xref: /linux-6.15/include/uapi/linux/bpf.h (revision 75da60ff)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_JMP32	0x06	/* jmp mode in word width */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_XADD	0xc0	/* exclusive add */
23 
24 /* alu/jmp fields */
25 #define BPF_MOV		0xb0	/* mov reg to reg */
26 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
27 
28 /* change endianness of a register */
29 #define BPF_END		0xd0	/* flags for endianness conversion: */
30 #define BPF_TO_LE	0x00	/* convert to little-endian */
31 #define BPF_TO_BE	0x08	/* convert to big-endian */
32 #define BPF_FROM_LE	BPF_TO_LE
33 #define BPF_FROM_BE	BPF_TO_BE
34 
35 /* jmp encodings */
36 #define BPF_JNE		0x50	/* jump != */
37 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
38 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
39 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
42 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
43 #define BPF_CALL	0x80	/* function call */
44 #define BPF_EXIT	0x90	/* function return */
45 
46 /* Register numbers */
47 enum {
48 	BPF_REG_0 = 0,
49 	BPF_REG_1,
50 	BPF_REG_2,
51 	BPF_REG_3,
52 	BPF_REG_4,
53 	BPF_REG_5,
54 	BPF_REG_6,
55 	BPF_REG_7,
56 	BPF_REG_8,
57 	BPF_REG_9,
58 	BPF_REG_10,
59 	__MAX_BPF_REG,
60 };
61 
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG	__MAX_BPF_REG
64 
65 struct bpf_insn {
66 	__u8	code;		/* opcode */
67 	__u8	dst_reg:4;	/* dest register */
68 	__u8	src_reg:4;	/* source register */
69 	__s16	off;		/* signed offset */
70 	__s32	imm;		/* signed immediate constant */
71 };
72 
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
76 	__u8	data[0];	/* Arbitrary size */
77 };
78 
79 struct bpf_cgroup_storage_key {
80 	__u64	cgroup_inode_id;	/* cgroup inode id */
81 	__u32	attach_type;		/* program attach type */
82 };
83 
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 	BPF_MAP_CREATE,
87 	BPF_MAP_LOOKUP_ELEM,
88 	BPF_MAP_UPDATE_ELEM,
89 	BPF_MAP_DELETE_ELEM,
90 	BPF_MAP_GET_NEXT_KEY,
91 	BPF_PROG_LOAD,
92 	BPF_OBJ_PIN,
93 	BPF_OBJ_GET,
94 	BPF_PROG_ATTACH,
95 	BPF_PROG_DETACH,
96 	BPF_PROG_TEST_RUN,
97 	BPF_PROG_GET_NEXT_ID,
98 	BPF_MAP_GET_NEXT_ID,
99 	BPF_PROG_GET_FD_BY_ID,
100 	BPF_MAP_GET_FD_BY_ID,
101 	BPF_OBJ_GET_INFO_BY_FD,
102 	BPF_PROG_QUERY,
103 	BPF_RAW_TRACEPOINT_OPEN,
104 	BPF_BTF_LOAD,
105 	BPF_BTF_GET_FD_BY_ID,
106 	BPF_TASK_FD_QUERY,
107 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 };
109 
110 enum bpf_map_type {
111 	BPF_MAP_TYPE_UNSPEC,
112 	BPF_MAP_TYPE_HASH,
113 	BPF_MAP_TYPE_ARRAY,
114 	BPF_MAP_TYPE_PROG_ARRAY,
115 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
116 	BPF_MAP_TYPE_PERCPU_HASH,
117 	BPF_MAP_TYPE_PERCPU_ARRAY,
118 	BPF_MAP_TYPE_STACK_TRACE,
119 	BPF_MAP_TYPE_CGROUP_ARRAY,
120 	BPF_MAP_TYPE_LRU_HASH,
121 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
122 	BPF_MAP_TYPE_LPM_TRIE,
123 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
124 	BPF_MAP_TYPE_HASH_OF_MAPS,
125 	BPF_MAP_TYPE_DEVMAP,
126 	BPF_MAP_TYPE_SOCKMAP,
127 	BPF_MAP_TYPE_CPUMAP,
128 	BPF_MAP_TYPE_XSKMAP,
129 	BPF_MAP_TYPE_SOCKHASH,
130 	BPF_MAP_TYPE_CGROUP_STORAGE,
131 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
132 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
133 	BPF_MAP_TYPE_QUEUE,
134 	BPF_MAP_TYPE_STACK,
135 };
136 
137 /* Note that tracing related programs such as
138  * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
139  * are not subject to a stable API since kernel internal data
140  * structures can change from release to release and may
141  * therefore break existing tracing BPF programs. Tracing BPF
142  * programs correspond to /a/ specific kernel which is to be
143  * analyzed, and not /a/ specific kernel /and/ all future ones.
144  */
145 enum bpf_prog_type {
146 	BPF_PROG_TYPE_UNSPEC,
147 	BPF_PROG_TYPE_SOCKET_FILTER,
148 	BPF_PROG_TYPE_KPROBE,
149 	BPF_PROG_TYPE_SCHED_CLS,
150 	BPF_PROG_TYPE_SCHED_ACT,
151 	BPF_PROG_TYPE_TRACEPOINT,
152 	BPF_PROG_TYPE_XDP,
153 	BPF_PROG_TYPE_PERF_EVENT,
154 	BPF_PROG_TYPE_CGROUP_SKB,
155 	BPF_PROG_TYPE_CGROUP_SOCK,
156 	BPF_PROG_TYPE_LWT_IN,
157 	BPF_PROG_TYPE_LWT_OUT,
158 	BPF_PROG_TYPE_LWT_XMIT,
159 	BPF_PROG_TYPE_SOCK_OPS,
160 	BPF_PROG_TYPE_SK_SKB,
161 	BPF_PROG_TYPE_CGROUP_DEVICE,
162 	BPF_PROG_TYPE_SK_MSG,
163 	BPF_PROG_TYPE_RAW_TRACEPOINT,
164 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
165 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
166 	BPF_PROG_TYPE_LIRC_MODE2,
167 	BPF_PROG_TYPE_SK_REUSEPORT,
168 	BPF_PROG_TYPE_FLOW_DISSECTOR,
169 };
170 
171 enum bpf_attach_type {
172 	BPF_CGROUP_INET_INGRESS,
173 	BPF_CGROUP_INET_EGRESS,
174 	BPF_CGROUP_INET_SOCK_CREATE,
175 	BPF_CGROUP_SOCK_OPS,
176 	BPF_SK_SKB_STREAM_PARSER,
177 	BPF_SK_SKB_STREAM_VERDICT,
178 	BPF_CGROUP_DEVICE,
179 	BPF_SK_MSG_VERDICT,
180 	BPF_CGROUP_INET4_BIND,
181 	BPF_CGROUP_INET6_BIND,
182 	BPF_CGROUP_INET4_CONNECT,
183 	BPF_CGROUP_INET6_CONNECT,
184 	BPF_CGROUP_INET4_POST_BIND,
185 	BPF_CGROUP_INET6_POST_BIND,
186 	BPF_CGROUP_UDP4_SENDMSG,
187 	BPF_CGROUP_UDP6_SENDMSG,
188 	BPF_LIRC_MODE2,
189 	BPF_FLOW_DISSECTOR,
190 	__MAX_BPF_ATTACH_TYPE
191 };
192 
193 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
194 
195 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
196  *
197  * NONE(default): No further bpf programs allowed in the subtree.
198  *
199  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
200  * the program in this cgroup yields to sub-cgroup program.
201  *
202  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
203  * that cgroup program gets run in addition to the program in this cgroup.
204  *
205  * Only one program is allowed to be attached to a cgroup with
206  * NONE or BPF_F_ALLOW_OVERRIDE flag.
207  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
208  * release old program and attach the new one. Attach flags has to match.
209  *
210  * Multiple programs are allowed to be attached to a cgroup with
211  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
212  * (those that were attached first, run first)
213  * The programs of sub-cgroup are executed first, then programs of
214  * this cgroup and then programs of parent cgroup.
215  * When children program makes decision (like picking TCP CA or sock bind)
216  * parent program has a chance to override it.
217  *
218  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
219  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
220  * Ex1:
221  * cgrp1 (MULTI progs A, B) ->
222  *    cgrp2 (OVERRIDE prog C) ->
223  *      cgrp3 (MULTI prog D) ->
224  *        cgrp4 (OVERRIDE prog E) ->
225  *          cgrp5 (NONE prog F)
226  * the event in cgrp5 triggers execution of F,D,A,B in that order.
227  * if prog F is detached, the execution is E,D,A,B
228  * if prog F and D are detached, the execution is E,A,B
229  * if prog F, E and D are detached, the execution is C,A,B
230  *
231  * All eligible programs are executed regardless of return code from
232  * earlier programs.
233  */
234 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
235 #define BPF_F_ALLOW_MULTI	(1U << 1)
236 
237 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
238  * verifier will perform strict alignment checking as if the kernel
239  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
240  * and NET_IP_ALIGN defined to 2.
241  */
242 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
243 
244 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
245  * verifier will allow any alignment whatsoever.  On platforms
246  * with strict alignment requirements for loads ands stores (such
247  * as sparc and mips) the verifier validates that all loads and
248  * stores provably follow this requirement.  This flag turns that
249  * checking and enforcement off.
250  *
251  * It is mostly used for testing when we want to validate the
252  * context and memory access aspects of the verifier, but because
253  * of an unaligned access the alignment check would trigger before
254  * the one we are interested in.
255  */
256 #define BPF_F_ANY_ALIGNMENT	(1U << 1)
257 
258 /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */
259 #define BPF_PSEUDO_MAP_FD	1
260 
261 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
262  * offset to another bpf function
263  */
264 #define BPF_PSEUDO_CALL		1
265 
266 /* flags for BPF_MAP_UPDATE_ELEM command */
267 #define BPF_ANY		0 /* create new element or update existing */
268 #define BPF_NOEXIST	1 /* create new element if it didn't exist */
269 #define BPF_EXIST	2 /* update existing element */
270 #define BPF_F_LOCK	4 /* spin_lock-ed map_lookup/map_update */
271 
272 /* flags for BPF_MAP_CREATE command */
273 #define BPF_F_NO_PREALLOC	(1U << 0)
274 /* Instead of having one common LRU list in the
275  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
276  * which can scale and perform better.
277  * Note, the LRU nodes (including free nodes) cannot be moved
278  * across different LRU lists.
279  */
280 #define BPF_F_NO_COMMON_LRU	(1U << 1)
281 /* Specify numa node during map creation */
282 #define BPF_F_NUMA_NODE		(1U << 2)
283 
284 #define BPF_OBJ_NAME_LEN 16U
285 
286 /* Flags for accessing BPF object */
287 #define BPF_F_RDONLY		(1U << 3)
288 #define BPF_F_WRONLY		(1U << 4)
289 
290 /* Flag for stack_map, store build_id+offset instead of pointer */
291 #define BPF_F_STACK_BUILD_ID	(1U << 5)
292 
293 /* Zero-initialize hash function seed. This should only be used for testing. */
294 #define BPF_F_ZERO_SEED		(1U << 6)
295 
296 /* flags for BPF_PROG_QUERY */
297 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
298 
299 enum bpf_stack_build_id_status {
300 	/* user space need an empty entry to identify end of a trace */
301 	BPF_STACK_BUILD_ID_EMPTY = 0,
302 	/* with valid build_id and offset */
303 	BPF_STACK_BUILD_ID_VALID = 1,
304 	/* couldn't get build_id, fallback to ip */
305 	BPF_STACK_BUILD_ID_IP = 2,
306 };
307 
308 #define BPF_BUILD_ID_SIZE 20
309 struct bpf_stack_build_id {
310 	__s32		status;
311 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
312 	union {
313 		__u64	offset;
314 		__u64	ip;
315 	};
316 };
317 
318 union bpf_attr {
319 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
320 		__u32	map_type;	/* one of enum bpf_map_type */
321 		__u32	key_size;	/* size of key in bytes */
322 		__u32	value_size;	/* size of value in bytes */
323 		__u32	max_entries;	/* max number of entries in a map */
324 		__u32	map_flags;	/* BPF_MAP_CREATE related
325 					 * flags defined above.
326 					 */
327 		__u32	inner_map_fd;	/* fd pointing to the inner map */
328 		__u32	numa_node;	/* numa node (effective only if
329 					 * BPF_F_NUMA_NODE is set).
330 					 */
331 		char	map_name[BPF_OBJ_NAME_LEN];
332 		__u32	map_ifindex;	/* ifindex of netdev to create on */
333 		__u32	btf_fd;		/* fd pointing to a BTF type data */
334 		__u32	btf_key_type_id;	/* BTF type_id of the key */
335 		__u32	btf_value_type_id;	/* BTF type_id of the value */
336 	};
337 
338 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
339 		__u32		map_fd;
340 		__aligned_u64	key;
341 		union {
342 			__aligned_u64 value;
343 			__aligned_u64 next_key;
344 		};
345 		__u64		flags;
346 	};
347 
348 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
349 		__u32		prog_type;	/* one of enum bpf_prog_type */
350 		__u32		insn_cnt;
351 		__aligned_u64	insns;
352 		__aligned_u64	license;
353 		__u32		log_level;	/* verbosity level of verifier */
354 		__u32		log_size;	/* size of user buffer */
355 		__aligned_u64	log_buf;	/* user supplied buffer */
356 		__u32		kern_version;	/* not used */
357 		__u32		prog_flags;
358 		char		prog_name[BPF_OBJ_NAME_LEN];
359 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
360 		/* For some prog types expected attach type must be known at
361 		 * load time to verify attach type specific parts of prog
362 		 * (context accesses, allowed helpers, etc).
363 		 */
364 		__u32		expected_attach_type;
365 		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
366 		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
367 		__aligned_u64	func_info;	/* func info */
368 		__u32		func_info_cnt;	/* number of bpf_func_info records */
369 		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
370 		__aligned_u64	line_info;	/* line info */
371 		__u32		line_info_cnt;	/* number of bpf_line_info records */
372 	};
373 
374 	struct { /* anonymous struct used by BPF_OBJ_* commands */
375 		__aligned_u64	pathname;
376 		__u32		bpf_fd;
377 		__u32		file_flags;
378 	};
379 
380 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
381 		__u32		target_fd;	/* container object to attach to */
382 		__u32		attach_bpf_fd;	/* eBPF program to attach */
383 		__u32		attach_type;
384 		__u32		attach_flags;
385 	};
386 
387 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
388 		__u32		prog_fd;
389 		__u32		retval;
390 		__u32		data_size_in;	/* input: len of data_in */
391 		__u32		data_size_out;	/* input/output: len of data_out
392 						 *   returns ENOSPC if data_out
393 						 *   is too small.
394 						 */
395 		__aligned_u64	data_in;
396 		__aligned_u64	data_out;
397 		__u32		repeat;
398 		__u32		duration;
399 	} test;
400 
401 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
402 		union {
403 			__u32		start_id;
404 			__u32		prog_id;
405 			__u32		map_id;
406 			__u32		btf_id;
407 		};
408 		__u32		next_id;
409 		__u32		open_flags;
410 	};
411 
412 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
413 		__u32		bpf_fd;
414 		__u32		info_len;
415 		__aligned_u64	info;
416 	} info;
417 
418 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
419 		__u32		target_fd;	/* container object to query */
420 		__u32		attach_type;
421 		__u32		query_flags;
422 		__u32		attach_flags;
423 		__aligned_u64	prog_ids;
424 		__u32		prog_cnt;
425 	} query;
426 
427 	struct {
428 		__u64 name;
429 		__u32 prog_fd;
430 	} raw_tracepoint;
431 
432 	struct { /* anonymous struct for BPF_BTF_LOAD */
433 		__aligned_u64	btf;
434 		__aligned_u64	btf_log_buf;
435 		__u32		btf_size;
436 		__u32		btf_log_size;
437 		__u32		btf_log_level;
438 	};
439 
440 	struct {
441 		__u32		pid;		/* input: pid */
442 		__u32		fd;		/* input: fd */
443 		__u32		flags;		/* input: flags */
444 		__u32		buf_len;	/* input/output: buf len */
445 		__aligned_u64	buf;		/* input/output:
446 						 *   tp_name for tracepoint
447 						 *   symbol for kprobe
448 						 *   filename for uprobe
449 						 */
450 		__u32		prog_id;	/* output: prod_id */
451 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
452 		__u64		probe_offset;	/* output: probe_offset */
453 		__u64		probe_addr;	/* output: probe_addr */
454 	} task_fd_query;
455 } __attribute__((aligned(8)));
456 
457 /* The description below is an attempt at providing documentation to eBPF
458  * developers about the multiple available eBPF helper functions. It can be
459  * parsed and used to produce a manual page. The workflow is the following,
460  * and requires the rst2man utility:
461  *
462  *     $ ./scripts/bpf_helpers_doc.py \
463  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
464  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
465  *     $ man /tmp/bpf-helpers.7
466  *
467  * Note that in order to produce this external documentation, some RST
468  * formatting is used in the descriptions to get "bold" and "italics" in
469  * manual pages. Also note that the few trailing white spaces are
470  * intentional, removing them would break paragraphs for rst2man.
471  *
472  * Start of BPF helper function descriptions:
473  *
474  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
475  * 	Description
476  * 		Perform a lookup in *map* for an entry associated to *key*.
477  * 	Return
478  * 		Map value associated to *key*, or **NULL** if no entry was
479  * 		found.
480  *
481  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
482  * 	Description
483  * 		Add or update the value of the entry associated to *key* in
484  * 		*map* with *value*. *flags* is one of:
485  *
486  * 		**BPF_NOEXIST**
487  * 			The entry for *key* must not exist in the map.
488  * 		**BPF_EXIST**
489  * 			The entry for *key* must already exist in the map.
490  * 		**BPF_ANY**
491  * 			No condition on the existence of the entry for *key*.
492  *
493  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
494  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
495  * 		elements always exist), the helper would return an error.
496  * 	Return
497  * 		0 on success, or a negative error in case of failure.
498  *
499  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
500  * 	Description
501  * 		Delete entry with *key* from *map*.
502  * 	Return
503  * 		0 on success, or a negative error in case of failure.
504  *
505  * int bpf_probe_read(void *dst, u32 size, const void *src)
506  * 	Description
507  * 		For tracing programs, safely attempt to read *size* bytes from
508  * 		address *src* and store the data in *dst*.
509  * 	Return
510  * 		0 on success, or a negative error in case of failure.
511  *
512  * u64 bpf_ktime_get_ns(void)
513  * 	Description
514  * 		Return the time elapsed since system boot, in nanoseconds.
515  * 	Return
516  * 		Current *ktime*.
517  *
518  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
519  * 	Description
520  * 		This helper is a "printk()-like" facility for debugging. It
521  * 		prints a message defined by format *fmt* (of size *fmt_size*)
522  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
523  * 		available. It can take up to three additional **u64**
524  * 		arguments (as an eBPF helpers, the total number of arguments is
525  * 		limited to five).
526  *
527  * 		Each time the helper is called, it appends a line to the trace.
528  * 		The format of the trace is customizable, and the exact output
529  * 		one will get depends on the options set in
530  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
531  * 		*README* file under the same directory). However, it usually
532  * 		defaults to something like:
533  *
534  * 		::
535  *
536  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
537  *
538  * 		In the above:
539  *
540  * 			* ``telnet`` is the name of the current task.
541  * 			* ``470`` is the PID of the current task.
542  * 			* ``001`` is the CPU number on which the task is
543  * 			  running.
544  * 			* In ``.N..``, each character refers to a set of
545  * 			  options (whether irqs are enabled, scheduling
546  * 			  options, whether hard/softirqs are running, level of
547  * 			  preempt_disabled respectively). **N** means that
548  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
549  * 			  are set.
550  * 			* ``419421.045894`` is a timestamp.
551  * 			* ``0x00000001`` is a fake value used by BPF for the
552  * 			  instruction pointer register.
553  * 			* ``<formatted msg>`` is the message formatted with
554  * 			  *fmt*.
555  *
556  * 		The conversion specifiers supported by *fmt* are similar, but
557  * 		more limited than for printk(). They are **%d**, **%i**,
558  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
559  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
560  * 		of field, padding with zeroes, etc.) is available, and the
561  * 		helper will return **-EINVAL** (but print nothing) if it
562  * 		encounters an unknown specifier.
563  *
564  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
565  * 		only be used for debugging purposes. For this reason, a notice
566  * 		bloc (spanning several lines) is printed to kernel logs and
567  * 		states that the helper should not be used "for production use"
568  * 		the first time this helper is used (or more precisely, when
569  * 		**trace_printk**\ () buffers are allocated). For passing values
570  * 		to user space, perf events should be preferred.
571  * 	Return
572  * 		The number of bytes written to the buffer, or a negative error
573  * 		in case of failure.
574  *
575  * u32 bpf_get_prandom_u32(void)
576  * 	Description
577  * 		Get a pseudo-random number.
578  *
579  * 		From a security point of view, this helper uses its own
580  * 		pseudo-random internal state, and cannot be used to infer the
581  * 		seed of other random functions in the kernel. However, it is
582  * 		essential to note that the generator used by the helper is not
583  * 		cryptographically secure.
584  * 	Return
585  * 		A random 32-bit unsigned value.
586  *
587  * u32 bpf_get_smp_processor_id(void)
588  * 	Description
589  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
590  * 		all programs run with preemption disabled, which means that the
591  * 		SMP processor id is stable during all the execution of the
592  * 		program.
593  * 	Return
594  * 		The SMP id of the processor running the program.
595  *
596  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
597  * 	Description
598  * 		Store *len* bytes from address *from* into the packet
599  * 		associated to *skb*, at *offset*. *flags* are a combination of
600  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
601  * 		checksum for the packet after storing the bytes) and
602  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
603  * 		**->swhash** and *skb*\ **->l4hash** to 0).
604  *
605  * 		A call to this helper is susceptible to change the underlaying
606  * 		packet buffer. Therefore, at load time, all checks on pointers
607  * 		previously done by the verifier are invalidated and must be
608  * 		performed again, if the helper is used in combination with
609  * 		direct packet access.
610  * 	Return
611  * 		0 on success, or a negative error in case of failure.
612  *
613  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
614  * 	Description
615  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
616  * 		associated to *skb*. Computation is incremental, so the helper
617  * 		must know the former value of the header field that was
618  * 		modified (*from*), the new value of this field (*to*), and the
619  * 		number of bytes (2 or 4) for this field, stored in *size*.
620  * 		Alternatively, it is possible to store the difference between
621  * 		the previous and the new values of the header field in *to*, by
622  * 		setting *from* and *size* to 0. For both methods, *offset*
623  * 		indicates the location of the IP checksum within the packet.
624  *
625  * 		This helper works in combination with **bpf_csum_diff**\ (),
626  * 		which does not update the checksum in-place, but offers more
627  * 		flexibility and can handle sizes larger than 2 or 4 for the
628  * 		checksum to update.
629  *
630  * 		A call to this helper is susceptible to change the underlaying
631  * 		packet buffer. Therefore, at load time, all checks on pointers
632  * 		previously done by the verifier are invalidated and must be
633  * 		performed again, if the helper is used in combination with
634  * 		direct packet access.
635  * 	Return
636  * 		0 on success, or a negative error in case of failure.
637  *
638  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
639  * 	Description
640  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
641  * 		packet associated to *skb*. Computation is incremental, so the
642  * 		helper must know the former value of the header field that was
643  * 		modified (*from*), the new value of this field (*to*), and the
644  * 		number of bytes (2 or 4) for this field, stored on the lowest
645  * 		four bits of *flags*. Alternatively, it is possible to store
646  * 		the difference between the previous and the new values of the
647  * 		header field in *to*, by setting *from* and the four lowest
648  * 		bits of *flags* to 0. For both methods, *offset* indicates the
649  * 		location of the IP checksum within the packet. In addition to
650  * 		the size of the field, *flags* can be added (bitwise OR) actual
651  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
652  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
653  * 		for updates resulting in a null checksum the value is set to
654  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
655  * 		the checksum is to be computed against a pseudo-header.
656  *
657  * 		This helper works in combination with **bpf_csum_diff**\ (),
658  * 		which does not update the checksum in-place, but offers more
659  * 		flexibility and can handle sizes larger than 2 or 4 for the
660  * 		checksum to update.
661  *
662  * 		A call to this helper is susceptible to change the underlaying
663  * 		packet buffer. Therefore, at load time, all checks on pointers
664  * 		previously done by the verifier are invalidated and must be
665  * 		performed again, if the helper is used in combination with
666  * 		direct packet access.
667  * 	Return
668  * 		0 on success, or a negative error in case of failure.
669  *
670  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
671  * 	Description
672  * 		This special helper is used to trigger a "tail call", or in
673  * 		other words, to jump into another eBPF program. The same stack
674  * 		frame is used (but values on stack and in registers for the
675  * 		caller are not accessible to the callee). This mechanism allows
676  * 		for program chaining, either for raising the maximum number of
677  * 		available eBPF instructions, or to execute given programs in
678  * 		conditional blocks. For security reasons, there is an upper
679  * 		limit to the number of successive tail calls that can be
680  * 		performed.
681  *
682  * 		Upon call of this helper, the program attempts to jump into a
683  * 		program referenced at index *index* in *prog_array_map*, a
684  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
685  * 		*ctx*, a pointer to the context.
686  *
687  * 		If the call succeeds, the kernel immediately runs the first
688  * 		instruction of the new program. This is not a function call,
689  * 		and it never returns to the previous program. If the call
690  * 		fails, then the helper has no effect, and the caller continues
691  * 		to run its subsequent instructions. A call can fail if the
692  * 		destination program for the jump does not exist (i.e. *index*
693  * 		is superior to the number of entries in *prog_array_map*), or
694  * 		if the maximum number of tail calls has been reached for this
695  * 		chain of programs. This limit is defined in the kernel by the
696  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
697  * 		which is currently set to 32.
698  * 	Return
699  * 		0 on success, or a negative error in case of failure.
700  *
701  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
702  * 	Description
703  * 		Clone and redirect the packet associated to *skb* to another
704  * 		net device of index *ifindex*. Both ingress and egress
705  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
706  * 		value in *flags* is used to make the distinction (ingress path
707  * 		is selected if the flag is present, egress path otherwise).
708  * 		This is the only flag supported for now.
709  *
710  * 		In comparison with **bpf_redirect**\ () helper,
711  * 		**bpf_clone_redirect**\ () has the associated cost of
712  * 		duplicating the packet buffer, but this can be executed out of
713  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
714  * 		efficient, but it is handled through an action code where the
715  * 		redirection happens only after the eBPF program has returned.
716  *
717  * 		A call to this helper is susceptible to change the underlaying
718  * 		packet buffer. Therefore, at load time, all checks on pointers
719  * 		previously done by the verifier are invalidated and must be
720  * 		performed again, if the helper is used in combination with
721  * 		direct packet access.
722  * 	Return
723  * 		0 on success, or a negative error in case of failure.
724  *
725  * u64 bpf_get_current_pid_tgid(void)
726  * 	Return
727  * 		A 64-bit integer containing the current tgid and pid, and
728  * 		created as such:
729  * 		*current_task*\ **->tgid << 32 \|**
730  * 		*current_task*\ **->pid**.
731  *
732  * u64 bpf_get_current_uid_gid(void)
733  * 	Return
734  * 		A 64-bit integer containing the current GID and UID, and
735  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
736  *
737  * int bpf_get_current_comm(char *buf, u32 size_of_buf)
738  * 	Description
739  * 		Copy the **comm** attribute of the current task into *buf* of
740  * 		*size_of_buf*. The **comm** attribute contains the name of
741  * 		the executable (excluding the path) for the current task. The
742  * 		*size_of_buf* must be strictly positive. On success, the
743  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
744  * 		it is filled with zeroes.
745  * 	Return
746  * 		0 on success, or a negative error in case of failure.
747  *
748  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
749  * 	Description
750  * 		Retrieve the classid for the current task, i.e. for the net_cls
751  * 		cgroup to which *skb* belongs.
752  *
753  * 		This helper can be used on TC egress path, but not on ingress.
754  *
755  * 		The net_cls cgroup provides an interface to tag network packets
756  * 		based on a user-provided identifier for all traffic coming from
757  * 		the tasks belonging to the related cgroup. See also the related
758  * 		kernel documentation, available from the Linux sources in file
759  * 		*Documentation/cgroup-v1/net_cls.txt*.
760  *
761  * 		The Linux kernel has two versions for cgroups: there are
762  * 		cgroups v1 and cgroups v2. Both are available to users, who can
763  * 		use a mixture of them, but note that the net_cls cgroup is for
764  * 		cgroup v1 only. This makes it incompatible with BPF programs
765  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
766  * 		only hold data for one version of cgroups at a time).
767  *
768  * 		This helper is only available is the kernel was compiled with
769  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
770  * 		"**y**" or to "**m**".
771  * 	Return
772  * 		The classid, or 0 for the default unconfigured classid.
773  *
774  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
775  * 	Description
776  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
777  * 		*vlan_proto* to the packet associated to *skb*, then update
778  * 		the checksum. Note that if *vlan_proto* is different from
779  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
780  * 		be **ETH_P_8021Q**.
781  *
782  * 		A call to this helper is susceptible to change the underlaying
783  * 		packet buffer. Therefore, at load time, all checks on pointers
784  * 		previously done by the verifier are invalidated and must be
785  * 		performed again, if the helper is used in combination with
786  * 		direct packet access.
787  * 	Return
788  * 		0 on success, or a negative error in case of failure.
789  *
790  * int bpf_skb_vlan_pop(struct sk_buff *skb)
791  * 	Description
792  * 		Pop a VLAN header from the packet associated to *skb*.
793  *
794  * 		A call to this helper is susceptible to change the underlaying
795  * 		packet buffer. Therefore, at load time, all checks on pointers
796  * 		previously done by the verifier are invalidated and must be
797  * 		performed again, if the helper is used in combination with
798  * 		direct packet access.
799  * 	Return
800  * 		0 on success, or a negative error in case of failure.
801  *
802  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
803  * 	Description
804  * 		Get tunnel metadata. This helper takes a pointer *key* to an
805  * 		empty **struct bpf_tunnel_key** of **size**, that will be
806  * 		filled with tunnel metadata for the packet associated to *skb*.
807  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
808  * 		indicates that the tunnel is based on IPv6 protocol instead of
809  * 		IPv4.
810  *
811  * 		The **struct bpf_tunnel_key** is an object that generalizes the
812  * 		principal parameters used by various tunneling protocols into a
813  * 		single struct. This way, it can be used to easily make a
814  * 		decision based on the contents of the encapsulation header,
815  * 		"summarized" in this struct. In particular, it holds the IP
816  * 		address of the remote end (IPv4 or IPv6, depending on the case)
817  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
818  * 		this struct exposes the *key*\ **->tunnel_id**, which is
819  * 		generally mapped to a VNI (Virtual Network Identifier), making
820  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
821  * 		() helper.
822  *
823  * 		Let's imagine that the following code is part of a program
824  * 		attached to the TC ingress interface, on one end of a GRE
825  * 		tunnel, and is supposed to filter out all messages coming from
826  * 		remote ends with IPv4 address other than 10.0.0.1:
827  *
828  * 		::
829  *
830  * 			int ret;
831  * 			struct bpf_tunnel_key key = {};
832  *
833  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
834  * 			if (ret < 0)
835  * 				return TC_ACT_SHOT;	// drop packet
836  *
837  * 			if (key.remote_ipv4 != 0x0a000001)
838  * 				return TC_ACT_SHOT;	// drop packet
839  *
840  * 			return TC_ACT_OK;		// accept packet
841  *
842  * 		This interface can also be used with all encapsulation devices
843  * 		that can operate in "collect metadata" mode: instead of having
844  * 		one network device per specific configuration, the "collect
845  * 		metadata" mode only requires a single device where the
846  * 		configuration can be extracted from this helper.
847  *
848  * 		This can be used together with various tunnels such as VXLan,
849  * 		Geneve, GRE or IP in IP (IPIP).
850  * 	Return
851  * 		0 on success, or a negative error in case of failure.
852  *
853  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
854  * 	Description
855  * 		Populate tunnel metadata for packet associated to *skb.* The
856  * 		tunnel metadata is set to the contents of *key*, of *size*. The
857  * 		*flags* can be set to a combination of the following values:
858  *
859  * 		**BPF_F_TUNINFO_IPV6**
860  * 			Indicate that the tunnel is based on IPv6 protocol
861  * 			instead of IPv4.
862  * 		**BPF_F_ZERO_CSUM_TX**
863  * 			For IPv4 packets, add a flag to tunnel metadata
864  * 			indicating that checksum computation should be skipped
865  * 			and checksum set to zeroes.
866  * 		**BPF_F_DONT_FRAGMENT**
867  * 			Add a flag to tunnel metadata indicating that the
868  * 			packet should not be fragmented.
869  * 		**BPF_F_SEQ_NUMBER**
870  * 			Add a flag to tunnel metadata indicating that a
871  * 			sequence number should be added to tunnel header before
872  * 			sending the packet. This flag was added for GRE
873  * 			encapsulation, but might be used with other protocols
874  * 			as well in the future.
875  *
876  * 		Here is a typical usage on the transmit path:
877  *
878  * 		::
879  *
880  * 			struct bpf_tunnel_key key;
881  * 			     populate key ...
882  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
883  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
884  *
885  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
886  * 		helper for additional information.
887  * 	Return
888  * 		0 on success, or a negative error in case of failure.
889  *
890  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
891  * 	Description
892  * 		Read the value of a perf event counter. This helper relies on a
893  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
894  * 		the perf event counter is selected when *map* is updated with
895  * 		perf event file descriptors. The *map* is an array whose size
896  * 		is the number of available CPUs, and each cell contains a value
897  * 		relative to one CPU. The value to retrieve is indicated by
898  * 		*flags*, that contains the index of the CPU to look up, masked
899  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
900  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
901  * 		current CPU should be retrieved.
902  *
903  * 		Note that before Linux 4.13, only hardware perf event can be
904  * 		retrieved.
905  *
906  * 		Also, be aware that the newer helper
907  * 		**bpf_perf_event_read_value**\ () is recommended over
908  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
909  * 		quirks where error and counter value are used as a return code
910  * 		(which is wrong to do since ranges may overlap). This issue is
911  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
912  * 		time provides more features over the **bpf_perf_event_read**\
913  * 		() interface. Please refer to the description of
914  * 		**bpf_perf_event_read_value**\ () for details.
915  * 	Return
916  * 		The value of the perf event counter read from the map, or a
917  * 		negative error code in case of failure.
918  *
919  * int bpf_redirect(u32 ifindex, u64 flags)
920  * 	Description
921  * 		Redirect the packet to another net device of index *ifindex*.
922  * 		This helper is somewhat similar to **bpf_clone_redirect**\
923  * 		(), except that the packet is not cloned, which provides
924  * 		increased performance.
925  *
926  * 		Except for XDP, both ingress and egress interfaces can be used
927  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
928  * 		to make the distinction (ingress path is selected if the flag
929  * 		is present, egress path otherwise). Currently, XDP only
930  * 		supports redirection to the egress interface, and accepts no
931  * 		flag at all.
932  *
933  * 		The same effect can be attained with the more generic
934  * 		**bpf_redirect_map**\ (), which requires specific maps to be
935  * 		used but offers better performance.
936  * 	Return
937  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
938  * 		**XDP_ABORTED** on error. For other program types, the values
939  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
940  * 		error.
941  *
942  * u32 bpf_get_route_realm(struct sk_buff *skb)
943  * 	Description
944  * 		Retrieve the realm or the route, that is to say the
945  * 		**tclassid** field of the destination for the *skb*. The
946  * 		indentifier retrieved is a user-provided tag, similar to the
947  * 		one used with the net_cls cgroup (see description for
948  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
949  * 		held by a route (a destination entry), not by a task.
950  *
951  * 		Retrieving this identifier works with the clsact TC egress hook
952  * 		(see also **tc-bpf(8)**), or alternatively on conventional
953  * 		classful egress qdiscs, but not on TC ingress path. In case of
954  * 		clsact TC egress hook, this has the advantage that, internally,
955  * 		the destination entry has not been dropped yet in the transmit
956  * 		path. Therefore, the destination entry does not need to be
957  * 		artificially held via **netif_keep_dst**\ () for a classful
958  * 		qdisc until the *skb* is freed.
959  *
960  * 		This helper is available only if the kernel was compiled with
961  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
962  * 	Return
963  * 		The realm of the route for the packet associated to *skb*, or 0
964  * 		if none was found.
965  *
966  * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
967  * 	Description
968  * 		Write raw *data* blob into a special BPF perf event held by
969  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
970  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
971  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
972  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
973  *
974  * 		The *flags* are used to indicate the index in *map* for which
975  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
976  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
977  * 		to indicate that the index of the current CPU core should be
978  * 		used.
979  *
980  * 		The value to write, of *size*, is passed through eBPF stack and
981  * 		pointed by *data*.
982  *
983  * 		The context of the program *ctx* needs also be passed to the
984  * 		helper.
985  *
986  * 		On user space, a program willing to read the values needs to
987  * 		call **perf_event_open**\ () on the perf event (either for
988  * 		one or for all CPUs) and to store the file descriptor into the
989  * 		*map*. This must be done before the eBPF program can send data
990  * 		into it. An example is available in file
991  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
992  * 		tree (the eBPF program counterpart is in
993  * 		*samples/bpf/trace_output_kern.c*).
994  *
995  * 		**bpf_perf_event_output**\ () achieves better performance
996  * 		than **bpf_trace_printk**\ () for sharing data with user
997  * 		space, and is much better suitable for streaming data from eBPF
998  * 		programs.
999  *
1000  * 		Note that this helper is not restricted to tracing use cases
1001  * 		and can be used with programs attached to TC or XDP as well,
1002  * 		where it allows for passing data to user space listeners. Data
1003  * 		can be:
1004  *
1005  * 		* Only custom structs,
1006  * 		* Only the packet payload, or
1007  * 		* A combination of both.
1008  * 	Return
1009  * 		0 on success, or a negative error in case of failure.
1010  *
1011  * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1012  * 	Description
1013  * 		This helper was provided as an easy way to load data from a
1014  * 		packet. It can be used to load *len* bytes from *offset* from
1015  * 		the packet associated to *skb*, into the buffer pointed by
1016  * 		*to*.
1017  *
1018  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1019  * 		by "direct packet access", enabling packet data to be
1020  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1021  * 		pointing respectively to the first byte of packet data and to
1022  * 		the byte after the last byte of packet data. However, it
1023  * 		remains useful if one wishes to read large quantities of data
1024  * 		at once from a packet into the eBPF stack.
1025  * 	Return
1026  * 		0 on success, or a negative error in case of failure.
1027  *
1028  * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
1029  * 	Description
1030  * 		Walk a user or a kernel stack and return its id. To achieve
1031  * 		this, the helper needs *ctx*, which is a pointer to the context
1032  * 		on which the tracing program is executed, and a pointer to a
1033  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1034  *
1035  * 		The last argument, *flags*, holds the number of stack frames to
1036  * 		skip (from 0 to 255), masked with
1037  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1038  * 		a combination of the following flags:
1039  *
1040  * 		**BPF_F_USER_STACK**
1041  * 			Collect a user space stack instead of a kernel stack.
1042  * 		**BPF_F_FAST_STACK_CMP**
1043  * 			Compare stacks by hash only.
1044  * 		**BPF_F_REUSE_STACKID**
1045  * 			If two different stacks hash into the same *stackid*,
1046  * 			discard the old one.
1047  *
1048  * 		The stack id retrieved is a 32 bit long integer handle which
1049  * 		can be further combined with other data (including other stack
1050  * 		ids) and used as a key into maps. This can be useful for
1051  * 		generating a variety of graphs (such as flame graphs or off-cpu
1052  * 		graphs).
1053  *
1054  * 		For walking a stack, this helper is an improvement over
1055  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1056  * 		but is not efficient and consumes a lot of eBPF instructions.
1057  * 		Instead, **bpf_get_stackid**\ () can collect up to
1058  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1059  * 		this limit can be controlled with the **sysctl** program, and
1060  * 		that it should be manually increased in order to profile long
1061  * 		user stacks (such as stacks for Java programs). To do so, use:
1062  *
1063  * 		::
1064  *
1065  * 			# sysctl kernel.perf_event_max_stack=<new value>
1066  * 	Return
1067  * 		The positive or null stack id on success, or a negative error
1068  * 		in case of failure.
1069  *
1070  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1071  * 	Description
1072  * 		Compute a checksum difference, from the raw buffer pointed by
1073  * 		*from*, of length *from_size* (that must be a multiple of 4),
1074  * 		towards the raw buffer pointed by *to*, of size *to_size*
1075  * 		(same remark). An optional *seed* can be added to the value
1076  * 		(this can be cascaded, the seed may come from a previous call
1077  * 		to the helper).
1078  *
1079  * 		This is flexible enough to be used in several ways:
1080  *
1081  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1082  * 		  checksum, it can be used when pushing new data.
1083  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1084  * 		  checksum, it can be used when removing data from a packet.
1085  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1086  * 		  can be used to compute a diff. Note that *from_size* and
1087  * 		  *to_size* do not need to be equal.
1088  *
1089  * 		This helper can be used in combination with
1090  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1091  * 		which one can feed in the difference computed with
1092  * 		**bpf_csum_diff**\ ().
1093  * 	Return
1094  * 		The checksum result, or a negative error code in case of
1095  * 		failure.
1096  *
1097  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1098  * 	Description
1099  * 		Retrieve tunnel options metadata for the packet associated to
1100  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1101  * 		of *size*.
1102  *
1103  * 		This helper can be used with encapsulation devices that can
1104  * 		operate in "collect metadata" mode (please refer to the related
1105  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1106  * 		more details). A particular example where this can be used is
1107  * 		in combination with the Geneve encapsulation protocol, where it
1108  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1109  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1110  * 		the eBPF program. This allows for full customization of these
1111  * 		headers.
1112  * 	Return
1113  * 		The size of the option data retrieved.
1114  *
1115  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1116  * 	Description
1117  * 		Set tunnel options metadata for the packet associated to *skb*
1118  * 		to the option data contained in the raw buffer *opt* of *size*.
1119  *
1120  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1121  * 		helper for additional information.
1122  * 	Return
1123  * 		0 on success, or a negative error in case of failure.
1124  *
1125  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1126  * 	Description
1127  * 		Change the protocol of the *skb* to *proto*. Currently
1128  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1129  * 		IPv4. The helper takes care of the groundwork for the
1130  * 		transition, including resizing the socket buffer. The eBPF
1131  * 		program is expected to fill the new headers, if any, via
1132  * 		**skb_store_bytes**\ () and to recompute the checksums with
1133  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1134  * 		(). The main case for this helper is to perform NAT64
1135  * 		operations out of an eBPF program.
1136  *
1137  * 		Internally, the GSO type is marked as dodgy so that headers are
1138  * 		checked and segments are recalculated by the GSO/GRO engine.
1139  * 		The size for GSO target is adapted as well.
1140  *
1141  * 		All values for *flags* are reserved for future usage, and must
1142  * 		be left at zero.
1143  *
1144  * 		A call to this helper is susceptible to change the underlaying
1145  * 		packet buffer. Therefore, at load time, all checks on pointers
1146  * 		previously done by the verifier are invalidated and must be
1147  * 		performed again, if the helper is used in combination with
1148  * 		direct packet access.
1149  * 	Return
1150  * 		0 on success, or a negative error in case of failure.
1151  *
1152  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1153  * 	Description
1154  * 		Change the packet type for the packet associated to *skb*. This
1155  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1156  * 		the eBPF program does not have a write access to *skb*\
1157  * 		**->pkt_type** beside this helper. Using a helper here allows
1158  * 		for graceful handling of errors.
1159  *
1160  * 		The major use case is to change incoming *skb*s to
1161  * 		**PACKET_HOST** in a programmatic way instead of having to
1162  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1163  * 		example.
1164  *
1165  * 		Note that *type* only allows certain values. At this time, they
1166  * 		are:
1167  *
1168  * 		**PACKET_HOST**
1169  * 			Packet is for us.
1170  * 		**PACKET_BROADCAST**
1171  * 			Send packet to all.
1172  * 		**PACKET_MULTICAST**
1173  * 			Send packet to group.
1174  * 		**PACKET_OTHERHOST**
1175  * 			Send packet to someone else.
1176  * 	Return
1177  * 		0 on success, or a negative error in case of failure.
1178  *
1179  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1180  * 	Description
1181  * 		Check whether *skb* is a descendant of the cgroup2 held by
1182  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1183  * 	Return
1184  * 		The return value depends on the result of the test, and can be:
1185  *
1186  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1187  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1188  * 		* A negative error code, if an error occurred.
1189  *
1190  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1191  * 	Description
1192  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1193  * 		not set, in particular if the hash was cleared due to mangling,
1194  * 		recompute this hash. Later accesses to the hash can be done
1195  * 		directly with *skb*\ **->hash**.
1196  *
1197  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1198  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1199  * 		**bpf_skb_store_bytes**\ () with the
1200  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1201  * 		the hash and to trigger a new computation for the next call to
1202  * 		**bpf_get_hash_recalc**\ ().
1203  * 	Return
1204  * 		The 32-bit hash.
1205  *
1206  * u64 bpf_get_current_task(void)
1207  * 	Return
1208  * 		A pointer to the current task struct.
1209  *
1210  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1211  * 	Description
1212  * 		Attempt in a safe way to write *len* bytes from the buffer
1213  * 		*src* to *dst* in memory. It only works for threads that are in
1214  * 		user context, and *dst* must be a valid user space address.
1215  *
1216  * 		This helper should not be used to implement any kind of
1217  * 		security mechanism because of TOC-TOU attacks, but rather to
1218  * 		debug, divert, and manipulate execution of semi-cooperative
1219  * 		processes.
1220  *
1221  * 		Keep in mind that this feature is meant for experiments, and it
1222  * 		has a risk of crashing the system and running programs.
1223  * 		Therefore, when an eBPF program using this helper is attached,
1224  * 		a warning including PID and process name is printed to kernel
1225  * 		logs.
1226  * 	Return
1227  * 		0 on success, or a negative error in case of failure.
1228  *
1229  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1230  * 	Description
1231  * 		Check whether the probe is being run is the context of a given
1232  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1233  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1234  * 	Return
1235  * 		The return value depends on the result of the test, and can be:
1236  *
1237  * 		* 0, if the *skb* task belongs to the cgroup2.
1238  * 		* 1, if the *skb* task does not belong to the cgroup2.
1239  * 		* A negative error code, if an error occurred.
1240  *
1241  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1242  * 	Description
1243  * 		Resize (trim or grow) the packet associated to *skb* to the
1244  * 		new *len*. The *flags* are reserved for future usage, and must
1245  * 		be left at zero.
1246  *
1247  * 		The basic idea is that the helper performs the needed work to
1248  * 		change the size of the packet, then the eBPF program rewrites
1249  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1250  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1251  * 		and others. This helper is a slow path utility intended for
1252  * 		replies with control messages. And because it is targeted for
1253  * 		slow path, the helper itself can afford to be slow: it
1254  * 		implicitly linearizes, unclones and drops offloads from the
1255  * 		*skb*.
1256  *
1257  * 		A call to this helper is susceptible to change the underlaying
1258  * 		packet buffer. Therefore, at load time, all checks on pointers
1259  * 		previously done by the verifier are invalidated and must be
1260  * 		performed again, if the helper is used in combination with
1261  * 		direct packet access.
1262  * 	Return
1263  * 		0 on success, or a negative error in case of failure.
1264  *
1265  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1266  * 	Description
1267  * 		Pull in non-linear data in case the *skb* is non-linear and not
1268  * 		all of *len* are part of the linear section. Make *len* bytes
1269  * 		from *skb* readable and writable. If a zero value is passed for
1270  * 		*len*, then the whole length of the *skb* is pulled.
1271  *
1272  * 		This helper is only needed for reading and writing with direct
1273  * 		packet access.
1274  *
1275  * 		For direct packet access, testing that offsets to access
1276  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1277  * 		susceptible to fail if offsets are invalid, or if the requested
1278  * 		data is in non-linear parts of the *skb*. On failure the
1279  * 		program can just bail out, or in the case of a non-linear
1280  * 		buffer, use a helper to make the data available. The
1281  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1282  * 		the data. Another one consists in using **bpf_skb_pull_data**
1283  * 		to pull in once the non-linear parts, then retesting and
1284  * 		eventually access the data.
1285  *
1286  * 		At the same time, this also makes sure the *skb* is uncloned,
1287  * 		which is a necessary condition for direct write. As this needs
1288  * 		to be an invariant for the write part only, the verifier
1289  * 		detects writes and adds a prologue that is calling
1290  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1291  * 		the very beginning in case it is indeed cloned.
1292  *
1293  * 		A call to this helper is susceptible to change the underlaying
1294  * 		packet buffer. Therefore, at load time, all checks on pointers
1295  * 		previously done by the verifier are invalidated and must be
1296  * 		performed again, if the helper is used in combination with
1297  * 		direct packet access.
1298  * 	Return
1299  * 		0 on success, or a negative error in case of failure.
1300  *
1301  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1302  * 	Description
1303  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1304  * 		driver has supplied a checksum for the entire packet into that
1305  * 		field. Return an error otherwise. This helper is intended to be
1306  * 		used in combination with **bpf_csum_diff**\ (), in particular
1307  * 		when the checksum needs to be updated after data has been
1308  * 		written into the packet through direct packet access.
1309  * 	Return
1310  * 		The checksum on success, or a negative error code in case of
1311  * 		failure.
1312  *
1313  * void bpf_set_hash_invalid(struct sk_buff *skb)
1314  * 	Description
1315  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1316  * 		mangling on headers through direct packet access, in order to
1317  * 		indicate that the hash is outdated and to trigger a
1318  * 		recalculation the next time the kernel tries to access this
1319  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1320  *
1321  * int bpf_get_numa_node_id(void)
1322  * 	Description
1323  * 		Return the id of the current NUMA node. The primary use case
1324  * 		for this helper is the selection of sockets for the local NUMA
1325  * 		node, when the program is attached to sockets using the
1326  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1327  * 		but the helper is also available to other eBPF program types,
1328  * 		similarly to **bpf_get_smp_processor_id**\ ().
1329  * 	Return
1330  * 		The id of current NUMA node.
1331  *
1332  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1333  * 	Description
1334  * 		Grows headroom of packet associated to *skb* and adjusts the
1335  * 		offset of the MAC header accordingly, adding *len* bytes of
1336  * 		space. It automatically extends and reallocates memory as
1337  * 		required.
1338  *
1339  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1340  * 		for redirection into a layer 2 device.
1341  *
1342  * 		All values for *flags* are reserved for future usage, and must
1343  * 		be left at zero.
1344  *
1345  * 		A call to this helper is susceptible to change the underlaying
1346  * 		packet buffer. Therefore, at load time, all checks on pointers
1347  * 		previously done by the verifier are invalidated and must be
1348  * 		performed again, if the helper is used in combination with
1349  * 		direct packet access.
1350  * 	Return
1351  * 		0 on success, or a negative error in case of failure.
1352  *
1353  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1354  * 	Description
1355  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1356  * 		it is possible to use a negative value for *delta*. This helper
1357  * 		can be used to prepare the packet for pushing or popping
1358  * 		headers.
1359  *
1360  * 		A call to this helper is susceptible to change the underlaying
1361  * 		packet buffer. Therefore, at load time, all checks on pointers
1362  * 		previously done by the verifier are invalidated and must be
1363  * 		performed again, if the helper is used in combination with
1364  * 		direct packet access.
1365  * 	Return
1366  * 		0 on success, or a negative error in case of failure.
1367  *
1368  * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
1369  * 	Description
1370  * 		Copy a NUL terminated string from an unsafe address
1371  * 		*unsafe_ptr* to *dst*. The *size* should include the
1372  * 		terminating NUL byte. In case the string length is smaller than
1373  * 		*size*, the target is not padded with further NUL bytes. If the
1374  * 		string length is larger than *size*, just *size*-1 bytes are
1375  * 		copied and the last byte is set to NUL.
1376  *
1377  * 		On success, the length of the copied string is returned. This
1378  * 		makes this helper useful in tracing programs for reading
1379  * 		strings, and more importantly to get its length at runtime. See
1380  * 		the following snippet:
1381  *
1382  * 		::
1383  *
1384  * 			SEC("kprobe/sys_open")
1385  * 			void bpf_sys_open(struct pt_regs *ctx)
1386  * 			{
1387  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
1388  * 			        int res = bpf_probe_read_str(buf, sizeof(buf),
1389  * 				                             ctx->di);
1390  *
1391  * 				// Consume buf, for example push it to
1392  * 				// userspace via bpf_perf_event_output(); we
1393  * 				// can use res (the string length) as event
1394  * 				// size, after checking its boundaries.
1395  * 			}
1396  *
1397  * 		In comparison, using **bpf_probe_read()** helper here instead
1398  * 		to read the string would require to estimate the length at
1399  * 		compile time, and would often result in copying more memory
1400  * 		than necessary.
1401  *
1402  * 		Another useful use case is when parsing individual process
1403  * 		arguments or individual environment variables navigating
1404  * 		*current*\ **->mm->arg_start** and *current*\
1405  * 		**->mm->env_start**: using this helper and the return value,
1406  * 		one can quickly iterate at the right offset of the memory area.
1407  * 	Return
1408  * 		On success, the strictly positive length of the string,
1409  * 		including the trailing NUL character. On error, a negative
1410  * 		value.
1411  *
1412  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1413  * 	Description
1414  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1415  * 		retrieve the cookie (generated by the kernel) of this socket.
1416  * 		If no cookie has been set yet, generate a new cookie. Once
1417  * 		generated, the socket cookie remains stable for the life of the
1418  * 		socket. This helper can be useful for monitoring per socket
1419  * 		networking traffic statistics as it provides a unique socket
1420  * 		identifier per namespace.
1421  * 	Return
1422  * 		A 8-byte long non-decreasing number on success, or 0 if the
1423  * 		socket field is missing inside *skb*.
1424  *
1425  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1426  * 	Description
1427  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1428  * 		*skb*, but gets socket from **struct bpf_sock_addr** context.
1429  * 	Return
1430  * 		A 8-byte long non-decreasing number.
1431  *
1432  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1433  * 	Description
1434  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1435  * 		*skb*, but gets socket from **struct bpf_sock_ops** context.
1436  * 	Return
1437  * 		A 8-byte long non-decreasing number.
1438  *
1439  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1440  * 	Return
1441  * 		The owner UID of the socket associated to *skb*. If the socket
1442  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1443  * 		time-wait or a request socket instead), **overflowuid** value
1444  * 		is returned (note that **overflowuid** might also be the actual
1445  * 		UID value for the socket).
1446  *
1447  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1448  * 	Description
1449  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1450  * 		to value *hash*.
1451  * 	Return
1452  * 		0
1453  *
1454  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1455  * 	Description
1456  * 		Emulate a call to **setsockopt()** on the socket associated to
1457  * 		*bpf_socket*, which must be a full socket. The *level* at
1458  * 		which the option resides and the name *optname* of the option
1459  * 		must be specified, see **setsockopt(2)** for more information.
1460  * 		The option value of length *optlen* is pointed by *optval*.
1461  *
1462  * 		This helper actually implements a subset of **setsockopt()**.
1463  * 		It supports the following *level*\ s:
1464  *
1465  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1466  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1467  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1468  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1469  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1470  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1471  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1472  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1473  * 	Return
1474  * 		0 on success, or a negative error in case of failure.
1475  *
1476  * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1477  * 	Description
1478  * 		Grow or shrink the room for data in the packet associated to
1479  * 		*skb* by *len_diff*, and according to the selected *mode*.
1480  *
1481  * 		There is a single supported mode at this time:
1482  *
1483  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1484  * 		  (room space is added or removed below the layer 3 header).
1485  *
1486  * 		All values for *flags* are reserved for future usage, and must
1487  * 		be left at zero.
1488  *
1489  * 		A call to this helper is susceptible to change the underlaying
1490  * 		packet buffer. Therefore, at load time, all checks on pointers
1491  * 		previously done by the verifier are invalidated and must be
1492  * 		performed again, if the helper is used in combination with
1493  * 		direct packet access.
1494  * 	Return
1495  * 		0 on success, or a negative error in case of failure.
1496  *
1497  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1498  * 	Description
1499  * 		Redirect the packet to the endpoint referenced by *map* at
1500  * 		index *key*. Depending on its type, this *map* can contain
1501  * 		references to net devices (for forwarding packets through other
1502  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1503  * 		but this is only implemented for native XDP (with driver
1504  * 		support) as of this writing).
1505  *
1506  * 		All values for *flags* are reserved for future usage, and must
1507  * 		be left at zero.
1508  *
1509  * 		When used to redirect packets to net devices, this helper
1510  * 		provides a high performance increase over **bpf_redirect**\ ().
1511  * 		This is due to various implementation details of the underlying
1512  * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
1513  * 		() tries to send packet as a "bulk" to the device.
1514  * 	Return
1515  * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1516  *
1517  * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1518  * 	Description
1519  * 		Redirect the packet to the socket referenced by *map* (of type
1520  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1521  * 		egress interfaces can be used for redirection. The
1522  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1523  * 		distinction (ingress path is selected if the flag is present,
1524  * 		egress path otherwise). This is the only flag supported for now.
1525  * 	Return
1526  * 		**SK_PASS** on success, or **SK_DROP** on error.
1527  *
1528  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1529  * 	Description
1530  * 		Add an entry to, or update a *map* referencing sockets. The
1531  * 		*skops* is used as a new value for the entry associated to
1532  * 		*key*. *flags* is one of:
1533  *
1534  * 		**BPF_NOEXIST**
1535  * 			The entry for *key* must not exist in the map.
1536  * 		**BPF_EXIST**
1537  * 			The entry for *key* must already exist in the map.
1538  * 		**BPF_ANY**
1539  * 			No condition on the existence of the entry for *key*.
1540  *
1541  * 		If the *map* has eBPF programs (parser and verdict), those will
1542  * 		be inherited by the socket being added. If the socket is
1543  * 		already attached to eBPF programs, this results in an error.
1544  * 	Return
1545  * 		0 on success, or a negative error in case of failure.
1546  *
1547  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1548  * 	Description
1549  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1550  * 		*delta* (which can be positive or negative). Note that this
1551  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1552  * 		so the latter must be loaded only after the helper has been
1553  * 		called.
1554  *
1555  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1556  * 		are not required to use it. The rationale is that when the
1557  * 		packet is processed with XDP (e.g. as DoS filter), it is
1558  * 		possible to push further meta data along with it before passing
1559  * 		to the stack, and to give the guarantee that an ingress eBPF
1560  * 		program attached as a TC classifier on the same device can pick
1561  * 		this up for further post-processing. Since TC works with socket
1562  * 		buffers, it remains possible to set from XDP the **mark** or
1563  * 		**priority** pointers, or other pointers for the socket buffer.
1564  * 		Having this scratch space generic and programmable allows for
1565  * 		more flexibility as the user is free to store whatever meta
1566  * 		data they need.
1567  *
1568  * 		A call to this helper is susceptible to change the underlaying
1569  * 		packet buffer. Therefore, at load time, all checks on pointers
1570  * 		previously done by the verifier are invalidated and must be
1571  * 		performed again, if the helper is used in combination with
1572  * 		direct packet access.
1573  * 	Return
1574  * 		0 on success, or a negative error in case of failure.
1575  *
1576  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1577  * 	Description
1578  * 		Read the value of a perf event counter, and store it into *buf*
1579  * 		of size *buf_size*. This helper relies on a *map* of type
1580  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1581  * 		counter is selected when *map* is updated with perf event file
1582  * 		descriptors. The *map* is an array whose size is the number of
1583  * 		available CPUs, and each cell contains a value relative to one
1584  * 		CPU. The value to retrieve is indicated by *flags*, that
1585  * 		contains the index of the CPU to look up, masked with
1586  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1587  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1588  * 		current CPU should be retrieved.
1589  *
1590  * 		This helper behaves in a way close to
1591  * 		**bpf_perf_event_read**\ () helper, save that instead of
1592  * 		just returning the value observed, it fills the *buf*
1593  * 		structure. This allows for additional data to be retrieved: in
1594  * 		particular, the enabled and running times (in *buf*\
1595  * 		**->enabled** and *buf*\ **->running**, respectively) are
1596  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1597  * 		recommended over **bpf_perf_event_read**\ (), which has some
1598  * 		ABI issues and provides fewer functionalities.
1599  *
1600  * 		These values are interesting, because hardware PMU (Performance
1601  * 		Monitoring Unit) counters are limited resources. When there are
1602  * 		more PMU based perf events opened than available counters,
1603  * 		kernel will multiplex these events so each event gets certain
1604  * 		percentage (but not all) of the PMU time. In case that
1605  * 		multiplexing happens, the number of samples or counter value
1606  * 		will not reflect the case compared to when no multiplexing
1607  * 		occurs. This makes comparison between different runs difficult.
1608  * 		Typically, the counter value should be normalized before
1609  * 		comparing to other experiments. The usual normalization is done
1610  * 		as follows.
1611  *
1612  * 		::
1613  *
1614  * 			normalized_counter = counter * t_enabled / t_running
1615  *
1616  * 		Where t_enabled is the time enabled for event and t_running is
1617  * 		the time running for event since last normalization. The
1618  * 		enabled and running times are accumulated since the perf event
1619  * 		open. To achieve scaling factor between two invocations of an
1620  * 		eBPF program, users can can use CPU id as the key (which is
1621  * 		typical for perf array usage model) to remember the previous
1622  * 		value and do the calculation inside the eBPF program.
1623  * 	Return
1624  * 		0 on success, or a negative error in case of failure.
1625  *
1626  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1627  * 	Description
1628  * 		For en eBPF program attached to a perf event, retrieve the
1629  * 		value of the event counter associated to *ctx* and store it in
1630  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1631  * 		and running times are also stored in the structure (see
1632  * 		description of helper **bpf_perf_event_read_value**\ () for
1633  * 		more details).
1634  * 	Return
1635  * 		0 on success, or a negative error in case of failure.
1636  *
1637  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1638  * 	Description
1639  * 		Emulate a call to **getsockopt()** on the socket associated to
1640  * 		*bpf_socket*, which must be a full socket. The *level* at
1641  * 		which the option resides and the name *optname* of the option
1642  * 		must be specified, see **getsockopt(2)** for more information.
1643  * 		The retrieved value is stored in the structure pointed by
1644  * 		*opval* and of length *optlen*.
1645  *
1646  * 		This helper actually implements a subset of **getsockopt()**.
1647  * 		It supports the following *level*\ s:
1648  *
1649  * 		* **IPPROTO_TCP**, which supports *optname*
1650  * 		  **TCP_CONGESTION**.
1651  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1652  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1653  * 	Return
1654  * 		0 on success, or a negative error in case of failure.
1655  *
1656  * int bpf_override_return(struct pt_reg *regs, u64 rc)
1657  * 	Description
1658  * 		Used for error injection, this helper uses kprobes to override
1659  * 		the return value of the probed function, and to set it to *rc*.
1660  * 		The first argument is the context *regs* on which the kprobe
1661  * 		works.
1662  *
1663  * 		This helper works by setting setting the PC (program counter)
1664  * 		to an override function which is run in place of the original
1665  * 		probed function. This means the probed function is not run at
1666  * 		all. The replacement function just returns with the required
1667  * 		value.
1668  *
1669  * 		This helper has security implications, and thus is subject to
1670  * 		restrictions. It is only available if the kernel was compiled
1671  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1672  * 		option, and in this case it only works on functions tagged with
1673  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1674  *
1675  * 		Also, the helper is only available for the architectures having
1676  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1677  * 		x86 architecture is the only one to support this feature.
1678  * 	Return
1679  * 		0
1680  *
1681  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1682  * 	Description
1683  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1684  * 		for the full TCP socket associated to *bpf_sock_ops* to
1685  * 		*argval*.
1686  *
1687  * 		The primary use of this field is to determine if there should
1688  * 		be calls to eBPF programs of type
1689  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1690  * 		code. A program of the same type can change its value, per
1691  * 		connection and as necessary, when the connection is
1692  * 		established. This field is directly accessible for reading, but
1693  * 		this helper must be used for updates in order to return an
1694  * 		error if an eBPF program tries to set a callback that is not
1695  * 		supported in the current kernel.
1696  *
1697  * 		The supported callback values that *argval* can combine are:
1698  *
1699  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1700  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1701  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1702  *
1703  * 		Here are some examples of where one could call such eBPF
1704  * 		program:
1705  *
1706  * 		* When RTO fires.
1707  * 		* When a packet is retransmitted.
1708  * 		* When the connection terminates.
1709  * 		* When a packet is sent.
1710  * 		* When a packet is received.
1711  * 	Return
1712  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1713  * 		otherwise, a positive number containing the bits that could not
1714  * 		be set is returned (which comes down to 0 if all bits were set
1715  * 		as required).
1716  *
1717  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1718  * 	Description
1719  * 		This helper is used in programs implementing policies at the
1720  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1721  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1722  * 		the socket referenced by *map* (of type
1723  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1724  * 		egress interfaces can be used for redirection. The
1725  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1726  * 		distinction (ingress path is selected if the flag is present,
1727  * 		egress path otherwise). This is the only flag supported for now.
1728  * 	Return
1729  * 		**SK_PASS** on success, or **SK_DROP** on error.
1730  *
1731  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1732  * 	Description
1733  * 		For socket policies, apply the verdict of the eBPF program to
1734  * 		the next *bytes* (number of bytes) of message *msg*.
1735  *
1736  * 		For example, this helper can be used in the following cases:
1737  *
1738  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1739  * 		  contains multiple logical messages that the eBPF program is
1740  * 		  supposed to read and for which it should apply a verdict.
1741  * 		* An eBPF program only cares to read the first *bytes* of a
1742  * 		  *msg*. If the message has a large payload, then setting up
1743  * 		  and calling the eBPF program repeatedly for all bytes, even
1744  * 		  though the verdict is already known, would create unnecessary
1745  * 		  overhead.
1746  *
1747  * 		When called from within an eBPF program, the helper sets a
1748  * 		counter internal to the BPF infrastructure, that is used to
1749  * 		apply the last verdict to the next *bytes*. If *bytes* is
1750  * 		smaller than the current data being processed from a
1751  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1752  * 		*bytes* will be sent and the eBPF program will be re-run with
1753  * 		the pointer for start of data pointing to byte number *bytes*
1754  * 		**+ 1**. If *bytes* is larger than the current data being
1755  * 		processed, then the eBPF verdict will be applied to multiple
1756  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1757  * 		consumed.
1758  *
1759  * 		Note that if a socket closes with the internal counter holding
1760  * 		a non-zero value, this is not a problem because data is not
1761  * 		being buffered for *bytes* and is sent as it is received.
1762  * 	Return
1763  * 		0
1764  *
1765  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1766  * 	Description
1767  * 		For socket policies, prevent the execution of the verdict eBPF
1768  * 		program for message *msg* until *bytes* (byte number) have been
1769  * 		accumulated.
1770  *
1771  * 		This can be used when one needs a specific number of bytes
1772  * 		before a verdict can be assigned, even if the data spans
1773  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1774  * 		case would be a user calling **sendmsg**\ () repeatedly with
1775  * 		1-byte long message segments. Obviously, this is bad for
1776  * 		performance, but it is still valid. If the eBPF program needs
1777  * 		*bytes* bytes to validate a header, this helper can be used to
1778  * 		prevent the eBPF program to be called again until *bytes* have
1779  * 		been accumulated.
1780  * 	Return
1781  * 		0
1782  *
1783  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1784  * 	Description
1785  * 		For socket policies, pull in non-linear data from user space
1786  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1787  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1788  * 		respectively.
1789  *
1790  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1791  * 		*msg* it can only parse data that the (**data**, **data_end**)
1792  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1793  * 		is likely the first scatterlist element. But for calls relying
1794  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1795  * 		be the range (**0**, **0**) because the data is shared with
1796  * 		user space and by default the objective is to avoid allowing
1797  * 		user space to modify data while (or after) eBPF verdict is
1798  * 		being decided. This helper can be used to pull in data and to
1799  * 		set the start and end pointer to given values. Data will be
1800  * 		copied if necessary (i.e. if data was not linear and if start
1801  * 		and end pointers do not point to the same chunk).
1802  *
1803  * 		A call to this helper is susceptible to change the underlaying
1804  * 		packet buffer. Therefore, at load time, all checks on pointers
1805  * 		previously done by the verifier are invalidated and must be
1806  * 		performed again, if the helper is used in combination with
1807  * 		direct packet access.
1808  *
1809  * 		All values for *flags* are reserved for future usage, and must
1810  * 		be left at zero.
1811  * 	Return
1812  * 		0 on success, or a negative error in case of failure.
1813  *
1814  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1815  * 	Description
1816  * 		Bind the socket associated to *ctx* to the address pointed by
1817  * 		*addr*, of length *addr_len*. This allows for making outgoing
1818  * 		connection from the desired IP address, which can be useful for
1819  * 		example when all processes inside a cgroup should use one
1820  * 		single IP address on a host that has multiple IP configured.
1821  *
1822  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1823  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1824  * 		**AF_INET6**). Looking for a free port to bind to can be
1825  * 		expensive, therefore binding to port is not permitted by the
1826  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1827  * 		must be set to zero.
1828  * 	Return
1829  * 		0 on success, or a negative error in case of failure.
1830  *
1831  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1832  * 	Description
1833  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1834  * 		only possible to shrink the packet as of this writing,
1835  * 		therefore *delta* must be a negative integer.
1836  *
1837  * 		A call to this helper is susceptible to change the underlaying
1838  * 		packet buffer. Therefore, at load time, all checks on pointers
1839  * 		previously done by the verifier are invalidated and must be
1840  * 		performed again, if the helper is used in combination with
1841  * 		direct packet access.
1842  * 	Return
1843  * 		0 on success, or a negative error in case of failure.
1844  *
1845  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1846  * 	Description
1847  * 		Retrieve the XFRM state (IP transform framework, see also
1848  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1849  *
1850  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1851  * 		pointed by *xfrm_state* and of length *size*.
1852  *
1853  * 		All values for *flags* are reserved for future usage, and must
1854  * 		be left at zero.
1855  *
1856  * 		This helper is available only if the kernel was compiled with
1857  * 		**CONFIG_XFRM** configuration option.
1858  * 	Return
1859  * 		0 on success, or a negative error in case of failure.
1860  *
1861  * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
1862  * 	Description
1863  * 		Return a user or a kernel stack in bpf program provided buffer.
1864  * 		To achieve this, the helper needs *ctx*, which is a pointer
1865  * 		to the context on which the tracing program is executed.
1866  * 		To store the stacktrace, the bpf program provides *buf* with
1867  * 		a nonnegative *size*.
1868  *
1869  * 		The last argument, *flags*, holds the number of stack frames to
1870  * 		skip (from 0 to 255), masked with
1871  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1872  * 		the following flags:
1873  *
1874  * 		**BPF_F_USER_STACK**
1875  * 			Collect a user space stack instead of a kernel stack.
1876  * 		**BPF_F_USER_BUILD_ID**
1877  * 			Collect buildid+offset instead of ips for user stack,
1878  * 			only valid if **BPF_F_USER_STACK** is also specified.
1879  *
1880  * 		**bpf_get_stack**\ () can collect up to
1881  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1882  * 		to sufficient large buffer size. Note that
1883  * 		this limit can be controlled with the **sysctl** program, and
1884  * 		that it should be manually increased in order to profile long
1885  * 		user stacks (such as stacks for Java programs). To do so, use:
1886  *
1887  * 		::
1888  *
1889  * 			# sysctl kernel.perf_event_max_stack=<new value>
1890  * 	Return
1891  * 		A non-negative value equal to or less than *size* on success,
1892  * 		or a negative error in case of failure.
1893  *
1894  * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
1895  * 	Description
1896  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
1897  * 		it provides an easy way to load *len* bytes from *offset*
1898  * 		from the packet associated to *skb*, into the buffer pointed
1899  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1900  * 		a fifth argument *start_header* exists in order to select a
1901  * 		base offset to start from. *start_header* can be one of:
1902  *
1903  * 		**BPF_HDR_START_MAC**
1904  * 			Base offset to load data from is *skb*'s mac header.
1905  * 		**BPF_HDR_START_NET**
1906  * 			Base offset to load data from is *skb*'s network header.
1907  *
1908  * 		In general, "direct packet access" is the preferred method to
1909  * 		access packet data, however, this helper is in particular useful
1910  * 		in socket filters where *skb*\ **->data** does not always point
1911  * 		to the start of the mac header and where "direct packet access"
1912  * 		is not available.
1913  * 	Return
1914  * 		0 on success, or a negative error in case of failure.
1915  *
1916  * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
1917  *	Description
1918  *		Do FIB lookup in kernel tables using parameters in *params*.
1919  *		If lookup is successful and result shows packet is to be
1920  *		forwarded, the neighbor tables are searched for the nexthop.
1921  *		If successful (ie., FIB lookup shows forwarding and nexthop
1922  *		is resolved), the nexthop address is returned in ipv4_dst
1923  *		or ipv6_dst based on family, smac is set to mac address of
1924  *		egress device, dmac is set to nexthop mac address, rt_metric
1925  *		is set to metric from route (IPv4/IPv6 only), and ifindex
1926  *		is set to the device index of the nexthop from the FIB lookup.
1927  *
1928  *		*plen* argument is the size of the passed in struct.
1929  *		*flags* argument can be a combination of one or more of the
1930  *		following values:
1931  *
1932  *		**BPF_FIB_LOOKUP_DIRECT**
1933  *			Do a direct table lookup vs full lookup using FIB
1934  *			rules.
1935  *		**BPF_FIB_LOOKUP_OUTPUT**
1936  *			Perform lookup from an egress perspective (default is
1937  *			ingress).
1938  *
1939  *		*ctx* is either **struct xdp_md** for XDP programs or
1940  *		**struct sk_buff** tc cls_act programs.
1941  *	Return
1942  *		* < 0 if any input argument is invalid
1943  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
1944  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
1945  *		  packet is not forwarded or needs assist from full stack
1946  *
1947  * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags)
1948  *	Description
1949  *		Add an entry to, or update a sockhash *map* referencing sockets.
1950  *		The *skops* is used as a new value for the entry associated to
1951  *		*key*. *flags* is one of:
1952  *
1953  *		**BPF_NOEXIST**
1954  *			The entry for *key* must not exist in the map.
1955  *		**BPF_EXIST**
1956  *			The entry for *key* must already exist in the map.
1957  *		**BPF_ANY**
1958  *			No condition on the existence of the entry for *key*.
1959  *
1960  *		If the *map* has eBPF programs (parser and verdict), those will
1961  *		be inherited by the socket being added. If the socket is
1962  *		already attached to eBPF programs, this results in an error.
1963  *	Return
1964  *		0 on success, or a negative error in case of failure.
1965  *
1966  * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
1967  *	Description
1968  *		This helper is used in programs implementing policies at the
1969  *		socket level. If the message *msg* is allowed to pass (i.e. if
1970  *		the verdict eBPF program returns **SK_PASS**), redirect it to
1971  *		the socket referenced by *map* (of type
1972  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1973  *		egress interfaces can be used for redirection. The
1974  *		**BPF_F_INGRESS** value in *flags* is used to make the
1975  *		distinction (ingress path is selected if the flag is present,
1976  *		egress path otherwise). This is the only flag supported for now.
1977  *	Return
1978  *		**SK_PASS** on success, or **SK_DROP** on error.
1979  *
1980  * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
1981  *	Description
1982  *		This helper is used in programs implementing policies at the
1983  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
1984  *		if the verdeict eBPF program returns **SK_PASS**), redirect it
1985  *		to the socket referenced by *map* (of type
1986  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1987  *		egress interfaces can be used for redirection. The
1988  *		**BPF_F_INGRESS** value in *flags* is used to make the
1989  *		distinction (ingress path is selected if the flag is present,
1990  *		egress otherwise). This is the only flag supported for now.
1991  *	Return
1992  *		**SK_PASS** on success, or **SK_DROP** on error.
1993  *
1994  * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
1995  *	Description
1996  *		Encapsulate the packet associated to *skb* within a Layer 3
1997  *		protocol header. This header is provided in the buffer at
1998  *		address *hdr*, with *len* its size in bytes. *type* indicates
1999  *		the protocol of the header and can be one of:
2000  *
2001  *		**BPF_LWT_ENCAP_SEG6**
2002  *			IPv6 encapsulation with Segment Routing Header
2003  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2004  *			the IPv6 header is computed by the kernel.
2005  *		**BPF_LWT_ENCAP_SEG6_INLINE**
2006  *			Only works if *skb* contains an IPv6 packet. Insert a
2007  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
2008  *			the IPv6 header.
2009  *		**BPF_LWT_ENCAP_IP**
2010  *			IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2011  *			must be IPv4 or IPv6, followed by zero or more
2012  *			additional headers, up to LWT_BPF_MAX_HEADROOM total
2013  *			bytes in all prepended headers. Please note that
2014  *			if skb_is_gso(skb) is true, no more than two headers
2015  *			can be prepended, and the inner header, if present,
2016  *			should be either GRE or UDP/GUE.
2017  *
2018  *		BPF_LWT_ENCAP_SEG6*** types can be called by bpf programs of
2019  *		type BPF_PROG_TYPE_LWT_IN; BPF_LWT_ENCAP_IP type can be called
2020  *		by bpf programs of types BPF_PROG_TYPE_LWT_IN and
2021  *		BPF_PROG_TYPE_LWT_XMIT.
2022  *
2023  * 		A call to this helper is susceptible to change the underlaying
2024  * 		packet buffer. Therefore, at load time, all checks on pointers
2025  * 		previously done by the verifier are invalidated and must be
2026  * 		performed again, if the helper is used in combination with
2027  * 		direct packet access.
2028  *	Return
2029  * 		0 on success, or a negative error in case of failure.
2030  *
2031  * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2032  *	Description
2033  *		Store *len* bytes from address *from* into the packet
2034  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2035  *		inside the outermost IPv6 Segment Routing Header can be
2036  *		modified through this helper.
2037  *
2038  * 		A call to this helper is susceptible to change the underlaying
2039  * 		packet buffer. Therefore, at load time, all checks on pointers
2040  * 		previously done by the verifier are invalidated and must be
2041  * 		performed again, if the helper is used in combination with
2042  * 		direct packet access.
2043  *	Return
2044  * 		0 on success, or a negative error in case of failure.
2045  *
2046  * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2047  *	Description
2048  *		Adjust the size allocated to TLVs in the outermost IPv6
2049  *		Segment Routing Header contained in the packet associated to
2050  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2051  *		after the segments are accepted. *delta* can be as well
2052  *		positive (growing) as negative (shrinking).
2053  *
2054  * 		A call to this helper is susceptible to change the underlaying
2055  * 		packet buffer. Therefore, at load time, all checks on pointers
2056  * 		previously done by the verifier are invalidated and must be
2057  * 		performed again, if the helper is used in combination with
2058  * 		direct packet access.
2059  *	Return
2060  * 		0 on success, or a negative error in case of failure.
2061  *
2062  * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2063  *	Description
2064  *		Apply an IPv6 Segment Routing action of type *action* to the
2065  *		packet associated to *skb*. Each action takes a parameter
2066  *		contained at address *param*, and of length *param_len* bytes.
2067  *		*action* can be one of:
2068  *
2069  *		**SEG6_LOCAL_ACTION_END_X**
2070  *			End.X action: Endpoint with Layer-3 cross-connect.
2071  *			Type of *param*: **struct in6_addr**.
2072  *		**SEG6_LOCAL_ACTION_END_T**
2073  *			End.T action: Endpoint with specific IPv6 table lookup.
2074  *			Type of *param*: **int**.
2075  *		**SEG6_LOCAL_ACTION_END_B6**
2076  *			End.B6 action: Endpoint bound to an SRv6 policy.
2077  *			Type of param: **struct ipv6_sr_hdr**.
2078  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2079  *			End.B6.Encap action: Endpoint bound to an SRv6
2080  *			encapsulation policy.
2081  *			Type of param: **struct ipv6_sr_hdr**.
2082  *
2083  * 		A call to this helper is susceptible to change the underlaying
2084  * 		packet buffer. Therefore, at load time, all checks on pointers
2085  * 		previously done by the verifier are invalidated and must be
2086  * 		performed again, if the helper is used in combination with
2087  * 		direct packet access.
2088  *	Return
2089  * 		0 on success, or a negative error in case of failure.
2090  *
2091  * int bpf_rc_repeat(void *ctx)
2092  *	Description
2093  *		This helper is used in programs implementing IR decoding, to
2094  *		report a successfully decoded repeat key message. This delays
2095  *		the generation of a key up event for previously generated
2096  *		key down event.
2097  *
2098  *		Some IR protocols like NEC have a special IR message for
2099  *		repeating last button, for when a button is held down.
2100  *
2101  *		The *ctx* should point to the lirc sample as passed into
2102  *		the program.
2103  *
2104  *		This helper is only available is the kernel was compiled with
2105  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2106  *		"**y**".
2107  *	Return
2108  *		0
2109  *
2110  * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2111  *	Description
2112  *		This helper is used in programs implementing IR decoding, to
2113  *		report a successfully decoded key press with *scancode*,
2114  *		*toggle* value in the given *protocol*. The scancode will be
2115  *		translated to a keycode using the rc keymap, and reported as
2116  *		an input key down event. After a period a key up event is
2117  *		generated. This period can be extended by calling either
2118  *		**bpf_rc_keydown**\ () again with the same values, or calling
2119  *		**bpf_rc_repeat**\ ().
2120  *
2121  *		Some protocols include a toggle bit, in case the button	was
2122  *		released and pressed again between consecutive scancodes.
2123  *
2124  *		The *ctx* should point to the lirc sample as passed into
2125  *		the program.
2126  *
2127  *		The *protocol* is the decoded protocol number (see
2128  *		**enum rc_proto** for some predefined values).
2129  *
2130  *		This helper is only available is the kernel was compiled with
2131  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2132  *		"**y**".
2133  *	Return
2134  *		0
2135  *
2136  * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2137  * 	Description
2138  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2139  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2140  * 		helper for cgroup v1 by providing a tag resp. identifier that
2141  * 		can be matched on or used for map lookups e.g. to implement
2142  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2143  * 		exposed in user space through the f_handle API in order to get
2144  * 		to the same 64-bit id.
2145  *
2146  * 		This helper can be used on TC egress path, but not on ingress,
2147  * 		and is available only if the kernel was compiled with the
2148  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2149  * 	Return
2150  * 		The id is returned or 0 in case the id could not be retrieved.
2151  *
2152  * u64 bpf_get_current_cgroup_id(void)
2153  * 	Return
2154  * 		A 64-bit integer containing the current cgroup id based
2155  * 		on the cgroup within which the current task is running.
2156  *
2157  * void *bpf_get_local_storage(void *map, u64 flags)
2158  *	Description
2159  *		Get the pointer to the local storage area.
2160  *		The type and the size of the local storage is defined
2161  *		by the *map* argument.
2162  *		The *flags* meaning is specific for each map type,
2163  *		and has to be 0 for cgroup local storage.
2164  *
2165  *		Depending on the BPF program type, a local storage area
2166  *		can be shared between multiple instances of the BPF program,
2167  *		running simultaneously.
2168  *
2169  *		A user should care about the synchronization by himself.
2170  *		For example, by using the **BPF_STX_XADD** instruction to alter
2171  *		the shared data.
2172  *	Return
2173  *		A pointer to the local storage area.
2174  *
2175  * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2176  *	Description
2177  *		Select a **SO_REUSEPORT** socket from a
2178  *		**BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2179  *		It checks the selected socket is matching the incoming
2180  *		request in the socket buffer.
2181  *	Return
2182  *		0 on success, or a negative error in case of failure.
2183  *
2184  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2185  *	Description
2186  *		Return id of cgroup v2 that is ancestor of cgroup associated
2187  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2188  *		*ancestor_level* zero and each step down the hierarchy
2189  *		increments the level. If *ancestor_level* == level of cgroup
2190  *		associated with *skb*, then return value will be same as that
2191  *		of **bpf_skb_cgroup_id**\ ().
2192  *
2193  *		The helper is useful to implement policies based on cgroups
2194  *		that are upper in hierarchy than immediate cgroup associated
2195  *		with *skb*.
2196  *
2197  *		The format of returned id and helper limitations are same as in
2198  *		**bpf_skb_cgroup_id**\ ().
2199  *	Return
2200  *		The id is returned or 0 in case the id could not be retrieved.
2201  *
2202  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2203  *	Description
2204  *		Look for TCP socket matching *tuple*, optionally in a child
2205  *		network namespace *netns*. The return value must be checked,
2206  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2207  *
2208  *		The *ctx* should point to the context of the program, such as
2209  *		the skb or socket (depending on the hook in use). This is used
2210  *		to determine the base network namespace for the lookup.
2211  *
2212  *		*tuple_size* must be one of:
2213  *
2214  *		**sizeof**\ (*tuple*\ **->ipv4**)
2215  *			Look for an IPv4 socket.
2216  *		**sizeof**\ (*tuple*\ **->ipv6**)
2217  *			Look for an IPv6 socket.
2218  *
2219  *		If the *netns* is a negative signed 32-bit integer, then the
2220  *		socket lookup table in the netns associated with the *ctx* will
2221  *		will be used. For the TC hooks, this is the netns of the device
2222  *		in the skb. For socket hooks, this is the netns of the socket.
2223  *		If *netns* is any other signed 32-bit value greater than or
2224  *		equal to zero then it specifies the ID of the netns relative to
2225  *		the netns associated with the *ctx*. *netns* values beyond the
2226  *		range of 32-bit integers are reserved for future use.
2227  *
2228  *		All values for *flags* are reserved for future usage, and must
2229  *		be left at zero.
2230  *
2231  *		This helper is available only if the kernel was compiled with
2232  *		**CONFIG_NET** configuration option.
2233  *	Return
2234  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2235  *		For sockets with reuseport option, the **struct bpf_sock**
2236  *		result is from **reuse->socks**\ [] using the hash of the tuple.
2237  *
2238  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2239  *	Description
2240  *		Look for UDP socket matching *tuple*, optionally in a child
2241  *		network namespace *netns*. The return value must be checked,
2242  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2243  *
2244  *		The *ctx* should point to the context of the program, such as
2245  *		the skb or socket (depending on the hook in use). This is used
2246  *		to determine the base network namespace for the lookup.
2247  *
2248  *		*tuple_size* must be one of:
2249  *
2250  *		**sizeof**\ (*tuple*\ **->ipv4**)
2251  *			Look for an IPv4 socket.
2252  *		**sizeof**\ (*tuple*\ **->ipv6**)
2253  *			Look for an IPv6 socket.
2254  *
2255  *		If the *netns* is a negative signed 32-bit integer, then the
2256  *		socket lookup table in the netns associated with the *ctx* will
2257  *		will be used. For the TC hooks, this is the netns of the device
2258  *		in the skb. For socket hooks, this is the netns of the socket.
2259  *		If *netns* is any other signed 32-bit value greater than or
2260  *		equal to zero then it specifies the ID of the netns relative to
2261  *		the netns associated with the *ctx*. *netns* values beyond the
2262  *		range of 32-bit integers are reserved for future use.
2263  *
2264  *		All values for *flags* are reserved for future usage, and must
2265  *		be left at zero.
2266  *
2267  *		This helper is available only if the kernel was compiled with
2268  *		**CONFIG_NET** configuration option.
2269  *	Return
2270  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2271  *		For sockets with reuseport option, the **struct bpf_sock**
2272  *		result is from **reuse->socks**\ [] using the hash of the tuple.
2273  *
2274  * int bpf_sk_release(struct bpf_sock *sock)
2275  *	Description
2276  *		Release the reference held by *sock*. *sock* must be a
2277  *		non-**NULL** pointer that was returned from
2278  *		**bpf_sk_lookup_xxx**\ ().
2279  *	Return
2280  *		0 on success, or a negative error in case of failure.
2281  *
2282  * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2283  * 	Description
2284  * 		Push an element *value* in *map*. *flags* is one of:
2285  *
2286  * 		**BPF_EXIST**
2287  * 			If the queue/stack is full, the oldest element is
2288  * 			removed to make room for this.
2289  * 	Return
2290  * 		0 on success, or a negative error in case of failure.
2291  *
2292  * int bpf_map_pop_elem(struct bpf_map *map, void *value)
2293  * 	Description
2294  * 		Pop an element from *map*.
2295  * 	Return
2296  * 		0 on success, or a negative error in case of failure.
2297  *
2298  * int bpf_map_peek_elem(struct bpf_map *map, void *value)
2299  * 	Description
2300  * 		Get an element from *map* without removing it.
2301  * 	Return
2302  * 		0 on success, or a negative error in case of failure.
2303  *
2304  * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags)
2305  *	Description
2306  *		For socket policies, insert *len* bytes into *msg* at offset
2307  *		*start*.
2308  *
2309  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2310  *		*msg* it may want to insert metadata or options into the *msg*.
2311  *		This can later be read and used by any of the lower layer BPF
2312  *		hooks.
2313  *
2314  *		This helper may fail if under memory pressure (a malloc
2315  *		fails) in these cases BPF programs will get an appropriate
2316  *		error and BPF programs will need to handle them.
2317  *	Return
2318  *		0 on success, or a negative error in case of failure.
2319  *
2320  * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags)
2321  *	Description
2322  *		Will remove *pop* bytes from a *msg* starting at byte *start*.
2323  *		This may result in **ENOMEM** errors under certain situations if
2324  *		an allocation and copy are required due to a full ring buffer.
2325  *		However, the helper will try to avoid doing the allocation
2326  *		if possible. Other errors can occur if input parameters are
2327  *		invalid either due to *start* byte not being valid part of *msg*
2328  *		payload and/or *pop* value being to large.
2329  *	Return
2330  *		0 on success, or a negative error in case of failure.
2331  *
2332  * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2333  *	Description
2334  *		This helper is used in programs implementing IR decoding, to
2335  *		report a successfully decoded pointer movement.
2336  *
2337  *		The *ctx* should point to the lirc sample as passed into
2338  *		the program.
2339  *
2340  *		This helper is only available is the kernel was compiled with
2341  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2342  *		"**y**".
2343  *	Return
2344  *		0
2345  *
2346  * int bpf_spin_lock(struct bpf_spin_lock *lock)
2347  *	Description
2348  *		Acquire a spinlock represented by the pointer *lock*, which is
2349  *		stored as part of a value of a map. Taking the lock allows to
2350  *		safely update the rest of the fields in that value. The
2351  *		spinlock can (and must) later be released with a call to
2352  *		**bpf_spin_unlock**\ (\ *lock*\ ).
2353  *
2354  *		Spinlocks in BPF programs come with a number of restrictions
2355  *		and constraints:
2356  *
2357  *		* **bpf_spin_lock** objects are only allowed inside maps of
2358  *		  types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2359  *		  list could be extended in the future).
2360  *		* BTF description of the map is mandatory.
2361  *		* The BPF program can take ONE lock at a time, since taking two
2362  *		  or more could cause dead locks.
2363  *		* Only one **struct bpf_spin_lock** is allowed per map element.
2364  *		* When the lock is taken, calls (either BPF to BPF or helpers)
2365  *		  are not allowed.
2366  *		* The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2367  *		  allowed inside a spinlock-ed region.
2368  *		* The BPF program MUST call **bpf_spin_unlock**\ () to release
2369  *		  the lock, on all execution paths, before it returns.
2370  *		* The BPF program can access **struct bpf_spin_lock** only via
2371  *		  the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2372  *		  helpers. Loading or storing data into the **struct
2373  *		  bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2374  *		* To use the **bpf_spin_lock**\ () helper, the BTF description
2375  *		  of the map value must be a struct and have **struct
2376  *		  bpf_spin_lock** *anyname*\ **;** field at the top level.
2377  *		  Nested lock inside another struct is not allowed.
2378  *		* The **struct bpf_spin_lock** *lock* field in a map value must
2379  *		  be aligned on a multiple of 4 bytes in that value.
2380  *		* Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2381  *		  the **bpf_spin_lock** field to user space.
2382  *		* Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2383  *		  a BPF program, do not update the **bpf_spin_lock** field.
2384  *		* **bpf_spin_lock** cannot be on the stack or inside a
2385  *		  networking packet (it can only be inside of a map values).
2386  *		* **bpf_spin_lock** is available to root only.
2387  *		* Tracing programs and socket filter programs cannot use
2388  *		  **bpf_spin_lock**\ () due to insufficient preemption checks
2389  *		  (but this may change in the future).
2390  *		* **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2391  *	Return
2392  *		0
2393  *
2394  * int bpf_spin_unlock(struct bpf_spin_lock *lock)
2395  *	Description
2396  *		Release the *lock* previously locked by a call to
2397  *		**bpf_spin_lock**\ (\ *lock*\ ).
2398  *	Return
2399  *		0
2400  *
2401  * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2402  *	Description
2403  *		This helper gets a **struct bpf_sock** pointer such
2404  *		that all the fields in this **bpf_sock** can be accessed.
2405  *	Return
2406  *		A **struct bpf_sock** pointer on success, or **NULL** in
2407  *		case of failure.
2408  *
2409  * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2410  *	Description
2411  *		This helper gets a **struct bpf_tcp_sock** pointer from a
2412  *		**struct bpf_sock** pointer.
2413  *	Return
2414  *		A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2415  *		case of failure.
2416  *
2417  * int bpf_skb_ecn_set_ce(struct sk_buf *skb)
2418  *	Description
2419  *		Set ECN (Explicit Congestion Notification) field of IP header
2420  *		to **CE** (Congestion Encountered) if current value is **ECT**
2421  *		(ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2422  *		and IPv4.
2423  *	Return
2424  *		1 if the **CE** flag is set (either by the current helper call
2425  *		or because it was already present), 0 if it is not set.
2426  *
2427  * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2428  *	Description
2429  *		Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2430  *		**bpf_sk_release**\ () is unnecessary and not allowed.
2431  *	Return
2432  *		A **struct bpf_sock** pointer on success, or **NULL** in
2433  *		case of failure.
2434  */
2435 #define __BPF_FUNC_MAPPER(FN)		\
2436 	FN(unspec),			\
2437 	FN(map_lookup_elem),		\
2438 	FN(map_update_elem),		\
2439 	FN(map_delete_elem),		\
2440 	FN(probe_read),			\
2441 	FN(ktime_get_ns),		\
2442 	FN(trace_printk),		\
2443 	FN(get_prandom_u32),		\
2444 	FN(get_smp_processor_id),	\
2445 	FN(skb_store_bytes),		\
2446 	FN(l3_csum_replace),		\
2447 	FN(l4_csum_replace),		\
2448 	FN(tail_call),			\
2449 	FN(clone_redirect),		\
2450 	FN(get_current_pid_tgid),	\
2451 	FN(get_current_uid_gid),	\
2452 	FN(get_current_comm),		\
2453 	FN(get_cgroup_classid),		\
2454 	FN(skb_vlan_push),		\
2455 	FN(skb_vlan_pop),		\
2456 	FN(skb_get_tunnel_key),		\
2457 	FN(skb_set_tunnel_key),		\
2458 	FN(perf_event_read),		\
2459 	FN(redirect),			\
2460 	FN(get_route_realm),		\
2461 	FN(perf_event_output),		\
2462 	FN(skb_load_bytes),		\
2463 	FN(get_stackid),		\
2464 	FN(csum_diff),			\
2465 	FN(skb_get_tunnel_opt),		\
2466 	FN(skb_set_tunnel_opt),		\
2467 	FN(skb_change_proto),		\
2468 	FN(skb_change_type),		\
2469 	FN(skb_under_cgroup),		\
2470 	FN(get_hash_recalc),		\
2471 	FN(get_current_task),		\
2472 	FN(probe_write_user),		\
2473 	FN(current_task_under_cgroup),	\
2474 	FN(skb_change_tail),		\
2475 	FN(skb_pull_data),		\
2476 	FN(csum_update),		\
2477 	FN(set_hash_invalid),		\
2478 	FN(get_numa_node_id),		\
2479 	FN(skb_change_head),		\
2480 	FN(xdp_adjust_head),		\
2481 	FN(probe_read_str),		\
2482 	FN(get_socket_cookie),		\
2483 	FN(get_socket_uid),		\
2484 	FN(set_hash),			\
2485 	FN(setsockopt),			\
2486 	FN(skb_adjust_room),		\
2487 	FN(redirect_map),		\
2488 	FN(sk_redirect_map),		\
2489 	FN(sock_map_update),		\
2490 	FN(xdp_adjust_meta),		\
2491 	FN(perf_event_read_value),	\
2492 	FN(perf_prog_read_value),	\
2493 	FN(getsockopt),			\
2494 	FN(override_return),		\
2495 	FN(sock_ops_cb_flags_set),	\
2496 	FN(msg_redirect_map),		\
2497 	FN(msg_apply_bytes),		\
2498 	FN(msg_cork_bytes),		\
2499 	FN(msg_pull_data),		\
2500 	FN(bind),			\
2501 	FN(xdp_adjust_tail),		\
2502 	FN(skb_get_xfrm_state),		\
2503 	FN(get_stack),			\
2504 	FN(skb_load_bytes_relative),	\
2505 	FN(fib_lookup),			\
2506 	FN(sock_hash_update),		\
2507 	FN(msg_redirect_hash),		\
2508 	FN(sk_redirect_hash),		\
2509 	FN(lwt_push_encap),		\
2510 	FN(lwt_seg6_store_bytes),	\
2511 	FN(lwt_seg6_adjust_srh),	\
2512 	FN(lwt_seg6_action),		\
2513 	FN(rc_repeat),			\
2514 	FN(rc_keydown),			\
2515 	FN(skb_cgroup_id),		\
2516 	FN(get_current_cgroup_id),	\
2517 	FN(get_local_storage),		\
2518 	FN(sk_select_reuseport),	\
2519 	FN(skb_ancestor_cgroup_id),	\
2520 	FN(sk_lookup_tcp),		\
2521 	FN(sk_lookup_udp),		\
2522 	FN(sk_release),			\
2523 	FN(map_push_elem),		\
2524 	FN(map_pop_elem),		\
2525 	FN(map_peek_elem),		\
2526 	FN(msg_push_data),		\
2527 	FN(msg_pop_data),		\
2528 	FN(rc_pointer_rel),		\
2529 	FN(spin_lock),			\
2530 	FN(spin_unlock),		\
2531 	FN(sk_fullsock),		\
2532 	FN(tcp_sock),			\
2533 	FN(skb_ecn_set_ce),		\
2534 	FN(get_listener_sock),
2535 
2536 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
2537  * function eBPF program intends to call
2538  */
2539 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
2540 enum bpf_func_id {
2541 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
2542 	__BPF_FUNC_MAX_ID,
2543 };
2544 #undef __BPF_ENUM_FN
2545 
2546 /* All flags used by eBPF helper functions, placed here. */
2547 
2548 /* BPF_FUNC_skb_store_bytes flags. */
2549 #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
2550 #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
2551 
2552 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2553  * First 4 bits are for passing the header field size.
2554  */
2555 #define BPF_F_HDR_FIELD_MASK		0xfULL
2556 
2557 /* BPF_FUNC_l4_csum_replace flags. */
2558 #define BPF_F_PSEUDO_HDR		(1ULL << 4)
2559 #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
2560 #define BPF_F_MARK_ENFORCE		(1ULL << 6)
2561 
2562 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2563 #define BPF_F_INGRESS			(1ULL << 0)
2564 
2565 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2566 #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
2567 
2568 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
2569 #define BPF_F_SKIP_FIELD_MASK		0xffULL
2570 #define BPF_F_USER_STACK		(1ULL << 8)
2571 /* flags used by BPF_FUNC_get_stackid only. */
2572 #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
2573 #define BPF_F_REUSE_STACKID		(1ULL << 10)
2574 /* flags used by BPF_FUNC_get_stack only. */
2575 #define BPF_F_USER_BUILD_ID		(1ULL << 11)
2576 
2577 /* BPF_FUNC_skb_set_tunnel_key flags. */
2578 #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
2579 #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
2580 #define BPF_F_SEQ_NUMBER		(1ULL << 3)
2581 
2582 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
2583  * BPF_FUNC_perf_event_read_value flags.
2584  */
2585 #define BPF_F_INDEX_MASK		0xffffffffULL
2586 #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
2587 /* BPF_FUNC_perf_event_output for sk_buff input context. */
2588 #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
2589 
2590 /* Current network namespace */
2591 #define BPF_F_CURRENT_NETNS		(-1L)
2592 
2593 /* Mode for BPF_FUNC_skb_adjust_room helper. */
2594 enum bpf_adj_room_mode {
2595 	BPF_ADJ_ROOM_NET,
2596 };
2597 
2598 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
2599 enum bpf_hdr_start_off {
2600 	BPF_HDR_START_MAC,
2601 	BPF_HDR_START_NET,
2602 };
2603 
2604 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
2605 enum bpf_lwt_encap_mode {
2606 	BPF_LWT_ENCAP_SEG6,
2607 	BPF_LWT_ENCAP_SEG6_INLINE,
2608 	BPF_LWT_ENCAP_IP,
2609 };
2610 
2611 #define __bpf_md_ptr(type, name)	\
2612 union {					\
2613 	type name;			\
2614 	__u64 :64;			\
2615 } __attribute__((aligned(8)))
2616 
2617 /* user accessible mirror of in-kernel sk_buff.
2618  * new fields can only be added to the end of this structure
2619  */
2620 struct __sk_buff {
2621 	__u32 len;
2622 	__u32 pkt_type;
2623 	__u32 mark;
2624 	__u32 queue_mapping;
2625 	__u32 protocol;
2626 	__u32 vlan_present;
2627 	__u32 vlan_tci;
2628 	__u32 vlan_proto;
2629 	__u32 priority;
2630 	__u32 ingress_ifindex;
2631 	__u32 ifindex;
2632 	__u32 tc_index;
2633 	__u32 cb[5];
2634 	__u32 hash;
2635 	__u32 tc_classid;
2636 	__u32 data;
2637 	__u32 data_end;
2638 	__u32 napi_id;
2639 
2640 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
2641 	__u32 family;
2642 	__u32 remote_ip4;	/* Stored in network byte order */
2643 	__u32 local_ip4;	/* Stored in network byte order */
2644 	__u32 remote_ip6[4];	/* Stored in network byte order */
2645 	__u32 local_ip6[4];	/* Stored in network byte order */
2646 	__u32 remote_port;	/* Stored in network byte order */
2647 	__u32 local_port;	/* stored in host byte order */
2648 	/* ... here. */
2649 
2650 	__u32 data_meta;
2651 	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
2652 	__u64 tstamp;
2653 	__u32 wire_len;
2654 	__u32 gso_segs;
2655 	__bpf_md_ptr(struct bpf_sock *, sk);
2656 };
2657 
2658 struct bpf_tunnel_key {
2659 	__u32 tunnel_id;
2660 	union {
2661 		__u32 remote_ipv4;
2662 		__u32 remote_ipv6[4];
2663 	};
2664 	__u8 tunnel_tos;
2665 	__u8 tunnel_ttl;
2666 	__u16 tunnel_ext;	/* Padding, future use. */
2667 	__u32 tunnel_label;
2668 };
2669 
2670 /* user accessible mirror of in-kernel xfrm_state.
2671  * new fields can only be added to the end of this structure
2672  */
2673 struct bpf_xfrm_state {
2674 	__u32 reqid;
2675 	__u32 spi;	/* Stored in network byte order */
2676 	__u16 family;
2677 	__u16 ext;	/* Padding, future use. */
2678 	union {
2679 		__u32 remote_ipv4;	/* Stored in network byte order */
2680 		__u32 remote_ipv6[4];	/* Stored in network byte order */
2681 	};
2682 };
2683 
2684 /* Generic BPF return codes which all BPF program types may support.
2685  * The values are binary compatible with their TC_ACT_* counter-part to
2686  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
2687  * programs.
2688  *
2689  * XDP is handled seprately, see XDP_*.
2690  */
2691 enum bpf_ret_code {
2692 	BPF_OK = 0,
2693 	/* 1 reserved */
2694 	BPF_DROP = 2,
2695 	/* 3-6 reserved */
2696 	BPF_REDIRECT = 7,
2697 	/* >127 are reserved for prog type specific return codes.
2698 	 *
2699 	 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
2700 	 *    BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
2701 	 *    changed and should be routed based on its new L3 header.
2702 	 *    (This is an L3 redirect, as opposed to L2 redirect
2703 	 *    represented by BPF_REDIRECT above).
2704 	 */
2705 	BPF_LWT_REROUTE = 128,
2706 };
2707 
2708 struct bpf_sock {
2709 	__u32 bound_dev_if;
2710 	__u32 family;
2711 	__u32 type;
2712 	__u32 protocol;
2713 	__u32 mark;
2714 	__u32 priority;
2715 	/* IP address also allows 1 and 2 bytes access */
2716 	__u32 src_ip4;
2717 	__u32 src_ip6[4];
2718 	__u32 src_port;		/* host byte order */
2719 	__u32 dst_port;		/* network byte order */
2720 	__u32 dst_ip4;
2721 	__u32 dst_ip6[4];
2722 	__u32 state;
2723 };
2724 
2725 struct bpf_tcp_sock {
2726 	__u32 snd_cwnd;		/* Sending congestion window		*/
2727 	__u32 srtt_us;		/* smoothed round trip time << 3 in usecs */
2728 	__u32 rtt_min;
2729 	__u32 snd_ssthresh;	/* Slow start size threshold		*/
2730 	__u32 rcv_nxt;		/* What we want to receive next		*/
2731 	__u32 snd_nxt;		/* Next sequence we send		*/
2732 	__u32 snd_una;		/* First byte we want an ack for	*/
2733 	__u32 mss_cache;	/* Cached effective mss, not including SACKS */
2734 	__u32 ecn_flags;	/* ECN status bits.			*/
2735 	__u32 rate_delivered;	/* saved rate sample: packets delivered */
2736 	__u32 rate_interval_us;	/* saved rate sample: time elapsed */
2737 	__u32 packets_out;	/* Packets which are "in flight"	*/
2738 	__u32 retrans_out;	/* Retransmitted packets out		*/
2739 	__u32 total_retrans;	/* Total retransmits for entire connection */
2740 	__u32 segs_in;		/* RFC4898 tcpEStatsPerfSegsIn
2741 				 * total number of segments in.
2742 				 */
2743 	__u32 data_segs_in;	/* RFC4898 tcpEStatsPerfDataSegsIn
2744 				 * total number of data segments in.
2745 				 */
2746 	__u32 segs_out;		/* RFC4898 tcpEStatsPerfSegsOut
2747 				 * The total number of segments sent.
2748 				 */
2749 	__u32 data_segs_out;	/* RFC4898 tcpEStatsPerfDataSegsOut
2750 				 * total number of data segments sent.
2751 				 */
2752 	__u32 lost_out;		/* Lost packets			*/
2753 	__u32 sacked_out;	/* SACK'd packets			*/
2754 	__u64 bytes_received;	/* RFC4898 tcpEStatsAppHCThruOctetsReceived
2755 				 * sum(delta(rcv_nxt)), or how many bytes
2756 				 * were acked.
2757 				 */
2758 	__u64 bytes_acked;	/* RFC4898 tcpEStatsAppHCThruOctetsAcked
2759 				 * sum(delta(snd_una)), or how many bytes
2760 				 * were acked.
2761 				 */
2762 };
2763 
2764 struct bpf_sock_tuple {
2765 	union {
2766 		struct {
2767 			__be32 saddr;
2768 			__be32 daddr;
2769 			__be16 sport;
2770 			__be16 dport;
2771 		} ipv4;
2772 		struct {
2773 			__be32 saddr[4];
2774 			__be32 daddr[4];
2775 			__be16 sport;
2776 			__be16 dport;
2777 		} ipv6;
2778 	};
2779 };
2780 
2781 #define XDP_PACKET_HEADROOM 256
2782 
2783 /* User return codes for XDP prog type.
2784  * A valid XDP program must return one of these defined values. All other
2785  * return codes are reserved for future use. Unknown return codes will
2786  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
2787  */
2788 enum xdp_action {
2789 	XDP_ABORTED = 0,
2790 	XDP_DROP,
2791 	XDP_PASS,
2792 	XDP_TX,
2793 	XDP_REDIRECT,
2794 };
2795 
2796 /* user accessible metadata for XDP packet hook
2797  * new fields must be added to the end of this structure
2798  */
2799 struct xdp_md {
2800 	__u32 data;
2801 	__u32 data_end;
2802 	__u32 data_meta;
2803 	/* Below access go through struct xdp_rxq_info */
2804 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
2805 	__u32 rx_queue_index;  /* rxq->queue_index  */
2806 };
2807 
2808 enum sk_action {
2809 	SK_DROP = 0,
2810 	SK_PASS,
2811 };
2812 
2813 /* user accessible metadata for SK_MSG packet hook, new fields must
2814  * be added to the end of this structure
2815  */
2816 struct sk_msg_md {
2817 	__bpf_md_ptr(void *, data);
2818 	__bpf_md_ptr(void *, data_end);
2819 
2820 	__u32 family;
2821 	__u32 remote_ip4;	/* Stored in network byte order */
2822 	__u32 local_ip4;	/* Stored in network byte order */
2823 	__u32 remote_ip6[4];	/* Stored in network byte order */
2824 	__u32 local_ip6[4];	/* Stored in network byte order */
2825 	__u32 remote_port;	/* Stored in network byte order */
2826 	__u32 local_port;	/* stored in host byte order */
2827 	__u32 size;		/* Total size of sk_msg */
2828 };
2829 
2830 struct sk_reuseport_md {
2831 	/*
2832 	 * Start of directly accessible data. It begins from
2833 	 * the tcp/udp header.
2834 	 */
2835 	__bpf_md_ptr(void *, data);
2836 	/* End of directly accessible data */
2837 	__bpf_md_ptr(void *, data_end);
2838 	/*
2839 	 * Total length of packet (starting from the tcp/udp header).
2840 	 * Note that the directly accessible bytes (data_end - data)
2841 	 * could be less than this "len".  Those bytes could be
2842 	 * indirectly read by a helper "bpf_skb_load_bytes()".
2843 	 */
2844 	__u32 len;
2845 	/*
2846 	 * Eth protocol in the mac header (network byte order). e.g.
2847 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
2848 	 */
2849 	__u32 eth_protocol;
2850 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
2851 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
2852 	__u32 hash;		/* A hash of the packet 4 tuples */
2853 };
2854 
2855 #define BPF_TAG_SIZE	8
2856 
2857 struct bpf_prog_info {
2858 	__u32 type;
2859 	__u32 id;
2860 	__u8  tag[BPF_TAG_SIZE];
2861 	__u32 jited_prog_len;
2862 	__u32 xlated_prog_len;
2863 	__aligned_u64 jited_prog_insns;
2864 	__aligned_u64 xlated_prog_insns;
2865 	__u64 load_time;	/* ns since boottime */
2866 	__u32 created_by_uid;
2867 	__u32 nr_map_ids;
2868 	__aligned_u64 map_ids;
2869 	char name[BPF_OBJ_NAME_LEN];
2870 	__u32 ifindex;
2871 	__u32 gpl_compatible:1;
2872 	__u64 netns_dev;
2873 	__u64 netns_ino;
2874 	__u32 nr_jited_ksyms;
2875 	__u32 nr_jited_func_lens;
2876 	__aligned_u64 jited_ksyms;
2877 	__aligned_u64 jited_func_lens;
2878 	__u32 btf_id;
2879 	__u32 func_info_rec_size;
2880 	__aligned_u64 func_info;
2881 	__u32 nr_func_info;
2882 	__u32 nr_line_info;
2883 	__aligned_u64 line_info;
2884 	__aligned_u64 jited_line_info;
2885 	__u32 nr_jited_line_info;
2886 	__u32 line_info_rec_size;
2887 	__u32 jited_line_info_rec_size;
2888 	__u32 nr_prog_tags;
2889 	__aligned_u64 prog_tags;
2890 	__u64 run_time_ns;
2891 	__u64 run_cnt;
2892 } __attribute__((aligned(8)));
2893 
2894 struct bpf_map_info {
2895 	__u32 type;
2896 	__u32 id;
2897 	__u32 key_size;
2898 	__u32 value_size;
2899 	__u32 max_entries;
2900 	__u32 map_flags;
2901 	char  name[BPF_OBJ_NAME_LEN];
2902 	__u32 ifindex;
2903 	__u32 :32;
2904 	__u64 netns_dev;
2905 	__u64 netns_ino;
2906 	__u32 btf_id;
2907 	__u32 btf_key_type_id;
2908 	__u32 btf_value_type_id;
2909 } __attribute__((aligned(8)));
2910 
2911 struct bpf_btf_info {
2912 	__aligned_u64 btf;
2913 	__u32 btf_size;
2914 	__u32 id;
2915 } __attribute__((aligned(8)));
2916 
2917 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
2918  * by user and intended to be used by socket (e.g. to bind to, depends on
2919  * attach attach type).
2920  */
2921 struct bpf_sock_addr {
2922 	__u32 user_family;	/* Allows 4-byte read, but no write. */
2923 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
2924 				 * Stored in network byte order.
2925 				 */
2926 	__u32 user_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
2927 				 * Stored in network byte order.
2928 				 */
2929 	__u32 user_port;	/* Allows 4-byte read and write.
2930 				 * Stored in network byte order
2931 				 */
2932 	__u32 family;		/* Allows 4-byte read, but no write */
2933 	__u32 type;		/* Allows 4-byte read, but no write */
2934 	__u32 protocol;		/* Allows 4-byte read, but no write */
2935 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read an 4-byte write.
2936 				 * Stored in network byte order.
2937 				 */
2938 	__u32 msg_src_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
2939 				 * Stored in network byte order.
2940 				 */
2941 };
2942 
2943 /* User bpf_sock_ops struct to access socket values and specify request ops
2944  * and their replies.
2945  * Some of this fields are in network (bigendian) byte order and may need
2946  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
2947  * New fields can only be added at the end of this structure
2948  */
2949 struct bpf_sock_ops {
2950 	__u32 op;
2951 	union {
2952 		__u32 args[4];		/* Optionally passed to bpf program */
2953 		__u32 reply;		/* Returned by bpf program	    */
2954 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
2955 	};
2956 	__u32 family;
2957 	__u32 remote_ip4;	/* Stored in network byte order */
2958 	__u32 local_ip4;	/* Stored in network byte order */
2959 	__u32 remote_ip6[4];	/* Stored in network byte order */
2960 	__u32 local_ip6[4];	/* Stored in network byte order */
2961 	__u32 remote_port;	/* Stored in network byte order */
2962 	__u32 local_port;	/* stored in host byte order */
2963 	__u32 is_fullsock;	/* Some TCP fields are only valid if
2964 				 * there is a full socket. If not, the
2965 				 * fields read as zero.
2966 				 */
2967 	__u32 snd_cwnd;
2968 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
2969 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
2970 	__u32 state;
2971 	__u32 rtt_min;
2972 	__u32 snd_ssthresh;
2973 	__u32 rcv_nxt;
2974 	__u32 snd_nxt;
2975 	__u32 snd_una;
2976 	__u32 mss_cache;
2977 	__u32 ecn_flags;
2978 	__u32 rate_delivered;
2979 	__u32 rate_interval_us;
2980 	__u32 packets_out;
2981 	__u32 retrans_out;
2982 	__u32 total_retrans;
2983 	__u32 segs_in;
2984 	__u32 data_segs_in;
2985 	__u32 segs_out;
2986 	__u32 data_segs_out;
2987 	__u32 lost_out;
2988 	__u32 sacked_out;
2989 	__u32 sk_txhash;
2990 	__u64 bytes_received;
2991 	__u64 bytes_acked;
2992 };
2993 
2994 /* Definitions for bpf_sock_ops_cb_flags */
2995 #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
2996 #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
2997 #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
2998 #define BPF_SOCK_OPS_ALL_CB_FLAGS       0x7		/* Mask of all currently
2999 							 * supported cb flags
3000 							 */
3001 
3002 /* List of known BPF sock_ops operators.
3003  * New entries can only be added at the end
3004  */
3005 enum {
3006 	BPF_SOCK_OPS_VOID,
3007 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
3008 					 * -1 if default value should be used
3009 					 */
3010 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
3011 					 * window (in packets) or -1 if default
3012 					 * value should be used
3013 					 */
3014 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
3015 					 * active connection is initialized
3016 					 */
3017 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
3018 						 * active connection is
3019 						 * established
3020 						 */
3021 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
3022 						 * passive connection is
3023 						 * established
3024 						 */
3025 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
3026 					 * needs ECN
3027 					 */
3028 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
3029 					 * based on the path and may be
3030 					 * dependent on the congestion control
3031 					 * algorithm. In general it indicates
3032 					 * a congestion threshold. RTTs above
3033 					 * this indicate congestion
3034 					 */
3035 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
3036 					 * Arg1: value of icsk_retransmits
3037 					 * Arg2: value of icsk_rto
3038 					 * Arg3: whether RTO has expired
3039 					 */
3040 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
3041 					 * Arg1: sequence number of 1st byte
3042 					 * Arg2: # segments
3043 					 * Arg3: return value of
3044 					 *       tcp_transmit_skb (0 => success)
3045 					 */
3046 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
3047 					 * Arg1: old_state
3048 					 * Arg2: new_state
3049 					 */
3050 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
3051 					 * socket transition to LISTEN state.
3052 					 */
3053 };
3054 
3055 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
3056  * changes between the TCP and BPF versions. Ideally this should never happen.
3057  * If it does, we need to add code to convert them before calling
3058  * the BPF sock_ops function.
3059  */
3060 enum {
3061 	BPF_TCP_ESTABLISHED = 1,
3062 	BPF_TCP_SYN_SENT,
3063 	BPF_TCP_SYN_RECV,
3064 	BPF_TCP_FIN_WAIT1,
3065 	BPF_TCP_FIN_WAIT2,
3066 	BPF_TCP_TIME_WAIT,
3067 	BPF_TCP_CLOSE,
3068 	BPF_TCP_CLOSE_WAIT,
3069 	BPF_TCP_LAST_ACK,
3070 	BPF_TCP_LISTEN,
3071 	BPF_TCP_CLOSING,	/* Now a valid state */
3072 	BPF_TCP_NEW_SYN_RECV,
3073 
3074 	BPF_TCP_MAX_STATES	/* Leave at the end! */
3075 };
3076 
3077 #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
3078 #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
3079 
3080 struct bpf_perf_event_value {
3081 	__u64 counter;
3082 	__u64 enabled;
3083 	__u64 running;
3084 };
3085 
3086 #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
3087 #define BPF_DEVCG_ACC_READ	(1ULL << 1)
3088 #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
3089 
3090 #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
3091 #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
3092 
3093 struct bpf_cgroup_dev_ctx {
3094 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
3095 	__u32 access_type;
3096 	__u32 major;
3097 	__u32 minor;
3098 };
3099 
3100 struct bpf_raw_tracepoint_args {
3101 	__u64 args[0];
3102 };
3103 
3104 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
3105  * OUTPUT:  Do lookup from egress perspective; default is ingress
3106  */
3107 #define BPF_FIB_LOOKUP_DIRECT  BIT(0)
3108 #define BPF_FIB_LOOKUP_OUTPUT  BIT(1)
3109 
3110 enum {
3111 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
3112 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
3113 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
3114 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
3115 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
3116 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
3117 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
3118 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
3119 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
3120 };
3121 
3122 struct bpf_fib_lookup {
3123 	/* input:  network family for lookup (AF_INET, AF_INET6)
3124 	 * output: network family of egress nexthop
3125 	 */
3126 	__u8	family;
3127 
3128 	/* set if lookup is to consider L4 data - e.g., FIB rules */
3129 	__u8	l4_protocol;
3130 	__be16	sport;
3131 	__be16	dport;
3132 
3133 	/* total length of packet from network header - used for MTU check */
3134 	__u16	tot_len;
3135 
3136 	/* input: L3 device index for lookup
3137 	 * output: device index from FIB lookup
3138 	 */
3139 	__u32	ifindex;
3140 
3141 	union {
3142 		/* inputs to lookup */
3143 		__u8	tos;		/* AF_INET  */
3144 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
3145 
3146 		/* output: metric of fib result (IPv4/IPv6 only) */
3147 		__u32	rt_metric;
3148 	};
3149 
3150 	union {
3151 		__be32		ipv4_src;
3152 		__u32		ipv6_src[4];  /* in6_addr; network order */
3153 	};
3154 
3155 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
3156 	 * network header. output: bpf_fib_lookup sets to gateway address
3157 	 * if FIB lookup returns gateway route
3158 	 */
3159 	union {
3160 		__be32		ipv4_dst;
3161 		__u32		ipv6_dst[4];  /* in6_addr; network order */
3162 	};
3163 
3164 	/* output */
3165 	__be16	h_vlan_proto;
3166 	__be16	h_vlan_TCI;
3167 	__u8	smac[6];     /* ETH_ALEN */
3168 	__u8	dmac[6];     /* ETH_ALEN */
3169 };
3170 
3171 enum bpf_task_fd_type {
3172 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
3173 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
3174 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
3175 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
3176 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
3177 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
3178 };
3179 
3180 struct bpf_flow_keys {
3181 	__u16	nhoff;
3182 	__u16	thoff;
3183 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
3184 	__u8	is_frag;
3185 	__u8	is_first_frag;
3186 	__u8	is_encap;
3187 	__u8	ip_proto;
3188 	__be16	n_proto;
3189 	__be16	sport;
3190 	__be16	dport;
3191 	union {
3192 		struct {
3193 			__be32	ipv4_src;
3194 			__be32	ipv4_dst;
3195 		};
3196 		struct {
3197 			__u32	ipv6_src[4];	/* in6_addr; network order */
3198 			__u32	ipv6_dst[4];	/* in6_addr; network order */
3199 		};
3200 	};
3201 };
3202 
3203 struct bpf_func_info {
3204 	__u32	insn_off;
3205 	__u32	type_id;
3206 };
3207 
3208 #define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
3209 #define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
3210 
3211 struct bpf_line_info {
3212 	__u32	insn_off;
3213 	__u32	file_name_off;
3214 	__u32	line_off;
3215 	__u32	line_col;
3216 };
3217 
3218 struct bpf_spin_lock {
3219 	__u32	val;
3220 };
3221 #endif /* _UAPI__LINUX_BPF_H__ */
3222