1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef _UAPI__LINUX_BPF_H__ 9 #define _UAPI__LINUX_BPF_H__ 10 11 #include <linux/types.h> 12 #include <linux/bpf_common.h> 13 14 /* Extended instruction set based on top of classic BPF */ 15 16 /* instruction classes */ 17 #define BPF_JMP32 0x06 /* jmp mode in word width */ 18 #define BPF_ALU64 0x07 /* alu mode in double word width */ 19 20 /* ld/ldx fields */ 21 #define BPF_DW 0x18 /* double word (64-bit) */ 22 #define BPF_XADD 0xc0 /* exclusive add */ 23 24 /* alu/jmp fields */ 25 #define BPF_MOV 0xb0 /* mov reg to reg */ 26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 27 28 /* change endianness of a register */ 29 #define BPF_END 0xd0 /* flags for endianness conversion: */ 30 #define BPF_TO_LE 0x00 /* convert to little-endian */ 31 #define BPF_TO_BE 0x08 /* convert to big-endian */ 32 #define BPF_FROM_LE BPF_TO_LE 33 #define BPF_FROM_BE BPF_TO_BE 34 35 /* jmp encodings */ 36 #define BPF_JNE 0x50 /* jump != */ 37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 43 #define BPF_CALL 0x80 /* function call */ 44 #define BPF_EXIT 0x90 /* function return */ 45 46 /* Register numbers */ 47 enum { 48 BPF_REG_0 = 0, 49 BPF_REG_1, 50 BPF_REG_2, 51 BPF_REG_3, 52 BPF_REG_4, 53 BPF_REG_5, 54 BPF_REG_6, 55 BPF_REG_7, 56 BPF_REG_8, 57 BPF_REG_9, 58 BPF_REG_10, 59 __MAX_BPF_REG, 60 }; 61 62 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 63 #define MAX_BPF_REG __MAX_BPF_REG 64 65 struct bpf_insn { 66 __u8 code; /* opcode */ 67 __u8 dst_reg:4; /* dest register */ 68 __u8 src_reg:4; /* source register */ 69 __s16 off; /* signed offset */ 70 __s32 imm; /* signed immediate constant */ 71 }; 72 73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 74 struct bpf_lpm_trie_key { 75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 76 __u8 data[0]; /* Arbitrary size */ 77 }; 78 79 struct bpf_cgroup_storage_key { 80 __u64 cgroup_inode_id; /* cgroup inode id */ 81 __u32 attach_type; /* program attach type */ 82 }; 83 84 union bpf_iter_link_info { 85 struct { 86 __u32 map_fd; 87 } map; 88 }; 89 90 /* BPF syscall commands, see bpf(2) man-page for details. */ 91 enum bpf_cmd { 92 BPF_MAP_CREATE, 93 BPF_MAP_LOOKUP_ELEM, 94 BPF_MAP_UPDATE_ELEM, 95 BPF_MAP_DELETE_ELEM, 96 BPF_MAP_GET_NEXT_KEY, 97 BPF_PROG_LOAD, 98 BPF_OBJ_PIN, 99 BPF_OBJ_GET, 100 BPF_PROG_ATTACH, 101 BPF_PROG_DETACH, 102 BPF_PROG_TEST_RUN, 103 BPF_PROG_GET_NEXT_ID, 104 BPF_MAP_GET_NEXT_ID, 105 BPF_PROG_GET_FD_BY_ID, 106 BPF_MAP_GET_FD_BY_ID, 107 BPF_OBJ_GET_INFO_BY_FD, 108 BPF_PROG_QUERY, 109 BPF_RAW_TRACEPOINT_OPEN, 110 BPF_BTF_LOAD, 111 BPF_BTF_GET_FD_BY_ID, 112 BPF_TASK_FD_QUERY, 113 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 114 BPF_MAP_FREEZE, 115 BPF_BTF_GET_NEXT_ID, 116 BPF_MAP_LOOKUP_BATCH, 117 BPF_MAP_LOOKUP_AND_DELETE_BATCH, 118 BPF_MAP_UPDATE_BATCH, 119 BPF_MAP_DELETE_BATCH, 120 BPF_LINK_CREATE, 121 BPF_LINK_UPDATE, 122 BPF_LINK_GET_FD_BY_ID, 123 BPF_LINK_GET_NEXT_ID, 124 BPF_ENABLE_STATS, 125 BPF_ITER_CREATE, 126 BPF_LINK_DETACH, 127 }; 128 129 enum bpf_map_type { 130 BPF_MAP_TYPE_UNSPEC, 131 BPF_MAP_TYPE_HASH, 132 BPF_MAP_TYPE_ARRAY, 133 BPF_MAP_TYPE_PROG_ARRAY, 134 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 135 BPF_MAP_TYPE_PERCPU_HASH, 136 BPF_MAP_TYPE_PERCPU_ARRAY, 137 BPF_MAP_TYPE_STACK_TRACE, 138 BPF_MAP_TYPE_CGROUP_ARRAY, 139 BPF_MAP_TYPE_LRU_HASH, 140 BPF_MAP_TYPE_LRU_PERCPU_HASH, 141 BPF_MAP_TYPE_LPM_TRIE, 142 BPF_MAP_TYPE_ARRAY_OF_MAPS, 143 BPF_MAP_TYPE_HASH_OF_MAPS, 144 BPF_MAP_TYPE_DEVMAP, 145 BPF_MAP_TYPE_SOCKMAP, 146 BPF_MAP_TYPE_CPUMAP, 147 BPF_MAP_TYPE_XSKMAP, 148 BPF_MAP_TYPE_SOCKHASH, 149 BPF_MAP_TYPE_CGROUP_STORAGE, 150 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 151 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 152 BPF_MAP_TYPE_QUEUE, 153 BPF_MAP_TYPE_STACK, 154 BPF_MAP_TYPE_SK_STORAGE, 155 BPF_MAP_TYPE_DEVMAP_HASH, 156 BPF_MAP_TYPE_STRUCT_OPS, 157 BPF_MAP_TYPE_RINGBUF, 158 BPF_MAP_TYPE_INODE_STORAGE, 159 }; 160 161 /* Note that tracing related programs such as 162 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 163 * are not subject to a stable API since kernel internal data 164 * structures can change from release to release and may 165 * therefore break existing tracing BPF programs. Tracing BPF 166 * programs correspond to /a/ specific kernel which is to be 167 * analyzed, and not /a/ specific kernel /and/ all future ones. 168 */ 169 enum bpf_prog_type { 170 BPF_PROG_TYPE_UNSPEC, 171 BPF_PROG_TYPE_SOCKET_FILTER, 172 BPF_PROG_TYPE_KPROBE, 173 BPF_PROG_TYPE_SCHED_CLS, 174 BPF_PROG_TYPE_SCHED_ACT, 175 BPF_PROG_TYPE_TRACEPOINT, 176 BPF_PROG_TYPE_XDP, 177 BPF_PROG_TYPE_PERF_EVENT, 178 BPF_PROG_TYPE_CGROUP_SKB, 179 BPF_PROG_TYPE_CGROUP_SOCK, 180 BPF_PROG_TYPE_LWT_IN, 181 BPF_PROG_TYPE_LWT_OUT, 182 BPF_PROG_TYPE_LWT_XMIT, 183 BPF_PROG_TYPE_SOCK_OPS, 184 BPF_PROG_TYPE_SK_SKB, 185 BPF_PROG_TYPE_CGROUP_DEVICE, 186 BPF_PROG_TYPE_SK_MSG, 187 BPF_PROG_TYPE_RAW_TRACEPOINT, 188 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 189 BPF_PROG_TYPE_LWT_SEG6LOCAL, 190 BPF_PROG_TYPE_LIRC_MODE2, 191 BPF_PROG_TYPE_SK_REUSEPORT, 192 BPF_PROG_TYPE_FLOW_DISSECTOR, 193 BPF_PROG_TYPE_CGROUP_SYSCTL, 194 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, 195 BPF_PROG_TYPE_CGROUP_SOCKOPT, 196 BPF_PROG_TYPE_TRACING, 197 BPF_PROG_TYPE_STRUCT_OPS, 198 BPF_PROG_TYPE_EXT, 199 BPF_PROG_TYPE_LSM, 200 BPF_PROG_TYPE_SK_LOOKUP, 201 }; 202 203 enum bpf_attach_type { 204 BPF_CGROUP_INET_INGRESS, 205 BPF_CGROUP_INET_EGRESS, 206 BPF_CGROUP_INET_SOCK_CREATE, 207 BPF_CGROUP_SOCK_OPS, 208 BPF_SK_SKB_STREAM_PARSER, 209 BPF_SK_SKB_STREAM_VERDICT, 210 BPF_CGROUP_DEVICE, 211 BPF_SK_MSG_VERDICT, 212 BPF_CGROUP_INET4_BIND, 213 BPF_CGROUP_INET6_BIND, 214 BPF_CGROUP_INET4_CONNECT, 215 BPF_CGROUP_INET6_CONNECT, 216 BPF_CGROUP_INET4_POST_BIND, 217 BPF_CGROUP_INET6_POST_BIND, 218 BPF_CGROUP_UDP4_SENDMSG, 219 BPF_CGROUP_UDP6_SENDMSG, 220 BPF_LIRC_MODE2, 221 BPF_FLOW_DISSECTOR, 222 BPF_CGROUP_SYSCTL, 223 BPF_CGROUP_UDP4_RECVMSG, 224 BPF_CGROUP_UDP6_RECVMSG, 225 BPF_CGROUP_GETSOCKOPT, 226 BPF_CGROUP_SETSOCKOPT, 227 BPF_TRACE_RAW_TP, 228 BPF_TRACE_FENTRY, 229 BPF_TRACE_FEXIT, 230 BPF_MODIFY_RETURN, 231 BPF_LSM_MAC, 232 BPF_TRACE_ITER, 233 BPF_CGROUP_INET4_GETPEERNAME, 234 BPF_CGROUP_INET6_GETPEERNAME, 235 BPF_CGROUP_INET4_GETSOCKNAME, 236 BPF_CGROUP_INET6_GETSOCKNAME, 237 BPF_XDP_DEVMAP, 238 BPF_CGROUP_INET_SOCK_RELEASE, 239 BPF_XDP_CPUMAP, 240 BPF_SK_LOOKUP, 241 BPF_XDP, 242 __MAX_BPF_ATTACH_TYPE 243 }; 244 245 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 246 247 enum bpf_link_type { 248 BPF_LINK_TYPE_UNSPEC = 0, 249 BPF_LINK_TYPE_RAW_TRACEPOINT = 1, 250 BPF_LINK_TYPE_TRACING = 2, 251 BPF_LINK_TYPE_CGROUP = 3, 252 BPF_LINK_TYPE_ITER = 4, 253 BPF_LINK_TYPE_NETNS = 5, 254 BPF_LINK_TYPE_XDP = 6, 255 256 MAX_BPF_LINK_TYPE, 257 }; 258 259 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 260 * 261 * NONE(default): No further bpf programs allowed in the subtree. 262 * 263 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 264 * the program in this cgroup yields to sub-cgroup program. 265 * 266 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 267 * that cgroup program gets run in addition to the program in this cgroup. 268 * 269 * Only one program is allowed to be attached to a cgroup with 270 * NONE or BPF_F_ALLOW_OVERRIDE flag. 271 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 272 * release old program and attach the new one. Attach flags has to match. 273 * 274 * Multiple programs are allowed to be attached to a cgroup with 275 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 276 * (those that were attached first, run first) 277 * The programs of sub-cgroup are executed first, then programs of 278 * this cgroup and then programs of parent cgroup. 279 * When children program makes decision (like picking TCP CA or sock bind) 280 * parent program has a chance to override it. 281 * 282 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of 283 * programs for a cgroup. Though it's possible to replace an old program at 284 * any position by also specifying BPF_F_REPLACE flag and position itself in 285 * replace_bpf_fd attribute. Old program at this position will be released. 286 * 287 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 288 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 289 * Ex1: 290 * cgrp1 (MULTI progs A, B) -> 291 * cgrp2 (OVERRIDE prog C) -> 292 * cgrp3 (MULTI prog D) -> 293 * cgrp4 (OVERRIDE prog E) -> 294 * cgrp5 (NONE prog F) 295 * the event in cgrp5 triggers execution of F,D,A,B in that order. 296 * if prog F is detached, the execution is E,D,A,B 297 * if prog F and D are detached, the execution is E,A,B 298 * if prog F, E and D are detached, the execution is C,A,B 299 * 300 * All eligible programs are executed regardless of return code from 301 * earlier programs. 302 */ 303 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 304 #define BPF_F_ALLOW_MULTI (1U << 1) 305 #define BPF_F_REPLACE (1U << 2) 306 307 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 308 * verifier will perform strict alignment checking as if the kernel 309 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 310 * and NET_IP_ALIGN defined to 2. 311 */ 312 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 313 314 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 315 * verifier will allow any alignment whatsoever. On platforms 316 * with strict alignment requirements for loads ands stores (such 317 * as sparc and mips) the verifier validates that all loads and 318 * stores provably follow this requirement. This flag turns that 319 * checking and enforcement off. 320 * 321 * It is mostly used for testing when we want to validate the 322 * context and memory access aspects of the verifier, but because 323 * of an unaligned access the alignment check would trigger before 324 * the one we are interested in. 325 */ 326 #define BPF_F_ANY_ALIGNMENT (1U << 1) 327 328 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose. 329 * Verifier does sub-register def/use analysis and identifies instructions whose 330 * def only matters for low 32-bit, high 32-bit is never referenced later 331 * through implicit zero extension. Therefore verifier notifies JIT back-ends 332 * that it is safe to ignore clearing high 32-bit for these instructions. This 333 * saves some back-ends a lot of code-gen. However such optimization is not 334 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends 335 * hence hasn't used verifier's analysis result. But, we really want to have a 336 * way to be able to verify the correctness of the described optimization on 337 * x86_64 on which testsuites are frequently exercised. 338 * 339 * So, this flag is introduced. Once it is set, verifier will randomize high 340 * 32-bit for those instructions who has been identified as safe to ignore them. 341 * Then, if verifier is not doing correct analysis, such randomization will 342 * regress tests to expose bugs. 343 */ 344 #define BPF_F_TEST_RND_HI32 (1U << 2) 345 346 /* The verifier internal test flag. Behavior is undefined */ 347 #define BPF_F_TEST_STATE_FREQ (1U << 3) 348 349 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have 350 * two extensions: 351 * 352 * insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE 353 * insn[0].imm: map fd map fd 354 * insn[1].imm: 0 offset into value 355 * insn[0].off: 0 0 356 * insn[1].off: 0 0 357 * ldimm64 rewrite: address of map address of map[0]+offset 358 * verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE 359 */ 360 #define BPF_PSEUDO_MAP_FD 1 361 #define BPF_PSEUDO_MAP_VALUE 2 362 363 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 364 * offset to another bpf function 365 */ 366 #define BPF_PSEUDO_CALL 1 367 368 /* flags for BPF_MAP_UPDATE_ELEM command */ 369 enum { 370 BPF_ANY = 0, /* create new element or update existing */ 371 BPF_NOEXIST = 1, /* create new element if it didn't exist */ 372 BPF_EXIST = 2, /* update existing element */ 373 BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */ 374 }; 375 376 /* flags for BPF_MAP_CREATE command */ 377 enum { 378 BPF_F_NO_PREALLOC = (1U << 0), 379 /* Instead of having one common LRU list in the 380 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 381 * which can scale and perform better. 382 * Note, the LRU nodes (including free nodes) cannot be moved 383 * across different LRU lists. 384 */ 385 BPF_F_NO_COMMON_LRU = (1U << 1), 386 /* Specify numa node during map creation */ 387 BPF_F_NUMA_NODE = (1U << 2), 388 389 /* Flags for accessing BPF object from syscall side. */ 390 BPF_F_RDONLY = (1U << 3), 391 BPF_F_WRONLY = (1U << 4), 392 393 /* Flag for stack_map, store build_id+offset instead of pointer */ 394 BPF_F_STACK_BUILD_ID = (1U << 5), 395 396 /* Zero-initialize hash function seed. This should only be used for testing. */ 397 BPF_F_ZERO_SEED = (1U << 6), 398 399 /* Flags for accessing BPF object from program side. */ 400 BPF_F_RDONLY_PROG = (1U << 7), 401 BPF_F_WRONLY_PROG = (1U << 8), 402 403 /* Clone map from listener for newly accepted socket */ 404 BPF_F_CLONE = (1U << 9), 405 406 /* Enable memory-mapping BPF map */ 407 BPF_F_MMAPABLE = (1U << 10), 408 }; 409 410 /* Flags for BPF_PROG_QUERY. */ 411 412 /* Query effective (directly attached + inherited from ancestor cgroups) 413 * programs that will be executed for events within a cgroup. 414 * attach_flags with this flag are returned only for directly attached programs. 415 */ 416 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 417 418 /* type for BPF_ENABLE_STATS */ 419 enum bpf_stats_type { 420 /* enabled run_time_ns and run_cnt */ 421 BPF_STATS_RUN_TIME = 0, 422 }; 423 424 enum bpf_stack_build_id_status { 425 /* user space need an empty entry to identify end of a trace */ 426 BPF_STACK_BUILD_ID_EMPTY = 0, 427 /* with valid build_id and offset */ 428 BPF_STACK_BUILD_ID_VALID = 1, 429 /* couldn't get build_id, fallback to ip */ 430 BPF_STACK_BUILD_ID_IP = 2, 431 }; 432 433 #define BPF_BUILD_ID_SIZE 20 434 struct bpf_stack_build_id { 435 __s32 status; 436 unsigned char build_id[BPF_BUILD_ID_SIZE]; 437 union { 438 __u64 offset; 439 __u64 ip; 440 }; 441 }; 442 443 #define BPF_OBJ_NAME_LEN 16U 444 445 union bpf_attr { 446 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 447 __u32 map_type; /* one of enum bpf_map_type */ 448 __u32 key_size; /* size of key in bytes */ 449 __u32 value_size; /* size of value in bytes */ 450 __u32 max_entries; /* max number of entries in a map */ 451 __u32 map_flags; /* BPF_MAP_CREATE related 452 * flags defined above. 453 */ 454 __u32 inner_map_fd; /* fd pointing to the inner map */ 455 __u32 numa_node; /* numa node (effective only if 456 * BPF_F_NUMA_NODE is set). 457 */ 458 char map_name[BPF_OBJ_NAME_LEN]; 459 __u32 map_ifindex; /* ifindex of netdev to create on */ 460 __u32 btf_fd; /* fd pointing to a BTF type data */ 461 __u32 btf_key_type_id; /* BTF type_id of the key */ 462 __u32 btf_value_type_id; /* BTF type_id of the value */ 463 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel- 464 * struct stored as the 465 * map value 466 */ 467 }; 468 469 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 470 __u32 map_fd; 471 __aligned_u64 key; 472 union { 473 __aligned_u64 value; 474 __aligned_u64 next_key; 475 }; 476 __u64 flags; 477 }; 478 479 struct { /* struct used by BPF_MAP_*_BATCH commands */ 480 __aligned_u64 in_batch; /* start batch, 481 * NULL to start from beginning 482 */ 483 __aligned_u64 out_batch; /* output: next start batch */ 484 __aligned_u64 keys; 485 __aligned_u64 values; 486 __u32 count; /* input/output: 487 * input: # of key/value 488 * elements 489 * output: # of filled elements 490 */ 491 __u32 map_fd; 492 __u64 elem_flags; 493 __u64 flags; 494 } batch; 495 496 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 497 __u32 prog_type; /* one of enum bpf_prog_type */ 498 __u32 insn_cnt; 499 __aligned_u64 insns; 500 __aligned_u64 license; 501 __u32 log_level; /* verbosity level of verifier */ 502 __u32 log_size; /* size of user buffer */ 503 __aligned_u64 log_buf; /* user supplied buffer */ 504 __u32 kern_version; /* not used */ 505 __u32 prog_flags; 506 char prog_name[BPF_OBJ_NAME_LEN]; 507 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 508 /* For some prog types expected attach type must be known at 509 * load time to verify attach type specific parts of prog 510 * (context accesses, allowed helpers, etc). 511 */ 512 __u32 expected_attach_type; 513 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 514 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 515 __aligned_u64 func_info; /* func info */ 516 __u32 func_info_cnt; /* number of bpf_func_info records */ 517 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 518 __aligned_u64 line_info; /* line info */ 519 __u32 line_info_cnt; /* number of bpf_line_info records */ 520 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 521 __u32 attach_prog_fd; /* 0 to attach to vmlinux */ 522 }; 523 524 struct { /* anonymous struct used by BPF_OBJ_* commands */ 525 __aligned_u64 pathname; 526 __u32 bpf_fd; 527 __u32 file_flags; 528 }; 529 530 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 531 __u32 target_fd; /* container object to attach to */ 532 __u32 attach_bpf_fd; /* eBPF program to attach */ 533 __u32 attach_type; 534 __u32 attach_flags; 535 __u32 replace_bpf_fd; /* previously attached eBPF 536 * program to replace if 537 * BPF_F_REPLACE is used 538 */ 539 }; 540 541 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 542 __u32 prog_fd; 543 __u32 retval; 544 __u32 data_size_in; /* input: len of data_in */ 545 __u32 data_size_out; /* input/output: len of data_out 546 * returns ENOSPC if data_out 547 * is too small. 548 */ 549 __aligned_u64 data_in; 550 __aligned_u64 data_out; 551 __u32 repeat; 552 __u32 duration; 553 __u32 ctx_size_in; /* input: len of ctx_in */ 554 __u32 ctx_size_out; /* input/output: len of ctx_out 555 * returns ENOSPC if ctx_out 556 * is too small. 557 */ 558 __aligned_u64 ctx_in; 559 __aligned_u64 ctx_out; 560 } test; 561 562 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 563 union { 564 __u32 start_id; 565 __u32 prog_id; 566 __u32 map_id; 567 __u32 btf_id; 568 __u32 link_id; 569 }; 570 __u32 next_id; 571 __u32 open_flags; 572 }; 573 574 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 575 __u32 bpf_fd; 576 __u32 info_len; 577 __aligned_u64 info; 578 } info; 579 580 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 581 __u32 target_fd; /* container object to query */ 582 __u32 attach_type; 583 __u32 query_flags; 584 __u32 attach_flags; 585 __aligned_u64 prog_ids; 586 __u32 prog_cnt; 587 } query; 588 589 struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */ 590 __u64 name; 591 __u32 prog_fd; 592 } raw_tracepoint; 593 594 struct { /* anonymous struct for BPF_BTF_LOAD */ 595 __aligned_u64 btf; 596 __aligned_u64 btf_log_buf; 597 __u32 btf_size; 598 __u32 btf_log_size; 599 __u32 btf_log_level; 600 }; 601 602 struct { 603 __u32 pid; /* input: pid */ 604 __u32 fd; /* input: fd */ 605 __u32 flags; /* input: flags */ 606 __u32 buf_len; /* input/output: buf len */ 607 __aligned_u64 buf; /* input/output: 608 * tp_name for tracepoint 609 * symbol for kprobe 610 * filename for uprobe 611 */ 612 __u32 prog_id; /* output: prod_id */ 613 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 614 __u64 probe_offset; /* output: probe_offset */ 615 __u64 probe_addr; /* output: probe_addr */ 616 } task_fd_query; 617 618 struct { /* struct used by BPF_LINK_CREATE command */ 619 __u32 prog_fd; /* eBPF program to attach */ 620 union { 621 __u32 target_fd; /* object to attach to */ 622 __u32 target_ifindex; /* target ifindex */ 623 }; 624 __u32 attach_type; /* attach type */ 625 __u32 flags; /* extra flags */ 626 __aligned_u64 iter_info; /* extra bpf_iter_link_info */ 627 __u32 iter_info_len; /* iter_info length */ 628 } link_create; 629 630 struct { /* struct used by BPF_LINK_UPDATE command */ 631 __u32 link_fd; /* link fd */ 632 /* new program fd to update link with */ 633 __u32 new_prog_fd; 634 __u32 flags; /* extra flags */ 635 /* expected link's program fd; is specified only if 636 * BPF_F_REPLACE flag is set in flags */ 637 __u32 old_prog_fd; 638 } link_update; 639 640 struct { 641 __u32 link_fd; 642 } link_detach; 643 644 struct { /* struct used by BPF_ENABLE_STATS command */ 645 __u32 type; 646 } enable_stats; 647 648 struct { /* struct used by BPF_ITER_CREATE command */ 649 __u32 link_fd; 650 __u32 flags; 651 } iter_create; 652 653 } __attribute__((aligned(8))); 654 655 /* The description below is an attempt at providing documentation to eBPF 656 * developers about the multiple available eBPF helper functions. It can be 657 * parsed and used to produce a manual page. The workflow is the following, 658 * and requires the rst2man utility: 659 * 660 * $ ./scripts/bpf_helpers_doc.py \ 661 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 662 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 663 * $ man /tmp/bpf-helpers.7 664 * 665 * Note that in order to produce this external documentation, some RST 666 * formatting is used in the descriptions to get "bold" and "italics" in 667 * manual pages. Also note that the few trailing white spaces are 668 * intentional, removing them would break paragraphs for rst2man. 669 * 670 * Start of BPF helper function descriptions: 671 * 672 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 673 * Description 674 * Perform a lookup in *map* for an entry associated to *key*. 675 * Return 676 * Map value associated to *key*, or **NULL** if no entry was 677 * found. 678 * 679 * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 680 * Description 681 * Add or update the value of the entry associated to *key* in 682 * *map* with *value*. *flags* is one of: 683 * 684 * **BPF_NOEXIST** 685 * The entry for *key* must not exist in the map. 686 * **BPF_EXIST** 687 * The entry for *key* must already exist in the map. 688 * **BPF_ANY** 689 * No condition on the existence of the entry for *key*. 690 * 691 * Flag value **BPF_NOEXIST** cannot be used for maps of types 692 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 693 * elements always exist), the helper would return an error. 694 * Return 695 * 0 on success, or a negative error in case of failure. 696 * 697 * long bpf_map_delete_elem(struct bpf_map *map, const void *key) 698 * Description 699 * Delete entry with *key* from *map*. 700 * Return 701 * 0 on success, or a negative error in case of failure. 702 * 703 * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr) 704 * Description 705 * For tracing programs, safely attempt to read *size* bytes from 706 * kernel space address *unsafe_ptr* and store the data in *dst*. 707 * 708 * Generally, use **bpf_probe_read_user**\ () or 709 * **bpf_probe_read_kernel**\ () instead. 710 * Return 711 * 0 on success, or a negative error in case of failure. 712 * 713 * u64 bpf_ktime_get_ns(void) 714 * Description 715 * Return the time elapsed since system boot, in nanoseconds. 716 * Does not include time the system was suspended. 717 * See: **clock_gettime**\ (**CLOCK_MONOTONIC**) 718 * Return 719 * Current *ktime*. 720 * 721 * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 722 * Description 723 * This helper is a "printk()-like" facility for debugging. It 724 * prints a message defined by format *fmt* (of size *fmt_size*) 725 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 726 * available. It can take up to three additional **u64** 727 * arguments (as an eBPF helpers, the total number of arguments is 728 * limited to five). 729 * 730 * Each time the helper is called, it appends a line to the trace. 731 * Lines are discarded while *\/sys/kernel/debug/tracing/trace* is 732 * open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this. 733 * The format of the trace is customizable, and the exact output 734 * one will get depends on the options set in 735 * *\/sys/kernel/debug/tracing/trace_options* (see also the 736 * *README* file under the same directory). However, it usually 737 * defaults to something like: 738 * 739 * :: 740 * 741 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 742 * 743 * In the above: 744 * 745 * * ``telnet`` is the name of the current task. 746 * * ``470`` is the PID of the current task. 747 * * ``001`` is the CPU number on which the task is 748 * running. 749 * * In ``.N..``, each character refers to a set of 750 * options (whether irqs are enabled, scheduling 751 * options, whether hard/softirqs are running, level of 752 * preempt_disabled respectively). **N** means that 753 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 754 * are set. 755 * * ``419421.045894`` is a timestamp. 756 * * ``0x00000001`` is a fake value used by BPF for the 757 * instruction pointer register. 758 * * ``<formatted msg>`` is the message formatted with 759 * *fmt*. 760 * 761 * The conversion specifiers supported by *fmt* are similar, but 762 * more limited than for printk(). They are **%d**, **%i**, 763 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 764 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 765 * of field, padding with zeroes, etc.) is available, and the 766 * helper will return **-EINVAL** (but print nothing) if it 767 * encounters an unknown specifier. 768 * 769 * Also, note that **bpf_trace_printk**\ () is slow, and should 770 * only be used for debugging purposes. For this reason, a notice 771 * bloc (spanning several lines) is printed to kernel logs and 772 * states that the helper should not be used "for production use" 773 * the first time this helper is used (or more precisely, when 774 * **trace_printk**\ () buffers are allocated). For passing values 775 * to user space, perf events should be preferred. 776 * Return 777 * The number of bytes written to the buffer, or a negative error 778 * in case of failure. 779 * 780 * u32 bpf_get_prandom_u32(void) 781 * Description 782 * Get a pseudo-random number. 783 * 784 * From a security point of view, this helper uses its own 785 * pseudo-random internal state, and cannot be used to infer the 786 * seed of other random functions in the kernel. However, it is 787 * essential to note that the generator used by the helper is not 788 * cryptographically secure. 789 * Return 790 * A random 32-bit unsigned value. 791 * 792 * u32 bpf_get_smp_processor_id(void) 793 * Description 794 * Get the SMP (symmetric multiprocessing) processor id. Note that 795 * all programs run with preemption disabled, which means that the 796 * SMP processor id is stable during all the execution of the 797 * program. 798 * Return 799 * The SMP id of the processor running the program. 800 * 801 * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 802 * Description 803 * Store *len* bytes from address *from* into the packet 804 * associated to *skb*, at *offset*. *flags* are a combination of 805 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 806 * checksum for the packet after storing the bytes) and 807 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 808 * **->swhash** and *skb*\ **->l4hash** to 0). 809 * 810 * A call to this helper is susceptible to change the underlying 811 * packet buffer. Therefore, at load time, all checks on pointers 812 * previously done by the verifier are invalidated and must be 813 * performed again, if the helper is used in combination with 814 * direct packet access. 815 * Return 816 * 0 on success, or a negative error in case of failure. 817 * 818 * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 819 * Description 820 * Recompute the layer 3 (e.g. IP) checksum for the packet 821 * associated to *skb*. Computation is incremental, so the helper 822 * must know the former value of the header field that was 823 * modified (*from*), the new value of this field (*to*), and the 824 * number of bytes (2 or 4) for this field, stored in *size*. 825 * Alternatively, it is possible to store the difference between 826 * the previous and the new values of the header field in *to*, by 827 * setting *from* and *size* to 0. For both methods, *offset* 828 * indicates the location of the IP checksum within the packet. 829 * 830 * This helper works in combination with **bpf_csum_diff**\ (), 831 * which does not update the checksum in-place, but offers more 832 * flexibility and can handle sizes larger than 2 or 4 for the 833 * checksum to update. 834 * 835 * A call to this helper is susceptible to change the underlying 836 * packet buffer. Therefore, at load time, all checks on pointers 837 * previously done by the verifier are invalidated and must be 838 * performed again, if the helper is used in combination with 839 * direct packet access. 840 * Return 841 * 0 on success, or a negative error in case of failure. 842 * 843 * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 844 * Description 845 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 846 * packet associated to *skb*. Computation is incremental, so the 847 * helper must know the former value of the header field that was 848 * modified (*from*), the new value of this field (*to*), and the 849 * number of bytes (2 or 4) for this field, stored on the lowest 850 * four bits of *flags*. Alternatively, it is possible to store 851 * the difference between the previous and the new values of the 852 * header field in *to*, by setting *from* and the four lowest 853 * bits of *flags* to 0. For both methods, *offset* indicates the 854 * location of the IP checksum within the packet. In addition to 855 * the size of the field, *flags* can be added (bitwise OR) actual 856 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 857 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 858 * for updates resulting in a null checksum the value is set to 859 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 860 * the checksum is to be computed against a pseudo-header. 861 * 862 * This helper works in combination with **bpf_csum_diff**\ (), 863 * which does not update the checksum in-place, but offers more 864 * flexibility and can handle sizes larger than 2 or 4 for the 865 * checksum to update. 866 * 867 * A call to this helper is susceptible to change the underlying 868 * packet buffer. Therefore, at load time, all checks on pointers 869 * previously done by the verifier are invalidated and must be 870 * performed again, if the helper is used in combination with 871 * direct packet access. 872 * Return 873 * 0 on success, or a negative error in case of failure. 874 * 875 * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 876 * Description 877 * This special helper is used to trigger a "tail call", or in 878 * other words, to jump into another eBPF program. The same stack 879 * frame is used (but values on stack and in registers for the 880 * caller are not accessible to the callee). This mechanism allows 881 * for program chaining, either for raising the maximum number of 882 * available eBPF instructions, or to execute given programs in 883 * conditional blocks. For security reasons, there is an upper 884 * limit to the number of successive tail calls that can be 885 * performed. 886 * 887 * Upon call of this helper, the program attempts to jump into a 888 * program referenced at index *index* in *prog_array_map*, a 889 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 890 * *ctx*, a pointer to the context. 891 * 892 * If the call succeeds, the kernel immediately runs the first 893 * instruction of the new program. This is not a function call, 894 * and it never returns to the previous program. If the call 895 * fails, then the helper has no effect, and the caller continues 896 * to run its subsequent instructions. A call can fail if the 897 * destination program for the jump does not exist (i.e. *index* 898 * is superior to the number of entries in *prog_array_map*), or 899 * if the maximum number of tail calls has been reached for this 900 * chain of programs. This limit is defined in the kernel by the 901 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 902 * which is currently set to 32. 903 * Return 904 * 0 on success, or a negative error in case of failure. 905 * 906 * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 907 * Description 908 * Clone and redirect the packet associated to *skb* to another 909 * net device of index *ifindex*. Both ingress and egress 910 * interfaces can be used for redirection. The **BPF_F_INGRESS** 911 * value in *flags* is used to make the distinction (ingress path 912 * is selected if the flag is present, egress path otherwise). 913 * This is the only flag supported for now. 914 * 915 * In comparison with **bpf_redirect**\ () helper, 916 * **bpf_clone_redirect**\ () has the associated cost of 917 * duplicating the packet buffer, but this can be executed out of 918 * the eBPF program. Conversely, **bpf_redirect**\ () is more 919 * efficient, but it is handled through an action code where the 920 * redirection happens only after the eBPF program has returned. 921 * 922 * A call to this helper is susceptible to change the underlying 923 * packet buffer. Therefore, at load time, all checks on pointers 924 * previously done by the verifier are invalidated and must be 925 * performed again, if the helper is used in combination with 926 * direct packet access. 927 * Return 928 * 0 on success, or a negative error in case of failure. 929 * 930 * u64 bpf_get_current_pid_tgid(void) 931 * Return 932 * A 64-bit integer containing the current tgid and pid, and 933 * created as such: 934 * *current_task*\ **->tgid << 32 \|** 935 * *current_task*\ **->pid**. 936 * 937 * u64 bpf_get_current_uid_gid(void) 938 * Return 939 * A 64-bit integer containing the current GID and UID, and 940 * created as such: *current_gid* **<< 32 \|** *current_uid*. 941 * 942 * long bpf_get_current_comm(void *buf, u32 size_of_buf) 943 * Description 944 * Copy the **comm** attribute of the current task into *buf* of 945 * *size_of_buf*. The **comm** attribute contains the name of 946 * the executable (excluding the path) for the current task. The 947 * *size_of_buf* must be strictly positive. On success, the 948 * helper makes sure that the *buf* is NUL-terminated. On failure, 949 * it is filled with zeroes. 950 * Return 951 * 0 on success, or a negative error in case of failure. 952 * 953 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 954 * Description 955 * Retrieve the classid for the current task, i.e. for the net_cls 956 * cgroup to which *skb* belongs. 957 * 958 * This helper can be used on TC egress path, but not on ingress. 959 * 960 * The net_cls cgroup provides an interface to tag network packets 961 * based on a user-provided identifier for all traffic coming from 962 * the tasks belonging to the related cgroup. See also the related 963 * kernel documentation, available from the Linux sources in file 964 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*. 965 * 966 * The Linux kernel has two versions for cgroups: there are 967 * cgroups v1 and cgroups v2. Both are available to users, who can 968 * use a mixture of them, but note that the net_cls cgroup is for 969 * cgroup v1 only. This makes it incompatible with BPF programs 970 * run on cgroups, which is a cgroup-v2-only feature (a socket can 971 * only hold data for one version of cgroups at a time). 972 * 973 * This helper is only available is the kernel was compiled with 974 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 975 * "**y**" or to "**m**". 976 * Return 977 * The classid, or 0 for the default unconfigured classid. 978 * 979 * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 980 * Description 981 * Push a *vlan_tci* (VLAN tag control information) of protocol 982 * *vlan_proto* to the packet associated to *skb*, then update 983 * the checksum. Note that if *vlan_proto* is different from 984 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 985 * be **ETH_P_8021Q**. 986 * 987 * A call to this helper is susceptible to change the underlying 988 * packet buffer. Therefore, at load time, all checks on pointers 989 * previously done by the verifier are invalidated and must be 990 * performed again, if the helper is used in combination with 991 * direct packet access. 992 * Return 993 * 0 on success, or a negative error in case of failure. 994 * 995 * long bpf_skb_vlan_pop(struct sk_buff *skb) 996 * Description 997 * Pop a VLAN header from the packet associated to *skb*. 998 * 999 * A call to this helper is susceptible to change the underlying 1000 * packet buffer. Therefore, at load time, all checks on pointers 1001 * previously done by the verifier are invalidated and must be 1002 * performed again, if the helper is used in combination with 1003 * direct packet access. 1004 * Return 1005 * 0 on success, or a negative error in case of failure. 1006 * 1007 * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 1008 * Description 1009 * Get tunnel metadata. This helper takes a pointer *key* to an 1010 * empty **struct bpf_tunnel_key** of **size**, that will be 1011 * filled with tunnel metadata for the packet associated to *skb*. 1012 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 1013 * indicates that the tunnel is based on IPv6 protocol instead of 1014 * IPv4. 1015 * 1016 * The **struct bpf_tunnel_key** is an object that generalizes the 1017 * principal parameters used by various tunneling protocols into a 1018 * single struct. This way, it can be used to easily make a 1019 * decision based on the contents of the encapsulation header, 1020 * "summarized" in this struct. In particular, it holds the IP 1021 * address of the remote end (IPv4 or IPv6, depending on the case) 1022 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 1023 * this struct exposes the *key*\ **->tunnel_id**, which is 1024 * generally mapped to a VNI (Virtual Network Identifier), making 1025 * it programmable together with the **bpf_skb_set_tunnel_key**\ 1026 * () helper. 1027 * 1028 * Let's imagine that the following code is part of a program 1029 * attached to the TC ingress interface, on one end of a GRE 1030 * tunnel, and is supposed to filter out all messages coming from 1031 * remote ends with IPv4 address other than 10.0.0.1: 1032 * 1033 * :: 1034 * 1035 * int ret; 1036 * struct bpf_tunnel_key key = {}; 1037 * 1038 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 1039 * if (ret < 0) 1040 * return TC_ACT_SHOT; // drop packet 1041 * 1042 * if (key.remote_ipv4 != 0x0a000001) 1043 * return TC_ACT_SHOT; // drop packet 1044 * 1045 * return TC_ACT_OK; // accept packet 1046 * 1047 * This interface can also be used with all encapsulation devices 1048 * that can operate in "collect metadata" mode: instead of having 1049 * one network device per specific configuration, the "collect 1050 * metadata" mode only requires a single device where the 1051 * configuration can be extracted from this helper. 1052 * 1053 * This can be used together with various tunnels such as VXLan, 1054 * Geneve, GRE or IP in IP (IPIP). 1055 * Return 1056 * 0 on success, or a negative error in case of failure. 1057 * 1058 * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 1059 * Description 1060 * Populate tunnel metadata for packet associated to *skb.* The 1061 * tunnel metadata is set to the contents of *key*, of *size*. The 1062 * *flags* can be set to a combination of the following values: 1063 * 1064 * **BPF_F_TUNINFO_IPV6** 1065 * Indicate that the tunnel is based on IPv6 protocol 1066 * instead of IPv4. 1067 * **BPF_F_ZERO_CSUM_TX** 1068 * For IPv4 packets, add a flag to tunnel metadata 1069 * indicating that checksum computation should be skipped 1070 * and checksum set to zeroes. 1071 * **BPF_F_DONT_FRAGMENT** 1072 * Add a flag to tunnel metadata indicating that the 1073 * packet should not be fragmented. 1074 * **BPF_F_SEQ_NUMBER** 1075 * Add a flag to tunnel metadata indicating that a 1076 * sequence number should be added to tunnel header before 1077 * sending the packet. This flag was added for GRE 1078 * encapsulation, but might be used with other protocols 1079 * as well in the future. 1080 * 1081 * Here is a typical usage on the transmit path: 1082 * 1083 * :: 1084 * 1085 * struct bpf_tunnel_key key; 1086 * populate key ... 1087 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 1088 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 1089 * 1090 * See also the description of the **bpf_skb_get_tunnel_key**\ () 1091 * helper for additional information. 1092 * Return 1093 * 0 on success, or a negative error in case of failure. 1094 * 1095 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 1096 * Description 1097 * Read the value of a perf event counter. This helper relies on a 1098 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 1099 * the perf event counter is selected when *map* is updated with 1100 * perf event file descriptors. The *map* is an array whose size 1101 * is the number of available CPUs, and each cell contains a value 1102 * relative to one CPU. The value to retrieve is indicated by 1103 * *flags*, that contains the index of the CPU to look up, masked 1104 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1105 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1106 * current CPU should be retrieved. 1107 * 1108 * Note that before Linux 4.13, only hardware perf event can be 1109 * retrieved. 1110 * 1111 * Also, be aware that the newer helper 1112 * **bpf_perf_event_read_value**\ () is recommended over 1113 * **bpf_perf_event_read**\ () in general. The latter has some ABI 1114 * quirks where error and counter value are used as a return code 1115 * (which is wrong to do since ranges may overlap). This issue is 1116 * fixed with **bpf_perf_event_read_value**\ (), which at the same 1117 * time provides more features over the **bpf_perf_event_read**\ 1118 * () interface. Please refer to the description of 1119 * **bpf_perf_event_read_value**\ () for details. 1120 * Return 1121 * The value of the perf event counter read from the map, or a 1122 * negative error code in case of failure. 1123 * 1124 * long bpf_redirect(u32 ifindex, u64 flags) 1125 * Description 1126 * Redirect the packet to another net device of index *ifindex*. 1127 * This helper is somewhat similar to **bpf_clone_redirect**\ 1128 * (), except that the packet is not cloned, which provides 1129 * increased performance. 1130 * 1131 * Except for XDP, both ingress and egress interfaces can be used 1132 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 1133 * to make the distinction (ingress path is selected if the flag 1134 * is present, egress path otherwise). Currently, XDP only 1135 * supports redirection to the egress interface, and accepts no 1136 * flag at all. 1137 * 1138 * The same effect can also be attained with the more generic 1139 * **bpf_redirect_map**\ (), which uses a BPF map to store the 1140 * redirect target instead of providing it directly to the helper. 1141 * Return 1142 * For XDP, the helper returns **XDP_REDIRECT** on success or 1143 * **XDP_ABORTED** on error. For other program types, the values 1144 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 1145 * error. 1146 * 1147 * u32 bpf_get_route_realm(struct sk_buff *skb) 1148 * Description 1149 * Retrieve the realm or the route, that is to say the 1150 * **tclassid** field of the destination for the *skb*. The 1151 * indentifier retrieved is a user-provided tag, similar to the 1152 * one used with the net_cls cgroup (see description for 1153 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 1154 * held by a route (a destination entry), not by a task. 1155 * 1156 * Retrieving this identifier works with the clsact TC egress hook 1157 * (see also **tc-bpf(8)**), or alternatively on conventional 1158 * classful egress qdiscs, but not on TC ingress path. In case of 1159 * clsact TC egress hook, this has the advantage that, internally, 1160 * the destination entry has not been dropped yet in the transmit 1161 * path. Therefore, the destination entry does not need to be 1162 * artificially held via **netif_keep_dst**\ () for a classful 1163 * qdisc until the *skb* is freed. 1164 * 1165 * This helper is available only if the kernel was compiled with 1166 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 1167 * Return 1168 * The realm of the route for the packet associated to *skb*, or 0 1169 * if none was found. 1170 * 1171 * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 1172 * Description 1173 * Write raw *data* blob into a special BPF perf event held by 1174 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 1175 * event must have the following attributes: **PERF_SAMPLE_RAW** 1176 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 1177 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 1178 * 1179 * The *flags* are used to indicate the index in *map* for which 1180 * the value must be put, masked with **BPF_F_INDEX_MASK**. 1181 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 1182 * to indicate that the index of the current CPU core should be 1183 * used. 1184 * 1185 * The value to write, of *size*, is passed through eBPF stack and 1186 * pointed by *data*. 1187 * 1188 * The context of the program *ctx* needs also be passed to the 1189 * helper. 1190 * 1191 * On user space, a program willing to read the values needs to 1192 * call **perf_event_open**\ () on the perf event (either for 1193 * one or for all CPUs) and to store the file descriptor into the 1194 * *map*. This must be done before the eBPF program can send data 1195 * into it. An example is available in file 1196 * *samples/bpf/trace_output_user.c* in the Linux kernel source 1197 * tree (the eBPF program counterpart is in 1198 * *samples/bpf/trace_output_kern.c*). 1199 * 1200 * **bpf_perf_event_output**\ () achieves better performance 1201 * than **bpf_trace_printk**\ () for sharing data with user 1202 * space, and is much better suitable for streaming data from eBPF 1203 * programs. 1204 * 1205 * Note that this helper is not restricted to tracing use cases 1206 * and can be used with programs attached to TC or XDP as well, 1207 * where it allows for passing data to user space listeners. Data 1208 * can be: 1209 * 1210 * * Only custom structs, 1211 * * Only the packet payload, or 1212 * * A combination of both. 1213 * Return 1214 * 0 on success, or a negative error in case of failure. 1215 * 1216 * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len) 1217 * Description 1218 * This helper was provided as an easy way to load data from a 1219 * packet. It can be used to load *len* bytes from *offset* from 1220 * the packet associated to *skb*, into the buffer pointed by 1221 * *to*. 1222 * 1223 * Since Linux 4.7, usage of this helper has mostly been replaced 1224 * by "direct packet access", enabling packet data to be 1225 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1226 * pointing respectively to the first byte of packet data and to 1227 * the byte after the last byte of packet data. However, it 1228 * remains useful if one wishes to read large quantities of data 1229 * at once from a packet into the eBPF stack. 1230 * Return 1231 * 0 on success, or a negative error in case of failure. 1232 * 1233 * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags) 1234 * Description 1235 * Walk a user or a kernel stack and return its id. To achieve 1236 * this, the helper needs *ctx*, which is a pointer to the context 1237 * on which the tracing program is executed, and a pointer to a 1238 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1239 * 1240 * The last argument, *flags*, holds the number of stack frames to 1241 * skip (from 0 to 255), masked with 1242 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1243 * a combination of the following flags: 1244 * 1245 * **BPF_F_USER_STACK** 1246 * Collect a user space stack instead of a kernel stack. 1247 * **BPF_F_FAST_STACK_CMP** 1248 * Compare stacks by hash only. 1249 * **BPF_F_REUSE_STACKID** 1250 * If two different stacks hash into the same *stackid*, 1251 * discard the old one. 1252 * 1253 * The stack id retrieved is a 32 bit long integer handle which 1254 * can be further combined with other data (including other stack 1255 * ids) and used as a key into maps. This can be useful for 1256 * generating a variety of graphs (such as flame graphs or off-cpu 1257 * graphs). 1258 * 1259 * For walking a stack, this helper is an improvement over 1260 * **bpf_probe_read**\ (), which can be used with unrolled loops 1261 * but is not efficient and consumes a lot of eBPF instructions. 1262 * Instead, **bpf_get_stackid**\ () can collect up to 1263 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1264 * this limit can be controlled with the **sysctl** program, and 1265 * that it should be manually increased in order to profile long 1266 * user stacks (such as stacks for Java programs). To do so, use: 1267 * 1268 * :: 1269 * 1270 * # sysctl kernel.perf_event_max_stack=<new value> 1271 * Return 1272 * The positive or null stack id on success, or a negative error 1273 * in case of failure. 1274 * 1275 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1276 * Description 1277 * Compute a checksum difference, from the raw buffer pointed by 1278 * *from*, of length *from_size* (that must be a multiple of 4), 1279 * towards the raw buffer pointed by *to*, of size *to_size* 1280 * (same remark). An optional *seed* can be added to the value 1281 * (this can be cascaded, the seed may come from a previous call 1282 * to the helper). 1283 * 1284 * This is flexible enough to be used in several ways: 1285 * 1286 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1287 * checksum, it can be used when pushing new data. 1288 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1289 * checksum, it can be used when removing data from a packet. 1290 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1291 * can be used to compute a diff. Note that *from_size* and 1292 * *to_size* do not need to be equal. 1293 * 1294 * This helper can be used in combination with 1295 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1296 * which one can feed in the difference computed with 1297 * **bpf_csum_diff**\ (). 1298 * Return 1299 * The checksum result, or a negative error code in case of 1300 * failure. 1301 * 1302 * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size) 1303 * Description 1304 * Retrieve tunnel options metadata for the packet associated to 1305 * *skb*, and store the raw tunnel option data to the buffer *opt* 1306 * of *size*. 1307 * 1308 * This helper can be used with encapsulation devices that can 1309 * operate in "collect metadata" mode (please refer to the related 1310 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1311 * more details). A particular example where this can be used is 1312 * in combination with the Geneve encapsulation protocol, where it 1313 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1314 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1315 * the eBPF program. This allows for full customization of these 1316 * headers. 1317 * Return 1318 * The size of the option data retrieved. 1319 * 1320 * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size) 1321 * Description 1322 * Set tunnel options metadata for the packet associated to *skb* 1323 * to the option data contained in the raw buffer *opt* of *size*. 1324 * 1325 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1326 * helper for additional information. 1327 * Return 1328 * 0 on success, or a negative error in case of failure. 1329 * 1330 * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1331 * Description 1332 * Change the protocol of the *skb* to *proto*. Currently 1333 * supported are transition from IPv4 to IPv6, and from IPv6 to 1334 * IPv4. The helper takes care of the groundwork for the 1335 * transition, including resizing the socket buffer. The eBPF 1336 * program is expected to fill the new headers, if any, via 1337 * **skb_store_bytes**\ () and to recompute the checksums with 1338 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1339 * (). The main case for this helper is to perform NAT64 1340 * operations out of an eBPF program. 1341 * 1342 * Internally, the GSO type is marked as dodgy so that headers are 1343 * checked and segments are recalculated by the GSO/GRO engine. 1344 * The size for GSO target is adapted as well. 1345 * 1346 * All values for *flags* are reserved for future usage, and must 1347 * be left at zero. 1348 * 1349 * A call to this helper is susceptible to change the underlying 1350 * packet buffer. Therefore, at load time, all checks on pointers 1351 * previously done by the verifier are invalidated and must be 1352 * performed again, if the helper is used in combination with 1353 * direct packet access. 1354 * Return 1355 * 0 on success, or a negative error in case of failure. 1356 * 1357 * long bpf_skb_change_type(struct sk_buff *skb, u32 type) 1358 * Description 1359 * Change the packet type for the packet associated to *skb*. This 1360 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1361 * the eBPF program does not have a write access to *skb*\ 1362 * **->pkt_type** beside this helper. Using a helper here allows 1363 * for graceful handling of errors. 1364 * 1365 * The major use case is to change incoming *skb*s to 1366 * **PACKET_HOST** in a programmatic way instead of having to 1367 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1368 * example. 1369 * 1370 * Note that *type* only allows certain values. At this time, they 1371 * are: 1372 * 1373 * **PACKET_HOST** 1374 * Packet is for us. 1375 * **PACKET_BROADCAST** 1376 * Send packet to all. 1377 * **PACKET_MULTICAST** 1378 * Send packet to group. 1379 * **PACKET_OTHERHOST** 1380 * Send packet to someone else. 1381 * Return 1382 * 0 on success, or a negative error in case of failure. 1383 * 1384 * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1385 * Description 1386 * Check whether *skb* is a descendant of the cgroup2 held by 1387 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1388 * Return 1389 * The return value depends on the result of the test, and can be: 1390 * 1391 * * 0, if the *skb* failed the cgroup2 descendant test. 1392 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1393 * * A negative error code, if an error occurred. 1394 * 1395 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1396 * Description 1397 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1398 * not set, in particular if the hash was cleared due to mangling, 1399 * recompute this hash. Later accesses to the hash can be done 1400 * directly with *skb*\ **->hash**. 1401 * 1402 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1403 * prototype with **bpf_skb_change_proto**\ (), or calling 1404 * **bpf_skb_store_bytes**\ () with the 1405 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1406 * the hash and to trigger a new computation for the next call to 1407 * **bpf_get_hash_recalc**\ (). 1408 * Return 1409 * The 32-bit hash. 1410 * 1411 * u64 bpf_get_current_task(void) 1412 * Return 1413 * A pointer to the current task struct. 1414 * 1415 * long bpf_probe_write_user(void *dst, const void *src, u32 len) 1416 * Description 1417 * Attempt in a safe way to write *len* bytes from the buffer 1418 * *src* to *dst* in memory. It only works for threads that are in 1419 * user context, and *dst* must be a valid user space address. 1420 * 1421 * This helper should not be used to implement any kind of 1422 * security mechanism because of TOC-TOU attacks, but rather to 1423 * debug, divert, and manipulate execution of semi-cooperative 1424 * processes. 1425 * 1426 * Keep in mind that this feature is meant for experiments, and it 1427 * has a risk of crashing the system and running programs. 1428 * Therefore, when an eBPF program using this helper is attached, 1429 * a warning including PID and process name is printed to kernel 1430 * logs. 1431 * Return 1432 * 0 on success, or a negative error in case of failure. 1433 * 1434 * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1435 * Description 1436 * Check whether the probe is being run is the context of a given 1437 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1438 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1439 * Return 1440 * The return value depends on the result of the test, and can be: 1441 * 1442 * * 0, if the *skb* task belongs to the cgroup2. 1443 * * 1, if the *skb* task does not belong to the cgroup2. 1444 * * A negative error code, if an error occurred. 1445 * 1446 * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1447 * Description 1448 * Resize (trim or grow) the packet associated to *skb* to the 1449 * new *len*. The *flags* are reserved for future usage, and must 1450 * be left at zero. 1451 * 1452 * The basic idea is that the helper performs the needed work to 1453 * change the size of the packet, then the eBPF program rewrites 1454 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1455 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1456 * and others. This helper is a slow path utility intended for 1457 * replies with control messages. And because it is targeted for 1458 * slow path, the helper itself can afford to be slow: it 1459 * implicitly linearizes, unclones and drops offloads from the 1460 * *skb*. 1461 * 1462 * A call to this helper is susceptible to change the underlying 1463 * packet buffer. Therefore, at load time, all checks on pointers 1464 * previously done by the verifier are invalidated and must be 1465 * performed again, if the helper is used in combination with 1466 * direct packet access. 1467 * Return 1468 * 0 on success, or a negative error in case of failure. 1469 * 1470 * long bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1471 * Description 1472 * Pull in non-linear data in case the *skb* is non-linear and not 1473 * all of *len* are part of the linear section. Make *len* bytes 1474 * from *skb* readable and writable. If a zero value is passed for 1475 * *len*, then the whole length of the *skb* is pulled. 1476 * 1477 * This helper is only needed for reading and writing with direct 1478 * packet access. 1479 * 1480 * For direct packet access, testing that offsets to access 1481 * are within packet boundaries (test on *skb*\ **->data_end**) is 1482 * susceptible to fail if offsets are invalid, or if the requested 1483 * data is in non-linear parts of the *skb*. On failure the 1484 * program can just bail out, or in the case of a non-linear 1485 * buffer, use a helper to make the data available. The 1486 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1487 * the data. Another one consists in using **bpf_skb_pull_data** 1488 * to pull in once the non-linear parts, then retesting and 1489 * eventually access the data. 1490 * 1491 * At the same time, this also makes sure the *skb* is uncloned, 1492 * which is a necessary condition for direct write. As this needs 1493 * to be an invariant for the write part only, the verifier 1494 * detects writes and adds a prologue that is calling 1495 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1496 * the very beginning in case it is indeed cloned. 1497 * 1498 * A call to this helper is susceptible to change the underlying 1499 * packet buffer. Therefore, at load time, all checks on pointers 1500 * previously done by the verifier are invalidated and must be 1501 * performed again, if the helper is used in combination with 1502 * direct packet access. 1503 * Return 1504 * 0 on success, or a negative error in case of failure. 1505 * 1506 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1507 * Description 1508 * Add the checksum *csum* into *skb*\ **->csum** in case the 1509 * driver has supplied a checksum for the entire packet into that 1510 * field. Return an error otherwise. This helper is intended to be 1511 * used in combination with **bpf_csum_diff**\ (), in particular 1512 * when the checksum needs to be updated after data has been 1513 * written into the packet through direct packet access. 1514 * Return 1515 * The checksum on success, or a negative error code in case of 1516 * failure. 1517 * 1518 * void bpf_set_hash_invalid(struct sk_buff *skb) 1519 * Description 1520 * Invalidate the current *skb*\ **->hash**. It can be used after 1521 * mangling on headers through direct packet access, in order to 1522 * indicate that the hash is outdated and to trigger a 1523 * recalculation the next time the kernel tries to access this 1524 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1525 * 1526 * long bpf_get_numa_node_id(void) 1527 * Description 1528 * Return the id of the current NUMA node. The primary use case 1529 * for this helper is the selection of sockets for the local NUMA 1530 * node, when the program is attached to sockets using the 1531 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1532 * but the helper is also available to other eBPF program types, 1533 * similarly to **bpf_get_smp_processor_id**\ (). 1534 * Return 1535 * The id of current NUMA node. 1536 * 1537 * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1538 * Description 1539 * Grows headroom of packet associated to *skb* and adjusts the 1540 * offset of the MAC header accordingly, adding *len* bytes of 1541 * space. It automatically extends and reallocates memory as 1542 * required. 1543 * 1544 * This helper can be used on a layer 3 *skb* to push a MAC header 1545 * for redirection into a layer 2 device. 1546 * 1547 * All values for *flags* are reserved for future usage, and must 1548 * be left at zero. 1549 * 1550 * A call to this helper is susceptible to change the underlying 1551 * packet buffer. Therefore, at load time, all checks on pointers 1552 * previously done by the verifier are invalidated and must be 1553 * performed again, if the helper is used in combination with 1554 * direct packet access. 1555 * Return 1556 * 0 on success, or a negative error in case of failure. 1557 * 1558 * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1559 * Description 1560 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1561 * it is possible to use a negative value for *delta*. This helper 1562 * can be used to prepare the packet for pushing or popping 1563 * headers. 1564 * 1565 * A call to this helper is susceptible to change the underlying 1566 * packet buffer. Therefore, at load time, all checks on pointers 1567 * previously done by the verifier are invalidated and must be 1568 * performed again, if the helper is used in combination with 1569 * direct packet access. 1570 * Return 1571 * 0 on success, or a negative error in case of failure. 1572 * 1573 * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr) 1574 * Description 1575 * Copy a NUL terminated string from an unsafe kernel address 1576 * *unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for 1577 * more details. 1578 * 1579 * Generally, use **bpf_probe_read_user_str**\ () or 1580 * **bpf_probe_read_kernel_str**\ () instead. 1581 * Return 1582 * On success, the strictly positive length of the string, 1583 * including the trailing NUL character. On error, a negative 1584 * value. 1585 * 1586 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1587 * Description 1588 * If the **struct sk_buff** pointed by *skb* has a known socket, 1589 * retrieve the cookie (generated by the kernel) of this socket. 1590 * If no cookie has been set yet, generate a new cookie. Once 1591 * generated, the socket cookie remains stable for the life of the 1592 * socket. This helper can be useful for monitoring per socket 1593 * networking traffic statistics as it provides a global socket 1594 * identifier that can be assumed unique. 1595 * Return 1596 * A 8-byte long non-decreasing number on success, or 0 if the 1597 * socket field is missing inside *skb*. 1598 * 1599 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1600 * Description 1601 * Equivalent to bpf_get_socket_cookie() helper that accepts 1602 * *skb*, but gets socket from **struct bpf_sock_addr** context. 1603 * Return 1604 * A 8-byte long non-decreasing number. 1605 * 1606 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1607 * Description 1608 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts 1609 * *skb*, but gets socket from **struct bpf_sock_ops** context. 1610 * Return 1611 * A 8-byte long non-decreasing number. 1612 * 1613 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1614 * Return 1615 * The owner UID of the socket associated to *skb*. If the socket 1616 * is **NULL**, or if it is not a full socket (i.e. if it is a 1617 * time-wait or a request socket instead), **overflowuid** value 1618 * is returned (note that **overflowuid** might also be the actual 1619 * UID value for the socket). 1620 * 1621 * long bpf_set_hash(struct sk_buff *skb, u32 hash) 1622 * Description 1623 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1624 * to value *hash*. 1625 * Return 1626 * 0 1627 * 1628 * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen) 1629 * Description 1630 * Emulate a call to **setsockopt()** on the socket associated to 1631 * *bpf_socket*, which must be a full socket. The *level* at 1632 * which the option resides and the name *optname* of the option 1633 * must be specified, see **setsockopt(2)** for more information. 1634 * The option value of length *optlen* is pointed by *optval*. 1635 * 1636 * *bpf_socket* should be one of the following: 1637 * 1638 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**. 1639 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT** 1640 * and **BPF_CGROUP_INET6_CONNECT**. 1641 * 1642 * This helper actually implements a subset of **setsockopt()**. 1643 * It supports the following *level*\ s: 1644 * 1645 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1646 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1647 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**, 1648 * **SO_BINDTODEVICE**, **SO_KEEPALIVE**. 1649 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1650 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1651 * **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**, 1652 * **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**, 1653 * **TCP_SYNCNT**, **TCP_USER_TIMEOUT**. 1654 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1655 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1656 * Return 1657 * 0 on success, or a negative error in case of failure. 1658 * 1659 * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1660 * Description 1661 * Grow or shrink the room for data in the packet associated to 1662 * *skb* by *len_diff*, and according to the selected *mode*. 1663 * 1664 * By default, the helper will reset any offloaded checksum 1665 * indicator of the skb to CHECKSUM_NONE. This can be avoided 1666 * by the following flag: 1667 * 1668 * * **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded 1669 * checksum data of the skb to CHECKSUM_NONE. 1670 * 1671 * There are two supported modes at this time: 1672 * 1673 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer 1674 * (room space is added or removed below the layer 2 header). 1675 * 1676 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1677 * (room space is added or removed below the layer 3 header). 1678 * 1679 * The following flags are supported at this time: 1680 * 1681 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size. 1682 * Adjusting mss in this way is not allowed for datagrams. 1683 * 1684 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**, 1685 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**: 1686 * Any new space is reserved to hold a tunnel header. 1687 * Configure skb offsets and other fields accordingly. 1688 * 1689 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**, 1690 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**: 1691 * Use with ENCAP_L3 flags to further specify the tunnel type. 1692 * 1693 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*): 1694 * Use with ENCAP_L3/L4 flags to further specify the tunnel 1695 * type; *len* is the length of the inner MAC header. 1696 * 1697 * A call to this helper is susceptible to change the underlying 1698 * packet buffer. Therefore, at load time, all checks on pointers 1699 * previously done by the verifier are invalidated and must be 1700 * performed again, if the helper is used in combination with 1701 * direct packet access. 1702 * Return 1703 * 0 on success, or a negative error in case of failure. 1704 * 1705 * long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1706 * Description 1707 * Redirect the packet to the endpoint referenced by *map* at 1708 * index *key*. Depending on its type, this *map* can contain 1709 * references to net devices (for forwarding packets through other 1710 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1711 * but this is only implemented for native XDP (with driver 1712 * support) as of this writing). 1713 * 1714 * The lower two bits of *flags* are used as the return code if 1715 * the map lookup fails. This is so that the return value can be 1716 * one of the XDP program return codes up to **XDP_TX**, as chosen 1717 * by the caller. Any higher bits in the *flags* argument must be 1718 * unset. 1719 * 1720 * See also **bpf_redirect**\ (), which only supports redirecting 1721 * to an ifindex, but doesn't require a map to do so. 1722 * Return 1723 * **XDP_REDIRECT** on success, or the value of the two lower bits 1724 * of the *flags* argument on error. 1725 * 1726 * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags) 1727 * Description 1728 * Redirect the packet to the socket referenced by *map* (of type 1729 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1730 * egress interfaces can be used for redirection. The 1731 * **BPF_F_INGRESS** value in *flags* is used to make the 1732 * distinction (ingress path is selected if the flag is present, 1733 * egress path otherwise). This is the only flag supported for now. 1734 * Return 1735 * **SK_PASS** on success, or **SK_DROP** on error. 1736 * 1737 * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1738 * Description 1739 * Add an entry to, or update a *map* referencing sockets. The 1740 * *skops* is used as a new value for the entry associated to 1741 * *key*. *flags* is one of: 1742 * 1743 * **BPF_NOEXIST** 1744 * The entry for *key* must not exist in the map. 1745 * **BPF_EXIST** 1746 * The entry for *key* must already exist in the map. 1747 * **BPF_ANY** 1748 * No condition on the existence of the entry for *key*. 1749 * 1750 * If the *map* has eBPF programs (parser and verdict), those will 1751 * be inherited by the socket being added. If the socket is 1752 * already attached to eBPF programs, this results in an error. 1753 * Return 1754 * 0 on success, or a negative error in case of failure. 1755 * 1756 * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1757 * Description 1758 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1759 * *delta* (which can be positive or negative). Note that this 1760 * operation modifies the address stored in *xdp_md*\ **->data**, 1761 * so the latter must be loaded only after the helper has been 1762 * called. 1763 * 1764 * The use of *xdp_md*\ **->data_meta** is optional and programs 1765 * are not required to use it. The rationale is that when the 1766 * packet is processed with XDP (e.g. as DoS filter), it is 1767 * possible to push further meta data along with it before passing 1768 * to the stack, and to give the guarantee that an ingress eBPF 1769 * program attached as a TC classifier on the same device can pick 1770 * this up for further post-processing. Since TC works with socket 1771 * buffers, it remains possible to set from XDP the **mark** or 1772 * **priority** pointers, or other pointers for the socket buffer. 1773 * Having this scratch space generic and programmable allows for 1774 * more flexibility as the user is free to store whatever meta 1775 * data they need. 1776 * 1777 * A call to this helper is susceptible to change the underlying 1778 * packet buffer. Therefore, at load time, all checks on pointers 1779 * previously done by the verifier are invalidated and must be 1780 * performed again, if the helper is used in combination with 1781 * direct packet access. 1782 * Return 1783 * 0 on success, or a negative error in case of failure. 1784 * 1785 * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1786 * Description 1787 * Read the value of a perf event counter, and store it into *buf* 1788 * of size *buf_size*. This helper relies on a *map* of type 1789 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1790 * counter is selected when *map* is updated with perf event file 1791 * descriptors. The *map* is an array whose size is the number of 1792 * available CPUs, and each cell contains a value relative to one 1793 * CPU. The value to retrieve is indicated by *flags*, that 1794 * contains the index of the CPU to look up, masked with 1795 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1796 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1797 * current CPU should be retrieved. 1798 * 1799 * This helper behaves in a way close to 1800 * **bpf_perf_event_read**\ () helper, save that instead of 1801 * just returning the value observed, it fills the *buf* 1802 * structure. This allows for additional data to be retrieved: in 1803 * particular, the enabled and running times (in *buf*\ 1804 * **->enabled** and *buf*\ **->running**, respectively) are 1805 * copied. In general, **bpf_perf_event_read_value**\ () is 1806 * recommended over **bpf_perf_event_read**\ (), which has some 1807 * ABI issues and provides fewer functionalities. 1808 * 1809 * These values are interesting, because hardware PMU (Performance 1810 * Monitoring Unit) counters are limited resources. When there are 1811 * more PMU based perf events opened than available counters, 1812 * kernel will multiplex these events so each event gets certain 1813 * percentage (but not all) of the PMU time. In case that 1814 * multiplexing happens, the number of samples or counter value 1815 * will not reflect the case compared to when no multiplexing 1816 * occurs. This makes comparison between different runs difficult. 1817 * Typically, the counter value should be normalized before 1818 * comparing to other experiments. The usual normalization is done 1819 * as follows. 1820 * 1821 * :: 1822 * 1823 * normalized_counter = counter * t_enabled / t_running 1824 * 1825 * Where t_enabled is the time enabled for event and t_running is 1826 * the time running for event since last normalization. The 1827 * enabled and running times are accumulated since the perf event 1828 * open. To achieve scaling factor between two invocations of an 1829 * eBPF program, users can use CPU id as the key (which is 1830 * typical for perf array usage model) to remember the previous 1831 * value and do the calculation inside the eBPF program. 1832 * Return 1833 * 0 on success, or a negative error in case of failure. 1834 * 1835 * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1836 * Description 1837 * For en eBPF program attached to a perf event, retrieve the 1838 * value of the event counter associated to *ctx* and store it in 1839 * the structure pointed by *buf* and of size *buf_size*. Enabled 1840 * and running times are also stored in the structure (see 1841 * description of helper **bpf_perf_event_read_value**\ () for 1842 * more details). 1843 * Return 1844 * 0 on success, or a negative error in case of failure. 1845 * 1846 * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen) 1847 * Description 1848 * Emulate a call to **getsockopt()** on the socket associated to 1849 * *bpf_socket*, which must be a full socket. The *level* at 1850 * which the option resides and the name *optname* of the option 1851 * must be specified, see **getsockopt(2)** for more information. 1852 * The retrieved value is stored in the structure pointed by 1853 * *opval* and of length *optlen*. 1854 * 1855 * *bpf_socket* should be one of the following: 1856 * 1857 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**. 1858 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT** 1859 * and **BPF_CGROUP_INET6_CONNECT**. 1860 * 1861 * This helper actually implements a subset of **getsockopt()**. 1862 * It supports the following *level*\ s: 1863 * 1864 * * **IPPROTO_TCP**, which supports *optname* 1865 * **TCP_CONGESTION**. 1866 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1867 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1868 * Return 1869 * 0 on success, or a negative error in case of failure. 1870 * 1871 * long bpf_override_return(struct pt_regs *regs, u64 rc) 1872 * Description 1873 * Used for error injection, this helper uses kprobes to override 1874 * the return value of the probed function, and to set it to *rc*. 1875 * The first argument is the context *regs* on which the kprobe 1876 * works. 1877 * 1878 * This helper works by setting the PC (program counter) 1879 * to an override function which is run in place of the original 1880 * probed function. This means the probed function is not run at 1881 * all. The replacement function just returns with the required 1882 * value. 1883 * 1884 * This helper has security implications, and thus is subject to 1885 * restrictions. It is only available if the kernel was compiled 1886 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1887 * option, and in this case it only works on functions tagged with 1888 * **ALLOW_ERROR_INJECTION** in the kernel code. 1889 * 1890 * Also, the helper is only available for the architectures having 1891 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1892 * x86 architecture is the only one to support this feature. 1893 * Return 1894 * 0 1895 * 1896 * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1897 * Description 1898 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1899 * for the full TCP socket associated to *bpf_sock_ops* to 1900 * *argval*. 1901 * 1902 * The primary use of this field is to determine if there should 1903 * be calls to eBPF programs of type 1904 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1905 * code. A program of the same type can change its value, per 1906 * connection and as necessary, when the connection is 1907 * established. This field is directly accessible for reading, but 1908 * this helper must be used for updates in order to return an 1909 * error if an eBPF program tries to set a callback that is not 1910 * supported in the current kernel. 1911 * 1912 * *argval* is a flag array which can combine these flags: 1913 * 1914 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1915 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1916 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1917 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT) 1918 * 1919 * Therefore, this function can be used to clear a callback flag by 1920 * setting the appropriate bit to zero. e.g. to disable the RTO 1921 * callback: 1922 * 1923 * **bpf_sock_ops_cb_flags_set(bpf_sock,** 1924 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)** 1925 * 1926 * Here are some examples of where one could call such eBPF 1927 * program: 1928 * 1929 * * When RTO fires. 1930 * * When a packet is retransmitted. 1931 * * When the connection terminates. 1932 * * When a packet is sent. 1933 * * When a packet is received. 1934 * Return 1935 * Code **-EINVAL** if the socket is not a full TCP socket; 1936 * otherwise, a positive number containing the bits that could not 1937 * be set is returned (which comes down to 0 if all bits were set 1938 * as required). 1939 * 1940 * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1941 * Description 1942 * This helper is used in programs implementing policies at the 1943 * socket level. If the message *msg* is allowed to pass (i.e. if 1944 * the verdict eBPF program returns **SK_PASS**), redirect it to 1945 * the socket referenced by *map* (of type 1946 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1947 * egress interfaces can be used for redirection. The 1948 * **BPF_F_INGRESS** value in *flags* is used to make the 1949 * distinction (ingress path is selected if the flag is present, 1950 * egress path otherwise). This is the only flag supported for now. 1951 * Return 1952 * **SK_PASS** on success, or **SK_DROP** on error. 1953 * 1954 * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1955 * Description 1956 * For socket policies, apply the verdict of the eBPF program to 1957 * the next *bytes* (number of bytes) of message *msg*. 1958 * 1959 * For example, this helper can be used in the following cases: 1960 * 1961 * * A single **sendmsg**\ () or **sendfile**\ () system call 1962 * contains multiple logical messages that the eBPF program is 1963 * supposed to read and for which it should apply a verdict. 1964 * * An eBPF program only cares to read the first *bytes* of a 1965 * *msg*. If the message has a large payload, then setting up 1966 * and calling the eBPF program repeatedly for all bytes, even 1967 * though the verdict is already known, would create unnecessary 1968 * overhead. 1969 * 1970 * When called from within an eBPF program, the helper sets a 1971 * counter internal to the BPF infrastructure, that is used to 1972 * apply the last verdict to the next *bytes*. If *bytes* is 1973 * smaller than the current data being processed from a 1974 * **sendmsg**\ () or **sendfile**\ () system call, the first 1975 * *bytes* will be sent and the eBPF program will be re-run with 1976 * the pointer for start of data pointing to byte number *bytes* 1977 * **+ 1**. If *bytes* is larger than the current data being 1978 * processed, then the eBPF verdict will be applied to multiple 1979 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1980 * consumed. 1981 * 1982 * Note that if a socket closes with the internal counter holding 1983 * a non-zero value, this is not a problem because data is not 1984 * being buffered for *bytes* and is sent as it is received. 1985 * Return 1986 * 0 1987 * 1988 * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1989 * Description 1990 * For socket policies, prevent the execution of the verdict eBPF 1991 * program for message *msg* until *bytes* (byte number) have been 1992 * accumulated. 1993 * 1994 * This can be used when one needs a specific number of bytes 1995 * before a verdict can be assigned, even if the data spans 1996 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1997 * case would be a user calling **sendmsg**\ () repeatedly with 1998 * 1-byte long message segments. Obviously, this is bad for 1999 * performance, but it is still valid. If the eBPF program needs 2000 * *bytes* bytes to validate a header, this helper can be used to 2001 * prevent the eBPF program to be called again until *bytes* have 2002 * been accumulated. 2003 * Return 2004 * 0 2005 * 2006 * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 2007 * Description 2008 * For socket policies, pull in non-linear data from user space 2009 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 2010 * **->data_end** to *start* and *end* bytes offsets into *msg*, 2011 * respectively. 2012 * 2013 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2014 * *msg* it can only parse data that the (**data**, **data_end**) 2015 * pointers have already consumed. For **sendmsg**\ () hooks this 2016 * is likely the first scatterlist element. But for calls relying 2017 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 2018 * be the range (**0**, **0**) because the data is shared with 2019 * user space and by default the objective is to avoid allowing 2020 * user space to modify data while (or after) eBPF verdict is 2021 * being decided. This helper can be used to pull in data and to 2022 * set the start and end pointer to given values. Data will be 2023 * copied if necessary (i.e. if data was not linear and if start 2024 * and end pointers do not point to the same chunk). 2025 * 2026 * A call to this helper is susceptible to change the underlying 2027 * packet buffer. Therefore, at load time, all checks on pointers 2028 * previously done by the verifier are invalidated and must be 2029 * performed again, if the helper is used in combination with 2030 * direct packet access. 2031 * 2032 * All values for *flags* are reserved for future usage, and must 2033 * be left at zero. 2034 * Return 2035 * 0 on success, or a negative error in case of failure. 2036 * 2037 * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 2038 * Description 2039 * Bind the socket associated to *ctx* to the address pointed by 2040 * *addr*, of length *addr_len*. This allows for making outgoing 2041 * connection from the desired IP address, which can be useful for 2042 * example when all processes inside a cgroup should use one 2043 * single IP address on a host that has multiple IP configured. 2044 * 2045 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 2046 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 2047 * **AF_INET6**). It's advised to pass zero port (**sin_port** 2048 * or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like 2049 * behavior and lets the kernel efficiently pick up an unused 2050 * port as long as 4-tuple is unique. Passing non-zero port might 2051 * lead to degraded performance. 2052 * Return 2053 * 0 on success, or a negative error in case of failure. 2054 * 2055 * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 2056 * Description 2057 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 2058 * possible to both shrink and grow the packet tail. 2059 * Shrink done via *delta* being a negative integer. 2060 * 2061 * A call to this helper is susceptible to change the underlying 2062 * packet buffer. Therefore, at load time, all checks on pointers 2063 * previously done by the verifier are invalidated and must be 2064 * performed again, if the helper is used in combination with 2065 * direct packet access. 2066 * Return 2067 * 0 on success, or a negative error in case of failure. 2068 * 2069 * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 2070 * Description 2071 * Retrieve the XFRM state (IP transform framework, see also 2072 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 2073 * 2074 * The retrieved value is stored in the **struct bpf_xfrm_state** 2075 * pointed by *xfrm_state* and of length *size*. 2076 * 2077 * All values for *flags* are reserved for future usage, and must 2078 * be left at zero. 2079 * 2080 * This helper is available only if the kernel was compiled with 2081 * **CONFIG_XFRM** configuration option. 2082 * Return 2083 * 0 on success, or a negative error in case of failure. 2084 * 2085 * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags) 2086 * Description 2087 * Return a user or a kernel stack in bpf program provided buffer. 2088 * To achieve this, the helper needs *ctx*, which is a pointer 2089 * to the context on which the tracing program is executed. 2090 * To store the stacktrace, the bpf program provides *buf* with 2091 * a nonnegative *size*. 2092 * 2093 * The last argument, *flags*, holds the number of stack frames to 2094 * skip (from 0 to 255), masked with 2095 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 2096 * the following flags: 2097 * 2098 * **BPF_F_USER_STACK** 2099 * Collect a user space stack instead of a kernel stack. 2100 * **BPF_F_USER_BUILD_ID** 2101 * Collect buildid+offset instead of ips for user stack, 2102 * only valid if **BPF_F_USER_STACK** is also specified. 2103 * 2104 * **bpf_get_stack**\ () can collect up to 2105 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 2106 * to sufficient large buffer size. Note that 2107 * this limit can be controlled with the **sysctl** program, and 2108 * that it should be manually increased in order to profile long 2109 * user stacks (such as stacks for Java programs). To do so, use: 2110 * 2111 * :: 2112 * 2113 * # sysctl kernel.perf_event_max_stack=<new value> 2114 * Return 2115 * A non-negative value equal to or less than *size* on success, 2116 * or a negative error in case of failure. 2117 * 2118 * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header) 2119 * Description 2120 * This helper is similar to **bpf_skb_load_bytes**\ () in that 2121 * it provides an easy way to load *len* bytes from *offset* 2122 * from the packet associated to *skb*, into the buffer pointed 2123 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 2124 * a fifth argument *start_header* exists in order to select a 2125 * base offset to start from. *start_header* can be one of: 2126 * 2127 * **BPF_HDR_START_MAC** 2128 * Base offset to load data from is *skb*'s mac header. 2129 * **BPF_HDR_START_NET** 2130 * Base offset to load data from is *skb*'s network header. 2131 * 2132 * In general, "direct packet access" is the preferred method to 2133 * access packet data, however, this helper is in particular useful 2134 * in socket filters where *skb*\ **->data** does not always point 2135 * to the start of the mac header and where "direct packet access" 2136 * is not available. 2137 * Return 2138 * 0 on success, or a negative error in case of failure. 2139 * 2140 * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 2141 * Description 2142 * Do FIB lookup in kernel tables using parameters in *params*. 2143 * If lookup is successful and result shows packet is to be 2144 * forwarded, the neighbor tables are searched for the nexthop. 2145 * If successful (ie., FIB lookup shows forwarding and nexthop 2146 * is resolved), the nexthop address is returned in ipv4_dst 2147 * or ipv6_dst based on family, smac is set to mac address of 2148 * egress device, dmac is set to nexthop mac address, rt_metric 2149 * is set to metric from route (IPv4/IPv6 only), and ifindex 2150 * is set to the device index of the nexthop from the FIB lookup. 2151 * 2152 * *plen* argument is the size of the passed in struct. 2153 * *flags* argument can be a combination of one or more of the 2154 * following values: 2155 * 2156 * **BPF_FIB_LOOKUP_DIRECT** 2157 * Do a direct table lookup vs full lookup using FIB 2158 * rules. 2159 * **BPF_FIB_LOOKUP_OUTPUT** 2160 * Perform lookup from an egress perspective (default is 2161 * ingress). 2162 * 2163 * *ctx* is either **struct xdp_md** for XDP programs or 2164 * **struct sk_buff** tc cls_act programs. 2165 * Return 2166 * * < 0 if any input argument is invalid 2167 * * 0 on success (packet is forwarded, nexthop neighbor exists) 2168 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 2169 * packet is not forwarded or needs assist from full stack 2170 * 2171 * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 2172 * Description 2173 * Add an entry to, or update a sockhash *map* referencing sockets. 2174 * The *skops* is used as a new value for the entry associated to 2175 * *key*. *flags* is one of: 2176 * 2177 * **BPF_NOEXIST** 2178 * The entry for *key* must not exist in the map. 2179 * **BPF_EXIST** 2180 * The entry for *key* must already exist in the map. 2181 * **BPF_ANY** 2182 * No condition on the existence of the entry for *key*. 2183 * 2184 * If the *map* has eBPF programs (parser and verdict), those will 2185 * be inherited by the socket being added. If the socket is 2186 * already attached to eBPF programs, this results in an error. 2187 * Return 2188 * 0 on success, or a negative error in case of failure. 2189 * 2190 * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 2191 * Description 2192 * This helper is used in programs implementing policies at the 2193 * socket level. If the message *msg* is allowed to pass (i.e. if 2194 * the verdict eBPF program returns **SK_PASS**), redirect it to 2195 * the socket referenced by *map* (of type 2196 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2197 * egress interfaces can be used for redirection. The 2198 * **BPF_F_INGRESS** value in *flags* is used to make the 2199 * distinction (ingress path is selected if the flag is present, 2200 * egress path otherwise). This is the only flag supported for now. 2201 * Return 2202 * **SK_PASS** on success, or **SK_DROP** on error. 2203 * 2204 * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 2205 * Description 2206 * This helper is used in programs implementing policies at the 2207 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 2208 * if the verdeict eBPF program returns **SK_PASS**), redirect it 2209 * to the socket referenced by *map* (of type 2210 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2211 * egress interfaces can be used for redirection. The 2212 * **BPF_F_INGRESS** value in *flags* is used to make the 2213 * distinction (ingress path is selected if the flag is present, 2214 * egress otherwise). This is the only flag supported for now. 2215 * Return 2216 * **SK_PASS** on success, or **SK_DROP** on error. 2217 * 2218 * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 2219 * Description 2220 * Encapsulate the packet associated to *skb* within a Layer 3 2221 * protocol header. This header is provided in the buffer at 2222 * address *hdr*, with *len* its size in bytes. *type* indicates 2223 * the protocol of the header and can be one of: 2224 * 2225 * **BPF_LWT_ENCAP_SEG6** 2226 * IPv6 encapsulation with Segment Routing Header 2227 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2228 * the IPv6 header is computed by the kernel. 2229 * **BPF_LWT_ENCAP_SEG6_INLINE** 2230 * Only works if *skb* contains an IPv6 packet. Insert a 2231 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2232 * the IPv6 header. 2233 * **BPF_LWT_ENCAP_IP** 2234 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header 2235 * must be IPv4 or IPv6, followed by zero or more 2236 * additional headers, up to **LWT_BPF_MAX_HEADROOM** 2237 * total bytes in all prepended headers. Please note that 2238 * if **skb_is_gso**\ (*skb*) is true, no more than two 2239 * headers can be prepended, and the inner header, if 2240 * present, should be either GRE or UDP/GUE. 2241 * 2242 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs 2243 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can 2244 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and 2245 * **BPF_PROG_TYPE_LWT_XMIT**. 2246 * 2247 * A call to this helper is susceptible to change the underlying 2248 * packet buffer. Therefore, at load time, all checks on pointers 2249 * previously done by the verifier are invalidated and must be 2250 * performed again, if the helper is used in combination with 2251 * direct packet access. 2252 * Return 2253 * 0 on success, or a negative error in case of failure. 2254 * 2255 * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2256 * Description 2257 * Store *len* bytes from address *from* into the packet 2258 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2259 * inside the outermost IPv6 Segment Routing Header can be 2260 * modified through this helper. 2261 * 2262 * A call to this helper is susceptible to change the underlying 2263 * packet buffer. Therefore, at load time, all checks on pointers 2264 * previously done by the verifier are invalidated and must be 2265 * performed again, if the helper is used in combination with 2266 * direct packet access. 2267 * Return 2268 * 0 on success, or a negative error in case of failure. 2269 * 2270 * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2271 * Description 2272 * Adjust the size allocated to TLVs in the outermost IPv6 2273 * Segment Routing Header contained in the packet associated to 2274 * *skb*, at position *offset* by *delta* bytes. Only offsets 2275 * after the segments are accepted. *delta* can be as well 2276 * positive (growing) as negative (shrinking). 2277 * 2278 * A call to this helper is susceptible to change the underlying 2279 * packet buffer. Therefore, at load time, all checks on pointers 2280 * previously done by the verifier are invalidated and must be 2281 * performed again, if the helper is used in combination with 2282 * direct packet access. 2283 * Return 2284 * 0 on success, or a negative error in case of failure. 2285 * 2286 * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2287 * Description 2288 * Apply an IPv6 Segment Routing action of type *action* to the 2289 * packet associated to *skb*. Each action takes a parameter 2290 * contained at address *param*, and of length *param_len* bytes. 2291 * *action* can be one of: 2292 * 2293 * **SEG6_LOCAL_ACTION_END_X** 2294 * End.X action: Endpoint with Layer-3 cross-connect. 2295 * Type of *param*: **struct in6_addr**. 2296 * **SEG6_LOCAL_ACTION_END_T** 2297 * End.T action: Endpoint with specific IPv6 table lookup. 2298 * Type of *param*: **int**. 2299 * **SEG6_LOCAL_ACTION_END_B6** 2300 * End.B6 action: Endpoint bound to an SRv6 policy. 2301 * Type of *param*: **struct ipv6_sr_hdr**. 2302 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2303 * End.B6.Encap action: Endpoint bound to an SRv6 2304 * encapsulation policy. 2305 * Type of *param*: **struct ipv6_sr_hdr**. 2306 * 2307 * A call to this helper is susceptible to change the underlying 2308 * packet buffer. Therefore, at load time, all checks on pointers 2309 * previously done by the verifier are invalidated and must be 2310 * performed again, if the helper is used in combination with 2311 * direct packet access. 2312 * Return 2313 * 0 on success, or a negative error in case of failure. 2314 * 2315 * long bpf_rc_repeat(void *ctx) 2316 * Description 2317 * This helper is used in programs implementing IR decoding, to 2318 * report a successfully decoded repeat key message. This delays 2319 * the generation of a key up event for previously generated 2320 * key down event. 2321 * 2322 * Some IR protocols like NEC have a special IR message for 2323 * repeating last button, for when a button is held down. 2324 * 2325 * The *ctx* should point to the lirc sample as passed into 2326 * the program. 2327 * 2328 * This helper is only available is the kernel was compiled with 2329 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2330 * "**y**". 2331 * Return 2332 * 0 2333 * 2334 * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2335 * Description 2336 * This helper is used in programs implementing IR decoding, to 2337 * report a successfully decoded key press with *scancode*, 2338 * *toggle* value in the given *protocol*. The scancode will be 2339 * translated to a keycode using the rc keymap, and reported as 2340 * an input key down event. After a period a key up event is 2341 * generated. This period can be extended by calling either 2342 * **bpf_rc_keydown**\ () again with the same values, or calling 2343 * **bpf_rc_repeat**\ (). 2344 * 2345 * Some protocols include a toggle bit, in case the button was 2346 * released and pressed again between consecutive scancodes. 2347 * 2348 * The *ctx* should point to the lirc sample as passed into 2349 * the program. 2350 * 2351 * The *protocol* is the decoded protocol number (see 2352 * **enum rc_proto** for some predefined values). 2353 * 2354 * This helper is only available is the kernel was compiled with 2355 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2356 * "**y**". 2357 * Return 2358 * 0 2359 * 2360 * u64 bpf_skb_cgroup_id(struct sk_buff *skb) 2361 * Description 2362 * Return the cgroup v2 id of the socket associated with the *skb*. 2363 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2364 * helper for cgroup v1 by providing a tag resp. identifier that 2365 * can be matched on or used for map lookups e.g. to implement 2366 * policy. The cgroup v2 id of a given path in the hierarchy is 2367 * exposed in user space through the f_handle API in order to get 2368 * to the same 64-bit id. 2369 * 2370 * This helper can be used on TC egress path, but not on ingress, 2371 * and is available only if the kernel was compiled with the 2372 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2373 * Return 2374 * The id is returned or 0 in case the id could not be retrieved. 2375 * 2376 * u64 bpf_get_current_cgroup_id(void) 2377 * Return 2378 * A 64-bit integer containing the current cgroup id based 2379 * on the cgroup within which the current task is running. 2380 * 2381 * void *bpf_get_local_storage(void *map, u64 flags) 2382 * Description 2383 * Get the pointer to the local storage area. 2384 * The type and the size of the local storage is defined 2385 * by the *map* argument. 2386 * The *flags* meaning is specific for each map type, 2387 * and has to be 0 for cgroup local storage. 2388 * 2389 * Depending on the BPF program type, a local storage area 2390 * can be shared between multiple instances of the BPF program, 2391 * running simultaneously. 2392 * 2393 * A user should care about the synchronization by himself. 2394 * For example, by using the **BPF_STX_XADD** instruction to alter 2395 * the shared data. 2396 * Return 2397 * A pointer to the local storage area. 2398 * 2399 * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2400 * Description 2401 * Select a **SO_REUSEPORT** socket from a 2402 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2403 * It checks the selected socket is matching the incoming 2404 * request in the socket buffer. 2405 * Return 2406 * 0 on success, or a negative error in case of failure. 2407 * 2408 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2409 * Description 2410 * Return id of cgroup v2 that is ancestor of cgroup associated 2411 * with the *skb* at the *ancestor_level*. The root cgroup is at 2412 * *ancestor_level* zero and each step down the hierarchy 2413 * increments the level. If *ancestor_level* == level of cgroup 2414 * associated with *skb*, then return value will be same as that 2415 * of **bpf_skb_cgroup_id**\ (). 2416 * 2417 * The helper is useful to implement policies based on cgroups 2418 * that are upper in hierarchy than immediate cgroup associated 2419 * with *skb*. 2420 * 2421 * The format of returned id and helper limitations are same as in 2422 * **bpf_skb_cgroup_id**\ (). 2423 * Return 2424 * The id is returned or 0 in case the id could not be retrieved. 2425 * 2426 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2427 * Description 2428 * Look for TCP socket matching *tuple*, optionally in a child 2429 * network namespace *netns*. The return value must be checked, 2430 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2431 * 2432 * The *ctx* should point to the context of the program, such as 2433 * the skb or socket (depending on the hook in use). This is used 2434 * to determine the base network namespace for the lookup. 2435 * 2436 * *tuple_size* must be one of: 2437 * 2438 * **sizeof**\ (*tuple*\ **->ipv4**) 2439 * Look for an IPv4 socket. 2440 * **sizeof**\ (*tuple*\ **->ipv6**) 2441 * Look for an IPv6 socket. 2442 * 2443 * If the *netns* is a negative signed 32-bit integer, then the 2444 * socket lookup table in the netns associated with the *ctx* 2445 * will be used. For the TC hooks, this is the netns of the device 2446 * in the skb. For socket hooks, this is the netns of the socket. 2447 * If *netns* is any other signed 32-bit value greater than or 2448 * equal to zero then it specifies the ID of the netns relative to 2449 * the netns associated with the *ctx*. *netns* values beyond the 2450 * range of 32-bit integers are reserved for future use. 2451 * 2452 * All values for *flags* are reserved for future usage, and must 2453 * be left at zero. 2454 * 2455 * This helper is available only if the kernel was compiled with 2456 * **CONFIG_NET** configuration option. 2457 * Return 2458 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2459 * For sockets with reuseport option, the **struct bpf_sock** 2460 * result is from *reuse*\ **->socks**\ [] using the hash of the 2461 * tuple. 2462 * 2463 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2464 * Description 2465 * Look for UDP socket matching *tuple*, optionally in a child 2466 * network namespace *netns*. The return value must be checked, 2467 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2468 * 2469 * The *ctx* should point to the context of the program, such as 2470 * the skb or socket (depending on the hook in use). This is used 2471 * to determine the base network namespace for the lookup. 2472 * 2473 * *tuple_size* must be one of: 2474 * 2475 * **sizeof**\ (*tuple*\ **->ipv4**) 2476 * Look for an IPv4 socket. 2477 * **sizeof**\ (*tuple*\ **->ipv6**) 2478 * Look for an IPv6 socket. 2479 * 2480 * If the *netns* is a negative signed 32-bit integer, then the 2481 * socket lookup table in the netns associated with the *ctx* 2482 * will be used. For the TC hooks, this is the netns of the device 2483 * in the skb. For socket hooks, this is the netns of the socket. 2484 * If *netns* is any other signed 32-bit value greater than or 2485 * equal to zero then it specifies the ID of the netns relative to 2486 * the netns associated with the *ctx*. *netns* values beyond the 2487 * range of 32-bit integers are reserved for future use. 2488 * 2489 * All values for *flags* are reserved for future usage, and must 2490 * be left at zero. 2491 * 2492 * This helper is available only if the kernel was compiled with 2493 * **CONFIG_NET** configuration option. 2494 * Return 2495 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2496 * For sockets with reuseport option, the **struct bpf_sock** 2497 * result is from *reuse*\ **->socks**\ [] using the hash of the 2498 * tuple. 2499 * 2500 * long bpf_sk_release(struct bpf_sock *sock) 2501 * Description 2502 * Release the reference held by *sock*. *sock* must be a 2503 * non-**NULL** pointer that was returned from 2504 * **bpf_sk_lookup_xxx**\ (). 2505 * Return 2506 * 0 on success, or a negative error in case of failure. 2507 * 2508 * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 2509 * Description 2510 * Push an element *value* in *map*. *flags* is one of: 2511 * 2512 * **BPF_EXIST** 2513 * If the queue/stack is full, the oldest element is 2514 * removed to make room for this. 2515 * Return 2516 * 0 on success, or a negative error in case of failure. 2517 * 2518 * long bpf_map_pop_elem(struct bpf_map *map, void *value) 2519 * Description 2520 * Pop an element from *map*. 2521 * Return 2522 * 0 on success, or a negative error in case of failure. 2523 * 2524 * long bpf_map_peek_elem(struct bpf_map *map, void *value) 2525 * Description 2526 * Get an element from *map* without removing it. 2527 * Return 2528 * 0 on success, or a negative error in case of failure. 2529 * 2530 * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags) 2531 * Description 2532 * For socket policies, insert *len* bytes into *msg* at offset 2533 * *start*. 2534 * 2535 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2536 * *msg* it may want to insert metadata or options into the *msg*. 2537 * This can later be read and used by any of the lower layer BPF 2538 * hooks. 2539 * 2540 * This helper may fail if under memory pressure (a malloc 2541 * fails) in these cases BPF programs will get an appropriate 2542 * error and BPF programs will need to handle them. 2543 * Return 2544 * 0 on success, or a negative error in case of failure. 2545 * 2546 * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags) 2547 * Description 2548 * Will remove *len* bytes from a *msg* starting at byte *start*. 2549 * This may result in **ENOMEM** errors under certain situations if 2550 * an allocation and copy are required due to a full ring buffer. 2551 * However, the helper will try to avoid doing the allocation 2552 * if possible. Other errors can occur if input parameters are 2553 * invalid either due to *start* byte not being valid part of *msg* 2554 * payload and/or *pop* value being to large. 2555 * Return 2556 * 0 on success, or a negative error in case of failure. 2557 * 2558 * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2559 * Description 2560 * This helper is used in programs implementing IR decoding, to 2561 * report a successfully decoded pointer movement. 2562 * 2563 * The *ctx* should point to the lirc sample as passed into 2564 * the program. 2565 * 2566 * This helper is only available is the kernel was compiled with 2567 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2568 * "**y**". 2569 * Return 2570 * 0 2571 * 2572 * long bpf_spin_lock(struct bpf_spin_lock *lock) 2573 * Description 2574 * Acquire a spinlock represented by the pointer *lock*, which is 2575 * stored as part of a value of a map. Taking the lock allows to 2576 * safely update the rest of the fields in that value. The 2577 * spinlock can (and must) later be released with a call to 2578 * **bpf_spin_unlock**\ (\ *lock*\ ). 2579 * 2580 * Spinlocks in BPF programs come with a number of restrictions 2581 * and constraints: 2582 * 2583 * * **bpf_spin_lock** objects are only allowed inside maps of 2584 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this 2585 * list could be extended in the future). 2586 * * BTF description of the map is mandatory. 2587 * * The BPF program can take ONE lock at a time, since taking two 2588 * or more could cause dead locks. 2589 * * Only one **struct bpf_spin_lock** is allowed per map element. 2590 * * When the lock is taken, calls (either BPF to BPF or helpers) 2591 * are not allowed. 2592 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not 2593 * allowed inside a spinlock-ed region. 2594 * * The BPF program MUST call **bpf_spin_unlock**\ () to release 2595 * the lock, on all execution paths, before it returns. 2596 * * The BPF program can access **struct bpf_spin_lock** only via 2597 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ () 2598 * helpers. Loading or storing data into the **struct 2599 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed. 2600 * * To use the **bpf_spin_lock**\ () helper, the BTF description 2601 * of the map value must be a struct and have **struct 2602 * bpf_spin_lock** *anyname*\ **;** field at the top level. 2603 * Nested lock inside another struct is not allowed. 2604 * * The **struct bpf_spin_lock** *lock* field in a map value must 2605 * be aligned on a multiple of 4 bytes in that value. 2606 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy 2607 * the **bpf_spin_lock** field to user space. 2608 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from 2609 * a BPF program, do not update the **bpf_spin_lock** field. 2610 * * **bpf_spin_lock** cannot be on the stack or inside a 2611 * networking packet (it can only be inside of a map values). 2612 * * **bpf_spin_lock** is available to root only. 2613 * * Tracing programs and socket filter programs cannot use 2614 * **bpf_spin_lock**\ () due to insufficient preemption checks 2615 * (but this may change in the future). 2616 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map. 2617 * Return 2618 * 0 2619 * 2620 * long bpf_spin_unlock(struct bpf_spin_lock *lock) 2621 * Description 2622 * Release the *lock* previously locked by a call to 2623 * **bpf_spin_lock**\ (\ *lock*\ ). 2624 * Return 2625 * 0 2626 * 2627 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk) 2628 * Description 2629 * This helper gets a **struct bpf_sock** pointer such 2630 * that all the fields in this **bpf_sock** can be accessed. 2631 * Return 2632 * A **struct bpf_sock** pointer on success, or **NULL** in 2633 * case of failure. 2634 * 2635 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk) 2636 * Description 2637 * This helper gets a **struct bpf_tcp_sock** pointer from a 2638 * **struct bpf_sock** pointer. 2639 * Return 2640 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in 2641 * case of failure. 2642 * 2643 * long bpf_skb_ecn_set_ce(struct sk_buff *skb) 2644 * Description 2645 * Set ECN (Explicit Congestion Notification) field of IP header 2646 * to **CE** (Congestion Encountered) if current value is **ECT** 2647 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6 2648 * and IPv4. 2649 * Return 2650 * 1 if the **CE** flag is set (either by the current helper call 2651 * or because it was already present), 0 if it is not set. 2652 * 2653 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk) 2654 * Description 2655 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state. 2656 * **bpf_sk_release**\ () is unnecessary and not allowed. 2657 * Return 2658 * A **struct bpf_sock** pointer on success, or **NULL** in 2659 * case of failure. 2660 * 2661 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2662 * Description 2663 * Look for TCP socket matching *tuple*, optionally in a child 2664 * network namespace *netns*. The return value must be checked, 2665 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2666 * 2667 * This function is identical to **bpf_sk_lookup_tcp**\ (), except 2668 * that it also returns timewait or request sockets. Use 2669 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the 2670 * full structure. 2671 * 2672 * This helper is available only if the kernel was compiled with 2673 * **CONFIG_NET** configuration option. 2674 * Return 2675 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2676 * For sockets with reuseport option, the **struct bpf_sock** 2677 * result is from *reuse*\ **->socks**\ [] using the hash of the 2678 * tuple. 2679 * 2680 * long bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2681 * Description 2682 * Check whether *iph* and *th* contain a valid SYN cookie ACK for 2683 * the listening socket in *sk*. 2684 * 2685 * *iph* points to the start of the IPv4 or IPv6 header, while 2686 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2687 * **sizeof**\ (**struct ip6hdr**). 2688 * 2689 * *th* points to the start of the TCP header, while *th_len* 2690 * contains **sizeof**\ (**struct tcphdr**). 2691 * Return 2692 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative 2693 * error otherwise. 2694 * 2695 * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags) 2696 * Description 2697 * Get name of sysctl in /proc/sys/ and copy it into provided by 2698 * program buffer *buf* of size *buf_len*. 2699 * 2700 * The buffer is always NUL terminated, unless it's zero-sized. 2701 * 2702 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is 2703 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name 2704 * only (e.g. "tcp_mem"). 2705 * Return 2706 * Number of character copied (not including the trailing NUL). 2707 * 2708 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2709 * truncated name in this case). 2710 * 2711 * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2712 * Description 2713 * Get current value of sysctl as it is presented in /proc/sys 2714 * (incl. newline, etc), and copy it as a string into provided 2715 * by program buffer *buf* of size *buf_len*. 2716 * 2717 * The whole value is copied, no matter what file position user 2718 * space issued e.g. sys_read at. 2719 * 2720 * The buffer is always NUL terminated, unless it's zero-sized. 2721 * Return 2722 * Number of character copied (not including the trailing NUL). 2723 * 2724 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2725 * truncated name in this case). 2726 * 2727 * **-EINVAL** if current value was unavailable, e.g. because 2728 * sysctl is uninitialized and read returns -EIO for it. 2729 * 2730 * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2731 * Description 2732 * Get new value being written by user space to sysctl (before 2733 * the actual write happens) and copy it as a string into 2734 * provided by program buffer *buf* of size *buf_len*. 2735 * 2736 * User space may write new value at file position > 0. 2737 * 2738 * The buffer is always NUL terminated, unless it's zero-sized. 2739 * Return 2740 * Number of character copied (not including the trailing NUL). 2741 * 2742 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2743 * truncated name in this case). 2744 * 2745 * **-EINVAL** if sysctl is being read. 2746 * 2747 * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len) 2748 * Description 2749 * Override new value being written by user space to sysctl with 2750 * value provided by program in buffer *buf* of size *buf_len*. 2751 * 2752 * *buf* should contain a string in same form as provided by user 2753 * space on sysctl write. 2754 * 2755 * User space may write new value at file position > 0. To override 2756 * the whole sysctl value file position should be set to zero. 2757 * Return 2758 * 0 on success. 2759 * 2760 * **-E2BIG** if the *buf_len* is too big. 2761 * 2762 * **-EINVAL** if sysctl is being read. 2763 * 2764 * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res) 2765 * Description 2766 * Convert the initial part of the string from buffer *buf* of 2767 * size *buf_len* to a long integer according to the given base 2768 * and save the result in *res*. 2769 * 2770 * The string may begin with an arbitrary amount of white space 2771 * (as determined by **isspace**\ (3)) followed by a single 2772 * optional '**-**' sign. 2773 * 2774 * Five least significant bits of *flags* encode base, other bits 2775 * are currently unused. 2776 * 2777 * Base must be either 8, 10, 16 or 0 to detect it automatically 2778 * similar to user space **strtol**\ (3). 2779 * Return 2780 * Number of characters consumed on success. Must be positive but 2781 * no more than *buf_len*. 2782 * 2783 * **-EINVAL** if no valid digits were found or unsupported base 2784 * was provided. 2785 * 2786 * **-ERANGE** if resulting value was out of range. 2787 * 2788 * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res) 2789 * Description 2790 * Convert the initial part of the string from buffer *buf* of 2791 * size *buf_len* to an unsigned long integer according to the 2792 * given base and save the result in *res*. 2793 * 2794 * The string may begin with an arbitrary amount of white space 2795 * (as determined by **isspace**\ (3)). 2796 * 2797 * Five least significant bits of *flags* encode base, other bits 2798 * are currently unused. 2799 * 2800 * Base must be either 8, 10, 16 or 0 to detect it automatically 2801 * similar to user space **strtoul**\ (3). 2802 * Return 2803 * Number of characters consumed on success. Must be positive but 2804 * no more than *buf_len*. 2805 * 2806 * **-EINVAL** if no valid digits were found or unsupported base 2807 * was provided. 2808 * 2809 * **-ERANGE** if resulting value was out of range. 2810 * 2811 * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags) 2812 * Description 2813 * Get a bpf-local-storage from a *sk*. 2814 * 2815 * Logically, it could be thought of getting the value from 2816 * a *map* with *sk* as the **key**. From this 2817 * perspective, the usage is not much different from 2818 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this 2819 * helper enforces the key must be a full socket and the map must 2820 * be a **BPF_MAP_TYPE_SK_STORAGE** also. 2821 * 2822 * Underneath, the value is stored locally at *sk* instead of 2823 * the *map*. The *map* is used as the bpf-local-storage 2824 * "type". The bpf-local-storage "type" (i.e. the *map*) is 2825 * searched against all bpf-local-storages residing at *sk*. 2826 * 2827 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be 2828 * used such that a new bpf-local-storage will be 2829 * created if one does not exist. *value* can be used 2830 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify 2831 * the initial value of a bpf-local-storage. If *value* is 2832 * **NULL**, the new bpf-local-storage will be zero initialized. 2833 * Return 2834 * A bpf-local-storage pointer is returned on success. 2835 * 2836 * **NULL** if not found or there was an error in adding 2837 * a new bpf-local-storage. 2838 * 2839 * long bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk) 2840 * Description 2841 * Delete a bpf-local-storage from a *sk*. 2842 * Return 2843 * 0 on success. 2844 * 2845 * **-ENOENT** if the bpf-local-storage cannot be found. 2846 * 2847 * long bpf_send_signal(u32 sig) 2848 * Description 2849 * Send signal *sig* to the process of the current task. 2850 * The signal may be delivered to any of this process's threads. 2851 * Return 2852 * 0 on success or successfully queued. 2853 * 2854 * **-EBUSY** if work queue under nmi is full. 2855 * 2856 * **-EINVAL** if *sig* is invalid. 2857 * 2858 * **-EPERM** if no permission to send the *sig*. 2859 * 2860 * **-EAGAIN** if bpf program can try again. 2861 * 2862 * s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2863 * Description 2864 * Try to issue a SYN cookie for the packet with corresponding 2865 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*. 2866 * 2867 * *iph* points to the start of the IPv4 or IPv6 header, while 2868 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2869 * **sizeof**\ (**struct ip6hdr**). 2870 * 2871 * *th* points to the start of the TCP header, while *th_len* 2872 * contains the length of the TCP header. 2873 * Return 2874 * On success, lower 32 bits hold the generated SYN cookie in 2875 * followed by 16 bits which hold the MSS value for that cookie, 2876 * and the top 16 bits are unused. 2877 * 2878 * On failure, the returned value is one of the following: 2879 * 2880 * **-EINVAL** SYN cookie cannot be issued due to error 2881 * 2882 * **-ENOENT** SYN cookie should not be issued (no SYN flood) 2883 * 2884 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies 2885 * 2886 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6 2887 * 2888 * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 2889 * Description 2890 * Write raw *data* blob into a special BPF perf event held by 2891 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 2892 * event must have the following attributes: **PERF_SAMPLE_RAW** 2893 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 2894 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 2895 * 2896 * The *flags* are used to indicate the index in *map* for which 2897 * the value must be put, masked with **BPF_F_INDEX_MASK**. 2898 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 2899 * to indicate that the index of the current CPU core should be 2900 * used. 2901 * 2902 * The value to write, of *size*, is passed through eBPF stack and 2903 * pointed by *data*. 2904 * 2905 * *ctx* is a pointer to in-kernel struct sk_buff. 2906 * 2907 * This helper is similar to **bpf_perf_event_output**\ () but 2908 * restricted to raw_tracepoint bpf programs. 2909 * Return 2910 * 0 on success, or a negative error in case of failure. 2911 * 2912 * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr) 2913 * Description 2914 * Safely attempt to read *size* bytes from user space address 2915 * *unsafe_ptr* and store the data in *dst*. 2916 * Return 2917 * 0 on success, or a negative error in case of failure. 2918 * 2919 * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr) 2920 * Description 2921 * Safely attempt to read *size* bytes from kernel space address 2922 * *unsafe_ptr* and store the data in *dst*. 2923 * Return 2924 * 0 on success, or a negative error in case of failure. 2925 * 2926 * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr) 2927 * Description 2928 * Copy a NUL terminated string from an unsafe user address 2929 * *unsafe_ptr* to *dst*. The *size* should include the 2930 * terminating NUL byte. In case the string length is smaller than 2931 * *size*, the target is not padded with further NUL bytes. If the 2932 * string length is larger than *size*, just *size*-1 bytes are 2933 * copied and the last byte is set to NUL. 2934 * 2935 * On success, the length of the copied string is returned. This 2936 * makes this helper useful in tracing programs for reading 2937 * strings, and more importantly to get its length at runtime. See 2938 * the following snippet: 2939 * 2940 * :: 2941 * 2942 * SEC("kprobe/sys_open") 2943 * void bpf_sys_open(struct pt_regs *ctx) 2944 * { 2945 * char buf[PATHLEN]; // PATHLEN is defined to 256 2946 * int res = bpf_probe_read_user_str(buf, sizeof(buf), 2947 * ctx->di); 2948 * 2949 * // Consume buf, for example push it to 2950 * // userspace via bpf_perf_event_output(); we 2951 * // can use res (the string length) as event 2952 * // size, after checking its boundaries. 2953 * } 2954 * 2955 * In comparison, using **bpf_probe_read_user**\ () helper here 2956 * instead to read the string would require to estimate the length 2957 * at compile time, and would often result in copying more memory 2958 * than necessary. 2959 * 2960 * Another useful use case is when parsing individual process 2961 * arguments or individual environment variables navigating 2962 * *current*\ **->mm->arg_start** and *current*\ 2963 * **->mm->env_start**: using this helper and the return value, 2964 * one can quickly iterate at the right offset of the memory area. 2965 * Return 2966 * On success, the strictly positive length of the string, 2967 * including the trailing NUL character. On error, a negative 2968 * value. 2969 * 2970 * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr) 2971 * Description 2972 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr* 2973 * to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply. 2974 * Return 2975 * On success, the strictly positive length of the string, including 2976 * the trailing NUL character. On error, a negative value. 2977 * 2978 * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt) 2979 * Description 2980 * Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**. 2981 * *rcv_nxt* is the ack_seq to be sent out. 2982 * Return 2983 * 0 on success, or a negative error in case of failure. 2984 * 2985 * long bpf_send_signal_thread(u32 sig) 2986 * Description 2987 * Send signal *sig* to the thread corresponding to the current task. 2988 * Return 2989 * 0 on success or successfully queued. 2990 * 2991 * **-EBUSY** if work queue under nmi is full. 2992 * 2993 * **-EINVAL** if *sig* is invalid. 2994 * 2995 * **-EPERM** if no permission to send the *sig*. 2996 * 2997 * **-EAGAIN** if bpf program can try again. 2998 * 2999 * u64 bpf_jiffies64(void) 3000 * Description 3001 * Obtain the 64bit jiffies 3002 * Return 3003 * The 64 bit jiffies 3004 * 3005 * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags) 3006 * Description 3007 * For an eBPF program attached to a perf event, retrieve the 3008 * branch records (**struct perf_branch_entry**) associated to *ctx* 3009 * and store it in the buffer pointed by *buf* up to size 3010 * *size* bytes. 3011 * Return 3012 * On success, number of bytes written to *buf*. On error, a 3013 * negative value. 3014 * 3015 * The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to 3016 * instead return the number of bytes required to store all the 3017 * branch entries. If this flag is set, *buf* may be NULL. 3018 * 3019 * **-EINVAL** if arguments invalid or **size** not a multiple 3020 * of **sizeof**\ (**struct perf_branch_entry**\ ). 3021 * 3022 * **-ENOENT** if architecture does not support branch records. 3023 * 3024 * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size) 3025 * Description 3026 * Returns 0 on success, values for *pid* and *tgid* as seen from the current 3027 * *namespace* will be returned in *nsdata*. 3028 * Return 3029 * 0 on success, or one of the following in case of failure: 3030 * 3031 * **-EINVAL** if dev and inum supplied don't match dev_t and inode number 3032 * with nsfs of current task, or if dev conversion to dev_t lost high bits. 3033 * 3034 * **-ENOENT** if pidns does not exists for the current task. 3035 * 3036 * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 3037 * Description 3038 * Write raw *data* blob into a special BPF perf event held by 3039 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 3040 * event must have the following attributes: **PERF_SAMPLE_RAW** 3041 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 3042 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 3043 * 3044 * The *flags* are used to indicate the index in *map* for which 3045 * the value must be put, masked with **BPF_F_INDEX_MASK**. 3046 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 3047 * to indicate that the index of the current CPU core should be 3048 * used. 3049 * 3050 * The value to write, of *size*, is passed through eBPF stack and 3051 * pointed by *data*. 3052 * 3053 * *ctx* is a pointer to in-kernel struct xdp_buff. 3054 * 3055 * This helper is similar to **bpf_perf_eventoutput**\ () but 3056 * restricted to raw_tracepoint bpf programs. 3057 * Return 3058 * 0 on success, or a negative error in case of failure. 3059 * 3060 * u64 bpf_get_netns_cookie(void *ctx) 3061 * Description 3062 * Retrieve the cookie (generated by the kernel) of the network 3063 * namespace the input *ctx* is associated with. The network 3064 * namespace cookie remains stable for its lifetime and provides 3065 * a global identifier that can be assumed unique. If *ctx* is 3066 * NULL, then the helper returns the cookie for the initial 3067 * network namespace. The cookie itself is very similar to that 3068 * of **bpf_get_socket_cookie**\ () helper, but for network 3069 * namespaces instead of sockets. 3070 * Return 3071 * A 8-byte long opaque number. 3072 * 3073 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level) 3074 * Description 3075 * Return id of cgroup v2 that is ancestor of the cgroup associated 3076 * with the current task at the *ancestor_level*. The root cgroup 3077 * is at *ancestor_level* zero and each step down the hierarchy 3078 * increments the level. If *ancestor_level* == level of cgroup 3079 * associated with the current task, then return value will be the 3080 * same as that of **bpf_get_current_cgroup_id**\ (). 3081 * 3082 * The helper is useful to implement policies based on cgroups 3083 * that are upper in hierarchy than immediate cgroup associated 3084 * with the current task. 3085 * 3086 * The format of returned id and helper limitations are same as in 3087 * **bpf_get_current_cgroup_id**\ (). 3088 * Return 3089 * The id is returned or 0 in case the id could not be retrieved. 3090 * 3091 * long bpf_sk_assign(struct sk_buff *skb, struct bpf_sock *sk, u64 flags) 3092 * Description 3093 * Helper is overloaded depending on BPF program type. This 3094 * description applies to **BPF_PROG_TYPE_SCHED_CLS** and 3095 * **BPF_PROG_TYPE_SCHED_ACT** programs. 3096 * 3097 * Assign the *sk* to the *skb*. When combined with appropriate 3098 * routing configuration to receive the packet towards the socket, 3099 * will cause *skb* to be delivered to the specified socket. 3100 * Subsequent redirection of *skb* via **bpf_redirect**\ (), 3101 * **bpf_clone_redirect**\ () or other methods outside of BPF may 3102 * interfere with successful delivery to the socket. 3103 * 3104 * This operation is only valid from TC ingress path. 3105 * 3106 * The *flags* argument must be zero. 3107 * Return 3108 * 0 on success, or a negative error in case of failure: 3109 * 3110 * **-EINVAL** if specified *flags* are not supported. 3111 * 3112 * **-ENOENT** if the socket is unavailable for assignment. 3113 * 3114 * **-ENETUNREACH** if the socket is unreachable (wrong netns). 3115 * 3116 * **-EOPNOTSUPP** if the operation is not supported, for example 3117 * a call from outside of TC ingress. 3118 * 3119 * **-ESOCKTNOSUPPORT** if the socket type is not supported 3120 * (reuseport). 3121 * 3122 * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags) 3123 * Description 3124 * Helper is overloaded depending on BPF program type. This 3125 * description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs. 3126 * 3127 * Select the *sk* as a result of a socket lookup. 3128 * 3129 * For the operation to succeed passed socket must be compatible 3130 * with the packet description provided by the *ctx* object. 3131 * 3132 * L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must 3133 * be an exact match. While IP family (**AF_INET** or 3134 * **AF_INET6**) must be compatible, that is IPv6 sockets 3135 * that are not v6-only can be selected for IPv4 packets. 3136 * 3137 * Only TCP listeners and UDP unconnected sockets can be 3138 * selected. *sk* can also be NULL to reset any previous 3139 * selection. 3140 * 3141 * *flags* argument can combination of following values: 3142 * 3143 * * **BPF_SK_LOOKUP_F_REPLACE** to override the previous 3144 * socket selection, potentially done by a BPF program 3145 * that ran before us. 3146 * 3147 * * **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip 3148 * load-balancing within reuseport group for the socket 3149 * being selected. 3150 * 3151 * On success *ctx->sk* will point to the selected socket. 3152 * 3153 * Return 3154 * 0 on success, or a negative errno in case of failure. 3155 * 3156 * * **-EAFNOSUPPORT** if socket family (*sk->family*) is 3157 * not compatible with packet family (*ctx->family*). 3158 * 3159 * * **-EEXIST** if socket has been already selected, 3160 * potentially by another program, and 3161 * **BPF_SK_LOOKUP_F_REPLACE** flag was not specified. 3162 * 3163 * * **-EINVAL** if unsupported flags were specified. 3164 * 3165 * * **-EPROTOTYPE** if socket L4 protocol 3166 * (*sk->protocol*) doesn't match packet protocol 3167 * (*ctx->protocol*). 3168 * 3169 * * **-ESOCKTNOSUPPORT** if socket is not in allowed 3170 * state (TCP listening or UDP unconnected). 3171 * 3172 * u64 bpf_ktime_get_boot_ns(void) 3173 * Description 3174 * Return the time elapsed since system boot, in nanoseconds. 3175 * Does include the time the system was suspended. 3176 * See: **clock_gettime**\ (**CLOCK_BOOTTIME**) 3177 * Return 3178 * Current *ktime*. 3179 * 3180 * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len) 3181 * Description 3182 * **bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print 3183 * out the format string. 3184 * The *m* represents the seq_file. The *fmt* and *fmt_size* are for 3185 * the format string itself. The *data* and *data_len* are format string 3186 * arguments. The *data* are a **u64** array and corresponding format string 3187 * values are stored in the array. For strings and pointers where pointees 3188 * are accessed, only the pointer values are stored in the *data* array. 3189 * The *data_len* is the size of *data* in bytes. 3190 * 3191 * Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory. 3192 * Reading kernel memory may fail due to either invalid address or 3193 * valid address but requiring a major memory fault. If reading kernel memory 3194 * fails, the string for **%s** will be an empty string, and the ip 3195 * address for **%p{i,I}{4,6}** will be 0. Not returning error to 3196 * bpf program is consistent with what **bpf_trace_printk**\ () does for now. 3197 * Return 3198 * 0 on success, or a negative error in case of failure: 3199 * 3200 * **-EBUSY** if per-CPU memory copy buffer is busy, can try again 3201 * by returning 1 from bpf program. 3202 * 3203 * **-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported. 3204 * 3205 * **-E2BIG** if *fmt* contains too many format specifiers. 3206 * 3207 * **-EOVERFLOW** if an overflow happened: The same object will be tried again. 3208 * 3209 * long bpf_seq_write(struct seq_file *m, const void *data, u32 len) 3210 * Description 3211 * **bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data. 3212 * The *m* represents the seq_file. The *data* and *len* represent the 3213 * data to write in bytes. 3214 * Return 3215 * 0 on success, or a negative error in case of failure: 3216 * 3217 * **-EOVERFLOW** if an overflow happened: The same object will be tried again. 3218 * 3219 * u64 bpf_sk_cgroup_id(struct bpf_sock *sk) 3220 * Description 3221 * Return the cgroup v2 id of the socket *sk*. 3222 * 3223 * *sk* must be a non-**NULL** pointer to a full socket, e.g. one 3224 * returned from **bpf_sk_lookup_xxx**\ (), 3225 * **bpf_sk_fullsock**\ (), etc. The format of returned id is 3226 * same as in **bpf_skb_cgroup_id**\ (). 3227 * 3228 * This helper is available only if the kernel was compiled with 3229 * the **CONFIG_SOCK_CGROUP_DATA** configuration option. 3230 * Return 3231 * The id is returned or 0 in case the id could not be retrieved. 3232 * 3233 * u64 bpf_sk_ancestor_cgroup_id(struct bpf_sock *sk, int ancestor_level) 3234 * Description 3235 * Return id of cgroup v2 that is ancestor of cgroup associated 3236 * with the *sk* at the *ancestor_level*. The root cgroup is at 3237 * *ancestor_level* zero and each step down the hierarchy 3238 * increments the level. If *ancestor_level* == level of cgroup 3239 * associated with *sk*, then return value will be same as that 3240 * of **bpf_sk_cgroup_id**\ (). 3241 * 3242 * The helper is useful to implement policies based on cgroups 3243 * that are upper in hierarchy than immediate cgroup associated 3244 * with *sk*. 3245 * 3246 * The format of returned id and helper limitations are same as in 3247 * **bpf_sk_cgroup_id**\ (). 3248 * Return 3249 * The id is returned or 0 in case the id could not be retrieved. 3250 * 3251 * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags) 3252 * Description 3253 * Copy *size* bytes from *data* into a ring buffer *ringbuf*. 3254 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification 3255 * of new data availability is sent. 3256 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification 3257 * of new data availability is sent unconditionally. 3258 * Return 3259 * 0 on success, or a negative error in case of failure. 3260 * 3261 * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags) 3262 * Description 3263 * Reserve *size* bytes of payload in a ring buffer *ringbuf*. 3264 * Return 3265 * Valid pointer with *size* bytes of memory available; NULL, 3266 * otherwise. 3267 * 3268 * void bpf_ringbuf_submit(void *data, u64 flags) 3269 * Description 3270 * Submit reserved ring buffer sample, pointed to by *data*. 3271 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification 3272 * of new data availability is sent. 3273 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification 3274 * of new data availability is sent unconditionally. 3275 * Return 3276 * Nothing. Always succeeds. 3277 * 3278 * void bpf_ringbuf_discard(void *data, u64 flags) 3279 * Description 3280 * Discard reserved ring buffer sample, pointed to by *data*. 3281 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification 3282 * of new data availability is sent. 3283 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification 3284 * of new data availability is sent unconditionally. 3285 * Return 3286 * Nothing. Always succeeds. 3287 * 3288 * u64 bpf_ringbuf_query(void *ringbuf, u64 flags) 3289 * Description 3290 * Query various characteristics of provided ring buffer. What 3291 * exactly is queries is determined by *flags*: 3292 * 3293 * * **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed. 3294 * * **BPF_RB_RING_SIZE**: The size of ring buffer. 3295 * * **BPF_RB_CONS_POS**: Consumer position (can wrap around). 3296 * * **BPF_RB_PROD_POS**: Producer(s) position (can wrap around). 3297 * 3298 * Data returned is just a momentary snapshot of actual values 3299 * and could be inaccurate, so this facility should be used to 3300 * power heuristics and for reporting, not to make 100% correct 3301 * calculation. 3302 * Return 3303 * Requested value, or 0, if *flags* are not recognized. 3304 * 3305 * long bpf_csum_level(struct sk_buff *skb, u64 level) 3306 * Description 3307 * Change the skbs checksum level by one layer up or down, or 3308 * reset it entirely to none in order to have the stack perform 3309 * checksum validation. The level is applicable to the following 3310 * protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of 3311 * | ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP | 3312 * through **bpf_skb_adjust_room**\ () helper with passing in 3313 * **BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one call 3314 * to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since 3315 * the UDP header is removed. Similarly, an encap of the latter 3316 * into the former could be accompanied by a helper call to 3317 * **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the 3318 * skb is still intended to be processed in higher layers of the 3319 * stack instead of just egressing at tc. 3320 * 3321 * There are three supported level settings at this time: 3322 * 3323 * * **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs 3324 * with CHECKSUM_UNNECESSARY. 3325 * * **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs 3326 * with CHECKSUM_UNNECESSARY. 3327 * * **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and 3328 * sets CHECKSUM_NONE to force checksum validation by the stack. 3329 * * **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current 3330 * skb->csum_level. 3331 * Return 3332 * 0 on success, or a negative error in case of failure. In the 3333 * case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level 3334 * is returned or the error code -EACCES in case the skb is not 3335 * subject to CHECKSUM_UNNECESSARY. 3336 * 3337 * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk) 3338 * Description 3339 * Dynamically cast a *sk* pointer to a *tcp6_sock* pointer. 3340 * Return 3341 * *sk* if casting is valid, or NULL otherwise. 3342 * 3343 * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk) 3344 * Description 3345 * Dynamically cast a *sk* pointer to a *tcp_sock* pointer. 3346 * Return 3347 * *sk* if casting is valid, or NULL otherwise. 3348 * 3349 * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk) 3350 * Description 3351 * Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer. 3352 * Return 3353 * *sk* if casting is valid, or NULL otherwise. 3354 * 3355 * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk) 3356 * Description 3357 * Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer. 3358 * Return 3359 * *sk* if casting is valid, or NULL otherwise. 3360 * 3361 * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk) 3362 * Description 3363 * Dynamically cast a *sk* pointer to a *udp6_sock* pointer. 3364 * Return 3365 * *sk* if casting is valid, or NULL otherwise. 3366 * 3367 * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags) 3368 * Description 3369 * Return a user or a kernel stack in bpf program provided buffer. 3370 * To achieve this, the helper needs *task*, which is a valid 3371 * pointer to struct task_struct. To store the stacktrace, the 3372 * bpf program provides *buf* with a nonnegative *size*. 3373 * 3374 * The last argument, *flags*, holds the number of stack frames to 3375 * skip (from 0 to 255), masked with 3376 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 3377 * the following flags: 3378 * 3379 * **BPF_F_USER_STACK** 3380 * Collect a user space stack instead of a kernel stack. 3381 * **BPF_F_USER_BUILD_ID** 3382 * Collect buildid+offset instead of ips for user stack, 3383 * only valid if **BPF_F_USER_STACK** is also specified. 3384 * 3385 * **bpf_get_task_stack**\ () can collect up to 3386 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 3387 * to sufficient large buffer size. Note that 3388 * this limit can be controlled with the **sysctl** program, and 3389 * that it should be manually increased in order to profile long 3390 * user stacks (such as stacks for Java programs). To do so, use: 3391 * 3392 * :: 3393 * 3394 * # sysctl kernel.perf_event_max_stack=<new value> 3395 * Return 3396 * A non-negative value equal to or less than *size* on success, 3397 * or a negative error in case of failure. 3398 * 3399 * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags) 3400 * Description 3401 * Load header option. Support reading a particular TCP header 3402 * option for bpf program (BPF_PROG_TYPE_SOCK_OPS). 3403 * 3404 * If *flags* is 0, it will search the option from the 3405 * sock_ops->skb_data. The comment in "struct bpf_sock_ops" 3406 * has details on what skb_data contains under different 3407 * sock_ops->op. 3408 * 3409 * The first byte of the *searchby_res* specifies the 3410 * kind that it wants to search. 3411 * 3412 * If the searching kind is an experimental kind 3413 * (i.e. 253 or 254 according to RFC6994). It also 3414 * needs to specify the "magic" which is either 3415 * 2 bytes or 4 bytes. It then also needs to 3416 * specify the size of the magic by using 3417 * the 2nd byte which is "kind-length" of a TCP 3418 * header option and the "kind-length" also 3419 * includes the first 2 bytes "kind" and "kind-length" 3420 * itself as a normal TCP header option also does. 3421 * 3422 * For example, to search experimental kind 254 with 3423 * 2 byte magic 0xeB9F, the searchby_res should be 3424 * [ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ]. 3425 * 3426 * To search for the standard window scale option (3), 3427 * the searchby_res should be [ 3, 0, 0, .... 0 ]. 3428 * Note, kind-length must be 0 for regular option. 3429 * 3430 * Searching for No-Op (0) and End-of-Option-List (1) are 3431 * not supported. 3432 * 3433 * *len* must be at least 2 bytes which is the minimal size 3434 * of a header option. 3435 * 3436 * Supported flags: 3437 * * **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the 3438 * saved_syn packet or the just-received syn packet. 3439 * 3440 * Return 3441 * >0 when found, the header option is copied to *searchby_res*. 3442 * The return value is the total length copied. 3443 * 3444 * **-EINVAL** If param is invalid 3445 * 3446 * **-ENOMSG** The option is not found 3447 * 3448 * **-ENOENT** No syn packet available when 3449 * **BPF_LOAD_HDR_OPT_TCP_SYN** is used 3450 * 3451 * **-ENOSPC** Not enough space. Only *len* number of 3452 * bytes are copied. 3453 * 3454 * **-EFAULT** Cannot parse the header options in the packet 3455 * 3456 * **-EPERM** This helper cannot be used under the 3457 * current sock_ops->op. 3458 * 3459 * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags) 3460 * Description 3461 * Store header option. The data will be copied 3462 * from buffer *from* with length *len* to the TCP header. 3463 * 3464 * The buffer *from* should have the whole option that 3465 * includes the kind, kind-length, and the actual 3466 * option data. The *len* must be at least kind-length 3467 * long. The kind-length does not have to be 4 byte 3468 * aligned. The kernel will take care of the padding 3469 * and setting the 4 bytes aligned value to th->doff. 3470 * 3471 * This helper will check for duplicated option 3472 * by searching the same option in the outgoing skb. 3473 * 3474 * This helper can only be called during 3475 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB. 3476 * 3477 * Return 3478 * 0 on success, or negative error in case of failure: 3479 * 3480 * **-EINVAL** If param is invalid 3481 * 3482 * **-ENOSPC** Not enough space in the header. 3483 * Nothing has been written 3484 * 3485 * **-EEXIST** The option has already existed 3486 * 3487 * **-EFAULT** Cannot parse the existing header options 3488 * 3489 * **-EPERM** This helper cannot be used under the 3490 * current sock_ops->op. 3491 * 3492 * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags) 3493 * Description 3494 * Reserve *len* bytes for the bpf header option. The 3495 * space will be used by bpf_store_hdr_opt() later in 3496 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB. 3497 * 3498 * If bpf_reserve_hdr_opt() is called multiple times, 3499 * the total number of bytes will be reserved. 3500 * 3501 * This helper can only be called during 3502 * BPF_SOCK_OPS_HDR_OPT_LEN_CB. 3503 * 3504 * Return 3505 * 0 on success, or negative error in case of failure: 3506 * 3507 * **-EINVAL** if param is invalid 3508 * 3509 * **-ENOSPC** Not enough space in the header. 3510 * 3511 * **-EPERM** This helper cannot be used under the 3512 * current sock_ops->op. 3513 * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags) 3514 * Description 3515 * Get a bpf_local_storage from an *inode*. 3516 * 3517 * Logically, it could be thought of as getting the value from 3518 * a *map* with *inode* as the **key**. From this 3519 * perspective, the usage is not much different from 3520 * **bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this 3521 * helper enforces the key must be an inode and the map must also 3522 * be a **BPF_MAP_TYPE_INODE_STORAGE**. 3523 * 3524 * Underneath, the value is stored locally at *inode* instead of 3525 * the *map*. The *map* is used as the bpf-local-storage 3526 * "type". The bpf-local-storage "type" (i.e. the *map*) is 3527 * searched against all bpf_local_storage residing at *inode*. 3528 * 3529 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be 3530 * used such that a new bpf_local_storage will be 3531 * created if one does not exist. *value* can be used 3532 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify 3533 * the initial value of a bpf_local_storage. If *value* is 3534 * **NULL**, the new bpf_local_storage will be zero initialized. 3535 * Return 3536 * A bpf_local_storage pointer is returned on success. 3537 * 3538 * **NULL** if not found or there was an error in adding 3539 * a new bpf_local_storage. 3540 * 3541 * int bpf_inode_storage_delete(struct bpf_map *map, void *inode) 3542 * Description 3543 * Delete a bpf_local_storage from an *inode*. 3544 * Return 3545 * 0 on success. 3546 * 3547 * **-ENOENT** if the bpf_local_storage cannot be found. 3548 */ 3549 #define __BPF_FUNC_MAPPER(FN) \ 3550 FN(unspec), \ 3551 FN(map_lookup_elem), \ 3552 FN(map_update_elem), \ 3553 FN(map_delete_elem), \ 3554 FN(probe_read), \ 3555 FN(ktime_get_ns), \ 3556 FN(trace_printk), \ 3557 FN(get_prandom_u32), \ 3558 FN(get_smp_processor_id), \ 3559 FN(skb_store_bytes), \ 3560 FN(l3_csum_replace), \ 3561 FN(l4_csum_replace), \ 3562 FN(tail_call), \ 3563 FN(clone_redirect), \ 3564 FN(get_current_pid_tgid), \ 3565 FN(get_current_uid_gid), \ 3566 FN(get_current_comm), \ 3567 FN(get_cgroup_classid), \ 3568 FN(skb_vlan_push), \ 3569 FN(skb_vlan_pop), \ 3570 FN(skb_get_tunnel_key), \ 3571 FN(skb_set_tunnel_key), \ 3572 FN(perf_event_read), \ 3573 FN(redirect), \ 3574 FN(get_route_realm), \ 3575 FN(perf_event_output), \ 3576 FN(skb_load_bytes), \ 3577 FN(get_stackid), \ 3578 FN(csum_diff), \ 3579 FN(skb_get_tunnel_opt), \ 3580 FN(skb_set_tunnel_opt), \ 3581 FN(skb_change_proto), \ 3582 FN(skb_change_type), \ 3583 FN(skb_under_cgroup), \ 3584 FN(get_hash_recalc), \ 3585 FN(get_current_task), \ 3586 FN(probe_write_user), \ 3587 FN(current_task_under_cgroup), \ 3588 FN(skb_change_tail), \ 3589 FN(skb_pull_data), \ 3590 FN(csum_update), \ 3591 FN(set_hash_invalid), \ 3592 FN(get_numa_node_id), \ 3593 FN(skb_change_head), \ 3594 FN(xdp_adjust_head), \ 3595 FN(probe_read_str), \ 3596 FN(get_socket_cookie), \ 3597 FN(get_socket_uid), \ 3598 FN(set_hash), \ 3599 FN(setsockopt), \ 3600 FN(skb_adjust_room), \ 3601 FN(redirect_map), \ 3602 FN(sk_redirect_map), \ 3603 FN(sock_map_update), \ 3604 FN(xdp_adjust_meta), \ 3605 FN(perf_event_read_value), \ 3606 FN(perf_prog_read_value), \ 3607 FN(getsockopt), \ 3608 FN(override_return), \ 3609 FN(sock_ops_cb_flags_set), \ 3610 FN(msg_redirect_map), \ 3611 FN(msg_apply_bytes), \ 3612 FN(msg_cork_bytes), \ 3613 FN(msg_pull_data), \ 3614 FN(bind), \ 3615 FN(xdp_adjust_tail), \ 3616 FN(skb_get_xfrm_state), \ 3617 FN(get_stack), \ 3618 FN(skb_load_bytes_relative), \ 3619 FN(fib_lookup), \ 3620 FN(sock_hash_update), \ 3621 FN(msg_redirect_hash), \ 3622 FN(sk_redirect_hash), \ 3623 FN(lwt_push_encap), \ 3624 FN(lwt_seg6_store_bytes), \ 3625 FN(lwt_seg6_adjust_srh), \ 3626 FN(lwt_seg6_action), \ 3627 FN(rc_repeat), \ 3628 FN(rc_keydown), \ 3629 FN(skb_cgroup_id), \ 3630 FN(get_current_cgroup_id), \ 3631 FN(get_local_storage), \ 3632 FN(sk_select_reuseport), \ 3633 FN(skb_ancestor_cgroup_id), \ 3634 FN(sk_lookup_tcp), \ 3635 FN(sk_lookup_udp), \ 3636 FN(sk_release), \ 3637 FN(map_push_elem), \ 3638 FN(map_pop_elem), \ 3639 FN(map_peek_elem), \ 3640 FN(msg_push_data), \ 3641 FN(msg_pop_data), \ 3642 FN(rc_pointer_rel), \ 3643 FN(spin_lock), \ 3644 FN(spin_unlock), \ 3645 FN(sk_fullsock), \ 3646 FN(tcp_sock), \ 3647 FN(skb_ecn_set_ce), \ 3648 FN(get_listener_sock), \ 3649 FN(skc_lookup_tcp), \ 3650 FN(tcp_check_syncookie), \ 3651 FN(sysctl_get_name), \ 3652 FN(sysctl_get_current_value), \ 3653 FN(sysctl_get_new_value), \ 3654 FN(sysctl_set_new_value), \ 3655 FN(strtol), \ 3656 FN(strtoul), \ 3657 FN(sk_storage_get), \ 3658 FN(sk_storage_delete), \ 3659 FN(send_signal), \ 3660 FN(tcp_gen_syncookie), \ 3661 FN(skb_output), \ 3662 FN(probe_read_user), \ 3663 FN(probe_read_kernel), \ 3664 FN(probe_read_user_str), \ 3665 FN(probe_read_kernel_str), \ 3666 FN(tcp_send_ack), \ 3667 FN(send_signal_thread), \ 3668 FN(jiffies64), \ 3669 FN(read_branch_records), \ 3670 FN(get_ns_current_pid_tgid), \ 3671 FN(xdp_output), \ 3672 FN(get_netns_cookie), \ 3673 FN(get_current_ancestor_cgroup_id), \ 3674 FN(sk_assign), \ 3675 FN(ktime_get_boot_ns), \ 3676 FN(seq_printf), \ 3677 FN(seq_write), \ 3678 FN(sk_cgroup_id), \ 3679 FN(sk_ancestor_cgroup_id), \ 3680 FN(ringbuf_output), \ 3681 FN(ringbuf_reserve), \ 3682 FN(ringbuf_submit), \ 3683 FN(ringbuf_discard), \ 3684 FN(ringbuf_query), \ 3685 FN(csum_level), \ 3686 FN(skc_to_tcp6_sock), \ 3687 FN(skc_to_tcp_sock), \ 3688 FN(skc_to_tcp_timewait_sock), \ 3689 FN(skc_to_tcp_request_sock), \ 3690 FN(skc_to_udp6_sock), \ 3691 FN(get_task_stack), \ 3692 FN(load_hdr_opt), \ 3693 FN(store_hdr_opt), \ 3694 FN(reserve_hdr_opt), \ 3695 FN(inode_storage_get), \ 3696 FN(inode_storage_delete), \ 3697 /* */ 3698 3699 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 3700 * function eBPF program intends to call 3701 */ 3702 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 3703 enum bpf_func_id { 3704 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 3705 __BPF_FUNC_MAX_ID, 3706 }; 3707 #undef __BPF_ENUM_FN 3708 3709 /* All flags used by eBPF helper functions, placed here. */ 3710 3711 /* BPF_FUNC_skb_store_bytes flags. */ 3712 enum { 3713 BPF_F_RECOMPUTE_CSUM = (1ULL << 0), 3714 BPF_F_INVALIDATE_HASH = (1ULL << 1), 3715 }; 3716 3717 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 3718 * First 4 bits are for passing the header field size. 3719 */ 3720 enum { 3721 BPF_F_HDR_FIELD_MASK = 0xfULL, 3722 }; 3723 3724 /* BPF_FUNC_l4_csum_replace flags. */ 3725 enum { 3726 BPF_F_PSEUDO_HDR = (1ULL << 4), 3727 BPF_F_MARK_MANGLED_0 = (1ULL << 5), 3728 BPF_F_MARK_ENFORCE = (1ULL << 6), 3729 }; 3730 3731 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 3732 enum { 3733 BPF_F_INGRESS = (1ULL << 0), 3734 }; 3735 3736 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 3737 enum { 3738 BPF_F_TUNINFO_IPV6 = (1ULL << 0), 3739 }; 3740 3741 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 3742 enum { 3743 BPF_F_SKIP_FIELD_MASK = 0xffULL, 3744 BPF_F_USER_STACK = (1ULL << 8), 3745 /* flags used by BPF_FUNC_get_stackid only. */ 3746 BPF_F_FAST_STACK_CMP = (1ULL << 9), 3747 BPF_F_REUSE_STACKID = (1ULL << 10), 3748 /* flags used by BPF_FUNC_get_stack only. */ 3749 BPF_F_USER_BUILD_ID = (1ULL << 11), 3750 }; 3751 3752 /* BPF_FUNC_skb_set_tunnel_key flags. */ 3753 enum { 3754 BPF_F_ZERO_CSUM_TX = (1ULL << 1), 3755 BPF_F_DONT_FRAGMENT = (1ULL << 2), 3756 BPF_F_SEQ_NUMBER = (1ULL << 3), 3757 }; 3758 3759 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 3760 * BPF_FUNC_perf_event_read_value flags. 3761 */ 3762 enum { 3763 BPF_F_INDEX_MASK = 0xffffffffULL, 3764 BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK, 3765 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 3766 BPF_F_CTXLEN_MASK = (0xfffffULL << 32), 3767 }; 3768 3769 /* Current network namespace */ 3770 enum { 3771 BPF_F_CURRENT_NETNS = (-1L), 3772 }; 3773 3774 /* BPF_FUNC_csum_level level values. */ 3775 enum { 3776 BPF_CSUM_LEVEL_QUERY, 3777 BPF_CSUM_LEVEL_INC, 3778 BPF_CSUM_LEVEL_DEC, 3779 BPF_CSUM_LEVEL_RESET, 3780 }; 3781 3782 /* BPF_FUNC_skb_adjust_room flags. */ 3783 enum { 3784 BPF_F_ADJ_ROOM_FIXED_GSO = (1ULL << 0), 3785 BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 = (1ULL << 1), 3786 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 = (1ULL << 2), 3787 BPF_F_ADJ_ROOM_ENCAP_L4_GRE = (1ULL << 3), 3788 BPF_F_ADJ_ROOM_ENCAP_L4_UDP = (1ULL << 4), 3789 BPF_F_ADJ_ROOM_NO_CSUM_RESET = (1ULL << 5), 3790 }; 3791 3792 enum { 3793 BPF_ADJ_ROOM_ENCAP_L2_MASK = 0xff, 3794 BPF_ADJ_ROOM_ENCAP_L2_SHIFT = 56, 3795 }; 3796 3797 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \ 3798 BPF_ADJ_ROOM_ENCAP_L2_MASK) \ 3799 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT) 3800 3801 /* BPF_FUNC_sysctl_get_name flags. */ 3802 enum { 3803 BPF_F_SYSCTL_BASE_NAME = (1ULL << 0), 3804 }; 3805 3806 /* BPF_FUNC_<kernel_obj>_storage_get flags */ 3807 enum { 3808 BPF_LOCAL_STORAGE_GET_F_CREATE = (1ULL << 0), 3809 /* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility 3810 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead. 3811 */ 3812 BPF_SK_STORAGE_GET_F_CREATE = BPF_LOCAL_STORAGE_GET_F_CREATE, 3813 }; 3814 3815 /* BPF_FUNC_read_branch_records flags. */ 3816 enum { 3817 BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0), 3818 }; 3819 3820 /* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and 3821 * BPF_FUNC_bpf_ringbuf_output flags. 3822 */ 3823 enum { 3824 BPF_RB_NO_WAKEUP = (1ULL << 0), 3825 BPF_RB_FORCE_WAKEUP = (1ULL << 1), 3826 }; 3827 3828 /* BPF_FUNC_bpf_ringbuf_query flags */ 3829 enum { 3830 BPF_RB_AVAIL_DATA = 0, 3831 BPF_RB_RING_SIZE = 1, 3832 BPF_RB_CONS_POS = 2, 3833 BPF_RB_PROD_POS = 3, 3834 }; 3835 3836 /* BPF ring buffer constants */ 3837 enum { 3838 BPF_RINGBUF_BUSY_BIT = (1U << 31), 3839 BPF_RINGBUF_DISCARD_BIT = (1U << 30), 3840 BPF_RINGBUF_HDR_SZ = 8, 3841 }; 3842 3843 /* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */ 3844 enum { 3845 BPF_SK_LOOKUP_F_REPLACE = (1ULL << 0), 3846 BPF_SK_LOOKUP_F_NO_REUSEPORT = (1ULL << 1), 3847 }; 3848 3849 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 3850 enum bpf_adj_room_mode { 3851 BPF_ADJ_ROOM_NET, 3852 BPF_ADJ_ROOM_MAC, 3853 }; 3854 3855 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 3856 enum bpf_hdr_start_off { 3857 BPF_HDR_START_MAC, 3858 BPF_HDR_START_NET, 3859 }; 3860 3861 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 3862 enum bpf_lwt_encap_mode { 3863 BPF_LWT_ENCAP_SEG6, 3864 BPF_LWT_ENCAP_SEG6_INLINE, 3865 BPF_LWT_ENCAP_IP, 3866 }; 3867 3868 #define __bpf_md_ptr(type, name) \ 3869 union { \ 3870 type name; \ 3871 __u64 :64; \ 3872 } __attribute__((aligned(8))) 3873 3874 /* user accessible mirror of in-kernel sk_buff. 3875 * new fields can only be added to the end of this structure 3876 */ 3877 struct __sk_buff { 3878 __u32 len; 3879 __u32 pkt_type; 3880 __u32 mark; 3881 __u32 queue_mapping; 3882 __u32 protocol; 3883 __u32 vlan_present; 3884 __u32 vlan_tci; 3885 __u32 vlan_proto; 3886 __u32 priority; 3887 __u32 ingress_ifindex; 3888 __u32 ifindex; 3889 __u32 tc_index; 3890 __u32 cb[5]; 3891 __u32 hash; 3892 __u32 tc_classid; 3893 __u32 data; 3894 __u32 data_end; 3895 __u32 napi_id; 3896 3897 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 3898 __u32 family; 3899 __u32 remote_ip4; /* Stored in network byte order */ 3900 __u32 local_ip4; /* Stored in network byte order */ 3901 __u32 remote_ip6[4]; /* Stored in network byte order */ 3902 __u32 local_ip6[4]; /* Stored in network byte order */ 3903 __u32 remote_port; /* Stored in network byte order */ 3904 __u32 local_port; /* stored in host byte order */ 3905 /* ... here. */ 3906 3907 __u32 data_meta; 3908 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 3909 __u64 tstamp; 3910 __u32 wire_len; 3911 __u32 gso_segs; 3912 __bpf_md_ptr(struct bpf_sock *, sk); 3913 __u32 gso_size; 3914 }; 3915 3916 struct bpf_tunnel_key { 3917 __u32 tunnel_id; 3918 union { 3919 __u32 remote_ipv4; 3920 __u32 remote_ipv6[4]; 3921 }; 3922 __u8 tunnel_tos; 3923 __u8 tunnel_ttl; 3924 __u16 tunnel_ext; /* Padding, future use. */ 3925 __u32 tunnel_label; 3926 }; 3927 3928 /* user accessible mirror of in-kernel xfrm_state. 3929 * new fields can only be added to the end of this structure 3930 */ 3931 struct bpf_xfrm_state { 3932 __u32 reqid; 3933 __u32 spi; /* Stored in network byte order */ 3934 __u16 family; 3935 __u16 ext; /* Padding, future use. */ 3936 union { 3937 __u32 remote_ipv4; /* Stored in network byte order */ 3938 __u32 remote_ipv6[4]; /* Stored in network byte order */ 3939 }; 3940 }; 3941 3942 /* Generic BPF return codes which all BPF program types may support. 3943 * The values are binary compatible with their TC_ACT_* counter-part to 3944 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 3945 * programs. 3946 * 3947 * XDP is handled seprately, see XDP_*. 3948 */ 3949 enum bpf_ret_code { 3950 BPF_OK = 0, 3951 /* 1 reserved */ 3952 BPF_DROP = 2, 3953 /* 3-6 reserved */ 3954 BPF_REDIRECT = 7, 3955 /* >127 are reserved for prog type specific return codes. 3956 * 3957 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and 3958 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been 3959 * changed and should be routed based on its new L3 header. 3960 * (This is an L3 redirect, as opposed to L2 redirect 3961 * represented by BPF_REDIRECT above). 3962 */ 3963 BPF_LWT_REROUTE = 128, 3964 }; 3965 3966 struct bpf_sock { 3967 __u32 bound_dev_if; 3968 __u32 family; 3969 __u32 type; 3970 __u32 protocol; 3971 __u32 mark; 3972 __u32 priority; 3973 /* IP address also allows 1 and 2 bytes access */ 3974 __u32 src_ip4; 3975 __u32 src_ip6[4]; 3976 __u32 src_port; /* host byte order */ 3977 __u32 dst_port; /* network byte order */ 3978 __u32 dst_ip4; 3979 __u32 dst_ip6[4]; 3980 __u32 state; 3981 __s32 rx_queue_mapping; 3982 }; 3983 3984 struct bpf_tcp_sock { 3985 __u32 snd_cwnd; /* Sending congestion window */ 3986 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */ 3987 __u32 rtt_min; 3988 __u32 snd_ssthresh; /* Slow start size threshold */ 3989 __u32 rcv_nxt; /* What we want to receive next */ 3990 __u32 snd_nxt; /* Next sequence we send */ 3991 __u32 snd_una; /* First byte we want an ack for */ 3992 __u32 mss_cache; /* Cached effective mss, not including SACKS */ 3993 __u32 ecn_flags; /* ECN status bits. */ 3994 __u32 rate_delivered; /* saved rate sample: packets delivered */ 3995 __u32 rate_interval_us; /* saved rate sample: time elapsed */ 3996 __u32 packets_out; /* Packets which are "in flight" */ 3997 __u32 retrans_out; /* Retransmitted packets out */ 3998 __u32 total_retrans; /* Total retransmits for entire connection */ 3999 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn 4000 * total number of segments in. 4001 */ 4002 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn 4003 * total number of data segments in. 4004 */ 4005 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut 4006 * The total number of segments sent. 4007 */ 4008 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut 4009 * total number of data segments sent. 4010 */ 4011 __u32 lost_out; /* Lost packets */ 4012 __u32 sacked_out; /* SACK'd packets */ 4013 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived 4014 * sum(delta(rcv_nxt)), or how many bytes 4015 * were acked. 4016 */ 4017 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked 4018 * sum(delta(snd_una)), or how many bytes 4019 * were acked. 4020 */ 4021 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups 4022 * total number of DSACK blocks received 4023 */ 4024 __u32 delivered; /* Total data packets delivered incl. rexmits */ 4025 __u32 delivered_ce; /* Like the above but only ECE marked packets */ 4026 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */ 4027 }; 4028 4029 struct bpf_sock_tuple { 4030 union { 4031 struct { 4032 __be32 saddr; 4033 __be32 daddr; 4034 __be16 sport; 4035 __be16 dport; 4036 } ipv4; 4037 struct { 4038 __be32 saddr[4]; 4039 __be32 daddr[4]; 4040 __be16 sport; 4041 __be16 dport; 4042 } ipv6; 4043 }; 4044 }; 4045 4046 struct bpf_xdp_sock { 4047 __u32 queue_id; 4048 }; 4049 4050 #define XDP_PACKET_HEADROOM 256 4051 4052 /* User return codes for XDP prog type. 4053 * A valid XDP program must return one of these defined values. All other 4054 * return codes are reserved for future use. Unknown return codes will 4055 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 4056 */ 4057 enum xdp_action { 4058 XDP_ABORTED = 0, 4059 XDP_DROP, 4060 XDP_PASS, 4061 XDP_TX, 4062 XDP_REDIRECT, 4063 }; 4064 4065 /* user accessible metadata for XDP packet hook 4066 * new fields must be added to the end of this structure 4067 */ 4068 struct xdp_md { 4069 __u32 data; 4070 __u32 data_end; 4071 __u32 data_meta; 4072 /* Below access go through struct xdp_rxq_info */ 4073 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 4074 __u32 rx_queue_index; /* rxq->queue_index */ 4075 4076 __u32 egress_ifindex; /* txq->dev->ifindex */ 4077 }; 4078 4079 /* DEVMAP map-value layout 4080 * 4081 * The struct data-layout of map-value is a configuration interface. 4082 * New members can only be added to the end of this structure. 4083 */ 4084 struct bpf_devmap_val { 4085 __u32 ifindex; /* device index */ 4086 union { 4087 int fd; /* prog fd on map write */ 4088 __u32 id; /* prog id on map read */ 4089 } bpf_prog; 4090 }; 4091 4092 /* CPUMAP map-value layout 4093 * 4094 * The struct data-layout of map-value is a configuration interface. 4095 * New members can only be added to the end of this structure. 4096 */ 4097 struct bpf_cpumap_val { 4098 __u32 qsize; /* queue size to remote target CPU */ 4099 union { 4100 int fd; /* prog fd on map write */ 4101 __u32 id; /* prog id on map read */ 4102 } bpf_prog; 4103 }; 4104 4105 enum sk_action { 4106 SK_DROP = 0, 4107 SK_PASS, 4108 }; 4109 4110 /* user accessible metadata for SK_MSG packet hook, new fields must 4111 * be added to the end of this structure 4112 */ 4113 struct sk_msg_md { 4114 __bpf_md_ptr(void *, data); 4115 __bpf_md_ptr(void *, data_end); 4116 4117 __u32 family; 4118 __u32 remote_ip4; /* Stored in network byte order */ 4119 __u32 local_ip4; /* Stored in network byte order */ 4120 __u32 remote_ip6[4]; /* Stored in network byte order */ 4121 __u32 local_ip6[4]; /* Stored in network byte order */ 4122 __u32 remote_port; /* Stored in network byte order */ 4123 __u32 local_port; /* stored in host byte order */ 4124 __u32 size; /* Total size of sk_msg */ 4125 4126 __bpf_md_ptr(struct bpf_sock *, sk); /* current socket */ 4127 }; 4128 4129 struct sk_reuseport_md { 4130 /* 4131 * Start of directly accessible data. It begins from 4132 * the tcp/udp header. 4133 */ 4134 __bpf_md_ptr(void *, data); 4135 /* End of directly accessible data */ 4136 __bpf_md_ptr(void *, data_end); 4137 /* 4138 * Total length of packet (starting from the tcp/udp header). 4139 * Note that the directly accessible bytes (data_end - data) 4140 * could be less than this "len". Those bytes could be 4141 * indirectly read by a helper "bpf_skb_load_bytes()". 4142 */ 4143 __u32 len; 4144 /* 4145 * Eth protocol in the mac header (network byte order). e.g. 4146 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 4147 */ 4148 __u32 eth_protocol; 4149 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 4150 __u32 bind_inany; /* Is sock bound to an INANY address? */ 4151 __u32 hash; /* A hash of the packet 4 tuples */ 4152 }; 4153 4154 #define BPF_TAG_SIZE 8 4155 4156 struct bpf_prog_info { 4157 __u32 type; 4158 __u32 id; 4159 __u8 tag[BPF_TAG_SIZE]; 4160 __u32 jited_prog_len; 4161 __u32 xlated_prog_len; 4162 __aligned_u64 jited_prog_insns; 4163 __aligned_u64 xlated_prog_insns; 4164 __u64 load_time; /* ns since boottime */ 4165 __u32 created_by_uid; 4166 __u32 nr_map_ids; 4167 __aligned_u64 map_ids; 4168 char name[BPF_OBJ_NAME_LEN]; 4169 __u32 ifindex; 4170 __u32 gpl_compatible:1; 4171 __u32 :31; /* alignment pad */ 4172 __u64 netns_dev; 4173 __u64 netns_ino; 4174 __u32 nr_jited_ksyms; 4175 __u32 nr_jited_func_lens; 4176 __aligned_u64 jited_ksyms; 4177 __aligned_u64 jited_func_lens; 4178 __u32 btf_id; 4179 __u32 func_info_rec_size; 4180 __aligned_u64 func_info; 4181 __u32 nr_func_info; 4182 __u32 nr_line_info; 4183 __aligned_u64 line_info; 4184 __aligned_u64 jited_line_info; 4185 __u32 nr_jited_line_info; 4186 __u32 line_info_rec_size; 4187 __u32 jited_line_info_rec_size; 4188 __u32 nr_prog_tags; 4189 __aligned_u64 prog_tags; 4190 __u64 run_time_ns; 4191 __u64 run_cnt; 4192 } __attribute__((aligned(8))); 4193 4194 struct bpf_map_info { 4195 __u32 type; 4196 __u32 id; 4197 __u32 key_size; 4198 __u32 value_size; 4199 __u32 max_entries; 4200 __u32 map_flags; 4201 char name[BPF_OBJ_NAME_LEN]; 4202 __u32 ifindex; 4203 __u32 btf_vmlinux_value_type_id; 4204 __u64 netns_dev; 4205 __u64 netns_ino; 4206 __u32 btf_id; 4207 __u32 btf_key_type_id; 4208 __u32 btf_value_type_id; 4209 } __attribute__((aligned(8))); 4210 4211 struct bpf_btf_info { 4212 __aligned_u64 btf; 4213 __u32 btf_size; 4214 __u32 id; 4215 } __attribute__((aligned(8))); 4216 4217 struct bpf_link_info { 4218 __u32 type; 4219 __u32 id; 4220 __u32 prog_id; 4221 union { 4222 struct { 4223 __aligned_u64 tp_name; /* in/out: tp_name buffer ptr */ 4224 __u32 tp_name_len; /* in/out: tp_name buffer len */ 4225 } raw_tracepoint; 4226 struct { 4227 __u32 attach_type; 4228 } tracing; 4229 struct { 4230 __u64 cgroup_id; 4231 __u32 attach_type; 4232 } cgroup; 4233 struct { 4234 __aligned_u64 target_name; /* in/out: target_name buffer ptr */ 4235 __u32 target_name_len; /* in/out: target_name buffer len */ 4236 union { 4237 __u32 map_id; 4238 } map; 4239 } iter; 4240 struct { 4241 __u32 netns_ino; 4242 __u32 attach_type; 4243 } netns; 4244 struct { 4245 __u32 ifindex; 4246 } xdp; 4247 }; 4248 } __attribute__((aligned(8))); 4249 4250 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 4251 * by user and intended to be used by socket (e.g. to bind to, depends on 4252 * attach type). 4253 */ 4254 struct bpf_sock_addr { 4255 __u32 user_family; /* Allows 4-byte read, but no write. */ 4256 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 4257 * Stored in network byte order. 4258 */ 4259 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write. 4260 * Stored in network byte order. 4261 */ 4262 __u32 user_port; /* Allows 1,2,4-byte read and 4-byte write. 4263 * Stored in network byte order 4264 */ 4265 __u32 family; /* Allows 4-byte read, but no write */ 4266 __u32 type; /* Allows 4-byte read, but no write */ 4267 __u32 protocol; /* Allows 4-byte read, but no write */ 4268 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write. 4269 * Stored in network byte order. 4270 */ 4271 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write. 4272 * Stored in network byte order. 4273 */ 4274 __bpf_md_ptr(struct bpf_sock *, sk); 4275 }; 4276 4277 /* User bpf_sock_ops struct to access socket values and specify request ops 4278 * and their replies. 4279 * Some of this fields are in network (bigendian) byte order and may need 4280 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 4281 * New fields can only be added at the end of this structure 4282 */ 4283 struct bpf_sock_ops { 4284 __u32 op; 4285 union { 4286 __u32 args[4]; /* Optionally passed to bpf program */ 4287 __u32 reply; /* Returned by bpf program */ 4288 __u32 replylong[4]; /* Optionally returned by bpf prog */ 4289 }; 4290 __u32 family; 4291 __u32 remote_ip4; /* Stored in network byte order */ 4292 __u32 local_ip4; /* Stored in network byte order */ 4293 __u32 remote_ip6[4]; /* Stored in network byte order */ 4294 __u32 local_ip6[4]; /* Stored in network byte order */ 4295 __u32 remote_port; /* Stored in network byte order */ 4296 __u32 local_port; /* stored in host byte order */ 4297 __u32 is_fullsock; /* Some TCP fields are only valid if 4298 * there is a full socket. If not, the 4299 * fields read as zero. 4300 */ 4301 __u32 snd_cwnd; 4302 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 4303 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 4304 __u32 state; 4305 __u32 rtt_min; 4306 __u32 snd_ssthresh; 4307 __u32 rcv_nxt; 4308 __u32 snd_nxt; 4309 __u32 snd_una; 4310 __u32 mss_cache; 4311 __u32 ecn_flags; 4312 __u32 rate_delivered; 4313 __u32 rate_interval_us; 4314 __u32 packets_out; 4315 __u32 retrans_out; 4316 __u32 total_retrans; 4317 __u32 segs_in; 4318 __u32 data_segs_in; 4319 __u32 segs_out; 4320 __u32 data_segs_out; 4321 __u32 lost_out; 4322 __u32 sacked_out; 4323 __u32 sk_txhash; 4324 __u64 bytes_received; 4325 __u64 bytes_acked; 4326 __bpf_md_ptr(struct bpf_sock *, sk); 4327 /* [skb_data, skb_data_end) covers the whole TCP header. 4328 * 4329 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received 4330 * BPF_SOCK_OPS_HDR_OPT_LEN_CB: Not useful because the 4331 * header has not been written. 4332 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have 4333 * been written so far. 4334 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB: The SYNACK that concludes 4335 * the 3WHS. 4336 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes 4337 * the 3WHS. 4338 * 4339 * bpf_load_hdr_opt() can also be used to read a particular option. 4340 */ 4341 __bpf_md_ptr(void *, skb_data); 4342 __bpf_md_ptr(void *, skb_data_end); 4343 __u32 skb_len; /* The total length of a packet. 4344 * It includes the header, options, 4345 * and payload. 4346 */ 4347 __u32 skb_tcp_flags; /* tcp_flags of the header. It provides 4348 * an easy way to check for tcp_flags 4349 * without parsing skb_data. 4350 * 4351 * In particular, the skb_tcp_flags 4352 * will still be available in 4353 * BPF_SOCK_OPS_HDR_OPT_LEN even though 4354 * the outgoing header has not 4355 * been written yet. 4356 */ 4357 }; 4358 4359 /* Definitions for bpf_sock_ops_cb_flags */ 4360 enum { 4361 BPF_SOCK_OPS_RTO_CB_FLAG = (1<<0), 4362 BPF_SOCK_OPS_RETRANS_CB_FLAG = (1<<1), 4363 BPF_SOCK_OPS_STATE_CB_FLAG = (1<<2), 4364 BPF_SOCK_OPS_RTT_CB_FLAG = (1<<3), 4365 /* Call bpf for all received TCP headers. The bpf prog will be 4366 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB 4367 * 4368 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB 4369 * for the header option related helpers that will be useful 4370 * to the bpf programs. 4371 * 4372 * It could be used at the client/active side (i.e. connect() side) 4373 * when the server told it that the server was in syncookie 4374 * mode and required the active side to resend the bpf-written 4375 * options. The active side can keep writing the bpf-options until 4376 * it received a valid packet from the server side to confirm 4377 * the earlier packet (and options) has been received. The later 4378 * example patch is using it like this at the active side when the 4379 * server is in syncookie mode. 4380 * 4381 * The bpf prog will usually turn this off in the common cases. 4382 */ 4383 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG = (1<<4), 4384 /* Call bpf when kernel has received a header option that 4385 * the kernel cannot handle. The bpf prog will be called under 4386 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB. 4387 * 4388 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB 4389 * for the header option related helpers that will be useful 4390 * to the bpf programs. 4391 */ 4392 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5), 4393 /* Call bpf when the kernel is writing header options for the 4394 * outgoing packet. The bpf prog will first be called 4395 * to reserve space in a skb under 4396 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB. Then 4397 * the bpf prog will be called to write the header option(s) 4398 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB. 4399 * 4400 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB 4401 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option 4402 * related helpers that will be useful to the bpf programs. 4403 * 4404 * The kernel gets its chance to reserve space and write 4405 * options first before the BPF program does. 4406 */ 4407 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6), 4408 /* Mask of all currently supported cb flags */ 4409 BPF_SOCK_OPS_ALL_CB_FLAGS = 0x7F, 4410 }; 4411 4412 /* List of known BPF sock_ops operators. 4413 * New entries can only be added at the end 4414 */ 4415 enum { 4416 BPF_SOCK_OPS_VOID, 4417 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 4418 * -1 if default value should be used 4419 */ 4420 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 4421 * window (in packets) or -1 if default 4422 * value should be used 4423 */ 4424 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 4425 * active connection is initialized 4426 */ 4427 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 4428 * active connection is 4429 * established 4430 */ 4431 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 4432 * passive connection is 4433 * established 4434 */ 4435 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 4436 * needs ECN 4437 */ 4438 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 4439 * based on the path and may be 4440 * dependent on the congestion control 4441 * algorithm. In general it indicates 4442 * a congestion threshold. RTTs above 4443 * this indicate congestion 4444 */ 4445 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 4446 * Arg1: value of icsk_retransmits 4447 * Arg2: value of icsk_rto 4448 * Arg3: whether RTO has expired 4449 */ 4450 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 4451 * Arg1: sequence number of 1st byte 4452 * Arg2: # segments 4453 * Arg3: return value of 4454 * tcp_transmit_skb (0 => success) 4455 */ 4456 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 4457 * Arg1: old_state 4458 * Arg2: new_state 4459 */ 4460 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 4461 * socket transition to LISTEN state. 4462 */ 4463 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT. 4464 */ 4465 BPF_SOCK_OPS_PARSE_HDR_OPT_CB, /* Parse the header option. 4466 * It will be called to handle 4467 * the packets received at 4468 * an already established 4469 * connection. 4470 * 4471 * sock_ops->skb_data: 4472 * Referring to the received skb. 4473 * It covers the TCP header only. 4474 * 4475 * bpf_load_hdr_opt() can also 4476 * be used to search for a 4477 * particular option. 4478 */ 4479 BPF_SOCK_OPS_HDR_OPT_LEN_CB, /* Reserve space for writing the 4480 * header option later in 4481 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB. 4482 * Arg1: bool want_cookie. (in 4483 * writing SYNACK only) 4484 * 4485 * sock_ops->skb_data: 4486 * Not available because no header has 4487 * been written yet. 4488 * 4489 * sock_ops->skb_tcp_flags: 4490 * The tcp_flags of the 4491 * outgoing skb. (e.g. SYN, ACK, FIN). 4492 * 4493 * bpf_reserve_hdr_opt() should 4494 * be used to reserve space. 4495 */ 4496 BPF_SOCK_OPS_WRITE_HDR_OPT_CB, /* Write the header options 4497 * Arg1: bool want_cookie. (in 4498 * writing SYNACK only) 4499 * 4500 * sock_ops->skb_data: 4501 * Referring to the outgoing skb. 4502 * It covers the TCP header 4503 * that has already been written 4504 * by the kernel and the 4505 * earlier bpf-progs. 4506 * 4507 * sock_ops->skb_tcp_flags: 4508 * The tcp_flags of the outgoing 4509 * skb. (e.g. SYN, ACK, FIN). 4510 * 4511 * bpf_store_hdr_opt() should 4512 * be used to write the 4513 * option. 4514 * 4515 * bpf_load_hdr_opt() can also 4516 * be used to search for a 4517 * particular option that 4518 * has already been written 4519 * by the kernel or the 4520 * earlier bpf-progs. 4521 */ 4522 }; 4523 4524 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 4525 * changes between the TCP and BPF versions. Ideally this should never happen. 4526 * If it does, we need to add code to convert them before calling 4527 * the BPF sock_ops function. 4528 */ 4529 enum { 4530 BPF_TCP_ESTABLISHED = 1, 4531 BPF_TCP_SYN_SENT, 4532 BPF_TCP_SYN_RECV, 4533 BPF_TCP_FIN_WAIT1, 4534 BPF_TCP_FIN_WAIT2, 4535 BPF_TCP_TIME_WAIT, 4536 BPF_TCP_CLOSE, 4537 BPF_TCP_CLOSE_WAIT, 4538 BPF_TCP_LAST_ACK, 4539 BPF_TCP_LISTEN, 4540 BPF_TCP_CLOSING, /* Now a valid state */ 4541 BPF_TCP_NEW_SYN_RECV, 4542 4543 BPF_TCP_MAX_STATES /* Leave at the end! */ 4544 }; 4545 4546 enum { 4547 TCP_BPF_IW = 1001, /* Set TCP initial congestion window */ 4548 TCP_BPF_SNDCWND_CLAMP = 1002, /* Set sndcwnd_clamp */ 4549 TCP_BPF_DELACK_MAX = 1003, /* Max delay ack in usecs */ 4550 TCP_BPF_RTO_MIN = 1004, /* Min delay ack in usecs */ 4551 /* Copy the SYN pkt to optval 4552 * 4553 * BPF_PROG_TYPE_SOCK_OPS only. It is similar to the 4554 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit 4555 * to only getting from the saved_syn. It can either get the 4556 * syn packet from: 4557 * 4558 * 1. the just-received SYN packet (only available when writing the 4559 * SYNACK). It will be useful when it is not necessary to 4560 * save the SYN packet for latter use. It is also the only way 4561 * to get the SYN during syncookie mode because the syn 4562 * packet cannot be saved during syncookie. 4563 * 4564 * OR 4565 * 4566 * 2. the earlier saved syn which was done by 4567 * bpf_setsockopt(TCP_SAVE_SYN). 4568 * 4569 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the 4570 * SYN packet is obtained. 4571 * 4572 * If the bpf-prog does not need the IP[46] header, the 4573 * bpf-prog can avoid parsing the IP header by using 4574 * TCP_BPF_SYN. Otherwise, the bpf-prog can get both 4575 * IP[46] and TCP header by using TCP_BPF_SYN_IP. 4576 * 4577 * >0: Total number of bytes copied 4578 * -ENOSPC: Not enough space in optval. Only optlen number of 4579 * bytes is copied. 4580 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt 4581 * is not saved by setsockopt(TCP_SAVE_SYN). 4582 */ 4583 TCP_BPF_SYN = 1005, /* Copy the TCP header */ 4584 TCP_BPF_SYN_IP = 1006, /* Copy the IP[46] and TCP header */ 4585 TCP_BPF_SYN_MAC = 1007, /* Copy the MAC, IP[46], and TCP header */ 4586 }; 4587 4588 enum { 4589 BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0), 4590 }; 4591 4592 /* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and 4593 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB. 4594 */ 4595 enum { 4596 BPF_WRITE_HDR_TCP_CURRENT_MSS = 1, /* Kernel is finding the 4597 * total option spaces 4598 * required for an established 4599 * sk in order to calculate the 4600 * MSS. No skb is actually 4601 * sent. 4602 */ 4603 BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2, /* Kernel is in syncookie mode 4604 * when sending a SYN. 4605 */ 4606 }; 4607 4608 struct bpf_perf_event_value { 4609 __u64 counter; 4610 __u64 enabled; 4611 __u64 running; 4612 }; 4613 4614 enum { 4615 BPF_DEVCG_ACC_MKNOD = (1ULL << 0), 4616 BPF_DEVCG_ACC_READ = (1ULL << 1), 4617 BPF_DEVCG_ACC_WRITE = (1ULL << 2), 4618 }; 4619 4620 enum { 4621 BPF_DEVCG_DEV_BLOCK = (1ULL << 0), 4622 BPF_DEVCG_DEV_CHAR = (1ULL << 1), 4623 }; 4624 4625 struct bpf_cgroup_dev_ctx { 4626 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 4627 __u32 access_type; 4628 __u32 major; 4629 __u32 minor; 4630 }; 4631 4632 struct bpf_raw_tracepoint_args { 4633 __u64 args[0]; 4634 }; 4635 4636 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 4637 * OUTPUT: Do lookup from egress perspective; default is ingress 4638 */ 4639 enum { 4640 BPF_FIB_LOOKUP_DIRECT = (1U << 0), 4641 BPF_FIB_LOOKUP_OUTPUT = (1U << 1), 4642 }; 4643 4644 enum { 4645 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 4646 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 4647 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 4648 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 4649 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 4650 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 4651 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 4652 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 4653 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 4654 }; 4655 4656 struct bpf_fib_lookup { 4657 /* input: network family for lookup (AF_INET, AF_INET6) 4658 * output: network family of egress nexthop 4659 */ 4660 __u8 family; 4661 4662 /* set if lookup is to consider L4 data - e.g., FIB rules */ 4663 __u8 l4_protocol; 4664 __be16 sport; 4665 __be16 dport; 4666 4667 /* total length of packet from network header - used for MTU check */ 4668 __u16 tot_len; 4669 4670 /* input: L3 device index for lookup 4671 * output: device index from FIB lookup 4672 */ 4673 __u32 ifindex; 4674 4675 union { 4676 /* inputs to lookup */ 4677 __u8 tos; /* AF_INET */ 4678 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 4679 4680 /* output: metric of fib result (IPv4/IPv6 only) */ 4681 __u32 rt_metric; 4682 }; 4683 4684 union { 4685 __be32 ipv4_src; 4686 __u32 ipv6_src[4]; /* in6_addr; network order */ 4687 }; 4688 4689 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 4690 * network header. output: bpf_fib_lookup sets to gateway address 4691 * if FIB lookup returns gateway route 4692 */ 4693 union { 4694 __be32 ipv4_dst; 4695 __u32 ipv6_dst[4]; /* in6_addr; network order */ 4696 }; 4697 4698 /* output */ 4699 __be16 h_vlan_proto; 4700 __be16 h_vlan_TCI; 4701 __u8 smac[6]; /* ETH_ALEN */ 4702 __u8 dmac[6]; /* ETH_ALEN */ 4703 }; 4704 4705 enum bpf_task_fd_type { 4706 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 4707 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 4708 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 4709 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 4710 BPF_FD_TYPE_UPROBE, /* filename + offset */ 4711 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 4712 }; 4713 4714 enum { 4715 BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG = (1U << 0), 4716 BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL = (1U << 1), 4717 BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP = (1U << 2), 4718 }; 4719 4720 struct bpf_flow_keys { 4721 __u16 nhoff; 4722 __u16 thoff; 4723 __u16 addr_proto; /* ETH_P_* of valid addrs */ 4724 __u8 is_frag; 4725 __u8 is_first_frag; 4726 __u8 is_encap; 4727 __u8 ip_proto; 4728 __be16 n_proto; 4729 __be16 sport; 4730 __be16 dport; 4731 union { 4732 struct { 4733 __be32 ipv4_src; 4734 __be32 ipv4_dst; 4735 }; 4736 struct { 4737 __u32 ipv6_src[4]; /* in6_addr; network order */ 4738 __u32 ipv6_dst[4]; /* in6_addr; network order */ 4739 }; 4740 }; 4741 __u32 flags; 4742 __be32 flow_label; 4743 }; 4744 4745 struct bpf_func_info { 4746 __u32 insn_off; 4747 __u32 type_id; 4748 }; 4749 4750 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 4751 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 4752 4753 struct bpf_line_info { 4754 __u32 insn_off; 4755 __u32 file_name_off; 4756 __u32 line_off; 4757 __u32 line_col; 4758 }; 4759 4760 struct bpf_spin_lock { 4761 __u32 val; 4762 }; 4763 4764 struct bpf_sysctl { 4765 __u32 write; /* Sysctl is being read (= 0) or written (= 1). 4766 * Allows 1,2,4-byte read, but no write. 4767 */ 4768 __u32 file_pos; /* Sysctl file position to read from, write to. 4769 * Allows 1,2,4-byte read an 4-byte write. 4770 */ 4771 }; 4772 4773 struct bpf_sockopt { 4774 __bpf_md_ptr(struct bpf_sock *, sk); 4775 __bpf_md_ptr(void *, optval); 4776 __bpf_md_ptr(void *, optval_end); 4777 4778 __s32 level; 4779 __s32 optname; 4780 __s32 optlen; 4781 __s32 retval; 4782 }; 4783 4784 struct bpf_pidns_info { 4785 __u32 pid; 4786 __u32 tgid; 4787 }; 4788 4789 /* User accessible data for SK_LOOKUP programs. Add new fields at the end. */ 4790 struct bpf_sk_lookup { 4791 __bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */ 4792 4793 __u32 family; /* Protocol family (AF_INET, AF_INET6) */ 4794 __u32 protocol; /* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */ 4795 __u32 remote_ip4; /* Network byte order */ 4796 __u32 remote_ip6[4]; /* Network byte order */ 4797 __u32 remote_port; /* Network byte order */ 4798 __u32 local_ip4; /* Network byte order */ 4799 __u32 local_ip6[4]; /* Network byte order */ 4800 __u32 local_port; /* Host byte order */ 4801 }; 4802 4803 #endif /* _UAPI__LINUX_BPF_H__ */ 4804