* only allows certain values. At this time, they
1281  * 		are:
1282  *
1283  * 		**PACKET_HOST**
1284  * 			Packet is for us.
1285  * 		**PACKET_BROADCAST**
1286  * 			Send packet to all.
1287  * 		**PACKET_MULTICAST**
1288  * 			Send packet to group.
1289  * 		**PACKET_OTHERHOST**
1290  * 			Send packet to someone else.
1291  * 	Return
1292  * 		0 on success, or a negative error in case of failure.
1293  *
1294  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1295  * 	Description
1296  * 		Check whether *skb* is a descendant of the cgroup2 held by
1297  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1298  * 	Return
1299  * 		The return value depends on the result of the test, and can be:
1300  *
1301  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1302  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1303  * 		* A negative error code, if an error occurred.
1304  *
1305  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1306  * 	Description
1307  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1308  * 		not set, in particular if the hash was cleared due to mangling,
1309  * 		recompute this hash. Later accesses to the hash can be done
1310  * 		directly with *skb*\ **->hash**.
1311  *
1312  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1313  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1314  * 		**bpf_skb_store_bytes**\ () with the
1315  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1316  * 		the hash and to trigger a new computation for the next call to
1317  * 		**bpf_get_hash_recalc**\ ().
1318  * 	Return
1319  * 		The 32-bit hash.
1320  *
1321  * u64 bpf_get_current_task(void)
1322  * 	Return
1323  * 		A pointer to the current task struct.
1324  *
1325  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1326  * 	Description
1327  * 		Attempt in a safe way to write *len* bytes from the buffer
1328  * 		*src* to *dst* in memory. It only works for threads that are in
1329  * 		user context, and *dst* must be a valid user space address.
1330  *
1331  * 		This helper should not be used to implement any kind of
1332  * 		security mechanism because of TOC-TOU attacks, but rather to
1333  * 		debug, divert, and manipulate execution of semi-cooperative
1334  * 		processes.
1335  *
1336  * 		Keep in mind that this feature is meant for experiments, and it
1337  * 		has a risk of crashing the system and running programs.
1338  * 		Therefore, when an eBPF program using this helper is attached,
1339  * 		a warning including PID and process name is printed to kernel
1340  * 		logs.
1341  * 	Return
1342  * 		0 on success, or a negative error in case of failure.
1343  *
1344  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1345  * 	Description
1346  * 		Check whether the probe is being run is the context of a given
1347  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1348  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1349  * 	Return
1350  * 		The return value depends on the result of the test, and can be:
1351  *
1352  * 		* 0, if the *skb* task belongs to the cgroup2.
1353  * 		* 1, if the *skb* task does not belong to the cgroup2.
1354  * 		* A negative error code, if an error occurred.
1355  *
1356  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1357  * 	Description
1358  * 		Resize (trim or grow) the packet associated to *skb* to the
1359  * 		new *len*. The *flags* are reserved for future usage, and must
1360  * 		be left at zero.
1361  *
1362  * 		The basic idea is that the helper performs the needed work to
1363  * 		change the size of the packet, then the eBPF program rewrites
1364  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1365  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1366  * 		and others. This helper is a slow path utility intended for
1367  * 		replies with control messages. And because it is targeted for
1368  * 		slow path, the helper itself can afford to be slow: it
1369  * 		implicitly linearizes, unclones and drops offloads from the
1370  * 		*skb*.
1371  *
1372  * 		A call to this helper is susceptible to change the underlying
1373  * 		packet buffer. Therefore, at load time, all checks on pointers
1374  * 		previously done by the verifier are invalidated and must be
1375  * 		performed again, if the helper is used in combination with
1376  * 		direct packet access.
1377  * 	Return
1378  * 		0 on success, or a negative error in case of failure.
1379  *
1380  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1381  * 	Description
1382  * 		Pull in non-linear data in case the *skb* is non-linear and not
1383  * 		all of *len* are part of the linear section. Make *len* bytes
1384  * 		from *skb* readable and writable. If a zero value is passed for
1385  * 		*len*, then the whole length of the *skb* is pulled.
1386  *
1387  * 		This helper is only needed for reading and writing with direct
1388  * 		packet access.
1389  *
1390  * 		For direct packet access, testing that offsets to access
1391  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1392  * 		susceptible to fail if offsets are invalid, or if the requested
1393  * 		data is in non-linear parts of the *skb*. On failure the
1394  * 		program can just bail out, or in the case of a non-linear
1395  * 		buffer, use a helper to make the data available. The
1396  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1397  * 		the data. Another one consists in using **bpf_skb_pull_data**
1398  * 		to pull in once the non-linear parts, then retesting and
1399  * 		eventually access the data.
1400  *
1401  * 		At the same time, this also makes sure the *skb* is uncloned,
1402  * 		which is a necessary condition for direct write. As this needs
1403  * 		to be an invariant for the write part only, the verifier
1404  * 		detects writes and adds a prologue that is calling
1405  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1406  * 		the very beginning in case it is indeed cloned.
1407  *
1408  * 		A call to this helper is susceptible to change the underlying
1409  * 		packet buffer. Therefore, at load time, all checks on pointers
1410  * 		previously done by the verifier are invalidated and must be
1411  * 		performed again, if the helper is used in combination with
1412  * 		direct packet access.
1413  * 	Return
1414  * 		0 on success, or a negative error in case of failure.
1415  *
1416  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1417  * 	Description
1418  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1419  * 		driver has supplied a checksum for the entire packet into that
1420  * 		field. Return an error otherwise. This helper is intended to be
1421  * 		used in combination with **bpf_csum_diff**\ (), in particular
1422  * 		when the checksum needs to be updated after data has been
1423  * 		written into the packet through direct packet access.
1424  * 	Return
1425  * 		The checksum on success, or a negative error code in case of
1426  * 		failure.
1427  *
1428  * void bpf_set_hash_invalid(struct sk_buff *skb)
1429  * 	Description
1430  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1431  * 		mangling on headers through direct packet access, in order to
1432  * 		indicate that the hash is outdated and to trigger a
1433  * 		recalculation the next time the kernel tries to access this
1434  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1435  *
1436  * int bpf_get_numa_node_id(void)
1437  * 	Description
1438  * 		Return the id of the current NUMA node. The primary use case
1439  * 		for this helper is the selection of sockets for the local NUMA
1440  * 		node, when the program is attached to sockets using the
1441  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1442  * 		but the helper is also available to other eBPF program types,
1443  * 		similarly to **bpf_get_smp_processor_id**\ ().
1444  * 	Return
1445  * 		The id of current NUMA node.
1446  *
1447  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1448  * 	Description
1449  * 		Grows headroom of packet associated to *skb* and adjusts the
1450  * 		offset of the MAC header accordingly, adding *len* bytes of
1451  * 		space. It automatically extends and reallocates memory as
1452  * 		required.
1453  *
1454  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1455  * 		for redirection into a layer 2 device.
1456  *
1457  * 		All values for *flags* are reserved for future usage, and must
1458  * 		be left at zero.
1459  *
1460  * 		A call to this helper is susceptible to change the underlying
1461  * 		packet buffer. Therefore, at load time, all checks on pointers
1462  * 		previously done by the verifier are invalidated and must be
1463  * 		performed again, if the helper is used in combination with
1464  * 		direct packet access.
1465  * 	Return
1466  * 		0 on success, or a negative error in case of failure.
1467  *
1468  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1469  * 	Description
1470  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1471  * 		it is possible to use a negative value for *delta*. This helper
1472  * 		can be used to prepare the packet for pushing or popping
1473  * 		headers.
1474  *
1475  * 		A call to this helper is susceptible to change the underlying
1476  * 		packet buffer. Therefore, at load time, all checks on pointers
1477  * 		previously done by the verifier are invalidated and must be
1478  * 		performed again, if the helper is used in combination with
1479  * 		direct packet access.
1480  * 	Return
1481  * 		0 on success, or a negative error in case of failure.
1482  *
1483  * int bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
1484  * 	Description
1485  * 		Copy a NUL terminated string from an unsafe kernel address
1486  * 		*unsafe_ptr* to *dst*. See bpf_probe_read_kernel_str() for
1487  * 		more details.
1488  *
1489  * 		Generally, use bpf_probe_read_user_str() or bpf_probe_read_kernel_str()
1490  * 		instead.
1491  * 	Return
1492  * 		On success, the strictly positive length of the string,
1493  * 		including the trailing NUL character. On error, a negative
1494  * 		value.
1495  *
1496  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1497  * 	Description
1498  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1499  * 		retrieve the cookie (generated by the kernel) of this socket.
1500  * 		If no cookie has been set yet, generate a new cookie. Once
1501  * 		generated, the socket cookie remains stable for the life of the
1502  * 		socket. This helper can be useful for monitoring per socket
1503  * 		networking traffic statistics as it provides a global socket
1504  * 		identifier that can be assumed unique.
1505  * 	Return
1506  * 		A 8-byte long non-decreasing number on success, or 0 if the
1507  * 		socket field is missing inside *skb*.
1508  *
1509  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1510  * 	Description
1511  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1512  * 		*skb*, but gets socket from **struct bpf_sock_addr** context.
1513  * 	Return
1514  * 		A 8-byte long non-decreasing number.
1515  *
1516  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1517  * 	Description
1518  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1519  * 		*skb*, but gets socket from **struct bpf_sock_ops** context.
1520  * 	Return
1521  * 		A 8-byte long non-decreasing number.
1522  *
1523  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1524  * 	Return
1525  * 		The owner UID of the socket associated to *skb*. If the socket
1526  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1527  * 		time-wait or a request socket instead), **overflowuid** value
1528  * 		is returned (note that **overflowuid** might also be the actual
1529  * 		UID value for the socket).
1530  *
1531  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1532  * 	Description
1533  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1534  * 		to value *hash*.
1535  * 	Return
1536  * 		0
1537  *
1538  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1539  * 	Description
1540  * 		Emulate a call to **setsockopt()** on the socket associated to
1541  * 		*bpf_socket*, which must be a full socket. The *level* at
1542  * 		which the option resides and the name *optname* of the option
1543  * 		must be specified, see **setsockopt(2)** for more information.
1544  * 		The option value of length *optlen* is pointed by *optval*.
1545  *
1546  * 		This helper actually implements a subset of **setsockopt()**.
1547  * 		It supports the following *level*\ s:
1548  *
1549  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1550  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1551  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1552  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1553  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1554  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1555  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1556  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1557  * 	Return
1558  * 		0 on success, or a negative error in case of failure.
1559  *
1560  * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1561  * 	Description
1562  * 		Grow or shrink the room for data in the packet associated to
1563  * 		*skb* by *len_diff*, and according to the selected *mode*.
1564  *
1565  *		There are two supported modes at this time:
1566  *
1567  *		* **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1568  *		  (room space is added or removed below the layer 2 header).
1569  *
1570  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1571  * 		  (room space is added or removed below the layer 3 header).
1572  *
1573  *		The following flags are supported at this time:
1574  *
1575  *		* **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1576  *		  Adjusting mss in this way is not allowed for datagrams.
1577  *
1578  *		* **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
1579  *		  **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
1580  *		  Any new space is reserved to hold a tunnel header.
1581  *		  Configure skb offsets and other fields accordingly.
1582  *
1583  *		* **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
1584  *		  **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
1585  *		  Use with ENCAP_L3 flags to further specify the tunnel type.
1586  *
1587  *		* **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
1588  *		  Use with ENCAP_L3/L4 flags to further specify the tunnel
1589  *		  type; *len* is the length of the inner MAC header.
1590  *
1591  * 		A call to this helper is susceptible to change the underlying
1592  * 		packet buffer. Therefore, at load time, all checks on pointers
1593  * 		previously done by the verifier are invalidated and must be
1594  * 		performed again, if the helper is used in combination with
1595  * 		direct packet access.
1596  * 	Return
1597  * 		0 on success, or a negative error in case of failure.
1598  *
1599  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1600  * 	Description
1601  * 		Redirect the packet to the endpoint referenced by *map* at
1602  * 		index *key*. Depending on its type, this *map* can contain
1603  * 		references to net devices (for forwarding packets through other
1604  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1605  * 		but this is only implemented for native XDP (with driver
1606  * 		support) as of this writing).
1607  *
1608  * 		The lower two bits of *flags* are used as the return code if
1609  * 		the map lookup fails. This is so that the return value can be
1610  * 		one of the XDP program return codes up to XDP_TX, as chosen by
1611  * 		the caller. Any higher bits in the *flags* argument must be
1612  * 		unset.
1613  *
1614  * 		When used to redirect packets to net devices, this helper
1615  * 		provides a high performance increase over **bpf_redirect**\ ().
1616  * 		This is due to various implementation details of the underlying
1617  * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
1618  * 		() tries to send packet as a "bulk" to the device.
1619  * 	Return
1620  * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1621  *
1622  * int bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
1623  * 	Description
1624  * 		Redirect the packet to the socket referenced by *map* (of type
1625  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1626  * 		egress interfaces can be used for redirection. The
1627  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1628  * 		distinction (ingress path is selected if the flag is present,
1629  * 		egress path otherwise). This is the only flag supported for now.
1630  * 	Return
1631  * 		**SK_PASS** on success, or **SK_DROP** on error.
1632  *
1633  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1634  * 	Description
1635  * 		Add an entry to, or update a *map* referencing sockets. The
1636  * 		*skops* is used as a new value for the entry associated to
1637  * 		*key*. *flags* is one of:
1638  *
1639  * 		**BPF_NOEXIST**
1640  * 			The entry for *key* must not exist in the map.
1641  * 		**BPF_EXIST**
1642  * 			The entry for *key* must already exist in the map.
1643  * 		**BPF_ANY**
1644  * 			No condition on the existence of the entry for *key*.
1645  *
1646  * 		If the *map* has eBPF programs (parser and verdict), those will
1647  * 		be inherited by the socket being added. If the socket is
1648  * 		already attached to eBPF programs, this results in an error.
1649  * 	Return
1650  * 		0 on success, or a negative error in case of failure.
1651  *
1652  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1653  * 	Description
1654  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1655  * 		*delta* (which can be positive or negative). Note that this
1656  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1657  * 		so the latter must be loaded only after the helper has been
1658  * 		called.
1659  *
1660  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1661  * 		are not required to use it. The rationale is that when the
1662  * 		packet is processed with XDP (e.g. as DoS filter), it is
1663  * 		possible to push further meta data along with it before passing
1664  * 		to the stack, and to give the guarantee that an ingress eBPF
1665  * 		program attached as a TC classifier on the same device can pick
1666  * 		this up for further post-processing. Since TC works with socket
1667  * 		buffers, it remains possible to set from XDP the **mark** or
1668  * 		**priority** pointers, or other pointers for the socket buffer.
1669  * 		Having this scratch space generic and programmable allows for
1670  * 		more flexibility as the user is free to store whatever meta
1671  * 		data they need.
1672  *
1673  * 		A call to this helper is susceptible to change the underlying
1674  * 		packet buffer. Therefore, at load time, all checks on pointers
1675  * 		previously done by the verifier are invalidated and must be
1676  * 		performed again, if the helper is used in combination with
1677  * 		direct packet access.
1678  * 	Return
1679  * 		0 on success, or a negative error in case of failure.
1680  *
1681  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1682  * 	Description
1683  * 		Read the value of a perf event counter, and store it into *buf*
1684  * 		of size *buf_size*. This helper relies on a *map* of type
1685  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1686  * 		counter is selected when *map* is updated with perf event file
1687  * 		descriptors. The *map* is an array whose size is the number of
1688  * 		available CPUs, and each cell contains a value relative to one
1689  * 		CPU. The value to retrieve is indicated by *flags*, that
1690  * 		contains the index of the CPU to look up, masked with
1691  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1692  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1693  * 		current CPU should be retrieved.
1694  *
1695  * 		This helper behaves in a way close to
1696  * 		**bpf_perf_event_read**\ () helper, save that instead of
1697  * 		just returning the value observed, it fills the *buf*
1698  * 		structure. This allows for additional data to be retrieved: in
1699  * 		particular, the enabled and running times (in *buf*\
1700  * 		**->enabled** and *buf*\ **->running**, respectively) are
1701  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1702  * 		recommended over **bpf_perf_event_read**\ (), which has some
1703  * 		ABI issues and provides fewer functionalities.
1704  *
1705  * 		These values are interesting, because hardware PMU (Performance
1706  * 		Monitoring Unit) counters are limited resources. When there are
1707  * 		more PMU based perf events opened than available counters,
1708  * 		kernel will multiplex these events so each event gets certain
1709  * 		percentage (but not all) of the PMU time. In case that
1710  * 		multiplexing happens, the number of samples or counter value
1711  * 		will not reflect the case compared to when no multiplexing
1712  * 		occurs. This makes comparison between different runs difficult.
1713  * 		Typically, the counter value should be normalized before
1714  * 		comparing to other experiments. The usual normalization is done
1715  * 		as follows.
1716  *
1717  * 		::
1718  *
1719  * 			normalized_counter = counter * t_enabled / t_running
1720  *
1721  * 		Where t_enabled is the time enabled for event and t_running is
1722  * 		the time running for event since last normalization. The
1723  * 		enabled and running times are accumulated since the perf event
1724  * 		open. To achieve scaling factor between two invocations of an
1725  * 		eBPF program, users can can use CPU id as the key (which is
1726  * 		typical for perf array usage model) to remember the previous
1727  * 		value and do the calculation inside the eBPF program.
1728  * 	Return
1729  * 		0 on success, or a negative error in case of failure.
1730  *
1731  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1732  * 	Description
1733  * 		For en eBPF program attached to a perf event, retrieve the
1734  * 		value of the event counter associated to *ctx* and store it in
1735  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1736  * 		and running times are also stored in the structure (see
1737  * 		description of helper **bpf_perf_event_read_value**\ () for
1738  * 		more details).
1739  * 	Return
1740  * 		0 on success, or a negative error in case of failure.
1741  *
1742  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1743  * 	Description
1744  * 		Emulate a call to **getsockopt()** on the socket associated to
1745  * 		*bpf_socket*, which must be a full socket. The *level* at
1746  * 		which the option resides and the name *optname* of the option
1747  * 		must be specified, see **getsockopt(2)** for more information.
1748  * 		The retrieved value is stored in the structure pointed by
1749  * 		*opval* and of length *optlen*.
1750  *
1751  * 		This helper actually implements a subset of **getsockopt()**.
1752  * 		It supports the following *level*\ s:
1753  *
1754  * 		* **IPPROTO_TCP**, which supports *optname*
1755  * 		  **TCP_CONGESTION**.
1756  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1757  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1758  * 	Return
1759  * 		0 on success, or a negative error in case of failure.
1760  *
1761  * int bpf_override_return(struct pt_regs *regs, u64 rc)
1762  * 	Description
1763  * 		Used for error injection, this helper uses kprobes to override
1764  * 		the return value of the probed function, and to set it to *rc*.
1765  * 		The first argument is the context *regs* on which the kprobe
1766  * 		works.
1767  *
1768  * 		This helper works by setting setting the PC (program counter)
1769  * 		to an override function which is run in place of the original
1770  * 		probed function. This means the probed function is not run at
1771  * 		all. The replacement function just returns with the required
1772  * 		value.
1773  *
1774  * 		This helper has security implications, and thus is subject to
1775  * 		restrictions. It is only available if the kernel was compiled
1776  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1777  * 		option, and in this case it only works on functions tagged with
1778  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1779  *
1780  * 		Also, the helper is only available for the architectures having
1781  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1782  * 		x86 architecture is the only one to support this feature.
1783  * 	Return
1784  * 		0
1785  *
1786  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1787  * 	Description
1788  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1789  * 		for the full TCP socket associated to *bpf_sock_ops* to
1790  * 		*argval*.
1791  *
1792  * 		The primary use of this field is to determine if there should
1793  * 		be calls to eBPF programs of type
1794  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1795  * 		code. A program of the same type can change its value, per
1796  * 		connection and as necessary, when the connection is
1797  * 		established. This field is directly accessible for reading, but
1798  * 		this helper must be used for updates in order to return an
1799  * 		error if an eBPF program tries to set a callback that is not
1800  * 		supported in the current kernel.
1801  *
1802  * 		*argval* is a flag array which can combine these flags:
1803  *
1804  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1805  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1806  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1807  * 		* **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
1808  *
1809  * 		Therefore, this function can be used to clear a callback flag by
1810  * 		setting the appropriate bit to zero. e.g. to disable the RTO
1811  * 		callback:
1812  *
1813  * 		**bpf_sock_ops_cb_flags_set(bpf_sock,**
1814  * 			**bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
1815  *
1816  * 		Here are some examples of where one could call such eBPF
1817  * 		program:
1818  *
1819  * 		* When RTO fires.
1820  * 		* When a packet is retransmitted.
1821  * 		* When the connection terminates.
1822  * 		* When a packet is sent.
1823  * 		* When a packet is received.
1824  * 	Return
1825  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1826  * 		otherwise, a positive number containing the bits that could not
1827  * 		be set is returned (which comes down to 0 if all bits were set
1828  * 		as required).
1829  *
1830  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1831  * 	Description
1832  * 		This helper is used in programs implementing policies at the
1833  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1834  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1835  * 		the socket referenced by *map* (of type
1836  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1837  * 		egress interfaces can be used for redirection. The
1838  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1839  * 		distinction (ingress path is selected if the flag is present,
1840  * 		egress path otherwise). This is the only flag supported for now.
1841  * 	Return
1842  * 		**SK_PASS** on success, or **SK_DROP** on error.
1843  *
1844  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1845  * 	Description
1846  * 		For socket policies, apply the verdict of the eBPF program to
1847  * 		the next *bytes* (number of bytes) of message *msg*.
1848  *
1849  * 		For example, this helper can be used in the following cases:
1850  *
1851  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1852  * 		  contains multiple logical messages that the eBPF program is
1853  * 		  supposed to read and for which it should apply a verdict.
1854  * 		* An eBPF program only cares to read the first *bytes* of a
1855  * 		  *msg*. If the message has a large payload, then setting up
1856  * 		  and calling the eBPF program repeatedly for all bytes, even
1857  * 		  though the verdict is already known, would create unnecessary
1858  * 		  overhead.
1859  *
1860  * 		When called from within an eBPF program, the helper sets a
1861  * 		counter internal to the BPF infrastructure, that is used to
1862  * 		apply the last verdict to the next *bytes*. If *bytes* is
1863  * 		smaller than the current data being processed from a
1864  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1865  * 		*bytes* will be sent and the eBPF program will be re-run with
1866  * 		the pointer for start of data pointing to byte number *bytes*
1867  * 		**+ 1**. If *bytes* is larger than the current data being
1868  * 		processed, then the eBPF verdict will be applied to multiple
1869  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1870  * 		consumed.
1871  *
1872  * 		Note that if a socket closes with the internal counter holding
1873  * 		a non-zero value, this is not a problem because data is not
1874  * 		being buffered for *bytes* and is sent as it is received.
1875  * 	Return
1876  * 		0
1877  *
1878  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1879  * 	Description
1880  * 		For socket policies, prevent the execution of the verdict eBPF
1881  * 		program for message *msg* until *bytes* (byte number) have been
1882  * 		accumulated.
1883  *
1884  * 		This can be used when one needs a specific number of bytes
1885  * 		before a verdict can be assigned, even if the data spans
1886  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1887  * 		case would be a user calling **sendmsg**\ () repeatedly with
1888  * 		1-byte long message segments. Obviously, this is bad for
1889  * 		performance, but it is still valid. If the eBPF program needs
1890  * 		*bytes* bytes to validate a header, this helper can be used to
1891  * 		prevent the eBPF program to be called again until *bytes* have
1892  * 		been accumulated.
1893  * 	Return
1894  * 		0
1895  *
1896  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1897  * 	Description
1898  * 		For socket policies, pull in non-linear data from user space
1899  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1900  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1901  * 		respectively.
1902  *
1903  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1904  * 		*msg* it can only parse data that the (**data**, **data_end**)
1905  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1906  * 		is likely the first scatterlist element. But for calls relying
1907  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1908  * 		be the range (**0**, **0**) because the data is shared with
1909  * 		user space and by default the objective is to avoid allowing
1910  * 		user space to modify data while (or after) eBPF verdict is
1911  * 		being decided. This helper can be used to pull in data and to
1912  * 		set the start and end pointer to given values. Data will be
1913  * 		copied if necessary (i.e. if data was not linear and if start
1914  * 		and end pointers do not point to the same chunk).
1915  *
1916  * 		A call to this helper is susceptible to change the underlying
1917  * 		packet buffer. Therefore, at load time, all checks on pointers
1918  * 		previously done by the verifier are invalidated and must be
1919  * 		performed again, if the helper is used in combination with
1920  * 		direct packet access.
1921  *
1922  * 		All values for *flags* are reserved for future usage, and must
1923  * 		be left at zero.
1924  * 	Return
1925  * 		0 on success, or a negative error in case of failure.
1926  *
1927  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1928  * 	Description
1929  * 		Bind the socket associated to *ctx* to the address pointed by
1930  * 		*addr*, of length *addr_len*. This allows for making outgoing
1931  * 		connection from the desired IP address, which can be useful for
1932  * 		example when all processes inside a cgroup should use one
1933  * 		single IP address on a host that has multiple IP configured.
1934  *
1935  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1936  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1937  * 		**AF_INET6**). Looking for a free port to bind to can be
1938  * 		expensive, therefore binding to port is not permitted by the
1939  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1940  * 		must be set to zero.
1941  * 	Return
1942  * 		0 on success, or a negative error in case of failure.
1943  *
1944  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1945  * 	Description
1946  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1947  * 		only possible to shrink the packet as of this writing,
1948  * 		therefore *delta* must be a negative integer.
1949  *
1950  * 		A call to this helper is susceptible to change the underlying
1951  * 		packet buffer. Therefore, at load time, all checks on pointers
1952  * 		previously done by the verifier are invalidated and must be
1953  * 		performed again, if the helper is used in combination with
1954  * 		direct packet access.
1955  * 	Return
1956  * 		0 on success, or a negative error in case of failure.
1957  *
1958  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1959  * 	Description
1960  * 		Retrieve the XFRM state (IP transform framework, see also
1961  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1962  *
1963  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1964  * 		pointed by *xfrm_state* and of length *size*.
1965  *
1966  * 		All values for *flags* are reserved for future usage, and must
1967  * 		be left at zero.
1968  *
1969  * 		This helper is available only if the kernel was compiled with
1970  * 		**CONFIG_XFRM** configuration option.
1971  * 	Return
1972  * 		0 on success, or a negative error in case of failure.
1973  *
1974  * int bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
1975  * 	Description
1976  * 		Return a user or a kernel stack in bpf program provided buffer.
1977  * 		To achieve this, the helper needs *ctx*, which is a pointer
1978  * 		to the context on which the tracing program is executed.
1979  * 		To store the stacktrace, the bpf program provides *buf* with
1980  * 		a nonnegative *size*.
1981  *
1982  * 		The last argument, *flags*, holds the number of stack frames to
1983  * 		skip (from 0 to 255), masked with
1984  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1985  * 		the following flags:
1986  *
1987  * 		**BPF_F_USER_STACK**
1988  * 			Collect a user space stack instead of a kernel stack.
1989  * 		**BPF_F_USER_BUILD_ID**
1990  * 			Collect buildid+offset instead of ips for user stack,
1991  * 			only valid if **BPF_F_USER_STACK** is also specified.
1992  *
1993  * 		**bpf_get_stack**\ () can collect up to
1994  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1995  * 		to sufficient large buffer size. Note that
1996  * 		this limit can be controlled with the **sysctl** program, and
1997  * 		that it should be manually increased in order to profile long
1998  * 		user stacks (such as stacks for Java programs). To do so, use:
1999  *
2000  * 		::
2001  *
2002  * 			# sysctl kernel.perf_event_max_stack=<new value>
2003  * 	Return
2004  * 		A non-negative value equal to or less than *size* on success,
2005  * 		or a negative error in case of failure.
2006  *
2007  * int bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
2008  * 	Description
2009  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
2010  * 		it provides an easy way to load *len* bytes from *offset*
2011  * 		from the packet associated to *skb*, into the buffer pointed
2012  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
2013  * 		a fifth argument *start_header* exists in order to select a
2014  * 		base offset to start from. *start_header* can be one of:
2015  *
2016  * 		**BPF_HDR_START_MAC**
2017  * 			Base offset to load data from is *skb*'s mac header.
2018  * 		**BPF_HDR_START_NET**
2019  * 			Base offset to load data from is *skb*'s network header.
2020  *
2021  * 		In general, "direct packet access" is the preferred method to
2022  * 		access packet data, however, this helper is in particular useful
2023  * 		in socket filters where *skb*\ **->data** does not always point
2024  * 		to the start of the mac header and where "direct packet access"
2025  * 		is not available.
2026  * 	Return
2027  * 		0 on success, or a negative error in case of failure.
2028  *
2029  * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
2030  *	Description
2031  *		Do FIB lookup in kernel tables using parameters in *params*.
2032  *		If lookup is successful and result shows packet is to be
2033  *		forwarded, the neighbor tables are searched for the nexthop.
2034  *		If successful (ie., FIB lookup shows forwarding and nexthop
2035  *		is resolved), the nexthop address is returned in ipv4_dst
2036  *		or ipv6_dst based on family, smac is set to mac address of
2037  *		egress device, dmac is set to nexthop mac address, rt_metric
2038  *		is set to metric from route (IPv4/IPv6 only), and ifindex
2039  *		is set to the device index of the nexthop from the FIB lookup.
2040  *
2041  *		*plen* argument is the size of the passed in struct.
2042  *		*flags* argument can be a combination of one or more of the
2043  *		following values:
2044  *
2045  *		**BPF_FIB_LOOKUP_DIRECT**
2046  *			Do a direct table lookup vs full lookup using FIB
2047  *			rules.
2048  *		**BPF_FIB_LOOKUP_OUTPUT**
2049  *			Perform lookup from an egress perspective (default is
2050  *			ingress).
2051  *
2052  *		*ctx* is either **struct xdp_md** for XDP programs or
2053  *		**struct sk_buff** tc cls_act programs.
2054  *	Return
2055  *		* < 0 if any input argument is invalid
2056  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
2057  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
2058  *		  packet is not forwarded or needs assist from full stack
2059  *
2060  * int bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2061  *	Description
2062  *		Add an entry to, or update a sockhash *map* referencing sockets.
2063  *		The *skops* is used as a new value for the entry associated to
2064  *		*key*. *flags* is one of:
2065  *
2066  *		**BPF_NOEXIST**
2067  *			The entry for *key* must not exist in the map.
2068  *		**BPF_EXIST**
2069  *			The entry for *key* must already exist in the map.
2070  *		**BPF_ANY**
2071  *			No condition on the existence of the entry for *key*.
2072  *
2073  *		If the *map* has eBPF programs (parser and verdict), those will
2074  *		be inherited by the socket being added. If the socket is
2075  *		already attached to eBPF programs, this results in an error.
2076  *	Return
2077  *		0 on success, or a negative error in case of failure.
2078  *
2079  * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
2080  *	Description
2081  *		This helper is used in programs implementing policies at the
2082  *		socket level. If the message *msg* is allowed to pass (i.e. if
2083  *		the verdict eBPF program returns **SK_PASS**), redirect it to
2084  *		the socket referenced by *map* (of type
2085  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2086  *		egress interfaces can be used for redirection. The
2087  *		**BPF_F_INGRESS** value in *flags* is used to make the
2088  *		distinction (ingress path is selected if the flag is present,
2089  *		egress path otherwise). This is the only flag supported for now.
2090  *	Return
2091  *		**SK_PASS** on success, or **SK_DROP** on error.
2092  *
2093  * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2094  *	Description
2095  *		This helper is used in programs implementing policies at the
2096  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2097  *		if the verdeict eBPF program returns **SK_PASS**), redirect it
2098  *		to the socket referenced by *map* (of type
2099  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2100  *		egress interfaces can be used for redirection. The
2101  *		**BPF_F_INGRESS** value in *flags* is used to make the
2102  *		distinction (ingress path is selected if the flag is present,
2103  *		egress otherwise). This is the only flag supported for now.
2104  *	Return
2105  *		**SK_PASS** on success, or **SK_DROP** on error.
2106  *
2107  * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2108  *	Description
2109  *		Encapsulate the packet associated to *skb* within a Layer 3
2110  *		protocol header. This header is provided in the buffer at
2111  *		address *hdr*, with *len* its size in bytes. *type* indicates
2112  *		the protocol of the header and can be one of:
2113  *
2114  *		**BPF_LWT_ENCAP_SEG6**
2115  *			IPv6 encapsulation with Segment Routing Header
2116  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2117  *			the IPv6 header is computed by the kernel.
2118  *		**BPF_LWT_ENCAP_SEG6_INLINE**
2119  *			Only works if *skb* contains an IPv6 packet. Insert a
2120  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
2121  *			the IPv6 header.
2122  *		**BPF_LWT_ENCAP_IP**
2123  *			IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2124  *			must be IPv4 or IPv6, followed by zero or more
2125  *			additional headers, up to **LWT_BPF_MAX_HEADROOM**
2126  *			total bytes in all prepended headers. Please note that
2127  *			if **skb_is_gso**\ (*skb*) is true, no more than two
2128  *			headers can be prepended, and the inner header, if
2129  *			present, should be either GRE or UDP/GUE.
2130  *
2131  *		**BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
2132  *		of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
2133  *		be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
2134  *		**BPF_PROG_TYPE_LWT_XMIT**.
2135  *
2136  * 		A call to this helper is susceptible to change the underlying
2137  * 		packet buffer. Therefore, at load time, all checks on pointers
2138  * 		previously done by the verifier are invalidated and must be
2139  * 		performed again, if the helper is used in combination with
2140  * 		direct packet access.
2141  *	Return
2142  * 		0 on success, or a negative error in case of failure.
2143  *
2144  * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2145  *	Description
2146  *		Store *len* bytes from address *from* into the packet
2147  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2148  *		inside the outermost IPv6 Segment Routing Header can be
2149  *		modified through this helper.
2150  *
2151  * 		A call to this helper is susceptible to change the underlying
2152  * 		packet buffer. Therefore, at load time, all checks on pointers
2153  * 		previously done by the verifier are invalidated and must be
2154  * 		performed again, if the helper is used in combination with
2155  * 		direct packet access.
2156  *	Return
2157  * 		0 on success, or a negative error in case of failure.
2158  *
2159  * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2160  *	Description
2161  *		Adjust the size allocated to TLVs in the outermost IPv6
2162  *		Segment Routing Header contained in the packet associated to
2163  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2164  *		after the segments are accepted. *delta* can be as well
2165  *		positive (growing) as negative (shrinking).
2166  *
2167  * 		A call to this helper is susceptible to change the underlying
2168  * 		packet buffer. Therefore, at load time, all checks on pointers
2169  * 		previously done by the verifier are invalidated and must be
2170  * 		performed again, if the helper is used in combination with
2171  * 		direct packet access.
2172  *	Return
2173  * 		0 on success, or a negative error in case of failure.
2174  *
2175  * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2176  *	Description
2177  *		Apply an IPv6 Segment Routing action of type *action* to the
2178  *		packet associated to *skb*. Each action takes a parameter
2179  *		contained at address *param*, and of length *param_len* bytes.
2180  *		*action* can be one of:
2181  *
2182  *		**SEG6_LOCAL_ACTION_END_X**
2183  *			End.X action: Endpoint with Layer-3 cross-connect.
2184  *			Type of *param*: **struct in6_addr**.
2185  *		**SEG6_LOCAL_ACTION_END_T**
2186  *			End.T action: Endpoint with specific IPv6 table lookup.
2187  *			Type of *param*: **int**.
2188  *		**SEG6_LOCAL_ACTION_END_B6**
2189  *			End.B6 action: Endpoint bound to an SRv6 policy.
2190  *			Type of *param*: **struct ipv6_sr_hdr**.
2191  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2192  *			End.B6.Encap action: Endpoint bound to an SRv6
2193  *			encapsulation policy.
2194  *			Type of *param*: **struct ipv6_sr_hdr**.
2195  *
2196  * 		A call to this helper is susceptible to change the underlying
2197  * 		packet buffer. Therefore, at load time, all checks on pointers
2198  * 		previously done by the verifier are invalidated and must be
2199  * 		performed again, if the helper is used in combination with
2200  * 		direct packet access.
2201  *	Return
2202  * 		0 on success, or a negative error in case of failure.
2203  *
2204  * int bpf_rc_repeat(void *ctx)
2205  *	Description
2206  *		This helper is used in programs implementing IR decoding, to
2207  *		report a successfully decoded repeat key message. This delays
2208  *		the generation of a key up event for previously generated
2209  *		key down event.
2210  *
2211  *		Some IR protocols like NEC have a special IR message for
2212  *		repeating last button, for when a button is held down.
2213  *
2214  *		The *ctx* should point to the lirc sample as passed into
2215  *		the program.
2216  *
2217  *		This helper is only available is the kernel was compiled with
2218  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2219  *		"**y**".
2220  *	Return
2221  *		0
2222  *
2223  * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2224  *	Description
2225  *		This helper is used in programs implementing IR decoding, to
2226  *		report a successfully decoded key press with *scancode*,
2227  *		*toggle* value in the given *protocol*. The scancode will be
2228  *		translated to a keycode using the rc keymap, and reported as
2229  *		an input key down event. After a period a key up event is
2230  *		generated. This period can be extended by calling either
2231  *		**bpf_rc_keydown**\ () again with the same values, or calling
2232  *		**bpf_rc_repeat**\ ().
2233  *
2234  *		Some protocols include a toggle bit, in case the button	was
2235  *		released and pressed again between consecutive scancodes.
2236  *
2237  *		The *ctx* should point to the lirc sample as passed into
2238  *		the program.
2239  *
2240  *		The *protocol* is the decoded protocol number (see
2241  *		**enum rc_proto** for some predefined values).
2242  *
2243  *		This helper is only available is the kernel was compiled with
2244  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2245  *		"**y**".
2246  *	Return
2247  *		0
2248  *
2249  * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2250  * 	Description
2251  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2252  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2253  * 		helper for cgroup v1 by providing a tag resp. identifier that
2254  * 		can be matched on or used for map lookups e.g. to implement
2255  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2256  * 		exposed in user space through the f_handle API in order to get
2257  * 		to the same 64-bit id.
2258  *
2259  * 		This helper can be used on TC egress path, but not on ingress,
2260  * 		and is available only if the kernel was compiled with the
2261  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2262  * 	Return
2263  * 		The id is returned or 0 in case the id could not be retrieved.
2264  *
2265  * u64 bpf_get_current_cgroup_id(void)
2266  * 	Return
2267  * 		A 64-bit integer containing the current cgroup id based
2268  * 		on the cgroup within which the current task is running.
2269  *
2270  * void *bpf_get_local_storage(void *map, u64 flags)
2271  *	Description
2272  *		Get the pointer to the local storage area.
2273  *		The type and the size of the local storage is defined
2274  *		by the *map* argument.
2275  *		The *flags* meaning is specific for each map type,
2276  *		and has to be 0 for cgroup local storage.
2277  *
2278  *		Depending on the BPF program type, a local storage area
2279  *		can be shared between multiple instances of the BPF program,
2280  *		running simultaneously.
2281  *
2282  *		A user should care about the synchronization by himself.
2283  *		For example, by using the **BPF_STX_XADD** instruction to alter
2284  *		the shared data.
2285  *	Return
2286  *		A pointer to the local storage area.
2287  *
2288  * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2289  *	Description
2290  *		Select a **SO_REUSEPORT** socket from a
2291  *		**BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2292  *		It checks the selected socket is matching the incoming
2293  *		request in the socket buffer.
2294  *	Return
2295  *		0 on success, or a negative error in case of failure.
2296  *
2297  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2298  *	Description
2299  *		Return id of cgroup v2 that is ancestor of cgroup associated
2300  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2301  *		*ancestor_level* zero and each step down the hierarchy
2302  *		increments the level. If *ancestor_level* == level of cgroup
2303  *		associated with *skb*, then return value will be same as that
2304  *		of **bpf_skb_cgroup_id**\ ().
2305  *
2306  *		The helper is useful to implement policies based on cgroups
2307  *		that are upper in hierarchy than immediate cgroup associated
2308  *		with *skb*.
2309  *
2310  *		The format of returned id and helper limitations are same as in
2311  *		**bpf_skb_cgroup_id**\ ().
2312  *	Return
2313  *		The id is returned or 0 in case the id could not be retrieved.
2314  *
2315  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2316  *	Description
2317  *		Look for TCP socket matching *tuple*, optionally in a child
2318  *		network namespace *netns*. The return value must be checked,
2319  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2320  *
2321  *		The *ctx* should point to the context of the program, such as
2322  *		the skb or socket (depending on the hook in use). This is used
2323  *		to determine the base network namespace for the lookup.
2324  *
2325  *		*tuple_size* must be one of:
2326  *
2327  *		**sizeof**\ (*tuple*\ **->ipv4**)
2328  *			Look for an IPv4 socket.
2329  *		**sizeof**\ (*tuple*\ **->ipv6**)
2330  *			Look for an IPv6 socket.
2331  *
2332  *		If the *netns* is a negative signed 32-bit integer, then the
2333  *		socket lookup table in the netns associated with the *ctx* will
2334  *		will be used. For the TC hooks, this is the netns of the device
2335  *		in the skb. For socket hooks, this is the netns of the socket.
2336  *		If *netns* is any other signed 32-bit value greater than or
2337  *		equal to zero then it specifies the ID of the netns relative to
2338  *		the netns associated with the *ctx*. *netns* values beyond the
2339  *		range of 32-bit integers are reserved for future use.
2340  *
2341  *		All values for *flags* are reserved for future usage, and must
2342  *		be left at zero.
2343  *
2344  *		This helper is available only if the kernel was compiled with
2345  *		**CONFIG_NET** configuration option.
2346  *	Return
2347  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2348  *		For sockets with reuseport option, the **struct bpf_sock**
2349  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2350  *		tuple.
2351  *
2352  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2353  *	Description
2354  *		Look for UDP socket matching *tuple*, optionally in a child
2355  *		network namespace *netns*. The return value must be checked,
2356  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2357  *
2358  *		The *ctx* should point to the context of the program, such as
2359  *		the skb or socket (depending on the hook in use). This is used
2360  *		to determine the base network namespace for the lookup.
2361  *
2362  *		*tuple_size* must be one of:
2363  *
2364  *		**sizeof**\ (*tuple*\ **->ipv4**)
2365  *			Look for an IPv4 socket.
2366  *		**sizeof**\ (*tuple*\ **->ipv6**)
2367  *			Look for an IPv6 socket.
2368  *
2369  *		If the *netns* is a negative signed 32-bit integer, then the
2370  *		socket lookup table in the netns associated with the *ctx* will
2371  *		will be used. For the TC hooks, this is the netns of the device
2372  *		in the skb. For socket hooks, this is the netns of the socket.
2373  *		If *netns* is any other signed 32-bit value greater than or
2374  *		equal to zero then it specifies the ID of the netns relative to
2375  *		the netns associated with the *ctx*. *netns* values beyond the
2376  *		range of 32-bit integers are reserved for future use.
2377  *
2378  *		All values for *flags* are reserved for future usage, and must
2379  *		be left at zero.
2380  *
2381  *		This helper is available only if the kernel was compiled with
2382  *		**CONFIG_NET** configuration option.
2383  *	Return
2384  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2385  *		For sockets with reuseport option, the **struct bpf_sock**
2386  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2387  *		tuple.
2388  *
2389  * int bpf_sk_release(struct bpf_sock *sock)
2390  *	Description
2391  *		Release the reference held by *sock*. *sock* must be a
2392  *		non-**NULL** pointer that was returned from
2393  *		**bpf_sk_lookup_xxx**\ ().
2394  *	Return
2395  *		0 on success, or a negative error in case of failure.
2396  *
2397  * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2398  * 	Description
2399  * 		Push an element *value* in *map*. *flags* is one of:
2400  *
2401  * 		**BPF_EXIST**
2402  * 			If the queue/stack is full, the oldest element is
2403  * 			removed to make room for this.
2404  * 	Return
2405  * 		0 on success, or a negative error in case of failure.
2406  *
2407  * int bpf_map_pop_elem(struct bpf_map *map, void *value)
2408  * 	Description
2409  * 		Pop an element from *map*.
2410  * 	Return
2411  * 		0 on success, or a negative error in case of failure.
2412  *
2413  * int bpf_map_peek_elem(struct bpf_map *map, void *value)
2414  * 	Description
2415  * 		Get an element from *map* without removing it.
2416  * 	Return
2417  * 		0 on success, or a negative error in case of failure.
2418  *
2419  * int bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2420  *	Description
2421  *		For socket policies, insert *len* bytes into *msg* at offset
2422  *		*start*.
2423  *
2424  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2425  *		*msg* it may want to insert metadata or options into the *msg*.
2426  *		This can later be read and used by any of the lower layer BPF
2427  *		hooks.
2428  *
2429  *		This helper may fail if under memory pressure (a malloc
2430  *		fails) in these cases BPF programs will get an appropriate
2431  *		error and BPF programs will need to handle them.
2432  *	Return
2433  *		0 on success, or a negative error in case of failure.
2434  *
2435  * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2436  *	Description
2437  *		Will remove *len* bytes from a *msg* starting at byte *start*.
2438  *		This may result in **ENOMEM** errors under certain situations if
2439  *		an allocation and copy are required due to a full ring buffer.
2440  *		However, the helper will try to avoid doing the allocation
2441  *		if possible. Other errors can occur if input parameters are
2442  *		invalid either due to *start* byte not being valid part of *msg*
2443  *		payload and/or *pop* value being to large.
2444  *	Return
2445  *		0 on success, or a negative error in case of failure.
2446  *
2447  * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2448  *	Description
2449  *		This helper is used in programs implementing IR decoding, to
2450  *		report a successfully decoded pointer movement.
2451  *
2452  *		The *ctx* should point to the lirc sample as passed into
2453  *		the program.
2454  *
2455  *		This helper is only available is the kernel was compiled with
2456  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2457  *		"**y**".
2458  *	Return
2459  *		0
2460  *
2461  * int bpf_spin_lock(struct bpf_spin_lock *lock)
2462  *	Description
2463  *		Acquire a spinlock represented by the pointer *lock*, which is
2464  *		stored as part of a value of a map. Taking the lock allows to
2465  *		safely update the rest of the fields in that value. The
2466  *		spinlock can (and must) later be released with a call to
2467  *		**bpf_spin_unlock**\ (\ *lock*\ ).
2468  *
2469  *		Spinlocks in BPF programs come with a number of restrictions
2470  *		and constraints:
2471  *
2472  *		* **bpf_spin_lock** objects are only allowed inside maps of
2473  *		  types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2474  *		  list could be extended in the future).
2475  *		* BTF description of the map is mandatory.
2476  *		* The BPF program can take ONE lock at a time, since taking two
2477  *		  or more could cause dead locks.
2478  *		* Only one **struct bpf_spin_lock** is allowed per map element.
2479  *		* When the lock is taken, calls (either BPF to BPF or helpers)
2480  *		  are not allowed.
2481  *		* The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2482  *		  allowed inside a spinlock-ed region.
2483  *		* The BPF program MUST call **bpf_spin_unlock**\ () to release
2484  *		  the lock, on all execution paths, before it returns.
2485  *		* The BPF program can access **struct bpf_spin_lock** only via
2486  *		  the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2487  *		  helpers. Loading or storing data into the **struct
2488  *		  bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2489  *		* To use the **bpf_spin_lock**\ () helper, the BTF description
2490  *		  of the map value must be a struct and have **struct
2491  *		  bpf_spin_lock** *anyname*\ **;** field at the top level.
2492  *		  Nested lock inside another struct is not allowed.
2493  *		* The **struct bpf_spin_lock** *lock* field in a map value must
2494  *		  be aligned on a multiple of 4 bytes in that value.
2495  *		* Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2496  *		  the **bpf_spin_lock** field to user space.
2497  *		* Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2498  *		  a BPF program, do not update the **bpf_spin_lock** field.
2499  *		* **bpf_spin_lock** cannot be on the stack or inside a
2500  *		  networking packet (it can only be inside of a map values).
2501  *		* **bpf_spin_lock** is available to root only.
2502  *		* Tracing programs and socket filter programs cannot use
2503  *		  **bpf_spin_lock**\ () due to insufficient preemption checks
2504  *		  (but this may change in the future).
2505  *		* **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2506  *	Return
2507  *		0
2508  *
2509  * int bpf_spin_unlock(struct bpf_spin_lock *lock)
2510  *	Description
2511  *		Release the *lock* previously locked by a call to
2512  *		**bpf_spin_lock**\ (\ *lock*\ ).
2513  *	Return
2514  *		0
2515  *
2516  * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2517  *	Description
2518  *		This helper gets a **struct bpf_sock** pointer such
2519  *		that all the fields in this **bpf_sock** can be accessed.
2520  *	Return
2521  *		A **struct bpf_sock** pointer on success, or **NULL** in
2522  *		case of failure.
2523  *
2524  * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2525  *	Description
2526  *		This helper gets a **struct bpf_tcp_sock** pointer from a
2527  *		**struct bpf_sock** pointer.
2528  *	Return
2529  *		A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2530  *		case of failure.
2531  *
2532  * int bpf_skb_ecn_set_ce(struct sk_buff *skb)
2533  *	Description
2534  *		Set ECN (Explicit Congestion Notification) field of IP header
2535  *		to **CE** (Congestion Encountered) if current value is **ECT**
2536  *		(ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2537  *		and IPv4.
2538  *	Return
2539  *		1 if the **CE** flag is set (either by the current helper call
2540  *		or because it was already present), 0 if it is not set.
2541  *
2542  * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2543  *	Description
2544  *		Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2545  *		**bpf_sk_release**\ () is unnecessary and not allowed.
2546  *	Return
2547  *		A **struct bpf_sock** pointer on success, or **NULL** in
2548  *		case of failure.
2549  *
2550  * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2551  *	Description
2552  *		Look for TCP socket matching *tuple*, optionally in a child
2553  *		network namespace *netns*. The return value must be checked,
2554  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2555  *
2556  *		This function is identical to **bpf_sk_lookup_tcp**\ (), except
2557  *		that it also returns timewait or request sockets. Use
2558  *		**bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
2559  *		full structure.
2560  *
2561  *		This helper is available only if the kernel was compiled with
2562  *		**CONFIG_NET** configuration option.
2563  *	Return
2564  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2565  *		For sockets with reuseport option, the **struct bpf_sock**
2566  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2567  *		tuple.
2568  *
2569  * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2570  * 	Description
2571  * 		Check whether *iph* and *th* contain a valid SYN cookie ACK for
2572  * 		the listening socket in *sk*.
2573  *
2574  * 		*iph* points to the start of the IPv4 or IPv6 header, while
2575  * 		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2576  * 		**sizeof**\ (**struct ip6hdr**).
2577  *
2578  * 		*th* points to the start of the TCP header, while *th_len*
2579  * 		contains **sizeof**\ (**struct tcphdr**).
2580  *
2581  * 	Return
2582  * 		0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
2583  * 		error otherwise.
2584  *
2585  * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
2586  *	Description
2587  *		Get name of sysctl in /proc/sys/ and copy it into provided by
2588  *		program buffer *buf* of size *buf_len*.
2589  *
2590  *		The buffer is always NUL terminated, unless it's zero-sized.
2591  *
2592  *		If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
2593  *		copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
2594  *		only (e.g. "tcp_mem").
2595  *	Return
2596  *		Number of character copied (not including the trailing NUL).
2597  *
2598  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2599  *		truncated name in this case).
2600  *
2601  * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2602  *	Description
2603  *		Get current value of sysctl as it is presented in /proc/sys
2604  *		(incl. newline, etc), and copy it as a string into provided
2605  *		by program buffer *buf* of size *buf_len*.
2606  *
2607  *		The whole value is copied, no matter what file position user
2608  *		space issued e.g. sys_read at.
2609  *
2610  *		The buffer is always NUL terminated, unless it's zero-sized.
2611  *	Return
2612  *		Number of character copied (not including the trailing NUL).
2613  *
2614  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2615  *		truncated name in this case).
2616  *
2617  *		**-EINVAL** if current value was unavailable, e.g. because
2618  *		sysctl is uninitialized and read returns -EIO for it.
2619  *
2620  * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2621  *	Description
2622  *		Get new value being written by user space to sysctl (before
2623  *		the actual write happens) and copy it as a string into
2624  *		provided by program buffer *buf* of size *buf_len*.
2625  *
2626  *		User space may write new value at file position > 0.
2627  *
2628  *		The buffer is always NUL terminated, unless it's zero-sized.
2629  *	Return
2630  *		Number of character copied (not including the trailing NUL).
2631  *
2632  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2633  *		truncated name in this case).
2634  *
2635  *		**-EINVAL** if sysctl is being read.
2636  *
2637  * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
2638  *	Description
2639  *		Override new value being written by user space to sysctl with
2640  *		value provided by program in buffer *buf* of size *buf_len*.
2641  *
2642  *		*buf* should contain a string in same form as provided by user
2643  *		space on sysctl write.
2644  *
2645  *		User space may write new value at file position > 0. To override
2646  *		the whole sysctl value file position should be set to zero.
2647  *	Return
2648  *		0 on success.
2649  *
2650  *		**-E2BIG** if the *buf_len* is too big.
2651  *
2652  *		**-EINVAL** if sysctl is being read.
2653  *
2654  * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
2655  *	Description
2656  *		Convert the initial part of the string from buffer *buf* of
2657  *		size *buf_len* to a long integer according to the given base
2658  *		and save the result in *res*.
2659  *
2660  *		The string may begin with an arbitrary amount of white space
2661  *		(as determined by **isspace**\ (3)) followed by a single
2662  *		optional '**-**' sign.
2663  *
2664  *		Five least significant bits of *flags* encode base, other bits
2665  *		are currently unused.
2666  *
2667  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2668  *		similar to user space **strtol**\ (3).
2669  *	Return
2670  *		Number of characters consumed on success. Must be positive but
2671  *		no more than *buf_len*.
2672  *
2673  *		**-EINVAL** if no valid digits were found or unsupported base
2674  *		was provided.
2675  *
2676  *		**-ERANGE** if resulting value was out of range.
2677  *
2678  * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
2679  *	Description
2680  *		Convert the initial part of the string from buffer *buf* of
2681  *		size *buf_len* to an unsigned long integer according to the
2682  *		given base and save the result in *res*.
2683  *
2684  *		The string may begin with an arbitrary amount of white space
2685  *		(as determined by **isspace**\ (3)).
2686  *
2687  *		Five least significant bits of *flags* encode base, other bits
2688  *		are currently unused.
2689  *
2690  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2691  *		similar to user space **strtoul**\ (3).
2692  *	Return
2693  *		Number of characters consumed on success. Must be positive but
2694  *		no more than *buf_len*.
2695  *
2696  *		**-EINVAL** if no valid digits were found or unsupported base
2697  *		was provided.
2698  *
2699  *		**-ERANGE** if resulting value was out of range.
2700  *
2701  * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags)
2702  *	Description
2703  *		Get a bpf-local-storage from a *sk*.
2704  *
2705  *		Logically, it could be thought of getting the value from
2706  *		a *map* with *sk* as the **key**.  From this
2707  *		perspective,  the usage is not much different from
2708  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
2709  *		helper enforces the key must be a full socket and the map must
2710  *		be a **BPF_MAP_TYPE_SK_STORAGE** also.
2711  *
2712  *		Underneath, the value is stored locally at *sk* instead of
2713  *		the *map*.  The *map* is used as the bpf-local-storage
2714  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
2715  *		searched against all bpf-local-storages residing at *sk*.
2716  *
2717  *		An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
2718  *		used such that a new bpf-local-storage will be
2719  *		created if one does not exist.  *value* can be used
2720  *		together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
2721  *		the initial value of a bpf-local-storage.  If *value* is
2722  *		**NULL**, the new bpf-local-storage will be zero initialized.
2723  *	Return
2724  *		A bpf-local-storage pointer is returned on success.
2725  *
2726  *		**NULL** if not found or there was an error in adding
2727  *		a new bpf-local-storage.
2728  *
2729  * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk)
2730  *	Description
2731  *		Delete a bpf-local-storage from a *sk*.
2732  *	Return
2733  *		0 on success.
2734  *
2735  *		**-ENOENT** if the bpf-local-storage cannot be found.
2736  *
2737  * int bpf_send_signal(u32 sig)
2738  *	Description
2739  *		Send signal *sig* to the process of the current task.
2740  *		The signal may be delivered to any of this process's threads.
2741  *	Return
2742  *		0 on success or successfully queued.
2743  *
2744  *		**-EBUSY** if work queue under nmi is full.
2745  *
2746  *		**-EINVAL** if *sig* is invalid.
2747  *
2748  *		**-EPERM** if no permission to send the *sig*.
2749  *
2750  *		**-EAGAIN** if bpf program can try again.
2751  *
2752  * s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2753  *	Description
2754  *		Try to issue a SYN cookie for the packet with corresponding
2755  *		IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
2756  *
2757  *		*iph* points to the start of the IPv4 or IPv6 header, while
2758  *		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2759  *		**sizeof**\ (**struct ip6hdr**).
2760  *
2761  *		*th* points to the start of the TCP header, while *th_len*
2762  *		contains the length of the TCP header.
2763  *
2764  *	Return
2765  *		On success, lower 32 bits hold the generated SYN cookie in
2766  *		followed by 16 bits which hold the MSS value for that cookie,
2767  *		and the top 16 bits are unused.
2768  *
2769  *		On failure, the returned value is one of the following:
2770  *
2771  *		**-EINVAL** SYN cookie cannot be issued due to error
2772  *
2773  *		**-ENOENT** SYN cookie should not be issued (no SYN flood)
2774  *
2775  *		**-EOPNOTSUPP** kernel configuration does not enable SYN cookies
2776  *
2777  *		**-EPROTONOSUPPORT** IP packet version is not 4 or 6
2778  *
2779  * int bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2780  * 	Description
2781  * 		Write raw *data* blob into a special BPF perf event held by
2782  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2783  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
2784  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2785  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2786  *
2787  * 		The *flags* are used to indicate the index in *map* for which
2788  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
2789  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2790  * 		to indicate that the index of the current CPU core should be
2791  * 		used.
2792  *
2793  * 		The value to write, of *size*, is passed through eBPF stack and
2794  * 		pointed by *data*.
2795  *
2796  * 		*ctx* is a pointer to in-kernel struct sk_buff.
2797  *
2798  * 		This helper is similar to **bpf_perf_event_output**\ () but
2799  * 		restricted to raw_tracepoint bpf programs.
2800  * 	Return
2801  * 		0 on success, or a negative error in case of failure.
2802  *
2803  * int bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
2804  * 	Description
2805  * 		Safely attempt to read *size* bytes from user space address
2806  * 		*unsafe_ptr* and store the data in *dst*.
2807  * 	Return
2808  * 		0 on success, or a negative error in case of failure.
2809  *
2810  * int bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2811  * 	Description
2812  * 		Safely attempt to read *size* bytes from kernel space address
2813  * 		*unsafe_ptr* and store the data in *dst*.
2814  * 	Return
2815  * 		0 on success, or a negative error in case of failure.
2816  *
2817  * int bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
2818  * 	Description
2819  * 		Copy a NUL terminated string from an unsafe user address
2820  * 		*unsafe_ptr* to *dst*. The *size* should include the
2821  * 		terminating NUL byte. In case the string length is smaller than
2822  * 		*size*, the target is not padded with further NUL bytes. If the
2823  * 		string length is larger than *size*, just *size*-1 bytes are
2824  * 		copied and the last byte is set to NUL.
2825  *
2826  * 		On success, the length of the copied string is returned. This
2827  * 		makes this helper useful in tracing programs for reading
2828  * 		strings, and more importantly to get its length at runtime. See
2829  * 		the following snippet:
2830  *
2831  * 		::
2832  *
2833  * 			SEC("kprobe/sys_open")
2834  * 			void bpf_sys_open(struct pt_regs *ctx)
2835  * 			{
2836  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
2837  * 			        int res = bpf_probe_read_user_str(buf, sizeof(buf),
2838  * 				                                  ctx->di);
2839  *
2840  * 				// Consume buf, for example push it to
2841  * 				// userspace via bpf_perf_event_output(); we
2842  * 				// can use res (the string length) as event
2843  * 				// size, after checking its boundaries.
2844  * 			}
2845  *
2846  * 		In comparison, using **bpf_probe_read_user()** helper here
2847  * 		instead to read the string would require to estimate the length
2848  * 		at compile time, and would often result in copying more memory
2849  * 		than necessary.
2850  *
2851  * 		Another useful use case is when parsing individual process
2852  * 		arguments or individual environment variables navigating
2853  * 		*current*\ **->mm->arg_start** and *current*\
2854  * 		**->mm->env_start**: using this helper and the return value,
2855  * 		one can quickly iterate at the right offset of the memory area.
2856  * 	Return
2857  * 		On success, the strictly positive length of the string,
2858  * 		including the trailing NUL character. On error, a negative
2859  * 		value.
2860  *
2861  * int bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
2862  * 	Description
2863  * 		Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
2864  * 		to *dst*. Same semantics as with bpf_probe_read_user_str() apply.
2865  * 	Return
2866  * 		On success, the strictly positive length of the string,	including
2867  * 		the trailing NUL character. On error, a negative value.
2868  *
2869  * int bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
2870  *	Description
2871  *		Send out a tcp-ack. *tp* is the in-kernel struct tcp_sock.
2872  *		*rcv_nxt* is the ack_seq to be sent out.
2873  *	Return
2874  *		0 on success, or a negative error in case of failure.
2875  *
2876  * int bpf_send_signal_thread(u32 sig)
2877  *	Description
2878  *		Send signal *sig* to the thread corresponding to the current task.
2879  *	Return
2880  *		0 on success or successfully queued.
2881  *
2882  *		**-EBUSY** if work queue under nmi is full.
2883  *
2884  *		**-EINVAL** if *sig* is invalid.
2885  *
2886  *		**-EPERM** if no permission to send the *sig*.
2887  *
2888  *		**-EAGAIN** if bpf program can try again.
2889  *
2890  * u64 bpf_jiffies64(void)
2891  *	Description
2892  *		Obtain the 64bit jiffies
2893  *	Return
2894  *		The 64 bit jiffies
2895  */
2896 #define __BPF_FUNC_MAPPER(FN)		\
2897 	FN(unspec),			\
2898 	FN(map_lookup_elem),		\
2899 	FN(map_update_elem),		\
2900 	FN(map_delete_elem),		\
2901 	FN(probe_read),			\
2902 	FN(ktime_get_ns),		\
2903 	FN(trace_printk),		\
2904 	FN(get_prandom_u32),		\
2905 	FN(get_smp_processor_id),	\
2906 	FN(skb_store_bytes),		\
2907 	FN(l3_csum_replace),		\
2908 	FN(l4_csum_replace),		\
2909 	FN(tail_call),			\
2910 	FN(clone_redirect),		\
2911 	FN(get_current_pid_tgid),	\
2912 	FN(get_current_uid_gid),	\
2913 	FN(get_current_comm),		\
2914 	FN(get_cgroup_classid),		\
2915 	FN(skb_vlan_push),		\
2916 	FN(skb_vlan_pop),		\
2917 	FN(skb_get_tunnel_key),		\
2918 	FN(skb_set_tunnel_key),		\
2919 	FN(perf_event_read),		\
2920 	FN(redirect),			\
2921 	FN(get_route_realm),		\
2922 	FN(perf_event_output),		\
2923 	FN(skb_load_bytes),		\
2924 	FN(get_stackid),		\
2925 	FN(csum_diff),			\
2926 	FN(skb_get_tunnel_opt),		\
2927 	FN(skb_set_tunnel_opt),		\
2928 	FN(skb_change_proto),		\
2929 	FN(skb_change_type),		\
2930 	FN(skb_under_cgroup),		\
2931 	FN(get_hash_recalc),		\
2932 	FN(get_current_task),		\
2933 	FN(probe_write_user),		\
2934 	FN(current_task_under_cgroup),	\
2935 	FN(skb_change_tail),		\
2936 	FN(skb_pull_data),		\
2937 	FN(csum_update),		\
2938 	FN(set_hash_invalid),		\
2939 	FN(get_numa_node_id),		\
2940 	FN(skb_change_head),		\
2941 	FN(xdp_adjust_head),		\
2942 	FN(probe_read_str),		\
2943 	FN(get_socket_cookie),		\
2944 	FN(get_socket_uid),		\
2945 	FN(set_hash),			\
2946 	FN(setsockopt),			\
2947 	FN(skb_adjust_room),		\
2948 	FN(redirect_map),		\
2949 	FN(sk_redirect_map),		\
2950 	FN(sock_map_update),		\
2951 	FN(xdp_adjust_meta),		\
2952 	FN(perf_event_read_value),	\
2953 	FN(perf_prog_read_value),	\
2954 	FN(getsockopt),			\
2955 	FN(override_return),		\
2956 	FN(sock_ops_cb_flags_set),	\
2957 	FN(msg_redirect_map),		\
2958 	FN(msg_apply_bytes),		\
2959 	FN(msg_cork_bytes),		\
2960 	FN(msg_pull_data),		\
2961 	FN(bind),			\
2962 	FN(xdp_adjust_tail),		\
2963 	FN(skb_get_xfrm_state),		\
2964 	FN(get_stack),			\
2965 	FN(skb_load_bytes_relative),	\
2966 	FN(fib_lookup),			\
2967 	FN(sock_hash_update),		\
2968 	FN(msg_redirect_hash),		\
2969 	FN(sk_redirect_hash),		\
2970 	FN(lwt_push_encap),		\
2971 	FN(lwt_seg6_store_bytes),	\
2972 	FN(lwt_seg6_adjust_srh),	\
2973 	FN(lwt_seg6_action),		\
2974 	FN(rc_repeat),			\
2975 	FN(rc_keydown),			\
2976 	FN(skb_cgroup_id),		\
2977 	FN(get_current_cgroup_id),	\
2978 	FN(get_local_storage),		\
2979 	FN(sk_select_reuseport),	\
2980 	FN(skb_ancestor_cgroup_id),	\
2981 	FN(sk_lookup_tcp),		\
2982 	FN(sk_lookup_udp),		\
2983 	FN(sk_release),			\
2984 	FN(map_push_elem),		\
2985 	FN(map_pop_elem),		\
2986 	FN(map_peek_elem),		\
2987 	FN(msg_push_data),		\
2988 	FN(msg_pop_data),		\
2989 	FN(rc_pointer_rel),		\
2990 	FN(spin_lock),			\
2991 	FN(spin_unlock),		\
2992 	FN(sk_fullsock),		\
2993 	FN(tcp_sock),			\
2994 	FN(skb_ecn_set_ce),		\
2995 	FN(get_listener_sock),		\
2996 	FN(skc_lookup_tcp),		\
2997 	FN(tcp_check_syncookie),	\
2998 	FN(sysctl_get_name),		\
2999 	FN(sysctl_get_current_value),	\
3000 	FN(sysctl_get_new_value),	\
3001 	FN(sysctl_set_new_value),	\
3002 	FN(strtol),			\
3003 	FN(strtoul),			\
3004 	FN(sk_storage_get),		\
3005 	FN(sk_storage_delete),		\
3006 	FN(send_signal),		\
3007 	FN(tcp_gen_syncookie),		\
3008 	FN(skb_output),			\
3009 	FN(probe_read_user),		\
3010 	FN(probe_read_kernel),		\
3011 	FN(probe_read_user_str),	\
3012 	FN(probe_read_kernel_str),	\
3013 	FN(tcp_send_ack),		\
3014 	FN(send_signal_thread),		\
3015 	FN(jiffies64),
3016 
3017 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
3018  * function eBPF program intends to call
3019  */
3020 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
3021 enum bpf_func_id {
3022 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
3023 	__BPF_FUNC_MAX_ID,
3024 };
3025 #undef __BPF_ENUM_FN
3026 
3027 /* All flags used by eBPF helper functions, placed here. */
3028 
3029 /* BPF_FUNC_skb_store_bytes flags. */
3030 #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
3031 #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
3032 
3033 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
3034  * First 4 bits are for passing the header field size.
3035  */
3036 #define BPF_F_HDR_FIELD_MASK		0xfULL
3037 
3038 /* BPF_FUNC_l4_csum_replace flags. */
3039 #define BPF_F_PSEUDO_HDR		(1ULL << 4)
3040 #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
3041 #define BPF_F_MARK_ENFORCE		(1ULL << 6)
3042 
3043 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
3044 #define BPF_F_INGRESS			(1ULL << 0)
3045 
3046 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
3047 #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
3048 
3049 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
3050 #define BPF_F_SKIP_FIELD_MASK		0xffULL
3051 #define BPF_F_USER_STACK		(1ULL << 8)
3052 /* flags used by BPF_FUNC_get_stackid only. */
3053 #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
3054 #define BPF_F_REUSE_STACKID		(1ULL << 10)
3055 /* flags used by BPF_FUNC_get_stack only. */
3056 #define BPF_F_USER_BUILD_ID		(1ULL << 11)
3057 
3058 /* BPF_FUNC_skb_set_tunnel_key flags. */
3059 #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
3060 #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
3061 #define BPF_F_SEQ_NUMBER		(1ULL << 3)
3062 
3063 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
3064  * BPF_FUNC_perf_event_read_value flags.
3065  */
3066 #define BPF_F_INDEX_MASK		0xffffffffULL
3067 #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
3068 /* BPF_FUNC_perf_event_output for sk_buff input context. */
3069 #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
3070 
3071 /* Current network namespace */
3072 #define BPF_F_CURRENT_NETNS		(-1L)
3073 
3074 /* BPF_FUNC_skb_adjust_room flags. */
3075 #define BPF_F_ADJ_ROOM_FIXED_GSO	(1ULL << 0)
3076 
3077 #define BPF_ADJ_ROOM_ENCAP_L2_MASK	0xff
3078 #define BPF_ADJ_ROOM_ENCAP_L2_SHIFT	56
3079 
3080 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4	(1ULL << 1)
3081 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6	(1ULL << 2)
3082 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE	(1ULL << 3)
3083 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP	(1ULL << 4)
3084 #define BPF_F_ADJ_ROOM_ENCAP_L2(len)	(((__u64)len & \
3085 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) \
3086 					 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
3087 
3088 /* BPF_FUNC_sysctl_get_name flags. */
3089 #define BPF_F_SYSCTL_BASE_NAME		(1ULL << 0)
3090 
3091 /* BPF_FUNC_sk_storage_get flags */
3092 #define BPF_SK_STORAGE_GET_F_CREATE	(1ULL << 0)
3093 
3094 /* Mode for BPF_FUNC_skb_adjust_room helper. */
3095 enum bpf_adj_room_mode {
3096 	BPF_ADJ_ROOM_NET,
3097 	BPF_ADJ_ROOM_MAC,
3098 };
3099 
3100 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
3101 enum bpf_hdr_start_off {
3102 	BPF_HDR_START_MAC,
3103 	BPF_HDR_START_NET,
3104 };
3105 
3106 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
3107 enum bpf_lwt_encap_mode {
3108 	BPF_LWT_ENCAP_SEG6,
3109 	BPF_LWT_ENCAP_SEG6_INLINE,
3110 	BPF_LWT_ENCAP_IP,
3111 };
3112 
3113 #define __bpf_md_ptr(type, name)	\
3114 union {					\
3115 	type name;			\
3116 	__u64 :64;			\
3117 } __attribute__((aligned(8)))
3118 
3119 /* user accessible mirror of in-kernel sk_buff.
3120  * new fields can only be added to the end of this structure
3121  */
3122 struct __sk_buff {
3123 	__u32 len;
3124 	__u32 pkt_type;
3125 	__u32 mark;
3126 	__u32 queue_mapping;
3127 	__u32 protocol;
3128 	__u32 vlan_present;
3129 	__u32 vlan_tci;
3130 	__u32 vlan_proto;
3131 	__u32 priority;
3132 	__u32 ingress_ifindex;
3133 	__u32 ifindex;
3134 	__u32 tc_index;
3135 	__u32 cb[5];
3136 	__u32 hash;
3137 	__u32 tc_classid;
3138 	__u32 data;
3139 	__u32 data_end;
3140 	__u32 napi_id;
3141 
3142 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
3143 	__u32 family;
3144 	__u32 remote_ip4;	/* Stored in network byte order */
3145 	__u32 local_ip4;	/* Stored in network byte order */
3146 	__u32 remote_ip6[4];	/* Stored in network byte order */
3147 	__u32 local_ip6[4];	/* Stored in network byte order */
3148 	__u32 remote_port;	/* Stored in network byte order */
3149 	__u32 local_port;	/* stored in host byte order */
3150 	/* ... here. */
3151 
3152 	__u32 data_meta;
3153 	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
3154 	__u64 tstamp;
3155 	__u32 wire_len;
3156 	__u32 gso_segs;
3157 	__bpf_md_ptr(struct bpf_sock *, sk);
3158 };
3159 
3160 struct bpf_tunnel_key {
3161 	__u32 tunnel_id;
3162 	union {
3163 		__u32 remote_ipv4;
3164 		__u32 remote_ipv6[4];
3165 	};
3166 	__u8 tunnel_tos;
3167 	__u8 tunnel_ttl;
3168 	__u16 tunnel_ext;	/* Padding, future use. */
3169 	__u32 tunnel_label;
3170 };
3171 
3172 /* user accessible mirror of in-kernel xfrm_state.
3173  * new fields can only be added to the end of this structure
3174  */
3175 struct bpf_xfrm_state {
3176 	__u32 reqid;
3177 	__u32 spi;	/* Stored in network byte order */
3178 	__u16 family;
3179 	__u16 ext;	/* Padding, future use. */
3180 	union {
3181 		__u32 remote_ipv4;	/* Stored in network byte order */
3182 		__u32 remote_ipv6[4];	/* Stored in network byte order */
3183 	};
3184 };
3185 
3186 /* Generic BPF return codes which all BPF program types may support.
3187  * The values are binary compatible with their TC_ACT_* counter-part to
3188  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
3189  * programs.
3190  *
3191  * XDP is handled seprately, see XDP_*.
3192  */
3193 enum bpf_ret_code {
3194 	BPF_OK = 0,
3195 	/* 1 reserved */
3196 	BPF_DROP = 2,
3197 	/* 3-6 reserved */
3198 	BPF_REDIRECT = 7,
3199 	/* >127 are reserved for prog type specific return codes.
3200 	 *
3201 	 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
3202 	 *    BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
3203 	 *    changed and should be routed based on its new L3 header.
3204 	 *    (This is an L3 redirect, as opposed to L2 redirect
3205 	 *    represented by BPF_REDIRECT above).
3206 	 */
3207 	BPF_LWT_REROUTE = 128,
3208 };
3209 
3210 struct bpf_sock {
3211 	__u32 bound_dev_if;
3212 	__u32 family;
3213 	__u32 type;
3214 	__u32 protocol;
3215 	__u32 mark;
3216 	__u32 priority;
3217 	/* IP address also allows 1 and 2 bytes access */
3218 	__u32 src_ip4;
3219 	__u32 src_ip6[4];
3220 	__u32 src_port;		/* host byte order */
3221 	__u32 dst_port;		/* network byte order */
3222 	__u32 dst_ip4;
3223 	__u32 dst_ip6[4];
3224 	__u32 state;
3225 };
3226 
3227 struct bpf_tcp_sock {
3228 	__u32 snd_cwnd;		/* Sending congestion window		*/
3229 	__u32 srtt_us;		/* smoothed round trip time << 3 in usecs */
3230 	__u32 rtt_min;
3231 	__u32 snd_ssthresh;	/* Slow start size threshold		*/
3232 	__u32 rcv_nxt;		/* What we want to receive next		*/
3233 	__u32 snd_nxt;		/* Next sequence we send		*/
3234 	__u32 snd_una;		/* First byte we want an ack for	*/
3235 	__u32 mss_cache;	/* Cached effective mss, not including SACKS */
3236 	__u32 ecn_flags;	/* ECN status bits.			*/
3237 	__u32 rate_delivered;	/* saved rate sample: packets delivered */
3238 	__u32 rate_interval_us;	/* saved rate sample: time elapsed */
3239 	__u32 packets_out;	/* Packets which are "in flight"	*/
3240 	__u32 retrans_out;	/* Retransmitted packets out		*/
3241 	__u32 total_retrans;	/* Total retransmits for entire connection */
3242 	__u32 segs_in;		/* RFC4898 tcpEStatsPerfSegsIn
3243 				 * total number of segments in.
3244 				 */
3245 	__u32 data_segs_in;	/* RFC4898 tcpEStatsPerfDataSegsIn
3246 				 * total number of data segments in.
3247 				 */
3248 	__u32 segs_out;		/* RFC4898 tcpEStatsPerfSegsOut
3249 				 * The total number of segments sent.
3250 				 */
3251 	__u32 data_segs_out;	/* RFC4898 tcpEStatsPerfDataSegsOut
3252 				 * total number of data segments sent.
3253 				 */
3254 	__u32 lost_out;		/* Lost packets			*/
3255 	__u32 sacked_out;	/* SACK'd packets			*/
3256 	__u64 bytes_received;	/* RFC4898 tcpEStatsAppHCThruOctetsReceived
3257 				 * sum(delta(rcv_nxt)), or how many bytes
3258 				 * were acked.
3259 				 */
3260 	__u64 bytes_acked;	/* RFC4898 tcpEStatsAppHCThruOctetsAcked
3261 				 * sum(delta(snd_una)), or how many bytes
3262 				 * were acked.
3263 				 */
3264 	__u32 dsack_dups;	/* RFC4898 tcpEStatsStackDSACKDups
3265 				 * total number of DSACK blocks received
3266 				 */
3267 	__u32 delivered;	/* Total data packets delivered incl. rexmits */
3268 	__u32 delivered_ce;	/* Like the above but only ECE marked packets */
3269 	__u32 icsk_retransmits;	/* Number of unrecovered [RTO] timeouts */
3270 };
3271 
3272 struct bpf_sock_tuple {
3273 	union {
3274 		struct {
3275 			__be32 saddr;
3276 			__be32 daddr;
3277 			__be16 sport;
3278 			__be16 dport;
3279 		} ipv4;
3280 		struct {
3281 			__be32 saddr[4];
3282 			__be32 daddr[4];
3283 			__be16 sport;
3284 			__be16 dport;
3285 		} ipv6;
3286 	};
3287 };
3288 
3289 struct bpf_xdp_sock {
3290 	__u32 queue_id;
3291 };
3292 
3293 #define XDP_PACKET_HEADROOM 256
3294 
3295 /* User return codes for XDP prog type.
3296  * A valid XDP program must return one of these defined values. All other
3297  * return codes are reserved for future use. Unknown return codes will
3298  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
3299  */
3300 enum xdp_action {
3301 	XDP_ABORTED = 0,
3302 	XDP_DROP,
3303 	XDP_PASS,
3304 	XDP_TX,
3305 	XDP_REDIRECT,
3306 };
3307 
3308 /* user accessible metadata for XDP packet hook
3309  * new fields must be added to the end of this structure
3310  */
3311 struct xdp_md {
3312 	__u32 data;
3313 	__u32 data_end;
3314 	__u32 data_meta;
3315 	/* Below access go through struct xdp_rxq_info */
3316 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
3317 	__u32 rx_queue_index;  /* rxq->queue_index  */
3318 };
3319 
3320 enum sk_action {
3321 	SK_DROP = 0,
3322 	SK_PASS,
3323 };
3324 
3325 /* user accessible metadata for SK_MSG packet hook, new fields must
3326  * be added to the end of this structure
3327  */
3328 struct sk_msg_md {
3329 	__bpf_md_ptr(void *, data);
3330 	__bpf_md_ptr(void *, data_end);
3331 
3332 	__u32 family;
3333 	__u32 remote_ip4;	/* Stored in network byte order */
3334 	__u32 local_ip4;	/* Stored in network byte order */
3335 	__u32 remote_ip6[4];	/* Stored in network byte order */
3336 	__u32 local_ip6[4];	/* Stored in network byte order */
3337 	__u32 remote_port;	/* Stored in network byte order */
3338 	__u32 local_port;	/* stored in host byte order */
3339 	__u32 size;		/* Total size of sk_msg */
3340 };
3341 
3342 struct sk_reuseport_md {
3343 	/*
3344 	 * Start of directly accessible data. It begins from
3345 	 * the tcp/udp header.
3346 	 */
3347 	__bpf_md_ptr(void *, data);
3348 	/* End of directly accessible data */
3349 	__bpf_md_ptr(void *, data_end);
3350 	/*
3351 	 * Total length of packet (starting from the tcp/udp header).
3352 	 * Note that the directly accessible bytes (data_end - data)
3353 	 * could be less than this "len".  Those bytes could be
3354 	 * indirectly read by a helper "bpf_skb_load_bytes()".
3355 	 */
3356 	__u32 len;
3357 	/*
3358 	 * Eth protocol in the mac header (network byte order). e.g.
3359 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
3360 	 */
3361 	__u32 eth_protocol;
3362 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
3363 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
3364 	__u32 hash;		/* A hash of the packet 4 tuples */
3365 };
3366 
3367 #define BPF_TAG_SIZE	8
3368 
3369 struct bpf_prog_info {
3370 	__u32 type;
3371 	__u32 id;
3372 	__u8  tag[BPF_TAG_SIZE];
3373 	__u32 jited_prog_len;
3374 	__u32 xlated_prog_len;
3375 	__aligned_u64 jited_prog_insns;
3376 	__aligned_u64 xlated_prog_insns;
3377 	__u64 load_time;	/* ns since boottime */
3378 	__u32 created_by_uid;
3379 	__u32 nr_map_ids;
3380 	__aligned_u64 map_ids;
3381 	char name[BPF_OBJ_NAME_LEN];
3382 	__u32 ifindex;
3383 	__u32 gpl_compatible:1;
3384 	__u32 :31; /* alignment pad */
3385 	__u64 netns_dev;
3386 	__u64 netns_ino;
3387 	__u32 nr_jited_ksyms;
3388 	__u32 nr_jited_func_lens;
3389 	__aligned_u64 jited_ksyms;
3390 	__aligned_u64 jited_func_lens;
3391 	__u32 btf_id;
3392 	__u32 func_info_rec_size;
3393 	__aligned_u64 func_info;
3394 	__u32 nr_func_info;
3395 	__u32 nr_line_info;
3396 	__aligned_u64 line_info;
3397 	__aligned_u64 jited_line_info;
3398 	__u32 nr_jited_line_info;
3399 	__u32 line_info_rec_size;
3400 	__u32 jited_line_info_rec_size;
3401 	__u32 nr_prog_tags;
3402 	__aligned_u64 prog_tags;
3403 	__u64 run_time_ns;
3404 	__u64 run_cnt;
3405 } __attribute__((aligned(8)));
3406 
3407 struct bpf_map_info {
3408 	__u32 type;
3409 	__u32 id;
3410 	__u32 key_size;
3411 	__u32 value_size;
3412 	__u32 max_entries;
3413 	__u32 map_flags;
3414 	char  name[BPF_OBJ_NAME_LEN];
3415 	__u32 ifindex;
3416 	__u32 btf_vmlinux_value_type_id;
3417 	__u64 netns_dev;
3418 	__u64 netns_ino;
3419 	__u32 btf_id;
3420 	__u32 btf_key_type_id;
3421 	__u32 btf_value_type_id;
3422 } __attribute__((aligned(8)));
3423 
3424 struct bpf_btf_info {
3425 	__aligned_u64 btf;
3426 	__u32 btf_size;
3427 	__u32 id;
3428 } __attribute__((aligned(8)));
3429 
3430 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
3431  * by user and intended to be used by socket (e.g. to bind to, depends on
3432  * attach attach type).
3433  */
3434 struct bpf_sock_addr {
3435 	__u32 user_family;	/* Allows 4-byte read, but no write. */
3436 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
3437 				 * Stored in network byte order.
3438 				 */
3439 	__u32 user_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
3440 				 * Stored in network byte order.
3441 				 */
3442 	__u32 user_port;	/* Allows 4-byte read and write.
3443 				 * Stored in network byte order
3444 				 */
3445 	__u32 family;		/* Allows 4-byte read, but no write */
3446 	__u32 type;		/* Allows 4-byte read, but no write */
3447 	__u32 protocol;		/* Allows 4-byte read, but no write */
3448 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read and 4-byte write.
3449 				 * Stored in network byte order.
3450 				 */
3451 	__u32 msg_src_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
3452 				 * Stored in network byte order.
3453 				 */
3454 	__bpf_md_ptr(struct bpf_sock *, sk);
3455 };
3456 
3457 /* User bpf_sock_ops struct to access socket values and specify request ops
3458  * and their replies.
3459  * Some of this fields are in network (bigendian) byte order and may need
3460  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
3461  * New fields can only be added at the end of this structure
3462  */
3463 struct bpf_sock_ops {
3464 	__u32 op;
3465 	union {
3466 		__u32 args[4];		/* Optionally passed to bpf program */
3467 		__u32 reply;		/* Returned by bpf program	    */
3468 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
3469 	};
3470 	__u32 family;
3471 	__u32 remote_ip4;	/* Stored in network byte order */
3472 	__u32 local_ip4;	/* Stored in network byte order */
3473 	__u32 remote_ip6[4];	/* Stored in network byte order */
3474 	__u32 local_ip6[4];	/* Stored in network byte order */
3475 	__u32 remote_port;	/* Stored in network byte order */
3476 	__u32 local_port;	/* stored in host byte order */
3477 	__u32 is_fullsock;	/* Some TCP fields are only valid if
3478 				 * there is a full socket. If not, the
3479 				 * fields read as zero.
3480 				 */
3481 	__u32 snd_cwnd;
3482 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
3483 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
3484 	__u32 state;
3485 	__u32 rtt_min;
3486 	__u32 snd_ssthresh;
3487 	__u32 rcv_nxt;
3488 	__u32 snd_nxt;
3489 	__u32 snd_una;
3490 	__u32 mss_cache;
3491 	__u32 ecn_flags;
3492 	__u32 rate_delivered;
3493 	__u32 rate_interval_us;
3494 	__u32 packets_out;
3495 	__u32 retrans_out;
3496 	__u32 total_retrans;
3497 	__u32 segs_in;
3498 	__u32 data_segs_in;
3499 	__u32 segs_out;
3500 	__u32 data_segs_out;
3501 	__u32 lost_out;
3502 	__u32 sacked_out;
3503 	__u32 sk_txhash;
3504 	__u64 bytes_received;
3505 	__u64 bytes_acked;
3506 	__bpf_md_ptr(struct bpf_sock *, sk);
3507 };
3508 
3509 /* Definitions for bpf_sock_ops_cb_flags */
3510 #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
3511 #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
3512 #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
3513 #define BPF_SOCK_OPS_RTT_CB_FLAG	(1<<3)
3514 #define BPF_SOCK_OPS_ALL_CB_FLAGS       0xF		/* Mask of all currently
3515 							 * supported cb flags
3516 							 */
3517 
3518 /* List of known BPF sock_ops operators.
3519  * New entries can only be added at the end
3520  */
3521 enum {
3522 	BPF_SOCK_OPS_VOID,
3523 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
3524 					 * -1 if default value should be used
3525 					 */
3526 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
3527 					 * window (in packets) or -1 if default
3528 					 * value should be used
3529 					 */
3530 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
3531 					 * active connection is initialized
3532 					 */
3533 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
3534 						 * active connection is
3535 						 * established
3536 						 */
3537 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
3538 						 * passive connection is
3539 						 * established
3540 						 */
3541 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
3542 					 * needs ECN
3543 					 */
3544 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
3545 					 * based on the path and may be
3546 					 * dependent on the congestion control
3547 					 * algorithm. In general it indicates
3548 					 * a congestion threshold. RTTs above
3549 					 * this indicate congestion
3550 					 */
3551 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
3552 					 * Arg1: value of icsk_retransmits
3553 					 * Arg2: value of icsk_rto
3554 					 * Arg3: whether RTO has expired
3555 					 */
3556 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
3557 					 * Arg1: sequence number of 1st byte
3558 					 * Arg2: # segments
3559 					 * Arg3: return value of
3560 					 *       tcp_transmit_skb (0 => success)
3561 					 */
3562 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
3563 					 * Arg1: old_state
3564 					 * Arg2: new_state
3565 					 */
3566 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
3567 					 * socket transition to LISTEN state.
3568 					 */
3569 	BPF_SOCK_OPS_RTT_CB,		/* Called on every RTT.
3570 					 */
3571 };
3572 
3573 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
3574  * changes between the TCP and BPF versions. Ideally this should never happen.
3575  * If it does, we need to add code to convert them before calling
3576  * the BPF sock_ops function.
3577  */
3578 enum {
3579 	BPF_TCP_ESTABLISHED = 1,
3580 	BPF_TCP_SYN_SENT,
3581 	BPF_TCP_SYN_RECV,
3582 	BPF_TCP_FIN_WAIT1,
3583 	BPF_TCP_FIN_WAIT2,
3584 	BPF_TCP_TIME_WAIT,
3585 	BPF_TCP_CLOSE,
3586 	BPF_TCP_CLOSE_WAIT,
3587 	BPF_TCP_LAST_ACK,
3588 	BPF_TCP_LISTEN,
3589 	BPF_TCP_CLOSING,	/* Now a valid state */
3590 	BPF_TCP_NEW_SYN_RECV,
3591 
3592 	BPF_TCP_MAX_STATES	/* Leave at the end! */
3593 };
3594 
3595 #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
3596 #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
3597 
3598 struct bpf_perf_event_value {
3599 	__u64 counter;
3600 	__u64 enabled;
3601 	__u64 running;
3602 };
3603 
3604 #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
3605 #define BPF_DEVCG_ACC_READ	(1ULL << 1)
3606 #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
3607 
3608 #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
3609 #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
3610 
3611 struct bpf_cgroup_dev_ctx {
3612 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
3613 	__u32 access_type;
3614 	__u32 major;
3615 	__u32 minor;
3616 };
3617 
3618 struct bpf_raw_tracepoint_args {
3619 	__u64 args[0];
3620 };
3621 
3622 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
3623  * OUTPUT:  Do lookup from egress perspective; default is ingress
3624  */
3625 #define BPF_FIB_LOOKUP_DIRECT  (1U << 0)
3626 #define BPF_FIB_LOOKUP_OUTPUT  (1U << 1)
3627 
3628 enum {
3629 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
3630 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
3631 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
3632 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
3633 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
3634 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
3635 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
3636 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
3637 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
3638 };
3639 
3640 struct bpf_fib_lookup {
3641 	/* input:  network family for lookup (AF_INET, AF_INET6)
3642 	 * output: network family of egress nexthop
3643 	 */
3644 	__u8	family;
3645 
3646 	/* set if lookup is to consider L4 data - e.g., FIB rules */
3647 	__u8	l4_protocol;
3648 	__be16	sport;
3649 	__be16	dport;
3650 
3651 	/* total length of packet from network header - used for MTU check */
3652 	__u16	tot_len;
3653 
3654 	/* input: L3 device index for lookup
3655 	 * output: device index from FIB lookup
3656 	 */
3657 	__u32	ifindex;
3658 
3659 	union {
3660 		/* inputs to lookup */
3661 		__u8	tos;		/* AF_INET  */
3662 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
3663 
3664 		/* output: metric of fib result (IPv4/IPv6 only) */
3665 		__u32	rt_metric;
3666 	};
3667 
3668 	union {
3669 		__be32		ipv4_src;
3670 		__u32		ipv6_src[4];  /* in6_addr; network order */
3671 	};
3672 
3673 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
3674 	 * network header. output: bpf_fib_lookup sets to gateway address
3675 	 * if FIB lookup returns gateway route
3676 	 */
3677 	union {
3678 		__be32		ipv4_dst;
3679 		__u32		ipv6_dst[4];  /* in6_addr; network order */
3680 	};
3681 
3682 	/* output */
3683 	__be16	h_vlan_proto;
3684 	__be16	h_vlan_TCI;
3685 	__u8	smac[6];     /* ETH_ALEN */
3686 	__u8	dmac[6];     /* ETH_ALEN */
3687 };
3688 
3689 enum bpf_task_fd_type {
3690 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
3691 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
3692 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
3693 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
3694 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
3695 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
3696 };
3697 
3698 #define BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG		(1U << 0)
3699 #define BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL		(1U << 1)
3700 #define BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP		(1U << 2)
3701 
3702 struct bpf_flow_keys {
3703 	__u16	nhoff;
3704 	__u16	thoff;
3705 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
3706 	__u8	is_frag;
3707 	__u8	is_first_frag;
3708 	__u8	is_encap;
3709 	__u8	ip_proto;
3710 	__be16	n_proto;
3711 	__be16	sport;
3712 	__be16	dport;
3713 	union {
3714 		struct {
3715 			__be32	ipv4_src;
3716 			__be32	ipv4_dst;
3717 		};
3718 		struct {
3719 			__u32	ipv6_src[4];	/* in6_addr; network order */
3720 			__u32	ipv6_dst[4];	/* in6_addr; network order */
3721 		};
3722 	};
3723 	__u32	flags;
3724 	__be32	flow_label;
3725 };
3726 
3727 struct bpf_func_info {
3728 	__u32	insn_off;
3729 	__u32	type_id;
3730 };
3731 
3732 #define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
3733 #define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
3734 
3735 struct bpf_line_info {
3736 	__u32	insn_off;
3737 	__u32	file_name_off;
3738 	__u32	line_off;
3739 	__u32	line_col;
3740 };
3741 
3742 struct bpf_spin_lock {
3743 	__u32	val;
3744 };
3745 
3746 struct bpf_sysctl {
3747 	__u32	write;		/* Sysctl is being read (= 0) or written (= 1).
3748 				 * Allows 1,2,4-byte read, but no write.
3749 				 */
3750 	__u32	file_pos;	/* Sysctl file position to read from, write to.
3751 				 * Allows 1,2,4-byte read an 4-byte write.
3752 				 */
3753 };
3754 
3755 struct bpf_sockopt {
3756 	__bpf_md_ptr(struct bpf_sock *, sk);
3757 	__bpf_md_ptr(void *, optval);
3758 	__bpf_md_ptr(void *, optval_end);
3759 
3760 	__s32	level;
3761 	__s32	optname;
3762 	__s32	optlen;
3763 	__s32	retval;
3764 };
3765 
3766 #endif /* _UAPI__LINUX_BPF_H__ */
3767