xref: /linux-6.15/include/uapi/linux/bpf.h (revision 521fe8bb)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_JMP32	0x06	/* jmp mode in word width */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_XADD	0xc0	/* exclusive add */
23 
24 /* alu/jmp fields */
25 #define BPF_MOV		0xb0	/* mov reg to reg */
26 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
27 
28 /* change endianness of a register */
29 #define BPF_END		0xd0	/* flags for endianness conversion: */
30 #define BPF_TO_LE	0x00	/* convert to little-endian */
31 #define BPF_TO_BE	0x08	/* convert to big-endian */
32 #define BPF_FROM_LE	BPF_TO_LE
33 #define BPF_FROM_BE	BPF_TO_BE
34 
35 /* jmp encodings */
36 #define BPF_JNE		0x50	/* jump != */
37 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
38 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
39 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
42 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
43 #define BPF_CALL	0x80	/* function call */
44 #define BPF_EXIT	0x90	/* function return */
45 
46 /* Register numbers */
47 enum {
48 	BPF_REG_0 = 0,
49 	BPF_REG_1,
50 	BPF_REG_2,
51 	BPF_REG_3,
52 	BPF_REG_4,
53 	BPF_REG_5,
54 	BPF_REG_6,
55 	BPF_REG_7,
56 	BPF_REG_8,
57 	BPF_REG_9,
58 	BPF_REG_10,
59 	__MAX_BPF_REG,
60 };
61 
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG	__MAX_BPF_REG
64 
65 struct bpf_insn {
66 	__u8	code;		/* opcode */
67 	__u8	dst_reg:4;	/* dest register */
68 	__u8	src_reg:4;	/* source register */
69 	__s16	off;		/* signed offset */
70 	__s32	imm;		/* signed immediate constant */
71 };
72 
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
76 	__u8	data[0];	/* Arbitrary size */
77 };
78 
79 struct bpf_cgroup_storage_key {
80 	__u64	cgroup_inode_id;	/* cgroup inode id */
81 	__u32	attach_type;		/* program attach type */
82 };
83 
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 	BPF_MAP_CREATE,
87 	BPF_MAP_LOOKUP_ELEM,
88 	BPF_MAP_UPDATE_ELEM,
89 	BPF_MAP_DELETE_ELEM,
90 	BPF_MAP_GET_NEXT_KEY,
91 	BPF_PROG_LOAD,
92 	BPF_OBJ_PIN,
93 	BPF_OBJ_GET,
94 	BPF_PROG_ATTACH,
95 	BPF_PROG_DETACH,
96 	BPF_PROG_TEST_RUN,
97 	BPF_PROG_GET_NEXT_ID,
98 	BPF_MAP_GET_NEXT_ID,
99 	BPF_PROG_GET_FD_BY_ID,
100 	BPF_MAP_GET_FD_BY_ID,
101 	BPF_OBJ_GET_INFO_BY_FD,
102 	BPF_PROG_QUERY,
103 	BPF_RAW_TRACEPOINT_OPEN,
104 	BPF_BTF_LOAD,
105 	BPF_BTF_GET_FD_BY_ID,
106 	BPF_TASK_FD_QUERY,
107 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 	BPF_MAP_FREEZE,
109 	BPF_BTF_GET_NEXT_ID,
110 	BPF_MAP_LOOKUP_BATCH,
111 	BPF_MAP_LOOKUP_AND_DELETE_BATCH,
112 	BPF_MAP_UPDATE_BATCH,
113 	BPF_MAP_DELETE_BATCH,
114 };
115 
116 enum bpf_map_type {
117 	BPF_MAP_TYPE_UNSPEC,
118 	BPF_MAP_TYPE_HASH,
119 	BPF_MAP_TYPE_ARRAY,
120 	BPF_MAP_TYPE_PROG_ARRAY,
121 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
122 	BPF_MAP_TYPE_PERCPU_HASH,
123 	BPF_MAP_TYPE_PERCPU_ARRAY,
124 	BPF_MAP_TYPE_STACK_TRACE,
125 	BPF_MAP_TYPE_CGROUP_ARRAY,
126 	BPF_MAP_TYPE_LRU_HASH,
127 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
128 	BPF_MAP_TYPE_LPM_TRIE,
129 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
130 	BPF_MAP_TYPE_HASH_OF_MAPS,
131 	BPF_MAP_TYPE_DEVMAP,
132 	BPF_MAP_TYPE_SOCKMAP,
133 	BPF_MAP_TYPE_CPUMAP,
134 	BPF_MAP_TYPE_XSKMAP,
135 	BPF_MAP_TYPE_SOCKHASH,
136 	BPF_MAP_TYPE_CGROUP_STORAGE,
137 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
138 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
139 	BPF_MAP_TYPE_QUEUE,
140 	BPF_MAP_TYPE_STACK,
141 	BPF_MAP_TYPE_SK_STORAGE,
142 	BPF_MAP_TYPE_DEVMAP_HASH,
143 	BPF_MAP_TYPE_STRUCT_OPS,
144 };
145 
146 /* Note that tracing related programs such as
147  * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
148  * are not subject to a stable API since kernel internal data
149  * structures can change from release to release and may
150  * therefore break existing tracing BPF programs. Tracing BPF
151  * programs correspond to /a/ specific kernel which is to be
152  * analyzed, and not /a/ specific kernel /and/ all future ones.
153  */
154 enum bpf_prog_type {
155 	BPF_PROG_TYPE_UNSPEC,
156 	BPF_PROG_TYPE_SOCKET_FILTER,
157 	BPF_PROG_TYPE_KPROBE,
158 	BPF_PROG_TYPE_SCHED_CLS,
159 	BPF_PROG_TYPE_SCHED_ACT,
160 	BPF_PROG_TYPE_TRACEPOINT,
161 	BPF_PROG_TYPE_XDP,
162 	BPF_PROG_TYPE_PERF_EVENT,
163 	BPF_PROG_TYPE_CGROUP_SKB,
164 	BPF_PROG_TYPE_CGROUP_SOCK,
165 	BPF_PROG_TYPE_LWT_IN,
166 	BPF_PROG_TYPE_LWT_OUT,
167 	BPF_PROG_TYPE_LWT_XMIT,
168 	BPF_PROG_TYPE_SOCK_OPS,
169 	BPF_PROG_TYPE_SK_SKB,
170 	BPF_PROG_TYPE_CGROUP_DEVICE,
171 	BPF_PROG_TYPE_SK_MSG,
172 	BPF_PROG_TYPE_RAW_TRACEPOINT,
173 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
174 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
175 	BPF_PROG_TYPE_LIRC_MODE2,
176 	BPF_PROG_TYPE_SK_REUSEPORT,
177 	BPF_PROG_TYPE_FLOW_DISSECTOR,
178 	BPF_PROG_TYPE_CGROUP_SYSCTL,
179 	BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
180 	BPF_PROG_TYPE_CGROUP_SOCKOPT,
181 	BPF_PROG_TYPE_TRACING,
182 	BPF_PROG_TYPE_STRUCT_OPS,
183 };
184 
185 enum bpf_attach_type {
186 	BPF_CGROUP_INET_INGRESS,
187 	BPF_CGROUP_INET_EGRESS,
188 	BPF_CGROUP_INET_SOCK_CREATE,
189 	BPF_CGROUP_SOCK_OPS,
190 	BPF_SK_SKB_STREAM_PARSER,
191 	BPF_SK_SKB_STREAM_VERDICT,
192 	BPF_CGROUP_DEVICE,
193 	BPF_SK_MSG_VERDICT,
194 	BPF_CGROUP_INET4_BIND,
195 	BPF_CGROUP_INET6_BIND,
196 	BPF_CGROUP_INET4_CONNECT,
197 	BPF_CGROUP_INET6_CONNECT,
198 	BPF_CGROUP_INET4_POST_BIND,
199 	BPF_CGROUP_INET6_POST_BIND,
200 	BPF_CGROUP_UDP4_SENDMSG,
201 	BPF_CGROUP_UDP6_SENDMSG,
202 	BPF_LIRC_MODE2,
203 	BPF_FLOW_DISSECTOR,
204 	BPF_CGROUP_SYSCTL,
205 	BPF_CGROUP_UDP4_RECVMSG,
206 	BPF_CGROUP_UDP6_RECVMSG,
207 	BPF_CGROUP_GETSOCKOPT,
208 	BPF_CGROUP_SETSOCKOPT,
209 	BPF_TRACE_RAW_TP,
210 	BPF_TRACE_FENTRY,
211 	BPF_TRACE_FEXIT,
212 	__MAX_BPF_ATTACH_TYPE
213 };
214 
215 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
216 
217 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
218  *
219  * NONE(default): No further bpf programs allowed in the subtree.
220  *
221  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
222  * the program in this cgroup yields to sub-cgroup program.
223  *
224  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
225  * that cgroup program gets run in addition to the program in this cgroup.
226  *
227  * Only one program is allowed to be attached to a cgroup with
228  * NONE or BPF_F_ALLOW_OVERRIDE flag.
229  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
230  * release old program and attach the new one. Attach flags has to match.
231  *
232  * Multiple programs are allowed to be attached to a cgroup with
233  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
234  * (those that were attached first, run first)
235  * The programs of sub-cgroup are executed first, then programs of
236  * this cgroup and then programs of parent cgroup.
237  * When children program makes decision (like picking TCP CA or sock bind)
238  * parent program has a chance to override it.
239  *
240  * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
241  * programs for a cgroup. Though it's possible to replace an old program at
242  * any position by also specifying BPF_F_REPLACE flag and position itself in
243  * replace_bpf_fd attribute. Old program at this position will be released.
244  *
245  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
246  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
247  * Ex1:
248  * cgrp1 (MULTI progs A, B) ->
249  *    cgrp2 (OVERRIDE prog C) ->
250  *      cgrp3 (MULTI prog D) ->
251  *        cgrp4 (OVERRIDE prog E) ->
252  *          cgrp5 (NONE prog F)
253  * the event in cgrp5 triggers execution of F,D,A,B in that order.
254  * if prog F is detached, the execution is E,D,A,B
255  * if prog F and D are detached, the execution is E,A,B
256  * if prog F, E and D are detached, the execution is C,A,B
257  *
258  * All eligible programs are executed regardless of return code from
259  * earlier programs.
260  */
261 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
262 #define BPF_F_ALLOW_MULTI	(1U << 1)
263 #define BPF_F_REPLACE		(1U << 2)
264 
265 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
266  * verifier will perform strict alignment checking as if the kernel
267  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
268  * and NET_IP_ALIGN defined to 2.
269  */
270 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
271 
272 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
273  * verifier will allow any alignment whatsoever.  On platforms
274  * with strict alignment requirements for loads ands stores (such
275  * as sparc and mips) the verifier validates that all loads and
276  * stores provably follow this requirement.  This flag turns that
277  * checking and enforcement off.
278  *
279  * It is mostly used for testing when we want to validate the
280  * context and memory access aspects of the verifier, but because
281  * of an unaligned access the alignment check would trigger before
282  * the one we are interested in.
283  */
284 #define BPF_F_ANY_ALIGNMENT	(1U << 1)
285 
286 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
287  * Verifier does sub-register def/use analysis and identifies instructions whose
288  * def only matters for low 32-bit, high 32-bit is never referenced later
289  * through implicit zero extension. Therefore verifier notifies JIT back-ends
290  * that it is safe to ignore clearing high 32-bit for these instructions. This
291  * saves some back-ends a lot of code-gen. However such optimization is not
292  * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
293  * hence hasn't used verifier's analysis result. But, we really want to have a
294  * way to be able to verify the correctness of the described optimization on
295  * x86_64 on which testsuites are frequently exercised.
296  *
297  * So, this flag is introduced. Once it is set, verifier will randomize high
298  * 32-bit for those instructions who has been identified as safe to ignore them.
299  * Then, if verifier is not doing correct analysis, such randomization will
300  * regress tests to expose bugs.
301  */
302 #define BPF_F_TEST_RND_HI32	(1U << 2)
303 
304 /* The verifier internal test flag. Behavior is undefined */
305 #define BPF_F_TEST_STATE_FREQ	(1U << 3)
306 
307 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
308  * two extensions:
309  *
310  * insn[0].src_reg:  BPF_PSEUDO_MAP_FD   BPF_PSEUDO_MAP_VALUE
311  * insn[0].imm:      map fd              map fd
312  * insn[1].imm:      0                   offset into value
313  * insn[0].off:      0                   0
314  * insn[1].off:      0                   0
315  * ldimm64 rewrite:  address of map      address of map[0]+offset
316  * verifier type:    CONST_PTR_TO_MAP    PTR_TO_MAP_VALUE
317  */
318 #define BPF_PSEUDO_MAP_FD	1
319 #define BPF_PSEUDO_MAP_VALUE	2
320 
321 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
322  * offset to another bpf function
323  */
324 #define BPF_PSEUDO_CALL		1
325 
326 /* flags for BPF_MAP_UPDATE_ELEM command */
327 #define BPF_ANY		0 /* create new element or update existing */
328 #define BPF_NOEXIST	1 /* create new element if it didn't exist */
329 #define BPF_EXIST	2 /* update existing element */
330 #define BPF_F_LOCK	4 /* spin_lock-ed map_lookup/map_update */
331 
332 /* flags for BPF_MAP_CREATE command */
333 #define BPF_F_NO_PREALLOC	(1U << 0)
334 /* Instead of having one common LRU list in the
335  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
336  * which can scale and perform better.
337  * Note, the LRU nodes (including free nodes) cannot be moved
338  * across different LRU lists.
339  */
340 #define BPF_F_NO_COMMON_LRU	(1U << 1)
341 /* Specify numa node during map creation */
342 #define BPF_F_NUMA_NODE		(1U << 2)
343 
344 #define BPF_OBJ_NAME_LEN 16U
345 
346 /* Flags for accessing BPF object from syscall side. */
347 #define BPF_F_RDONLY		(1U << 3)
348 #define BPF_F_WRONLY		(1U << 4)
349 
350 /* Flag for stack_map, store build_id+offset instead of pointer */
351 #define BPF_F_STACK_BUILD_ID	(1U << 5)
352 
353 /* Zero-initialize hash function seed. This should only be used for testing. */
354 #define BPF_F_ZERO_SEED		(1U << 6)
355 
356 /* Flags for accessing BPF object from program side. */
357 #define BPF_F_RDONLY_PROG	(1U << 7)
358 #define BPF_F_WRONLY_PROG	(1U << 8)
359 
360 /* Clone map from listener for newly accepted socket */
361 #define BPF_F_CLONE		(1U << 9)
362 
363 /* Enable memory-mapping BPF map */
364 #define BPF_F_MMAPABLE		(1U << 10)
365 
366 /* Flags for BPF_PROG_QUERY. */
367 
368 /* Query effective (directly attached + inherited from ancestor cgroups)
369  * programs that will be executed for events within a cgroup.
370  * attach_flags with this flag are returned only for directly attached programs.
371  */
372 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
373 
374 enum bpf_stack_build_id_status {
375 	/* user space need an empty entry to identify end of a trace */
376 	BPF_STACK_BUILD_ID_EMPTY = 0,
377 	/* with valid build_id and offset */
378 	BPF_STACK_BUILD_ID_VALID = 1,
379 	/* couldn't get build_id, fallback to ip */
380 	BPF_STACK_BUILD_ID_IP = 2,
381 };
382 
383 #define BPF_BUILD_ID_SIZE 20
384 struct bpf_stack_build_id {
385 	__s32		status;
386 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
387 	union {
388 		__u64	offset;
389 		__u64	ip;
390 	};
391 };
392 
393 union bpf_attr {
394 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
395 		__u32	map_type;	/* one of enum bpf_map_type */
396 		__u32	key_size;	/* size of key in bytes */
397 		__u32	value_size;	/* size of value in bytes */
398 		__u32	max_entries;	/* max number of entries in a map */
399 		__u32	map_flags;	/* BPF_MAP_CREATE related
400 					 * flags defined above.
401 					 */
402 		__u32	inner_map_fd;	/* fd pointing to the inner map */
403 		__u32	numa_node;	/* numa node (effective only if
404 					 * BPF_F_NUMA_NODE is set).
405 					 */
406 		char	map_name[BPF_OBJ_NAME_LEN];
407 		__u32	map_ifindex;	/* ifindex of netdev to create on */
408 		__u32	btf_fd;		/* fd pointing to a BTF type data */
409 		__u32	btf_key_type_id;	/* BTF type_id of the key */
410 		__u32	btf_value_type_id;	/* BTF type_id of the value */
411 		__u32	btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
412 						   * struct stored as the
413 						   * map value
414 						   */
415 	};
416 
417 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
418 		__u32		map_fd;
419 		__aligned_u64	key;
420 		union {
421 			__aligned_u64 value;
422 			__aligned_u64 next_key;
423 		};
424 		__u64		flags;
425 	};
426 
427 	struct { /* struct used by BPF_MAP_*_BATCH commands */
428 		__aligned_u64	in_batch;	/* start batch,
429 						 * NULL to start from beginning
430 						 */
431 		__aligned_u64	out_batch;	/* output: next start batch */
432 		__aligned_u64	keys;
433 		__aligned_u64	values;
434 		__u32		count;		/* input/output:
435 						 * input: # of key/value
436 						 * elements
437 						 * output: # of filled elements
438 						 */
439 		__u32		map_fd;
440 		__u64		elem_flags;
441 		__u64		flags;
442 	} batch;
443 
444 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
445 		__u32		prog_type;	/* one of enum bpf_prog_type */
446 		__u32		insn_cnt;
447 		__aligned_u64	insns;
448 		__aligned_u64	license;
449 		__u32		log_level;	/* verbosity level of verifier */
450 		__u32		log_size;	/* size of user buffer */
451 		__aligned_u64	log_buf;	/* user supplied buffer */
452 		__u32		kern_version;	/* not used */
453 		__u32		prog_flags;
454 		char		prog_name[BPF_OBJ_NAME_LEN];
455 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
456 		/* For some prog types expected attach type must be known at
457 		 * load time to verify attach type specific parts of prog
458 		 * (context accesses, allowed helpers, etc).
459 		 */
460 		__u32		expected_attach_type;
461 		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
462 		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
463 		__aligned_u64	func_info;	/* func info */
464 		__u32		func_info_cnt;	/* number of bpf_func_info records */
465 		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
466 		__aligned_u64	line_info;	/* line info */
467 		__u32		line_info_cnt;	/* number of bpf_line_info records */
468 		__u32		attach_btf_id;	/* in-kernel BTF type id to attach to */
469 		__u32		attach_prog_fd; /* 0 to attach to vmlinux */
470 	};
471 
472 	struct { /* anonymous struct used by BPF_OBJ_* commands */
473 		__aligned_u64	pathname;
474 		__u32		bpf_fd;
475 		__u32		file_flags;
476 	};
477 
478 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
479 		__u32		target_fd;	/* container object to attach to */
480 		__u32		attach_bpf_fd;	/* eBPF program to attach */
481 		__u32		attach_type;
482 		__u32		attach_flags;
483 		__u32		replace_bpf_fd;	/* previously attached eBPF
484 						 * program to replace if
485 						 * BPF_F_REPLACE is used
486 						 */
487 	};
488 
489 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
490 		__u32		prog_fd;
491 		__u32		retval;
492 		__u32		data_size_in;	/* input: len of data_in */
493 		__u32		data_size_out;	/* input/output: len of data_out
494 						 *   returns ENOSPC if data_out
495 						 *   is too small.
496 						 */
497 		__aligned_u64	data_in;
498 		__aligned_u64	data_out;
499 		__u32		repeat;
500 		__u32		duration;
501 		__u32		ctx_size_in;	/* input: len of ctx_in */
502 		__u32		ctx_size_out;	/* input/output: len of ctx_out
503 						 *   returns ENOSPC if ctx_out
504 						 *   is too small.
505 						 */
506 		__aligned_u64	ctx_in;
507 		__aligned_u64	ctx_out;
508 	} test;
509 
510 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
511 		union {
512 			__u32		start_id;
513 			__u32		prog_id;
514 			__u32		map_id;
515 			__u32		btf_id;
516 		};
517 		__u32		next_id;
518 		__u32		open_flags;
519 	};
520 
521 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
522 		__u32		bpf_fd;
523 		__u32		info_len;
524 		__aligned_u64	info;
525 	} info;
526 
527 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
528 		__u32		target_fd;	/* container object to query */
529 		__u32		attach_type;
530 		__u32		query_flags;
531 		__u32		attach_flags;
532 		__aligned_u64	prog_ids;
533 		__u32		prog_cnt;
534 	} query;
535 
536 	struct {
537 		__u64 name;
538 		__u32 prog_fd;
539 	} raw_tracepoint;
540 
541 	struct { /* anonymous struct for BPF_BTF_LOAD */
542 		__aligned_u64	btf;
543 		__aligned_u64	btf_log_buf;
544 		__u32		btf_size;
545 		__u32		btf_log_size;
546 		__u32		btf_log_level;
547 	};
548 
549 	struct {
550 		__u32		pid;		/* input: pid */
551 		__u32		fd;		/* input: fd */
552 		__u32		flags;		/* input: flags */
553 		__u32		buf_len;	/* input/output: buf len */
554 		__aligned_u64	buf;		/* input/output:
555 						 *   tp_name for tracepoint
556 						 *   symbol for kprobe
557 						 *   filename for uprobe
558 						 */
559 		__u32		prog_id;	/* output: prod_id */
560 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
561 		__u64		probe_offset;	/* output: probe_offset */
562 		__u64		probe_addr;	/* output: probe_addr */
563 	} task_fd_query;
564 } __attribute__((aligned(8)));
565 
566 /* The description below is an attempt at providing documentation to eBPF
567  * developers about the multiple available eBPF helper functions. It can be
568  * parsed and used to produce a manual page. The workflow is the following,
569  * and requires the rst2man utility:
570  *
571  *     $ ./scripts/bpf_helpers_doc.py \
572  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
573  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
574  *     $ man /tmp/bpf-helpers.7
575  *
576  * Note that in order to produce this external documentation, some RST
577  * formatting is used in the descriptions to get "bold" and "italics" in
578  * manual pages. Also note that the few trailing white spaces are
579  * intentional, removing them would break paragraphs for rst2man.
580  *
581  * Start of BPF helper function descriptions:
582  *
583  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
584  * 	Description
585  * 		Perform a lookup in *map* for an entry associated to *key*.
586  * 	Return
587  * 		Map value associated to *key*, or **NULL** if no entry was
588  * 		found.
589  *
590  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
591  * 	Description
592  * 		Add or update the value of the entry associated to *key* in
593  * 		*map* with *value*. *flags* is one of:
594  *
595  * 		**BPF_NOEXIST**
596  * 			The entry for *key* must not exist in the map.
597  * 		**BPF_EXIST**
598  * 			The entry for *key* must already exist in the map.
599  * 		**BPF_ANY**
600  * 			No condition on the existence of the entry for *key*.
601  *
602  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
603  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
604  * 		elements always exist), the helper would return an error.
605  * 	Return
606  * 		0 on success, or a negative error in case of failure.
607  *
608  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
609  * 	Description
610  * 		Delete entry with *key* from *map*.
611  * 	Return
612  * 		0 on success, or a negative error in case of failure.
613  *
614  * int bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
615  * 	Description
616  * 		For tracing programs, safely attempt to read *size* bytes from
617  * 		kernel space address *unsafe_ptr* and store the data in *dst*.
618  *
619  * 		Generally, use bpf_probe_read_user() or bpf_probe_read_kernel()
620  * 		instead.
621  * 	Return
622  * 		0 on success, or a negative error in case of failure.
623  *
624  * u64 bpf_ktime_get_ns(void)
625  * 	Description
626  * 		Return the time elapsed since system boot, in nanoseconds.
627  * 	Return
628  * 		Current *ktime*.
629  *
630  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
631  * 	Description
632  * 		This helper is a "printk()-like" facility for debugging. It
633  * 		prints a message defined by format *fmt* (of size *fmt_size*)
634  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
635  * 		available. It can take up to three additional **u64**
636  * 		arguments (as an eBPF helpers, the total number of arguments is
637  * 		limited to five).
638  *
639  * 		Each time the helper is called, it appends a line to the trace.
640  * 		Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
641  * 		open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
642  * 		The format of the trace is customizable, and the exact output
643  * 		one will get depends on the options set in
644  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
645  * 		*README* file under the same directory). However, it usually
646  * 		defaults to something like:
647  *
648  * 		::
649  *
650  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
651  *
652  * 		In the above:
653  *
654  * 			* ``telnet`` is the name of the current task.
655  * 			* ``470`` is the PID of the current task.
656  * 			* ``001`` is the CPU number on which the task is
657  * 			  running.
658  * 			* In ``.N..``, each character refers to a set of
659  * 			  options (whether irqs are enabled, scheduling
660  * 			  options, whether hard/softirqs are running, level of
661  * 			  preempt_disabled respectively). **N** means that
662  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
663  * 			  are set.
664  * 			* ``419421.045894`` is a timestamp.
665  * 			* ``0x00000001`` is a fake value used by BPF for the
666  * 			  instruction pointer register.
667  * 			* ``<formatted msg>`` is the message formatted with
668  * 			  *fmt*.
669  *
670  * 		The conversion specifiers supported by *fmt* are similar, but
671  * 		more limited than for printk(). They are **%d**, **%i**,
672  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
673  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
674  * 		of field, padding with zeroes, etc.) is available, and the
675  * 		helper will return **-EINVAL** (but print nothing) if it
676  * 		encounters an unknown specifier.
677  *
678  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
679  * 		only be used for debugging purposes. For this reason, a notice
680  * 		bloc (spanning several lines) is printed to kernel logs and
681  * 		states that the helper should not be used "for production use"
682  * 		the first time this helper is used (or more precisely, when
683  * 		**trace_printk**\ () buffers are allocated). For passing values
684  * 		to user space, perf events should be preferred.
685  * 	Return
686  * 		The number of bytes written to the buffer, or a negative error
687  * 		in case of failure.
688  *
689  * u32 bpf_get_prandom_u32(void)
690  * 	Description
691  * 		Get a pseudo-random number.
692  *
693  * 		From a security point of view, this helper uses its own
694  * 		pseudo-random internal state, and cannot be used to infer the
695  * 		seed of other random functions in the kernel. However, it is
696  * 		essential to note that the generator used by the helper is not
697  * 		cryptographically secure.
698  * 	Return
699  * 		A random 32-bit unsigned value.
700  *
701  * u32 bpf_get_smp_processor_id(void)
702  * 	Description
703  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
704  * 		all programs run with preemption disabled, which means that the
705  * 		SMP processor id is stable during all the execution of the
706  * 		program.
707  * 	Return
708  * 		The SMP id of the processor running the program.
709  *
710  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
711  * 	Description
712  * 		Store *len* bytes from address *from* into the packet
713  * 		associated to *skb*, at *offset*. *flags* are a combination of
714  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
715  * 		checksum for the packet after storing the bytes) and
716  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
717  * 		**->swhash** and *skb*\ **->l4hash** to 0).
718  *
719  * 		A call to this helper is susceptible to change the underlying
720  * 		packet buffer. Therefore, at load time, all checks on pointers
721  * 		previously done by the verifier are invalidated and must be
722  * 		performed again, if the helper is used in combination with
723  * 		direct packet access.
724  * 	Return
725  * 		0 on success, or a negative error in case of failure.
726  *
727  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
728  * 	Description
729  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
730  * 		associated to *skb*. Computation is incremental, so the helper
731  * 		must know the former value of the header field that was
732  * 		modified (*from*), the new value of this field (*to*), and the
733  * 		number of bytes (2 or 4) for this field, stored in *size*.
734  * 		Alternatively, it is possible to store the difference between
735  * 		the previous and the new values of the header field in *to*, by
736  * 		setting *from* and *size* to 0. For both methods, *offset*
737  * 		indicates the location of the IP checksum within the packet.
738  *
739  * 		This helper works in combination with **bpf_csum_diff**\ (),
740  * 		which does not update the checksum in-place, but offers more
741  * 		flexibility and can handle sizes larger than 2 or 4 for the
742  * 		checksum to update.
743  *
744  * 		A call to this helper is susceptible to change the underlying
745  * 		packet buffer. Therefore, at load time, all checks on pointers
746  * 		previously done by the verifier are invalidated and must be
747  * 		performed again, if the helper is used in combination with
748  * 		direct packet access.
749  * 	Return
750  * 		0 on success, or a negative error in case of failure.
751  *
752  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
753  * 	Description
754  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
755  * 		packet associated to *skb*. Computation is incremental, so the
756  * 		helper must know the former value of the header field that was
757  * 		modified (*from*), the new value of this field (*to*), and the
758  * 		number of bytes (2 or 4) for this field, stored on the lowest
759  * 		four bits of *flags*. Alternatively, it is possible to store
760  * 		the difference between the previous and the new values of the
761  * 		header field in *to*, by setting *from* and the four lowest
762  * 		bits of *flags* to 0. For both methods, *offset* indicates the
763  * 		location of the IP checksum within the packet. In addition to
764  * 		the size of the field, *flags* can be added (bitwise OR) actual
765  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
766  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
767  * 		for updates resulting in a null checksum the value is set to
768  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
769  * 		the checksum is to be computed against a pseudo-header.
770  *
771  * 		This helper works in combination with **bpf_csum_diff**\ (),
772  * 		which does not update the checksum in-place, but offers more
773  * 		flexibility and can handle sizes larger than 2 or 4 for the
774  * 		checksum to update.
775  *
776  * 		A call to this helper is susceptible to change the underlying
777  * 		packet buffer. Therefore, at load time, all checks on pointers
778  * 		previously done by the verifier are invalidated and must be
779  * 		performed again, if the helper is used in combination with
780  * 		direct packet access.
781  * 	Return
782  * 		0 on success, or a negative error in case of failure.
783  *
784  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
785  * 	Description
786  * 		This special helper is used to trigger a "tail call", or in
787  * 		other words, to jump into another eBPF program. The same stack
788  * 		frame is used (but values on stack and in registers for the
789  * 		caller are not accessible to the callee). This mechanism allows
790  * 		for program chaining, either for raising the maximum number of
791  * 		available eBPF instructions, or to execute given programs in
792  * 		conditional blocks. For security reasons, there is an upper
793  * 		limit to the number of successive tail calls that can be
794  * 		performed.
795  *
796  * 		Upon call of this helper, the program attempts to jump into a
797  * 		program referenced at index *index* in *prog_array_map*, a
798  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
799  * 		*ctx*, a pointer to the context.
800  *
801  * 		If the call succeeds, the kernel immediately runs the first
802  * 		instruction of the new program. This is not a function call,
803  * 		and it never returns to the previous program. If the call
804  * 		fails, then the helper has no effect, and the caller continues
805  * 		to run its subsequent instructions. A call can fail if the
806  * 		destination program for the jump does not exist (i.e. *index*
807  * 		is superior to the number of entries in *prog_array_map*), or
808  * 		if the maximum number of tail calls has been reached for this
809  * 		chain of programs. This limit is defined in the kernel by the
810  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
811  * 		which is currently set to 32.
812  * 	Return
813  * 		0 on success, or a negative error in case of failure.
814  *
815  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
816  * 	Description
817  * 		Clone and redirect the packet associated to *skb* to another
818  * 		net device of index *ifindex*. Both ingress and egress
819  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
820  * 		value in *flags* is used to make the distinction (ingress path
821  * 		is selected if the flag is present, egress path otherwise).
822  * 		This is the only flag supported for now.
823  *
824  * 		In comparison with **bpf_redirect**\ () helper,
825  * 		**bpf_clone_redirect**\ () has the associated cost of
826  * 		duplicating the packet buffer, but this can be executed out of
827  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
828  * 		efficient, but it is handled through an action code where the
829  * 		redirection happens only after the eBPF program has returned.
830  *
831  * 		A call to this helper is susceptible to change the underlying
832  * 		packet buffer. Therefore, at load time, all checks on pointers
833  * 		previously done by the verifier are invalidated and must be
834  * 		performed again, if the helper is used in combination with
835  * 		direct packet access.
836  * 	Return
837  * 		0 on success, or a negative error in case of failure.
838  *
839  * u64 bpf_get_current_pid_tgid(void)
840  * 	Return
841  * 		A 64-bit integer containing the current tgid and pid, and
842  * 		created as such:
843  * 		*current_task*\ **->tgid << 32 \|**
844  * 		*current_task*\ **->pid**.
845  *
846  * u64 bpf_get_current_uid_gid(void)
847  * 	Return
848  * 		A 64-bit integer containing the current GID and UID, and
849  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
850  *
851  * int bpf_get_current_comm(void *buf, u32 size_of_buf)
852  * 	Description
853  * 		Copy the **comm** attribute of the current task into *buf* of
854  * 		*size_of_buf*. The **comm** attribute contains the name of
855  * 		the executable (excluding the path) for the current task. The
856  * 		*size_of_buf* must be strictly positive. On success, the
857  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
858  * 		it is filled with zeroes.
859  * 	Return
860  * 		0 on success, or a negative error in case of failure.
861  *
862  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
863  * 	Description
864  * 		Retrieve the classid for the current task, i.e. for the net_cls
865  * 		cgroup to which *skb* belongs.
866  *
867  * 		This helper can be used on TC egress path, but not on ingress.
868  *
869  * 		The net_cls cgroup provides an interface to tag network packets
870  * 		based on a user-provided identifier for all traffic coming from
871  * 		the tasks belonging to the related cgroup. See also the related
872  * 		kernel documentation, available from the Linux sources in file
873  * 		*Documentation/admin-guide/cgroup-v1/net_cls.rst*.
874  *
875  * 		The Linux kernel has two versions for cgroups: there are
876  * 		cgroups v1 and cgroups v2. Both are available to users, who can
877  * 		use a mixture of them, but note that the net_cls cgroup is for
878  * 		cgroup v1 only. This makes it incompatible with BPF programs
879  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
880  * 		only hold data for one version of cgroups at a time).
881  *
882  * 		This helper is only available is the kernel was compiled with
883  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
884  * 		"**y**" or to "**m**".
885  * 	Return
886  * 		The classid, or 0 for the default unconfigured classid.
887  *
888  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
889  * 	Description
890  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
891  * 		*vlan_proto* to the packet associated to *skb*, then update
892  * 		the checksum. Note that if *vlan_proto* is different from
893  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
894  * 		be **ETH_P_8021Q**.
895  *
896  * 		A call to this helper is susceptible to change the underlying
897  * 		packet buffer. Therefore, at load time, all checks on pointers
898  * 		previously done by the verifier are invalidated and must be
899  * 		performed again, if the helper is used in combination with
900  * 		direct packet access.
901  * 	Return
902  * 		0 on success, or a negative error in case of failure.
903  *
904  * int bpf_skb_vlan_pop(struct sk_buff *skb)
905  * 	Description
906  * 		Pop a VLAN header from the packet associated to *skb*.
907  *
908  * 		A call to this helper is susceptible to change the underlying
909  * 		packet buffer. Therefore, at load time, all checks on pointers
910  * 		previously done by the verifier are invalidated and must be
911  * 		performed again, if the helper is used in combination with
912  * 		direct packet access.
913  * 	Return
914  * 		0 on success, or a negative error in case of failure.
915  *
916  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
917  * 	Description
918  * 		Get tunnel metadata. This helper takes a pointer *key* to an
919  * 		empty **struct bpf_tunnel_key** of **size**, that will be
920  * 		filled with tunnel metadata for the packet associated to *skb*.
921  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
922  * 		indicates that the tunnel is based on IPv6 protocol instead of
923  * 		IPv4.
924  *
925  * 		The **struct bpf_tunnel_key** is an object that generalizes the
926  * 		principal parameters used by various tunneling protocols into a
927  * 		single struct. This way, it can be used to easily make a
928  * 		decision based on the contents of the encapsulation header,
929  * 		"summarized" in this struct. In particular, it holds the IP
930  * 		address of the remote end (IPv4 or IPv6, depending on the case)
931  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
932  * 		this struct exposes the *key*\ **->tunnel_id**, which is
933  * 		generally mapped to a VNI (Virtual Network Identifier), making
934  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
935  * 		() helper.
936  *
937  * 		Let's imagine that the following code is part of a program
938  * 		attached to the TC ingress interface, on one end of a GRE
939  * 		tunnel, and is supposed to filter out all messages coming from
940  * 		remote ends with IPv4 address other than 10.0.0.1:
941  *
942  * 		::
943  *
944  * 			int ret;
945  * 			struct bpf_tunnel_key key = {};
946  *
947  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
948  * 			if (ret < 0)
949  * 				return TC_ACT_SHOT;	// drop packet
950  *
951  * 			if (key.remote_ipv4 != 0x0a000001)
952  * 				return TC_ACT_SHOT;	// drop packet
953  *
954  * 			return TC_ACT_OK;		// accept packet
955  *
956  * 		This interface can also be used with all encapsulation devices
957  * 		that can operate in "collect metadata" mode: instead of having
958  * 		one network device per specific configuration, the "collect
959  * 		metadata" mode only requires a single device where the
960  * 		configuration can be extracted from this helper.
961  *
962  * 		This can be used together with various tunnels such as VXLan,
963  * 		Geneve, GRE or IP in IP (IPIP).
964  * 	Return
965  * 		0 on success, or a negative error in case of failure.
966  *
967  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
968  * 	Description
969  * 		Populate tunnel metadata for packet associated to *skb.* The
970  * 		tunnel metadata is set to the contents of *key*, of *size*. The
971  * 		*flags* can be set to a combination of the following values:
972  *
973  * 		**BPF_F_TUNINFO_IPV6**
974  * 			Indicate that the tunnel is based on IPv6 protocol
975  * 			instead of IPv4.
976  * 		**BPF_F_ZERO_CSUM_TX**
977  * 			For IPv4 packets, add a flag to tunnel metadata
978  * 			indicating that checksum computation should be skipped
979  * 			and checksum set to zeroes.
980  * 		**BPF_F_DONT_FRAGMENT**
981  * 			Add a flag to tunnel metadata indicating that the
982  * 			packet should not be fragmented.
983  * 		**BPF_F_SEQ_NUMBER**
984  * 			Add a flag to tunnel metadata indicating that a
985  * 			sequence number should be added to tunnel header before
986  * 			sending the packet. This flag was added for GRE
987  * 			encapsulation, but might be used with other protocols
988  * 			as well in the future.
989  *
990  * 		Here is a typical usage on the transmit path:
991  *
992  * 		::
993  *
994  * 			struct bpf_tunnel_key key;
995  * 			     populate key ...
996  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
997  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
998  *
999  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
1000  * 		helper for additional information.
1001  * 	Return
1002  * 		0 on success, or a negative error in case of failure.
1003  *
1004  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
1005  * 	Description
1006  * 		Read the value of a perf event counter. This helper relies on a
1007  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
1008  * 		the perf event counter is selected when *map* is updated with
1009  * 		perf event file descriptors. The *map* is an array whose size
1010  * 		is the number of available CPUs, and each cell contains a value
1011  * 		relative to one CPU. The value to retrieve is indicated by
1012  * 		*flags*, that contains the index of the CPU to look up, masked
1013  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1014  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1015  * 		current CPU should be retrieved.
1016  *
1017  * 		Note that before Linux 4.13, only hardware perf event can be
1018  * 		retrieved.
1019  *
1020  * 		Also, be aware that the newer helper
1021  * 		**bpf_perf_event_read_value**\ () is recommended over
1022  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
1023  * 		quirks where error and counter value are used as a return code
1024  * 		(which is wrong to do since ranges may overlap). This issue is
1025  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
1026  * 		time provides more features over the **bpf_perf_event_read**\
1027  * 		() interface. Please refer to the description of
1028  * 		**bpf_perf_event_read_value**\ () for details.
1029  * 	Return
1030  * 		The value of the perf event counter read from the map, or a
1031  * 		negative error code in case of failure.
1032  *
1033  * int bpf_redirect(u32 ifindex, u64 flags)
1034  * 	Description
1035  * 		Redirect the packet to another net device of index *ifindex*.
1036  * 		This helper is somewhat similar to **bpf_clone_redirect**\
1037  * 		(), except that the packet is not cloned, which provides
1038  * 		increased performance.
1039  *
1040  * 		Except for XDP, both ingress and egress interfaces can be used
1041  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
1042  * 		to make the distinction (ingress path is selected if the flag
1043  * 		is present, egress path otherwise). Currently, XDP only
1044  * 		supports redirection to the egress interface, and accepts no
1045  * 		flag at all.
1046  *
1047  * 		The same effect can be attained with the more generic
1048  * 		**bpf_redirect_map**\ (), which requires specific maps to be
1049  * 		used but offers better performance.
1050  * 	Return
1051  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
1052  * 		**XDP_ABORTED** on error. For other program types, the values
1053  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1054  * 		error.
1055  *
1056  * u32 bpf_get_route_realm(struct sk_buff *skb)
1057  * 	Description
1058  * 		Retrieve the realm or the route, that is to say the
1059  * 		**tclassid** field of the destination for the *skb*. The
1060  * 		indentifier retrieved is a user-provided tag, similar to the
1061  * 		one used with the net_cls cgroup (see description for
1062  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
1063  * 		held by a route (a destination entry), not by a task.
1064  *
1065  * 		Retrieving this identifier works with the clsact TC egress hook
1066  * 		(see also **tc-bpf(8)**), or alternatively on conventional
1067  * 		classful egress qdiscs, but not on TC ingress path. In case of
1068  * 		clsact TC egress hook, this has the advantage that, internally,
1069  * 		the destination entry has not been dropped yet in the transmit
1070  * 		path. Therefore, the destination entry does not need to be
1071  * 		artificially held via **netif_keep_dst**\ () for a classful
1072  * 		qdisc until the *skb* is freed.
1073  *
1074  * 		This helper is available only if the kernel was compiled with
1075  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
1076  * 	Return
1077  * 		The realm of the route for the packet associated to *skb*, or 0
1078  * 		if none was found.
1079  *
1080  * int bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
1081  * 	Description
1082  * 		Write raw *data* blob into a special BPF perf event held by
1083  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
1084  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
1085  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
1086  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
1087  *
1088  * 		The *flags* are used to indicate the index in *map* for which
1089  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
1090  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
1091  * 		to indicate that the index of the current CPU core should be
1092  * 		used.
1093  *
1094  * 		The value to write, of *size*, is passed through eBPF stack and
1095  * 		pointed by *data*.
1096  *
1097  * 		The context of the program *ctx* needs also be passed to the
1098  * 		helper.
1099  *
1100  * 		On user space, a program willing to read the values needs to
1101  * 		call **perf_event_open**\ () on the perf event (either for
1102  * 		one or for all CPUs) and to store the file descriptor into the
1103  * 		*map*. This must be done before the eBPF program can send data
1104  * 		into it. An example is available in file
1105  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
1106  * 		tree (the eBPF program counterpart is in
1107  * 		*samples/bpf/trace_output_kern.c*).
1108  *
1109  * 		**bpf_perf_event_output**\ () achieves better performance
1110  * 		than **bpf_trace_printk**\ () for sharing data with user
1111  * 		space, and is much better suitable for streaming data from eBPF
1112  * 		programs.
1113  *
1114  * 		Note that this helper is not restricted to tracing use cases
1115  * 		and can be used with programs attached to TC or XDP as well,
1116  * 		where it allows for passing data to user space listeners. Data
1117  * 		can be:
1118  *
1119  * 		* Only custom structs,
1120  * 		* Only the packet payload, or
1121  * 		* A combination of both.
1122  * 	Return
1123  * 		0 on success, or a negative error in case of failure.
1124  *
1125  * int bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
1126  * 	Description
1127  * 		This helper was provided as an easy way to load data from a
1128  * 		packet. It can be used to load *len* bytes from *offset* from
1129  * 		the packet associated to *skb*, into the buffer pointed by
1130  * 		*to*.
1131  *
1132  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1133  * 		by "direct packet access", enabling packet data to be
1134  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1135  * 		pointing respectively to the first byte of packet data and to
1136  * 		the byte after the last byte of packet data. However, it
1137  * 		remains useful if one wishes to read large quantities of data
1138  * 		at once from a packet into the eBPF stack.
1139  * 	Return
1140  * 		0 on success, or a negative error in case of failure.
1141  *
1142  * int bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
1143  * 	Description
1144  * 		Walk a user or a kernel stack and return its id. To achieve
1145  * 		this, the helper needs *ctx*, which is a pointer to the context
1146  * 		on which the tracing program is executed, and a pointer to a
1147  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1148  *
1149  * 		The last argument, *flags*, holds the number of stack frames to
1150  * 		skip (from 0 to 255), masked with
1151  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1152  * 		a combination of the following flags:
1153  *
1154  * 		**BPF_F_USER_STACK**
1155  * 			Collect a user space stack instead of a kernel stack.
1156  * 		**BPF_F_FAST_STACK_CMP**
1157  * 			Compare stacks by hash only.
1158  * 		**BPF_F_REUSE_STACKID**
1159  * 			If two different stacks hash into the same *stackid*,
1160  * 			discard the old one.
1161  *
1162  * 		The stack id retrieved is a 32 bit long integer handle which
1163  * 		can be further combined with other data (including other stack
1164  * 		ids) and used as a key into maps. This can be useful for
1165  * 		generating a variety of graphs (such as flame graphs or off-cpu
1166  * 		graphs).
1167  *
1168  * 		For walking a stack, this helper is an improvement over
1169  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1170  * 		but is not efficient and consumes a lot of eBPF instructions.
1171  * 		Instead, **bpf_get_stackid**\ () can collect up to
1172  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1173  * 		this limit can be controlled with the **sysctl** program, and
1174  * 		that it should be manually increased in order to profile long
1175  * 		user stacks (such as stacks for Java programs). To do so, use:
1176  *
1177  * 		::
1178  *
1179  * 			# sysctl kernel.perf_event_max_stack=<new value>
1180  * 	Return
1181  * 		The positive or null stack id on success, or a negative error
1182  * 		in case of failure.
1183  *
1184  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1185  * 	Description
1186  * 		Compute a checksum difference, from the raw buffer pointed by
1187  * 		*from*, of length *from_size* (that must be a multiple of 4),
1188  * 		towards the raw buffer pointed by *to*, of size *to_size*
1189  * 		(same remark). An optional *seed* can be added to the value
1190  * 		(this can be cascaded, the seed may come from a previous call
1191  * 		to the helper).
1192  *
1193  * 		This is flexible enough to be used in several ways:
1194  *
1195  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1196  * 		  checksum, it can be used when pushing new data.
1197  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1198  * 		  checksum, it can be used when removing data from a packet.
1199  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1200  * 		  can be used to compute a diff. Note that *from_size* and
1201  * 		  *to_size* do not need to be equal.
1202  *
1203  * 		This helper can be used in combination with
1204  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1205  * 		which one can feed in the difference computed with
1206  * 		**bpf_csum_diff**\ ().
1207  * 	Return
1208  * 		The checksum result, or a negative error code in case of
1209  * 		failure.
1210  *
1211  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1212  * 	Description
1213  * 		Retrieve tunnel options metadata for the packet associated to
1214  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1215  * 		of *size*.
1216  *
1217  * 		This helper can be used with encapsulation devices that can
1218  * 		operate in "collect metadata" mode (please refer to the related
1219  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1220  * 		more details). A particular example where this can be used is
1221  * 		in combination with the Geneve encapsulation protocol, where it
1222  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1223  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1224  * 		the eBPF program. This allows for full customization of these
1225  * 		headers.
1226  * 	Return
1227  * 		The size of the option data retrieved.
1228  *
1229  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1230  * 	Description
1231  * 		Set tunnel options metadata for the packet associated to *skb*
1232  * 		to the option data contained in the raw buffer *opt* of *size*.
1233  *
1234  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1235  * 		helper for additional information.
1236  * 	Return
1237  * 		0 on success, or a negative error in case of failure.
1238  *
1239  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1240  * 	Description
1241  * 		Change the protocol of the *skb* to *proto*. Currently
1242  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1243  * 		IPv4. The helper takes care of the groundwork for the
1244  * 		transition, including resizing the socket buffer. The eBPF
1245  * 		program is expected to fill the new headers, if any, via
1246  * 		**skb_store_bytes**\ () and to recompute the checksums with
1247  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1248  * 		(). The main case for this helper is to perform NAT64
1249  * 		operations out of an eBPF program.
1250  *
1251  * 		Internally, the GSO type is marked as dodgy so that headers are
1252  * 		checked and segments are recalculated by the GSO/GRO engine.
1253  * 		The size for GSO target is adapted as well.
1254  *
1255  * 		All values for *flags* are reserved for future usage, and must
1256  * 		be left at zero.
1257  *
1258  * 		A call to this helper is susceptible to change the underlying
1259  * 		packet buffer. Therefore, at load time, all checks on pointers
1260  * 		previously done by the verifier are invalidated and must be
1261  * 		performed again, if the helper is used in combination with
1262  * 		direct packet access.
1263  * 	Return
1264  * 		0 on success, or a negative error in case of failure.
1265  *
1266  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1267  * 	Description
1268  * 		Change the packet type for the packet associated to *skb*. This
1269  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1270  * 		the eBPF program does not have a write access to *skb*\
1271  * 		**->pkt_type** beside this helper. Using a helper here allows
1272  * 		for graceful handling of errors.
1273  *
1274  * 		The major use case is to change incoming *skb*s to
1275  * 		**PACKET_HOST** in a programmatic way instead of having to
1276  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1277  * 		example.
1278  *
1279  * 		Note that *type* only allows certain values. At this time, they
1280  * 		are:
1281  *
1282  * 		**PACKET_HOST**
1283  * 			Packet is for us.
1284  * 		**PACKET_BROADCAST**
1285  * 			Send packet to all.
1286  * 		**PACKET_MULTICAST**
1287  * 			Send packet to group.
1288  * 		**PACKET_OTHERHOST**
1289  * 			Send packet to someone else.
1290  * 	Return
1291  * 		0 on success, or a negative error in case of failure.
1292  *
1293  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1294  * 	Description
1295  * 		Check whether *skb* is a descendant of the cgroup2 held by
1296  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1297  * 	Return
1298  * 		The return value depends on the result of the test, and can be:
1299  *
1300  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1301  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1302  * 		* A negative error code, if an error occurred.
1303  *
1304  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1305  * 	Description
1306  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1307  * 		not set, in particular if the hash was cleared due to mangling,
1308  * 		recompute this hash. Later accesses to the hash can be done
1309  * 		directly with *skb*\ **->hash**.
1310  *
1311  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1312  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1313  * 		**bpf_skb_store_bytes**\ () with the
1314  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1315  * 		the hash and to trigger a new computation for the next call to
1316  * 		**bpf_get_hash_recalc**\ ().
1317  * 	Return
1318  * 		The 32-bit hash.
1319  *
1320  * u64 bpf_get_current_task(void)
1321  * 	Return
1322  * 		A pointer to the current task struct.
1323  *
1324  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1325  * 	Description
1326  * 		Attempt in a safe way to write *len* bytes from the buffer
1327  * 		*src* to *dst* in memory. It only works for threads that are in
1328  * 		user context, and *dst* must be a valid user space address.
1329  *
1330  * 		This helper should not be used to implement any kind of
1331  * 		security mechanism because of TOC-TOU attacks, but rather to
1332  * 		debug, divert, and manipulate execution of semi-cooperative
1333  * 		processes.
1334  *
1335  * 		Keep in mind that this feature is meant for experiments, and it
1336  * 		has a risk of crashing the system and running programs.
1337  * 		Therefore, when an eBPF program using this helper is attached,
1338  * 		a warning including PID and process name is printed to kernel
1339  * 		logs.
1340  * 	Return
1341  * 		0 on success, or a negative error in case of failure.
1342  *
1343  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1344  * 	Description
1345  * 		Check whether the probe is being run is the context of a given
1346  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1347  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1348  * 	Return
1349  * 		The return value depends on the result of the test, and can be:
1350  *
1351  * 		* 0, if the *skb* task belongs to the cgroup2.
1352  * 		* 1, if the *skb* task does not belong to the cgroup2.
1353  * 		* A negative error code, if an error occurred.
1354  *
1355  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1356  * 	Description
1357  * 		Resize (trim or grow) the packet associated to *skb* to the
1358  * 		new *len*. The *flags* are reserved for future usage, and must
1359  * 		be left at zero.
1360  *
1361  * 		The basic idea is that the helper performs the needed work to
1362  * 		change the size of the packet, then the eBPF program rewrites
1363  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1364  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1365  * 		and others. This helper is a slow path utility intended for
1366  * 		replies with control messages. And because it is targeted for
1367  * 		slow path, the helper itself can afford to be slow: it
1368  * 		implicitly linearizes, unclones and drops offloads from the
1369  * 		*skb*.
1370  *
1371  * 		A call to this helper is susceptible to change the underlying
1372  * 		packet buffer. Therefore, at load time, all checks on pointers
1373  * 		previously done by the verifier are invalidated and must be
1374  * 		performed again, if the helper is used in combination with
1375  * 		direct packet access.
1376  * 	Return
1377  * 		0 on success, or a negative error in case of failure.
1378  *
1379  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1380  * 	Description
1381  * 		Pull in non-linear data in case the *skb* is non-linear and not
1382  * 		all of *len* are part of the linear section. Make *len* bytes
1383  * 		from *skb* readable and writable. If a zero value is passed for
1384  * 		*len*, then the whole length of the *skb* is pulled.
1385  *
1386  * 		This helper is only needed for reading and writing with direct
1387  * 		packet access.
1388  *
1389  * 		For direct packet access, testing that offsets to access
1390  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1391  * 		susceptible to fail if offsets are invalid, or if the requested
1392  * 		data is in non-linear parts of the *skb*. On failure the
1393  * 		program can just bail out, or in the case of a non-linear
1394  * 		buffer, use a helper to make the data available. The
1395  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1396  * 		the data. Another one consists in using **bpf_skb_pull_data**
1397  * 		to pull in once the non-linear parts, then retesting and
1398  * 		eventually access the data.
1399  *
1400  * 		At the same time, this also makes sure the *skb* is uncloned,
1401  * 		which is a necessary condition for direct write. As this needs
1402  * 		to be an invariant for the write part only, the verifier
1403  * 		detects writes and adds a prologue that is calling
1404  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1405  * 		the very beginning in case it is indeed cloned.
1406  *
1407  * 		A call to this helper is susceptible to change the underlying
1408  * 		packet buffer. Therefore, at load time, all checks on pointers
1409  * 		previously done by the verifier are invalidated and must be
1410  * 		performed again, if the helper is used in combination with
1411  * 		direct packet access.
1412  * 	Return
1413  * 		0 on success, or a negative error in case of failure.
1414  *
1415  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1416  * 	Description
1417  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1418  * 		driver has supplied a checksum for the entire packet into that
1419  * 		field. Return an error otherwise. This helper is intended to be
1420  * 		used in combination with **bpf_csum_diff**\ (), in particular
1421  * 		when the checksum needs to be updated after data has been
1422  * 		written into the packet through direct packet access.
1423  * 	Return
1424  * 		The checksum on success, or a negative error code in case of
1425  * 		failure.
1426  *
1427  * void bpf_set_hash_invalid(struct sk_buff *skb)
1428  * 	Description
1429  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1430  * 		mangling on headers through direct packet access, in order to
1431  * 		indicate that the hash is outdated and to trigger a
1432  * 		recalculation the next time the kernel tries to access this
1433  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1434  *
1435  * int bpf_get_numa_node_id(void)
1436  * 	Description
1437  * 		Return the id of the current NUMA node. The primary use case
1438  * 		for this helper is the selection of sockets for the local NUMA
1439  * 		node, when the program is attached to sockets using the
1440  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1441  * 		but the helper is also available to other eBPF program types,
1442  * 		similarly to **bpf_get_smp_processor_id**\ ().
1443  * 	Return
1444  * 		The id of current NUMA node.
1445  *
1446  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1447  * 	Description
1448  * 		Grows headroom of packet associated to *skb* and adjusts the
1449  * 		offset of the MAC header accordingly, adding *len* bytes of
1450  * 		space. It automatically extends and reallocates memory as
1451  * 		required.
1452  *
1453  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1454  * 		for redirection into a layer 2 device.
1455  *
1456  * 		All values for *flags* are reserved for future usage, and must
1457  * 		be left at zero.
1458  *
1459  * 		A call to this helper is susceptible to change the underlying
1460  * 		packet buffer. Therefore, at load time, all checks on pointers
1461  * 		previously done by the verifier are invalidated and must be
1462  * 		performed again, if the helper is used in combination with
1463  * 		direct packet access.
1464  * 	Return
1465  * 		0 on success, or a negative error in case of failure.
1466  *
1467  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1468  * 	Description
1469  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1470  * 		it is possible to use a negative value for *delta*. This helper
1471  * 		can be used to prepare the packet for pushing or popping
1472  * 		headers.
1473  *
1474  * 		A call to this helper is susceptible to change the underlying
1475  * 		packet buffer. Therefore, at load time, all checks on pointers
1476  * 		previously done by the verifier are invalidated and must be
1477  * 		performed again, if the helper is used in combination with
1478  * 		direct packet access.
1479  * 	Return
1480  * 		0 on success, or a negative error in case of failure.
1481  *
1482  * int bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
1483  * 	Description
1484  * 		Copy a NUL terminated string from an unsafe kernel address
1485  * 		*unsafe_ptr* to *dst*. See bpf_probe_read_kernel_str() for
1486  * 		more details.
1487  *
1488  * 		Generally, use bpf_probe_read_user_str() or bpf_probe_read_kernel_str()
1489  * 		instead.
1490  * 	Return
1491  * 		On success, the strictly positive length of the string,
1492  * 		including the trailing NUL character. On error, a negative
1493  * 		value.
1494  *
1495  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1496  * 	Description
1497  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1498  * 		retrieve the cookie (generated by the kernel) of this socket.
1499  * 		If no cookie has been set yet, generate a new cookie. Once
1500  * 		generated, the socket cookie remains stable for the life of the
1501  * 		socket. This helper can be useful for monitoring per socket
1502  * 		networking traffic statistics as it provides a global socket
1503  * 		identifier that can be assumed unique.
1504  * 	Return
1505  * 		A 8-byte long non-decreasing number on success, or 0 if the
1506  * 		socket field is missing inside *skb*.
1507  *
1508  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1509  * 	Description
1510  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1511  * 		*skb*, but gets socket from **struct bpf_sock_addr** context.
1512  * 	Return
1513  * 		A 8-byte long non-decreasing number.
1514  *
1515  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1516  * 	Description
1517  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1518  * 		*skb*, but gets socket from **struct bpf_sock_ops** context.
1519  * 	Return
1520  * 		A 8-byte long non-decreasing number.
1521  *
1522  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1523  * 	Return
1524  * 		The owner UID of the socket associated to *skb*. If the socket
1525  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1526  * 		time-wait or a request socket instead), **overflowuid** value
1527  * 		is returned (note that **overflowuid** might also be the actual
1528  * 		UID value for the socket).
1529  *
1530  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1531  * 	Description
1532  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1533  * 		to value *hash*.
1534  * 	Return
1535  * 		0
1536  *
1537  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1538  * 	Description
1539  * 		Emulate a call to **setsockopt()** on the socket associated to
1540  * 		*bpf_socket*, which must be a full socket. The *level* at
1541  * 		which the option resides and the name *optname* of the option
1542  * 		must be specified, see **setsockopt(2)** for more information.
1543  * 		The option value of length *optlen* is pointed by *optval*.
1544  *
1545  * 		This helper actually implements a subset of **setsockopt()**.
1546  * 		It supports the following *level*\ s:
1547  *
1548  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1549  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1550  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1551  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1552  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1553  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1554  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1555  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1556  * 	Return
1557  * 		0 on success, or a negative error in case of failure.
1558  *
1559  * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1560  * 	Description
1561  * 		Grow or shrink the room for data in the packet associated to
1562  * 		*skb* by *len_diff*, and according to the selected *mode*.
1563  *
1564  *		There are two supported modes at this time:
1565  *
1566  *		* **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1567  *		  (room space is added or removed below the layer 2 header).
1568  *
1569  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1570  * 		  (room space is added or removed below the layer 3 header).
1571  *
1572  *		The following flags are supported at this time:
1573  *
1574  *		* **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1575  *		  Adjusting mss in this way is not allowed for datagrams.
1576  *
1577  *		* **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
1578  *		  **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
1579  *		  Any new space is reserved to hold a tunnel header.
1580  *		  Configure skb offsets and other fields accordingly.
1581  *
1582  *		* **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
1583  *		  **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
1584  *		  Use with ENCAP_L3 flags to further specify the tunnel type.
1585  *
1586  *		* **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
1587  *		  Use with ENCAP_L3/L4 flags to further specify the tunnel
1588  *		  type; *len* is the length of the inner MAC header.
1589  *
1590  * 		A call to this helper is susceptible to change the underlying
1591  * 		packet buffer. Therefore, at load time, all checks on pointers
1592  * 		previously done by the verifier are invalidated and must be
1593  * 		performed again, if the helper is used in combination with
1594  * 		direct packet access.
1595  * 	Return
1596  * 		0 on success, or a negative error in case of failure.
1597  *
1598  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1599  * 	Description
1600  * 		Redirect the packet to the endpoint referenced by *map* at
1601  * 		index *key*. Depending on its type, this *map* can contain
1602  * 		references to net devices (for forwarding packets through other
1603  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1604  * 		but this is only implemented for native XDP (with driver
1605  * 		support) as of this writing).
1606  *
1607  * 		The lower two bits of *flags* are used as the return code if
1608  * 		the map lookup fails. This is so that the return value can be
1609  * 		one of the XDP program return codes up to XDP_TX, as chosen by
1610  * 		the caller. Any higher bits in the *flags* argument must be
1611  * 		unset.
1612  *
1613  * 		When used to redirect packets to net devices, this helper
1614  * 		provides a high performance increase over **bpf_redirect**\ ().
1615  * 		This is due to various implementation details of the underlying
1616  * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
1617  * 		() tries to send packet as a "bulk" to the device.
1618  * 	Return
1619  * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1620  *
1621  * int bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
1622  * 	Description
1623  * 		Redirect the packet to the socket referenced by *map* (of type
1624  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1625  * 		egress interfaces can be used for redirection. The
1626  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1627  * 		distinction (ingress path is selected if the flag is present,
1628  * 		egress path otherwise). This is the only flag supported for now.
1629  * 	Return
1630  * 		**SK_PASS** on success, or **SK_DROP** on error.
1631  *
1632  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1633  * 	Description
1634  * 		Add an entry to, or update a *map* referencing sockets. The
1635  * 		*skops* is used as a new value for the entry associated to
1636  * 		*key*. *flags* is one of:
1637  *
1638  * 		**BPF_NOEXIST**
1639  * 			The entry for *key* must not exist in the map.
1640  * 		**BPF_EXIST**
1641  * 			The entry for *key* must already exist in the map.
1642  * 		**BPF_ANY**
1643  * 			No condition on the existence of the entry for *key*.
1644  *
1645  * 		If the *map* has eBPF programs (parser and verdict), those will
1646  * 		be inherited by the socket being added. If the socket is
1647  * 		already attached to eBPF programs, this results in an error.
1648  * 	Return
1649  * 		0 on success, or a negative error in case of failure.
1650  *
1651  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1652  * 	Description
1653  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1654  * 		*delta* (which can be positive or negative). Note that this
1655  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1656  * 		so the latter must be loaded only after the helper has been
1657  * 		called.
1658  *
1659  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1660  * 		are not required to use it. The rationale is that when the
1661  * 		packet is processed with XDP (e.g. as DoS filter), it is
1662  * 		possible to push further meta data along with it before passing
1663  * 		to the stack, and to give the guarantee that an ingress eBPF
1664  * 		program attached as a TC classifier on the same device can pick
1665  * 		this up for further post-processing. Since TC works with socket
1666  * 		buffers, it remains possible to set from XDP the **mark** or
1667  * 		**priority** pointers, or other pointers for the socket buffer.
1668  * 		Having this scratch space generic and programmable allows for
1669  * 		more flexibility as the user is free to store whatever meta
1670  * 		data they need.
1671  *
1672  * 		A call to this helper is susceptible to change the underlying
1673  * 		packet buffer. Therefore, at load time, all checks on pointers
1674  * 		previously done by the verifier are invalidated and must be
1675  * 		performed again, if the helper is used in combination with
1676  * 		direct packet access.
1677  * 	Return
1678  * 		0 on success, or a negative error in case of failure.
1679  *
1680  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1681  * 	Description
1682  * 		Read the value of a perf event counter, and store it into *buf*
1683  * 		of size *buf_size*. This helper relies on a *map* of type
1684  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1685  * 		counter is selected when *map* is updated with perf event file
1686  * 		descriptors. The *map* is an array whose size is the number of
1687  * 		available CPUs, and each cell contains a value relative to one
1688  * 		CPU. The value to retrieve is indicated by *flags*, that
1689  * 		contains the index of the CPU to look up, masked with
1690  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1691  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1692  * 		current CPU should be retrieved.
1693  *
1694  * 		This helper behaves in a way close to
1695  * 		**bpf_perf_event_read**\ () helper, save that instead of
1696  * 		just returning the value observed, it fills the *buf*
1697  * 		structure. This allows for additional data to be retrieved: in
1698  * 		particular, the enabled and running times (in *buf*\
1699  * 		**->enabled** and *buf*\ **->running**, respectively) are
1700  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1701  * 		recommended over **bpf_perf_event_read**\ (), which has some
1702  * 		ABI issues and provides fewer functionalities.
1703  *
1704  * 		These values are interesting, because hardware PMU (Performance
1705  * 		Monitoring Unit) counters are limited resources. When there are
1706  * 		more PMU based perf events opened than available counters,
1707  * 		kernel will multiplex these events so each event gets certain
1708  * 		percentage (but not all) of the PMU time. In case that
1709  * 		multiplexing happens, the number of samples or counter value
1710  * 		will not reflect the case compared to when no multiplexing
1711  * 		occurs. This makes comparison between different runs difficult.
1712  * 		Typically, the counter value should be normalized before
1713  * 		comparing to other experiments. The usual normalization is done
1714  * 		as follows.
1715  *
1716  * 		::
1717  *
1718  * 			normalized_counter = counter * t_enabled / t_running
1719  *
1720  * 		Where t_enabled is the time enabled for event and t_running is
1721  * 		the time running for event since last normalization. The
1722  * 		enabled and running times are accumulated since the perf event
1723  * 		open. To achieve scaling factor between two invocations of an
1724  * 		eBPF program, users can can use CPU id as the key (which is
1725  * 		typical for perf array usage model) to remember the previous
1726  * 		value and do the calculation inside the eBPF program.
1727  * 	Return
1728  * 		0 on success, or a negative error in case of failure.
1729  *
1730  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1731  * 	Description
1732  * 		For en eBPF program attached to a perf event, retrieve the
1733  * 		value of the event counter associated to *ctx* and store it in
1734  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1735  * 		and running times are also stored in the structure (see
1736  * 		description of helper **bpf_perf_event_read_value**\ () for
1737  * 		more details).
1738  * 	Return
1739  * 		0 on success, or a negative error in case of failure.
1740  *
1741  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1742  * 	Description
1743  * 		Emulate a call to **getsockopt()** on the socket associated to
1744  * 		*bpf_socket*, which must be a full socket. The *level* at
1745  * 		which the option resides and the name *optname* of the option
1746  * 		must be specified, see **getsockopt(2)** for more information.
1747  * 		The retrieved value is stored in the structure pointed by
1748  * 		*opval* and of length *optlen*.
1749  *
1750  * 		This helper actually implements a subset of **getsockopt()**.
1751  * 		It supports the following *level*\ s:
1752  *
1753  * 		* **IPPROTO_TCP**, which supports *optname*
1754  * 		  **TCP_CONGESTION**.
1755  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1756  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1757  * 	Return
1758  * 		0 on success, or a negative error in case of failure.
1759  *
1760  * int bpf_override_return(struct pt_regs *regs, u64 rc)
1761  * 	Description
1762  * 		Used for error injection, this helper uses kprobes to override
1763  * 		the return value of the probed function, and to set it to *rc*.
1764  * 		The first argument is the context *regs* on which the kprobe
1765  * 		works.
1766  *
1767  * 		This helper works by setting setting the PC (program counter)
1768  * 		to an override function which is run in place of the original
1769  * 		probed function. This means the probed function is not run at
1770  * 		all. The replacement function just returns with the required
1771  * 		value.
1772  *
1773  * 		This helper has security implications, and thus is subject to
1774  * 		restrictions. It is only available if the kernel was compiled
1775  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1776  * 		option, and in this case it only works on functions tagged with
1777  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1778  *
1779  * 		Also, the helper is only available for the architectures having
1780  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1781  * 		x86 architecture is the only one to support this feature.
1782  * 	Return
1783  * 		0
1784  *
1785  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1786  * 	Description
1787  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1788  * 		for the full TCP socket associated to *bpf_sock_ops* to
1789  * 		*argval*.
1790  *
1791  * 		The primary use of this field is to determine if there should
1792  * 		be calls to eBPF programs of type
1793  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1794  * 		code. A program of the same type can change its value, per
1795  * 		connection and as necessary, when the connection is
1796  * 		established. This field is directly accessible for reading, but
1797  * 		this helper must be used for updates in order to return an
1798  * 		error if an eBPF program tries to set a callback that is not
1799  * 		supported in the current kernel.
1800  *
1801  * 		*argval* is a flag array which can combine these flags:
1802  *
1803  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1804  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1805  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1806  * 		* **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
1807  *
1808  * 		Therefore, this function can be used to clear a callback flag by
1809  * 		setting the appropriate bit to zero. e.g. to disable the RTO
1810  * 		callback:
1811  *
1812  * 		**bpf_sock_ops_cb_flags_set(bpf_sock,**
1813  * 			**bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
1814  *
1815  * 		Here are some examples of where one could call such eBPF
1816  * 		program:
1817  *
1818  * 		* When RTO fires.
1819  * 		* When a packet is retransmitted.
1820  * 		* When the connection terminates.
1821  * 		* When a packet is sent.
1822  * 		* When a packet is received.
1823  * 	Return
1824  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1825  * 		otherwise, a positive number containing the bits that could not
1826  * 		be set is returned (which comes down to 0 if all bits were set
1827  * 		as required).
1828  *
1829  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1830  * 	Description
1831  * 		This helper is used in programs implementing policies at the
1832  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1833  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1834  * 		the socket referenced by *map* (of type
1835  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1836  * 		egress interfaces can be used for redirection. The
1837  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1838  * 		distinction (ingress path is selected if the flag is present,
1839  * 		egress path otherwise). This is the only flag supported for now.
1840  * 	Return
1841  * 		**SK_PASS** on success, or **SK_DROP** on error.
1842  *
1843  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1844  * 	Description
1845  * 		For socket policies, apply the verdict of the eBPF program to
1846  * 		the next *bytes* (number of bytes) of message *msg*.
1847  *
1848  * 		For example, this helper can be used in the following cases:
1849  *
1850  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1851  * 		  contains multiple logical messages that the eBPF program is
1852  * 		  supposed to read and for which it should apply a verdict.
1853  * 		* An eBPF program only cares to read the first *bytes* of a
1854  * 		  *msg*. If the message has a large payload, then setting up
1855  * 		  and calling the eBPF program repeatedly for all bytes, even
1856  * 		  though the verdict is already known, would create unnecessary
1857  * 		  overhead.
1858  *
1859  * 		When called from within an eBPF program, the helper sets a
1860  * 		counter internal to the BPF infrastructure, that is used to
1861  * 		apply the last verdict to the next *bytes*. If *bytes* is
1862  * 		smaller than the current data being processed from a
1863  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1864  * 		*bytes* will be sent and the eBPF program will be re-run with
1865  * 		the pointer for start of data pointing to byte number *bytes*
1866  * 		**+ 1**. If *bytes* is larger than the current data being
1867  * 		processed, then the eBPF verdict will be applied to multiple
1868  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1869  * 		consumed.
1870  *
1871  * 		Note that if a socket closes with the internal counter holding
1872  * 		a non-zero value, this is not a problem because data is not
1873  * 		being buffered for *bytes* and is sent as it is received.
1874  * 	Return
1875  * 		0
1876  *
1877  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1878  * 	Description
1879  * 		For socket policies, prevent the execution of the verdict eBPF
1880  * 		program for message *msg* until *bytes* (byte number) have been
1881  * 		accumulated.
1882  *
1883  * 		This can be used when one needs a specific number of bytes
1884  * 		before a verdict can be assigned, even if the data spans
1885  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1886  * 		case would be a user calling **sendmsg**\ () repeatedly with
1887  * 		1-byte long message segments. Obviously, this is bad for
1888  * 		performance, but it is still valid. If the eBPF program needs
1889  * 		*bytes* bytes to validate a header, this helper can be used to
1890  * 		prevent the eBPF program to be called again until *bytes* have
1891  * 		been accumulated.
1892  * 	Return
1893  * 		0
1894  *
1895  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1896  * 	Description
1897  * 		For socket policies, pull in non-linear data from user space
1898  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1899  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1900  * 		respectively.
1901  *
1902  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1903  * 		*msg* it can only parse data that the (**data**, **data_end**)
1904  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1905  * 		is likely the first scatterlist element. But for calls relying
1906  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1907  * 		be the range (**0**, **0**) because the data is shared with
1908  * 		user space and by default the objective is to avoid allowing
1909  * 		user space to modify data while (or after) eBPF verdict is
1910  * 		being decided. This helper can be used to pull in data and to
1911  * 		set the start and end pointer to given values. Data will be
1912  * 		copied if necessary (i.e. if data was not linear and if start
1913  * 		and end pointers do not point to the same chunk).
1914  *
1915  * 		A call to this helper is susceptible to change the underlying
1916  * 		packet buffer. Therefore, at load time, all checks on pointers
1917  * 		previously done by the verifier are invalidated and must be
1918  * 		performed again, if the helper is used in combination with
1919  * 		direct packet access.
1920  *
1921  * 		All values for *flags* are reserved for future usage, and must
1922  * 		be left at zero.
1923  * 	Return
1924  * 		0 on success, or a negative error in case of failure.
1925  *
1926  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1927  * 	Description
1928  * 		Bind the socket associated to *ctx* to the address pointed by
1929  * 		*addr*, of length *addr_len*. This allows for making outgoing
1930  * 		connection from the desired IP address, which can be useful for
1931  * 		example when all processes inside a cgroup should use one
1932  * 		single IP address on a host that has multiple IP configured.
1933  *
1934  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1935  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1936  * 		**AF_INET6**). Looking for a free port to bind to can be
1937  * 		expensive, therefore binding to port is not permitted by the
1938  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1939  * 		must be set to zero.
1940  * 	Return
1941  * 		0 on success, or a negative error in case of failure.
1942  *
1943  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1944  * 	Description
1945  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1946  * 		only possible to shrink the packet as of this writing,
1947  * 		therefore *delta* must be a negative integer.
1948  *
1949  * 		A call to this helper is susceptible to change the underlying
1950  * 		packet buffer. Therefore, at load time, all checks on pointers
1951  * 		previously done by the verifier are invalidated and must be
1952  * 		performed again, if the helper is used in combination with
1953  * 		direct packet access.
1954  * 	Return
1955  * 		0 on success, or a negative error in case of failure.
1956  *
1957  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1958  * 	Description
1959  * 		Retrieve the XFRM state (IP transform framework, see also
1960  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1961  *
1962  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1963  * 		pointed by *xfrm_state* and of length *size*.
1964  *
1965  * 		All values for *flags* are reserved for future usage, and must
1966  * 		be left at zero.
1967  *
1968  * 		This helper is available only if the kernel was compiled with
1969  * 		**CONFIG_XFRM** configuration option.
1970  * 	Return
1971  * 		0 on success, or a negative error in case of failure.
1972  *
1973  * int bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
1974  * 	Description
1975  * 		Return a user or a kernel stack in bpf program provided buffer.
1976  * 		To achieve this, the helper needs *ctx*, which is a pointer
1977  * 		to the context on which the tracing program is executed.
1978  * 		To store the stacktrace, the bpf program provides *buf* with
1979  * 		a nonnegative *size*.
1980  *
1981  * 		The last argument, *flags*, holds the number of stack frames to
1982  * 		skip (from 0 to 255), masked with
1983  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1984  * 		the following flags:
1985  *
1986  * 		**BPF_F_USER_STACK**
1987  * 			Collect a user space stack instead of a kernel stack.
1988  * 		**BPF_F_USER_BUILD_ID**
1989  * 			Collect buildid+offset instead of ips for user stack,
1990  * 			only valid if **BPF_F_USER_STACK** is also specified.
1991  *
1992  * 		**bpf_get_stack**\ () can collect up to
1993  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1994  * 		to sufficient large buffer size. Note that
1995  * 		this limit can be controlled with the **sysctl** program, and
1996  * 		that it should be manually increased in order to profile long
1997  * 		user stacks (such as stacks for Java programs). To do so, use:
1998  *
1999  * 		::
2000  *
2001  * 			# sysctl kernel.perf_event_max_stack=<new value>
2002  * 	Return
2003  * 		A non-negative value equal to or less than *size* on success,
2004  * 		or a negative error in case of failure.
2005  *
2006  * int bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
2007  * 	Description
2008  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
2009  * 		it provides an easy way to load *len* bytes from *offset*
2010  * 		from the packet associated to *skb*, into the buffer pointed
2011  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
2012  * 		a fifth argument *start_header* exists in order to select a
2013  * 		base offset to start from. *start_header* can be one of:
2014  *
2015  * 		**BPF_HDR_START_MAC**
2016  * 			Base offset to load data from is *skb*'s mac header.
2017  * 		**BPF_HDR_START_NET**
2018  * 			Base offset to load data from is *skb*'s network header.
2019  *
2020  * 		In general, "direct packet access" is the preferred method to
2021  * 		access packet data, however, this helper is in particular useful
2022  * 		in socket filters where *skb*\ **->data** does not always point
2023  * 		to the start of the mac header and where "direct packet access"
2024  * 		is not available.
2025  * 	Return
2026  * 		0 on success, or a negative error in case of failure.
2027  *
2028  * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
2029  *	Description
2030  *		Do FIB lookup in kernel tables using parameters in *params*.
2031  *		If lookup is successful and result shows packet is to be
2032  *		forwarded, the neighbor tables are searched for the nexthop.
2033  *		If successful (ie., FIB lookup shows forwarding and nexthop
2034  *		is resolved), the nexthop address is returned in ipv4_dst
2035  *		or ipv6_dst based on family, smac is set to mac address of
2036  *		egress device, dmac is set to nexthop mac address, rt_metric
2037  *		is set to metric from route (IPv4/IPv6 only), and ifindex
2038  *		is set to the device index of the nexthop from the FIB lookup.
2039  *
2040  *		*plen* argument is the size of the passed in struct.
2041  *		*flags* argument can be a combination of one or more of the
2042  *		following values:
2043  *
2044  *		**BPF_FIB_LOOKUP_DIRECT**
2045  *			Do a direct table lookup vs full lookup using FIB
2046  *			rules.
2047  *		**BPF_FIB_LOOKUP_OUTPUT**
2048  *			Perform lookup from an egress perspective (default is
2049  *			ingress).
2050  *
2051  *		*ctx* is either **struct xdp_md** for XDP programs or
2052  *		**struct sk_buff** tc cls_act programs.
2053  *	Return
2054  *		* < 0 if any input argument is invalid
2055  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
2056  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
2057  *		  packet is not forwarded or needs assist from full stack
2058  *
2059  * int bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2060  *	Description
2061  *		Add an entry to, or update a sockhash *map* referencing sockets.
2062  *		The *skops* is used as a new value for the entry associated to
2063  *		*key*. *flags* is one of:
2064  *
2065  *		**BPF_NOEXIST**
2066  *			The entry for *key* must not exist in the map.
2067  *		**BPF_EXIST**
2068  *			The entry for *key* must already exist in the map.
2069  *		**BPF_ANY**
2070  *			No condition on the existence of the entry for *key*.
2071  *
2072  *		If the *map* has eBPF programs (parser and verdict), those will
2073  *		be inherited by the socket being added. If the socket is
2074  *		already attached to eBPF programs, this results in an error.
2075  *	Return
2076  *		0 on success, or a negative error in case of failure.
2077  *
2078  * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
2079  *	Description
2080  *		This helper is used in programs implementing policies at the
2081  *		socket level. If the message *msg* is allowed to pass (i.e. if
2082  *		the verdict eBPF program returns **SK_PASS**), redirect it to
2083  *		the socket referenced by *map* (of type
2084  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2085  *		egress interfaces can be used for redirection. The
2086  *		**BPF_F_INGRESS** value in *flags* is used to make the
2087  *		distinction (ingress path is selected if the flag is present,
2088  *		egress path otherwise). This is the only flag supported for now.
2089  *	Return
2090  *		**SK_PASS** on success, or **SK_DROP** on error.
2091  *
2092  * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2093  *	Description
2094  *		This helper is used in programs implementing policies at the
2095  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2096  *		if the verdeict eBPF program returns **SK_PASS**), redirect it
2097  *		to the socket referenced by *map* (of type
2098  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2099  *		egress interfaces can be used for redirection. The
2100  *		**BPF_F_INGRESS** value in *flags* is used to make the
2101  *		distinction (ingress path is selected if the flag is present,
2102  *		egress otherwise). This is the only flag supported for now.
2103  *	Return
2104  *		**SK_PASS** on success, or **SK_DROP** on error.
2105  *
2106  * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2107  *	Description
2108  *		Encapsulate the packet associated to *skb* within a Layer 3
2109  *		protocol header. This header is provided in the buffer at
2110  *		address *hdr*, with *len* its size in bytes. *type* indicates
2111  *		the protocol of the header and can be one of:
2112  *
2113  *		**BPF_LWT_ENCAP_SEG6**
2114  *			IPv6 encapsulation with Segment Routing Header
2115  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2116  *			the IPv6 header is computed by the kernel.
2117  *		**BPF_LWT_ENCAP_SEG6_INLINE**
2118  *			Only works if *skb* contains an IPv6 packet. Insert a
2119  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
2120  *			the IPv6 header.
2121  *		**BPF_LWT_ENCAP_IP**
2122  *			IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2123  *			must be IPv4 or IPv6, followed by zero or more
2124  *			additional headers, up to **LWT_BPF_MAX_HEADROOM**
2125  *			total bytes in all prepended headers. Please note that
2126  *			if **skb_is_gso**\ (*skb*) is true, no more than two
2127  *			headers can be prepended, and the inner header, if
2128  *			present, should be either GRE or UDP/GUE.
2129  *
2130  *		**BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
2131  *		of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
2132  *		be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
2133  *		**BPF_PROG_TYPE_LWT_XMIT**.
2134  *
2135  * 		A call to this helper is susceptible to change the underlying
2136  * 		packet buffer. Therefore, at load time, all checks on pointers
2137  * 		previously done by the verifier are invalidated and must be
2138  * 		performed again, if the helper is used in combination with
2139  * 		direct packet access.
2140  *	Return
2141  * 		0 on success, or a negative error in case of failure.
2142  *
2143  * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2144  *	Description
2145  *		Store *len* bytes from address *from* into the packet
2146  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2147  *		inside the outermost IPv6 Segment Routing Header can be
2148  *		modified through this helper.
2149  *
2150  * 		A call to this helper is susceptible to change the underlying
2151  * 		packet buffer. Therefore, at load time, all checks on pointers
2152  * 		previously done by the verifier are invalidated and must be
2153  * 		performed again, if the helper is used in combination with
2154  * 		direct packet access.
2155  *	Return
2156  * 		0 on success, or a negative error in case of failure.
2157  *
2158  * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2159  *	Description
2160  *		Adjust the size allocated to TLVs in the outermost IPv6
2161  *		Segment Routing Header contained in the packet associated to
2162  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2163  *		after the segments are accepted. *delta* can be as well
2164  *		positive (growing) as negative (shrinking).
2165  *
2166  * 		A call to this helper is susceptible to change the underlying
2167  * 		packet buffer. Therefore, at load time, all checks on pointers
2168  * 		previously done by the verifier are invalidated and must be
2169  * 		performed again, if the helper is used in combination with
2170  * 		direct packet access.
2171  *	Return
2172  * 		0 on success, or a negative error in case of failure.
2173  *
2174  * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2175  *	Description
2176  *		Apply an IPv6 Segment Routing action of type *action* to the
2177  *		packet associated to *skb*. Each action takes a parameter
2178  *		contained at address *param*, and of length *param_len* bytes.
2179  *		*action* can be one of:
2180  *
2181  *		**SEG6_LOCAL_ACTION_END_X**
2182  *			End.X action: Endpoint with Layer-3 cross-connect.
2183  *			Type of *param*: **struct in6_addr**.
2184  *		**SEG6_LOCAL_ACTION_END_T**
2185  *			End.T action: Endpoint with specific IPv6 table lookup.
2186  *			Type of *param*: **int**.
2187  *		**SEG6_LOCAL_ACTION_END_B6**
2188  *			End.B6 action: Endpoint bound to an SRv6 policy.
2189  *			Type of *param*: **struct ipv6_sr_hdr**.
2190  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2191  *			End.B6.Encap action: Endpoint bound to an SRv6
2192  *			encapsulation policy.
2193  *			Type of *param*: **struct ipv6_sr_hdr**.
2194  *
2195  * 		A call to this helper is susceptible to change the underlying
2196  * 		packet buffer. Therefore, at load time, all checks on pointers
2197  * 		previously done by the verifier are invalidated and must be
2198  * 		performed again, if the helper is used in combination with
2199  * 		direct packet access.
2200  *	Return
2201  * 		0 on success, or a negative error in case of failure.
2202  *
2203  * int bpf_rc_repeat(void *ctx)
2204  *	Description
2205  *		This helper is used in programs implementing IR decoding, to
2206  *		report a successfully decoded repeat key message. This delays
2207  *		the generation of a key up event for previously generated
2208  *		key down event.
2209  *
2210  *		Some IR protocols like NEC have a special IR message for
2211  *		repeating last button, for when a button is held down.
2212  *
2213  *		The *ctx* should point to the lirc sample as passed into
2214  *		the program.
2215  *
2216  *		This helper is only available is the kernel was compiled with
2217  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2218  *		"**y**".
2219  *	Return
2220  *		0
2221  *
2222  * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2223  *	Description
2224  *		This helper is used in programs implementing IR decoding, to
2225  *		report a successfully decoded key press with *scancode*,
2226  *		*toggle* value in the given *protocol*. The scancode will be
2227  *		translated to a keycode using the rc keymap, and reported as
2228  *		an input key down event. After a period a key up event is
2229  *		generated. This period can be extended by calling either
2230  *		**bpf_rc_keydown**\ () again with the same values, or calling
2231  *		**bpf_rc_repeat**\ ().
2232  *
2233  *		Some protocols include a toggle bit, in case the button	was
2234  *		released and pressed again between consecutive scancodes.
2235  *
2236  *		The *ctx* should point to the lirc sample as passed into
2237  *		the program.
2238  *
2239  *		The *protocol* is the decoded protocol number (see
2240  *		**enum rc_proto** for some predefined values).
2241  *
2242  *		This helper is only available is the kernel was compiled with
2243  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2244  *		"**y**".
2245  *	Return
2246  *		0
2247  *
2248  * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2249  * 	Description
2250  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2251  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2252  * 		helper for cgroup v1 by providing a tag resp. identifier that
2253  * 		can be matched on or used for map lookups e.g. to implement
2254  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2255  * 		exposed in user space through the f_handle API in order to get
2256  * 		to the same 64-bit id.
2257  *
2258  * 		This helper can be used on TC egress path, but not on ingress,
2259  * 		and is available only if the kernel was compiled with the
2260  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2261  * 	Return
2262  * 		The id is returned or 0 in case the id could not be retrieved.
2263  *
2264  * u64 bpf_get_current_cgroup_id(void)
2265  * 	Return
2266  * 		A 64-bit integer containing the current cgroup id based
2267  * 		on the cgroup within which the current task is running.
2268  *
2269  * void *bpf_get_local_storage(void *map, u64 flags)
2270  *	Description
2271  *		Get the pointer to the local storage area.
2272  *		The type and the size of the local storage is defined
2273  *		by the *map* argument.
2274  *		The *flags* meaning is specific for each map type,
2275  *		and has to be 0 for cgroup local storage.
2276  *
2277  *		Depending on the BPF program type, a local storage area
2278  *		can be shared between multiple instances of the BPF program,
2279  *		running simultaneously.
2280  *
2281  *		A user should care about the synchronization by himself.
2282  *		For example, by using the **BPF_STX_XADD** instruction to alter
2283  *		the shared data.
2284  *	Return
2285  *		A pointer to the local storage area.
2286  *
2287  * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2288  *	Description
2289  *		Select a **SO_REUSEPORT** socket from a
2290  *		**BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2291  *		It checks the selected socket is matching the incoming
2292  *		request in the socket buffer.
2293  *	Return
2294  *		0 on success, or a negative error in case of failure.
2295  *
2296  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2297  *	Description
2298  *		Return id of cgroup v2 that is ancestor of cgroup associated
2299  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2300  *		*ancestor_level* zero and each step down the hierarchy
2301  *		increments the level. If *ancestor_level* == level of cgroup
2302  *		associated with *skb*, then return value will be same as that
2303  *		of **bpf_skb_cgroup_id**\ ().
2304  *
2305  *		The helper is useful to implement policies based on cgroups
2306  *		that are upper in hierarchy than immediate cgroup associated
2307  *		with *skb*.
2308  *
2309  *		The format of returned id and helper limitations are same as in
2310  *		**bpf_skb_cgroup_id**\ ().
2311  *	Return
2312  *		The id is returned or 0 in case the id could not be retrieved.
2313  *
2314  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2315  *	Description
2316  *		Look for TCP socket matching *tuple*, optionally in a child
2317  *		network namespace *netns*. The return value must be checked,
2318  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2319  *
2320  *		The *ctx* should point to the context of the program, such as
2321  *		the skb or socket (depending on the hook in use). This is used
2322  *		to determine the base network namespace for the lookup.
2323  *
2324  *		*tuple_size* must be one of:
2325  *
2326  *		**sizeof**\ (*tuple*\ **->ipv4**)
2327  *			Look for an IPv4 socket.
2328  *		**sizeof**\ (*tuple*\ **->ipv6**)
2329  *			Look for an IPv6 socket.
2330  *
2331  *		If the *netns* is a negative signed 32-bit integer, then the
2332  *		socket lookup table in the netns associated with the *ctx* will
2333  *		will be used. For the TC hooks, this is the netns of the device
2334  *		in the skb. For socket hooks, this is the netns of the socket.
2335  *		If *netns* is any other signed 32-bit value greater than or
2336  *		equal to zero then it specifies the ID of the netns relative to
2337  *		the netns associated with the *ctx*. *netns* values beyond the
2338  *		range of 32-bit integers are reserved for future use.
2339  *
2340  *		All values for *flags* are reserved for future usage, and must
2341  *		be left at zero.
2342  *
2343  *		This helper is available only if the kernel was compiled with
2344  *		**CONFIG_NET** configuration option.
2345  *	Return
2346  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2347  *		For sockets with reuseport option, the **struct bpf_sock**
2348  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2349  *		tuple.
2350  *
2351  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2352  *	Description
2353  *		Look for UDP socket matching *tuple*, optionally in a child
2354  *		network namespace *netns*. The return value must be checked,
2355  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2356  *
2357  *		The *ctx* should point to the context of the program, such as
2358  *		the skb or socket (depending on the hook in use). This is used
2359  *		to determine the base network namespace for the lookup.
2360  *
2361  *		*tuple_size* must be one of:
2362  *
2363  *		**sizeof**\ (*tuple*\ **->ipv4**)
2364  *			Look for an IPv4 socket.
2365  *		**sizeof**\ (*tuple*\ **->ipv6**)
2366  *			Look for an IPv6 socket.
2367  *
2368  *		If the *netns* is a negative signed 32-bit integer, then the
2369  *		socket lookup table in the netns associated with the *ctx* will
2370  *		will be used. For the TC hooks, this is the netns of the device
2371  *		in the skb. For socket hooks, this is the netns of the socket.
2372  *		If *netns* is any other signed 32-bit value greater than or
2373  *		equal to zero then it specifies the ID of the netns relative to
2374  *		the netns associated with the *ctx*. *netns* values beyond the
2375  *		range of 32-bit integers are reserved for future use.
2376  *
2377  *		All values for *flags* are reserved for future usage, and must
2378  *		be left at zero.
2379  *
2380  *		This helper is available only if the kernel was compiled with
2381  *		**CONFIG_NET** configuration option.
2382  *	Return
2383  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2384  *		For sockets with reuseport option, the **struct bpf_sock**
2385  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2386  *		tuple.
2387  *
2388  * int bpf_sk_release(struct bpf_sock *sock)
2389  *	Description
2390  *		Release the reference held by *sock*. *sock* must be a
2391  *		non-**NULL** pointer that was returned from
2392  *		**bpf_sk_lookup_xxx**\ ().
2393  *	Return
2394  *		0 on success, or a negative error in case of failure.
2395  *
2396  * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2397  * 	Description
2398  * 		Push an element *value* in *map*. *flags* is one of:
2399  *
2400  * 		**BPF_EXIST**
2401  * 			If the queue/stack is full, the oldest element is
2402  * 			removed to make room for this.
2403  * 	Return
2404  * 		0 on success, or a negative error in case of failure.
2405  *
2406  * int bpf_map_pop_elem(struct bpf_map *map, void *value)
2407  * 	Description
2408  * 		Pop an element from *map*.
2409  * 	Return
2410  * 		0 on success, or a negative error in case of failure.
2411  *
2412  * int bpf_map_peek_elem(struct bpf_map *map, void *value)
2413  * 	Description
2414  * 		Get an element from *map* without removing it.
2415  * 	Return
2416  * 		0 on success, or a negative error in case of failure.
2417  *
2418  * int bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2419  *	Description
2420  *		For socket policies, insert *len* bytes into *msg* at offset
2421  *		*start*.
2422  *
2423  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2424  *		*msg* it may want to insert metadata or options into the *msg*.
2425  *		This can later be read and used by any of the lower layer BPF
2426  *		hooks.
2427  *
2428  *		This helper may fail if under memory pressure (a malloc
2429  *		fails) in these cases BPF programs will get an appropriate
2430  *		error and BPF programs will need to handle them.
2431  *	Return
2432  *		0 on success, or a negative error in case of failure.
2433  *
2434  * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2435  *	Description
2436  *		Will remove *len* bytes from a *msg* starting at byte *start*.
2437  *		This may result in **ENOMEM** errors under certain situations if
2438  *		an allocation and copy are required due to a full ring buffer.
2439  *		However, the helper will try to avoid doing the allocation
2440  *		if possible. Other errors can occur if input parameters are
2441  *		invalid either due to *start* byte not being valid part of *msg*
2442  *		payload and/or *pop* value being to large.
2443  *	Return
2444  *		0 on success, or a negative error in case of failure.
2445  *
2446  * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2447  *	Description
2448  *		This helper is used in programs implementing IR decoding, to
2449  *		report a successfully decoded pointer movement.
2450  *
2451  *		The *ctx* should point to the lirc sample as passed into
2452  *		the program.
2453  *
2454  *		This helper is only available is the kernel was compiled with
2455  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2456  *		"**y**".
2457  *	Return
2458  *		0
2459  *
2460  * int bpf_spin_lock(struct bpf_spin_lock *lock)
2461  *	Description
2462  *		Acquire a spinlock represented by the pointer *lock*, which is
2463  *		stored as part of a value of a map. Taking the lock allows to
2464  *		safely update the rest of the fields in that value. The
2465  *		spinlock can (and must) later be released with a call to
2466  *		**bpf_spin_unlock**\ (\ *lock*\ ).
2467  *
2468  *		Spinlocks in BPF programs come with a number of restrictions
2469  *		and constraints:
2470  *
2471  *		* **bpf_spin_lock** objects are only allowed inside maps of
2472  *		  types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2473  *		  list could be extended in the future).
2474  *		* BTF description of the map is mandatory.
2475  *		* The BPF program can take ONE lock at a time, since taking two
2476  *		  or more could cause dead locks.
2477  *		* Only one **struct bpf_spin_lock** is allowed per map element.
2478  *		* When the lock is taken, calls (either BPF to BPF or helpers)
2479  *		  are not allowed.
2480  *		* The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2481  *		  allowed inside a spinlock-ed region.
2482  *		* The BPF program MUST call **bpf_spin_unlock**\ () to release
2483  *		  the lock, on all execution paths, before it returns.
2484  *		* The BPF program can access **struct bpf_spin_lock** only via
2485  *		  the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2486  *		  helpers. Loading or storing data into the **struct
2487  *		  bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2488  *		* To use the **bpf_spin_lock**\ () helper, the BTF description
2489  *		  of the map value must be a struct and have **struct
2490  *		  bpf_spin_lock** *anyname*\ **;** field at the top level.
2491  *		  Nested lock inside another struct is not allowed.
2492  *		* The **struct bpf_spin_lock** *lock* field in a map value must
2493  *		  be aligned on a multiple of 4 bytes in that value.
2494  *		* Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2495  *		  the **bpf_spin_lock** field to user space.
2496  *		* Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2497  *		  a BPF program, do not update the **bpf_spin_lock** field.
2498  *		* **bpf_spin_lock** cannot be on the stack or inside a
2499  *		  networking packet (it can only be inside of a map values).
2500  *		* **bpf_spin_lock** is available to root only.
2501  *		* Tracing programs and socket filter programs cannot use
2502  *		  **bpf_spin_lock**\ () due to insufficient preemption checks
2503  *		  (but this may change in the future).
2504  *		* **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2505  *	Return
2506  *		0
2507  *
2508  * int bpf_spin_unlock(struct bpf_spin_lock *lock)
2509  *	Description
2510  *		Release the *lock* previously locked by a call to
2511  *		**bpf_spin_lock**\ (\ *lock*\ ).
2512  *	Return
2513  *		0
2514  *
2515  * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2516  *	Description
2517  *		This helper gets a **struct bpf_sock** pointer such
2518  *		that all the fields in this **bpf_sock** can be accessed.
2519  *	Return
2520  *		A **struct bpf_sock** pointer on success, or **NULL** in
2521  *		case of failure.
2522  *
2523  * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2524  *	Description
2525  *		This helper gets a **struct bpf_tcp_sock** pointer from a
2526  *		**struct bpf_sock** pointer.
2527  *	Return
2528  *		A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2529  *		case of failure.
2530  *
2531  * int bpf_skb_ecn_set_ce(struct sk_buff *skb)
2532  *	Description
2533  *		Set ECN (Explicit Congestion Notification) field of IP header
2534  *		to **CE** (Congestion Encountered) if current value is **ECT**
2535  *		(ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2536  *		and IPv4.
2537  *	Return
2538  *		1 if the **CE** flag is set (either by the current helper call
2539  *		or because it was already present), 0 if it is not set.
2540  *
2541  * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2542  *	Description
2543  *		Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2544  *		**bpf_sk_release**\ () is unnecessary and not allowed.
2545  *	Return
2546  *		A **struct bpf_sock** pointer on success, or **NULL** in
2547  *		case of failure.
2548  *
2549  * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2550  *	Description
2551  *		Look for TCP socket matching *tuple*, optionally in a child
2552  *		network namespace *netns*. The return value must be checked,
2553  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2554  *
2555  *		This function is identical to **bpf_sk_lookup_tcp**\ (), except
2556  *		that it also returns timewait or request sockets. Use
2557  *		**bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
2558  *		full structure.
2559  *
2560  *		This helper is available only if the kernel was compiled with
2561  *		**CONFIG_NET** configuration option.
2562  *	Return
2563  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2564  *		For sockets with reuseport option, the **struct bpf_sock**
2565  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2566  *		tuple.
2567  *
2568  * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2569  * 	Description
2570  * 		Check whether *iph* and *th* contain a valid SYN cookie ACK for
2571  * 		the listening socket in *sk*.
2572  *
2573  * 		*iph* points to the start of the IPv4 or IPv6 header, while
2574  * 		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2575  * 		**sizeof**\ (**struct ip6hdr**).
2576  *
2577  * 		*th* points to the start of the TCP header, while *th_len*
2578  * 		contains **sizeof**\ (**struct tcphdr**).
2579  *
2580  * 	Return
2581  * 		0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
2582  * 		error otherwise.
2583  *
2584  * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
2585  *	Description
2586  *		Get name of sysctl in /proc/sys/ and copy it into provided by
2587  *		program buffer *buf* of size *buf_len*.
2588  *
2589  *		The buffer is always NUL terminated, unless it's zero-sized.
2590  *
2591  *		If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
2592  *		copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
2593  *		only (e.g. "tcp_mem").
2594  *	Return
2595  *		Number of character copied (not including the trailing NUL).
2596  *
2597  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2598  *		truncated name in this case).
2599  *
2600  * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2601  *	Description
2602  *		Get current value of sysctl as it is presented in /proc/sys
2603  *		(incl. newline, etc), and copy it as a string into provided
2604  *		by program buffer *buf* of size *buf_len*.
2605  *
2606  *		The whole value is copied, no matter what file position user
2607  *		space issued e.g. sys_read at.
2608  *
2609  *		The buffer is always NUL terminated, unless it's zero-sized.
2610  *	Return
2611  *		Number of character copied (not including the trailing NUL).
2612  *
2613  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2614  *		truncated name in this case).
2615  *
2616  *		**-EINVAL** if current value was unavailable, e.g. because
2617  *		sysctl is uninitialized and read returns -EIO for it.
2618  *
2619  * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2620  *	Description
2621  *		Get new value being written by user space to sysctl (before
2622  *		the actual write happens) and copy it as a string into
2623  *		provided by program buffer *buf* of size *buf_len*.
2624  *
2625  *		User space may write new value at file position > 0.
2626  *
2627  *		The buffer is always NUL terminated, unless it's zero-sized.
2628  *	Return
2629  *		Number of character copied (not including the trailing NUL).
2630  *
2631  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2632  *		truncated name in this case).
2633  *
2634  *		**-EINVAL** if sysctl is being read.
2635  *
2636  * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
2637  *	Description
2638  *		Override new value being written by user space to sysctl with
2639  *		value provided by program in buffer *buf* of size *buf_len*.
2640  *
2641  *		*buf* should contain a string in same form as provided by user
2642  *		space on sysctl write.
2643  *
2644  *		User space may write new value at file position > 0. To override
2645  *		the whole sysctl value file position should be set to zero.
2646  *	Return
2647  *		0 on success.
2648  *
2649  *		**-E2BIG** if the *buf_len* is too big.
2650  *
2651  *		**-EINVAL** if sysctl is being read.
2652  *
2653  * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
2654  *	Description
2655  *		Convert the initial part of the string from buffer *buf* of
2656  *		size *buf_len* to a long integer according to the given base
2657  *		and save the result in *res*.
2658  *
2659  *		The string may begin with an arbitrary amount of white space
2660  *		(as determined by **isspace**\ (3)) followed by a single
2661  *		optional '**-**' sign.
2662  *
2663  *		Five least significant bits of *flags* encode base, other bits
2664  *		are currently unused.
2665  *
2666  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2667  *		similar to user space **strtol**\ (3).
2668  *	Return
2669  *		Number of characters consumed on success. Must be positive but
2670  *		no more than *buf_len*.
2671  *
2672  *		**-EINVAL** if no valid digits were found or unsupported base
2673  *		was provided.
2674  *
2675  *		**-ERANGE** if resulting value was out of range.
2676  *
2677  * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
2678  *	Description
2679  *		Convert the initial part of the string from buffer *buf* of
2680  *		size *buf_len* to an unsigned long integer according to the
2681  *		given base and save the result in *res*.
2682  *
2683  *		The string may begin with an arbitrary amount of white space
2684  *		(as determined by **isspace**\ (3)).
2685  *
2686  *		Five least significant bits of *flags* encode base, other bits
2687  *		are currently unused.
2688  *
2689  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2690  *		similar to user space **strtoul**\ (3).
2691  *	Return
2692  *		Number of characters consumed on success. Must be positive but
2693  *		no more than *buf_len*.
2694  *
2695  *		**-EINVAL** if no valid digits were found or unsupported base
2696  *		was provided.
2697  *
2698  *		**-ERANGE** if resulting value was out of range.
2699  *
2700  * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags)
2701  *	Description
2702  *		Get a bpf-local-storage from a *sk*.
2703  *
2704  *		Logically, it could be thought of getting the value from
2705  *		a *map* with *sk* as the **key**.  From this
2706  *		perspective,  the usage is not much different from
2707  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
2708  *		helper enforces the key must be a full socket and the map must
2709  *		be a **BPF_MAP_TYPE_SK_STORAGE** also.
2710  *
2711  *		Underneath, the value is stored locally at *sk* instead of
2712  *		the *map*.  The *map* is used as the bpf-local-storage
2713  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
2714  *		searched against all bpf-local-storages residing at *sk*.
2715  *
2716  *		An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
2717  *		used such that a new bpf-local-storage will be
2718  *		created if one does not exist.  *value* can be used
2719  *		together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
2720  *		the initial value of a bpf-local-storage.  If *value* is
2721  *		**NULL**, the new bpf-local-storage will be zero initialized.
2722  *	Return
2723  *		A bpf-local-storage pointer is returned on success.
2724  *
2725  *		**NULL** if not found or there was an error in adding
2726  *		a new bpf-local-storage.
2727  *
2728  * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk)
2729  *	Description
2730  *		Delete a bpf-local-storage from a *sk*.
2731  *	Return
2732  *		0 on success.
2733  *
2734  *		**-ENOENT** if the bpf-local-storage cannot be found.
2735  *
2736  * int bpf_send_signal(u32 sig)
2737  *	Description
2738  *		Send signal *sig* to the process of the current task.
2739  *		The signal may be delivered to any of this process's threads.
2740  *	Return
2741  *		0 on success or successfully queued.
2742  *
2743  *		**-EBUSY** if work queue under nmi is full.
2744  *
2745  *		**-EINVAL** if *sig* is invalid.
2746  *
2747  *		**-EPERM** if no permission to send the *sig*.
2748  *
2749  *		**-EAGAIN** if bpf program can try again.
2750  *
2751  * s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2752  *	Description
2753  *		Try to issue a SYN cookie for the packet with corresponding
2754  *		IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
2755  *
2756  *		*iph* points to the start of the IPv4 or IPv6 header, while
2757  *		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2758  *		**sizeof**\ (**struct ip6hdr**).
2759  *
2760  *		*th* points to the start of the TCP header, while *th_len*
2761  *		contains the length of the TCP header.
2762  *
2763  *	Return
2764  *		On success, lower 32 bits hold the generated SYN cookie in
2765  *		followed by 16 bits which hold the MSS value for that cookie,
2766  *		and the top 16 bits are unused.
2767  *
2768  *		On failure, the returned value is one of the following:
2769  *
2770  *		**-EINVAL** SYN cookie cannot be issued due to error
2771  *
2772  *		**-ENOENT** SYN cookie should not be issued (no SYN flood)
2773  *
2774  *		**-EOPNOTSUPP** kernel configuration does not enable SYN cookies
2775  *
2776  *		**-EPROTONOSUPPORT** IP packet version is not 4 or 6
2777  *
2778  * int bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2779  * 	Description
2780  * 		Write raw *data* blob into a special BPF perf event held by
2781  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2782  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
2783  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2784  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2785  *
2786  * 		The *flags* are used to indicate the index in *map* for which
2787  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
2788  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2789  * 		to indicate that the index of the current CPU core should be
2790  * 		used.
2791  *
2792  * 		The value to write, of *size*, is passed through eBPF stack and
2793  * 		pointed by *data*.
2794  *
2795  * 		*ctx* is a pointer to in-kernel struct sk_buff.
2796  *
2797  * 		This helper is similar to **bpf_perf_event_output**\ () but
2798  * 		restricted to raw_tracepoint bpf programs.
2799  * 	Return
2800  * 		0 on success, or a negative error in case of failure.
2801  *
2802  * int bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
2803  * 	Description
2804  * 		Safely attempt to read *size* bytes from user space address
2805  * 		*unsafe_ptr* and store the data in *dst*.
2806  * 	Return
2807  * 		0 on success, or a negative error in case of failure.
2808  *
2809  * int bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2810  * 	Description
2811  * 		Safely attempt to read *size* bytes from kernel space address
2812  * 		*unsafe_ptr* and store the data in *dst*.
2813  * 	Return
2814  * 		0 on success, or a negative error in case of failure.
2815  *
2816  * int bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
2817  * 	Description
2818  * 		Copy a NUL terminated string from an unsafe user address
2819  * 		*unsafe_ptr* to *dst*. The *size* should include the
2820  * 		terminating NUL byte. In case the string length is smaller than
2821  * 		*size*, the target is not padded with further NUL bytes. If the
2822  * 		string length is larger than *size*, just *size*-1 bytes are
2823  * 		copied and the last byte is set to NUL.
2824  *
2825  * 		On success, the length of the copied string is returned. This
2826  * 		makes this helper useful in tracing programs for reading
2827  * 		strings, and more importantly to get its length at runtime. See
2828  * 		the following snippet:
2829  *
2830  * 		::
2831  *
2832  * 			SEC("kprobe/sys_open")
2833  * 			void bpf_sys_open(struct pt_regs *ctx)
2834  * 			{
2835  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
2836  * 			        int res = bpf_probe_read_user_str(buf, sizeof(buf),
2837  * 				                                  ctx->di);
2838  *
2839  * 				// Consume buf, for example push it to
2840  * 				// userspace via bpf_perf_event_output(); we
2841  * 				// can use res (the string length) as event
2842  * 				// size, after checking its boundaries.
2843  * 			}
2844  *
2845  * 		In comparison, using **bpf_probe_read_user()** helper here
2846  * 		instead to read the string would require to estimate the length
2847  * 		at compile time, and would often result in copying more memory
2848  * 		than necessary.
2849  *
2850  * 		Another useful use case is when parsing individual process
2851  * 		arguments or individual environment variables navigating
2852  * 		*current*\ **->mm->arg_start** and *current*\
2853  * 		**->mm->env_start**: using this helper and the return value,
2854  * 		one can quickly iterate at the right offset of the memory area.
2855  * 	Return
2856  * 		On success, the strictly positive length of the string,
2857  * 		including the trailing NUL character. On error, a negative
2858  * 		value.
2859  *
2860  * int bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
2861  * 	Description
2862  * 		Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
2863  * 		to *dst*. Same semantics as with bpf_probe_read_user_str() apply.
2864  * 	Return
2865  * 		On success, the strictly positive length of the string,	including
2866  * 		the trailing NUL character. On error, a negative value.
2867  *
2868  * int bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
2869  *	Description
2870  *		Send out a tcp-ack. *tp* is the in-kernel struct tcp_sock.
2871  *		*rcv_nxt* is the ack_seq to be sent out.
2872  *	Return
2873  *		0 on success, or a negative error in case of failure.
2874  *
2875  * int bpf_send_signal_thread(u32 sig)
2876  *	Description
2877  *		Send signal *sig* to the thread corresponding to the current task.
2878  *	Return
2879  *		0 on success or successfully queued.
2880  *
2881  *		**-EBUSY** if work queue under nmi is full.
2882  *
2883  *		**-EINVAL** if *sig* is invalid.
2884  *
2885  *		**-EPERM** if no permission to send the *sig*.
2886  *
2887  *		**-EAGAIN** if bpf program can try again.
2888  */
2889 #define __BPF_FUNC_MAPPER(FN)		\
2890 	FN(unspec),			\
2891 	FN(map_lookup_elem),		\
2892 	FN(map_update_elem),		\
2893 	FN(map_delete_elem),		\
2894 	FN(probe_read),			\
2895 	FN(ktime_get_ns),		\
2896 	FN(trace_printk),		\
2897 	FN(get_prandom_u32),		\
2898 	FN(get_smp_processor_id),	\
2899 	FN(skb_store_bytes),		\
2900 	FN(l3_csum_replace),		\
2901 	FN(l4_csum_replace),		\
2902 	FN(tail_call),			\
2903 	FN(clone_redirect),		\
2904 	FN(get_current_pid_tgid),	\
2905 	FN(get_current_uid_gid),	\
2906 	FN(get_current_comm),		\
2907 	FN(get_cgroup_classid),		\
2908 	FN(skb_vlan_push),		\
2909 	FN(skb_vlan_pop),		\
2910 	FN(skb_get_tunnel_key),		\
2911 	FN(skb_set_tunnel_key),		\
2912 	FN(perf_event_read),		\
2913 	FN(redirect),			\
2914 	FN(get_route_realm),		\
2915 	FN(perf_event_output),		\
2916 	FN(skb_load_bytes),		\
2917 	FN(get_stackid),		\
2918 	FN(csum_diff),			\
2919 	FN(skb_get_tunnel_opt),		\
2920 	FN(skb_set_tunnel_opt),		\
2921 	FN(skb_change_proto),		\
2922 	FN(skb_change_type),		\
2923 	FN(skb_under_cgroup),		\
2924 	FN(get_hash_recalc),		\
2925 	FN(get_current_task),		\
2926 	FN(probe_write_user),		\
2927 	FN(current_task_under_cgroup),	\
2928 	FN(skb_change_tail),		\
2929 	FN(skb_pull_data),		\
2930 	FN(csum_update),		\
2931 	FN(set_hash_invalid),		\
2932 	FN(get_numa_node_id),		\
2933 	FN(skb_change_head),		\
2934 	FN(xdp_adjust_head),		\
2935 	FN(probe_read_str),		\
2936 	FN(get_socket_cookie),		\
2937 	FN(get_socket_uid),		\
2938 	FN(set_hash),			\
2939 	FN(setsockopt),			\
2940 	FN(skb_adjust_room),		\
2941 	FN(redirect_map),		\
2942 	FN(sk_redirect_map),		\
2943 	FN(sock_map_update),		\
2944 	FN(xdp_adjust_meta),		\
2945 	FN(perf_event_read_value),	\
2946 	FN(perf_prog_read_value),	\
2947 	FN(getsockopt),			\
2948 	FN(override_return),		\
2949 	FN(sock_ops_cb_flags_set),	\
2950 	FN(msg_redirect_map),		\
2951 	FN(msg_apply_bytes),		\
2952 	FN(msg_cork_bytes),		\
2953 	FN(msg_pull_data),		\
2954 	FN(bind),			\
2955 	FN(xdp_adjust_tail),		\
2956 	FN(skb_get_xfrm_state),		\
2957 	FN(get_stack),			\
2958 	FN(skb_load_bytes_relative),	\
2959 	FN(fib_lookup),			\
2960 	FN(sock_hash_update),		\
2961 	FN(msg_redirect_hash),		\
2962 	FN(sk_redirect_hash),		\
2963 	FN(lwt_push_encap),		\
2964 	FN(lwt_seg6_store_bytes),	\
2965 	FN(lwt_seg6_adjust_srh),	\
2966 	FN(lwt_seg6_action),		\
2967 	FN(rc_repeat),			\
2968 	FN(rc_keydown),			\
2969 	FN(skb_cgroup_id),		\
2970 	FN(get_current_cgroup_id),	\
2971 	FN(get_local_storage),		\
2972 	FN(sk_select_reuseport),	\
2973 	FN(skb_ancestor_cgroup_id),	\
2974 	FN(sk_lookup_tcp),		\
2975 	FN(sk_lookup_udp),		\
2976 	FN(sk_release),			\
2977 	FN(map_push_elem),		\
2978 	FN(map_pop_elem),		\
2979 	FN(map_peek_elem),		\
2980 	FN(msg_push_data),		\
2981 	FN(msg_pop_data),		\
2982 	FN(rc_pointer_rel),		\
2983 	FN(spin_lock),			\
2984 	FN(spin_unlock),		\
2985 	FN(sk_fullsock),		\
2986 	FN(tcp_sock),			\
2987 	FN(skb_ecn_set_ce),		\
2988 	FN(get_listener_sock),		\
2989 	FN(skc_lookup_tcp),		\
2990 	FN(tcp_check_syncookie),	\
2991 	FN(sysctl_get_name),		\
2992 	FN(sysctl_get_current_value),	\
2993 	FN(sysctl_get_new_value),	\
2994 	FN(sysctl_set_new_value),	\
2995 	FN(strtol),			\
2996 	FN(strtoul),			\
2997 	FN(sk_storage_get),		\
2998 	FN(sk_storage_delete),		\
2999 	FN(send_signal),		\
3000 	FN(tcp_gen_syncookie),		\
3001 	FN(skb_output),			\
3002 	FN(probe_read_user),		\
3003 	FN(probe_read_kernel),		\
3004 	FN(probe_read_user_str),	\
3005 	FN(probe_read_kernel_str),	\
3006 	FN(tcp_send_ack),		\
3007 	FN(send_signal_thread),
3008 
3009 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
3010  * function eBPF program intends to call
3011  */
3012 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
3013 enum bpf_func_id {
3014 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
3015 	__BPF_FUNC_MAX_ID,
3016 };
3017 #undef __BPF_ENUM_FN
3018 
3019 /* All flags used by eBPF helper functions, placed here. */
3020 
3021 /* BPF_FUNC_skb_store_bytes flags. */
3022 #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
3023 #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
3024 
3025 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
3026  * First 4 bits are for passing the header field size.
3027  */
3028 #define BPF_F_HDR_FIELD_MASK		0xfULL
3029 
3030 /* BPF_FUNC_l4_csum_replace flags. */
3031 #define BPF_F_PSEUDO_HDR		(1ULL << 4)
3032 #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
3033 #define BPF_F_MARK_ENFORCE		(1ULL << 6)
3034 
3035 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
3036 #define BPF_F_INGRESS			(1ULL << 0)
3037 
3038 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
3039 #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
3040 
3041 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
3042 #define BPF_F_SKIP_FIELD_MASK		0xffULL
3043 #define BPF_F_USER_STACK		(1ULL << 8)
3044 /* flags used by BPF_FUNC_get_stackid only. */
3045 #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
3046 #define BPF_F_REUSE_STACKID		(1ULL << 10)
3047 /* flags used by BPF_FUNC_get_stack only. */
3048 #define BPF_F_USER_BUILD_ID		(1ULL << 11)
3049 
3050 /* BPF_FUNC_skb_set_tunnel_key flags. */
3051 #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
3052 #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
3053 #define BPF_F_SEQ_NUMBER		(1ULL << 3)
3054 
3055 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
3056  * BPF_FUNC_perf_event_read_value flags.
3057  */
3058 #define BPF_F_INDEX_MASK		0xffffffffULL
3059 #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
3060 /* BPF_FUNC_perf_event_output for sk_buff input context. */
3061 #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
3062 
3063 /* Current network namespace */
3064 #define BPF_F_CURRENT_NETNS		(-1L)
3065 
3066 /* BPF_FUNC_skb_adjust_room flags. */
3067 #define BPF_F_ADJ_ROOM_FIXED_GSO	(1ULL << 0)
3068 
3069 #define BPF_ADJ_ROOM_ENCAP_L2_MASK	0xff
3070 #define BPF_ADJ_ROOM_ENCAP_L2_SHIFT	56
3071 
3072 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4	(1ULL << 1)
3073 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6	(1ULL << 2)
3074 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE	(1ULL << 3)
3075 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP	(1ULL << 4)
3076 #define BPF_F_ADJ_ROOM_ENCAP_L2(len)	(((__u64)len & \
3077 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) \
3078 					 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
3079 
3080 /* BPF_FUNC_sysctl_get_name flags. */
3081 #define BPF_F_SYSCTL_BASE_NAME		(1ULL << 0)
3082 
3083 /* BPF_FUNC_sk_storage_get flags */
3084 #define BPF_SK_STORAGE_GET_F_CREATE	(1ULL << 0)
3085 
3086 /* Mode for BPF_FUNC_skb_adjust_room helper. */
3087 enum bpf_adj_room_mode {
3088 	BPF_ADJ_ROOM_NET,
3089 	BPF_ADJ_ROOM_MAC,
3090 };
3091 
3092 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
3093 enum bpf_hdr_start_off {
3094 	BPF_HDR_START_MAC,
3095 	BPF_HDR_START_NET,
3096 };
3097 
3098 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
3099 enum bpf_lwt_encap_mode {
3100 	BPF_LWT_ENCAP_SEG6,
3101 	BPF_LWT_ENCAP_SEG6_INLINE,
3102 	BPF_LWT_ENCAP_IP,
3103 };
3104 
3105 #define __bpf_md_ptr(type, name)	\
3106 union {					\
3107 	type name;			\
3108 	__u64 :64;			\
3109 } __attribute__((aligned(8)))
3110 
3111 /* user accessible mirror of in-kernel sk_buff.
3112  * new fields can only be added to the end of this structure
3113  */
3114 struct __sk_buff {
3115 	__u32 len;
3116 	__u32 pkt_type;
3117 	__u32 mark;
3118 	__u32 queue_mapping;
3119 	__u32 protocol;
3120 	__u32 vlan_present;
3121 	__u32 vlan_tci;
3122 	__u32 vlan_proto;
3123 	__u32 priority;
3124 	__u32 ingress_ifindex;
3125 	__u32 ifindex;
3126 	__u32 tc_index;
3127 	__u32 cb[5];
3128 	__u32 hash;
3129 	__u32 tc_classid;
3130 	__u32 data;
3131 	__u32 data_end;
3132 	__u32 napi_id;
3133 
3134 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
3135 	__u32 family;
3136 	__u32 remote_ip4;	/* Stored in network byte order */
3137 	__u32 local_ip4;	/* Stored in network byte order */
3138 	__u32 remote_ip6[4];	/* Stored in network byte order */
3139 	__u32 local_ip6[4];	/* Stored in network byte order */
3140 	__u32 remote_port;	/* Stored in network byte order */
3141 	__u32 local_port;	/* stored in host byte order */
3142 	/* ... here. */
3143 
3144 	__u32 data_meta;
3145 	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
3146 	__u64 tstamp;
3147 	__u32 wire_len;
3148 	__u32 gso_segs;
3149 	__bpf_md_ptr(struct bpf_sock *, sk);
3150 };
3151 
3152 struct bpf_tunnel_key {
3153 	__u32 tunnel_id;
3154 	union {
3155 		__u32 remote_ipv4;
3156 		__u32 remote_ipv6[4];
3157 	};
3158 	__u8 tunnel_tos;
3159 	__u8 tunnel_ttl;
3160 	__u16 tunnel_ext;	/* Padding, future use. */
3161 	__u32 tunnel_label;
3162 };
3163 
3164 /* user accessible mirror of in-kernel xfrm_state.
3165  * new fields can only be added to the end of this structure
3166  */
3167 struct bpf_xfrm_state {
3168 	__u32 reqid;
3169 	__u32 spi;	/* Stored in network byte order */
3170 	__u16 family;
3171 	__u16 ext;	/* Padding, future use. */
3172 	union {
3173 		__u32 remote_ipv4;	/* Stored in network byte order */
3174 		__u32 remote_ipv6[4];	/* Stored in network byte order */
3175 	};
3176 };
3177 
3178 /* Generic BPF return codes which all BPF program types may support.
3179  * The values are binary compatible with their TC_ACT_* counter-part to
3180  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
3181  * programs.
3182  *
3183  * XDP is handled seprately, see XDP_*.
3184  */
3185 enum bpf_ret_code {
3186 	BPF_OK = 0,
3187 	/* 1 reserved */
3188 	BPF_DROP = 2,
3189 	/* 3-6 reserved */
3190 	BPF_REDIRECT = 7,
3191 	/* >127 are reserved for prog type specific return codes.
3192 	 *
3193 	 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
3194 	 *    BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
3195 	 *    changed and should be routed based on its new L3 header.
3196 	 *    (This is an L3 redirect, as opposed to L2 redirect
3197 	 *    represented by BPF_REDIRECT above).
3198 	 */
3199 	BPF_LWT_REROUTE = 128,
3200 };
3201 
3202 struct bpf_sock {
3203 	__u32 bound_dev_if;
3204 	__u32 family;
3205 	__u32 type;
3206 	__u32 protocol;
3207 	__u32 mark;
3208 	__u32 priority;
3209 	/* IP address also allows 1 and 2 bytes access */
3210 	__u32 src_ip4;
3211 	__u32 src_ip6[4];
3212 	__u32 src_port;		/* host byte order */
3213 	__u32 dst_port;		/* network byte order */
3214 	__u32 dst_ip4;
3215 	__u32 dst_ip6[4];
3216 	__u32 state;
3217 };
3218 
3219 struct bpf_tcp_sock {
3220 	__u32 snd_cwnd;		/* Sending congestion window		*/
3221 	__u32 srtt_us;		/* smoothed round trip time << 3 in usecs */
3222 	__u32 rtt_min;
3223 	__u32 snd_ssthresh;	/* Slow start size threshold		*/
3224 	__u32 rcv_nxt;		/* What we want to receive next		*/
3225 	__u32 snd_nxt;		/* Next sequence we send		*/
3226 	__u32 snd_una;		/* First byte we want an ack for	*/
3227 	__u32 mss_cache;	/* Cached effective mss, not including SACKS */
3228 	__u32 ecn_flags;	/* ECN status bits.			*/
3229 	__u32 rate_delivered;	/* saved rate sample: packets delivered */
3230 	__u32 rate_interval_us;	/* saved rate sample: time elapsed */
3231 	__u32 packets_out;	/* Packets which are "in flight"	*/
3232 	__u32 retrans_out;	/* Retransmitted packets out		*/
3233 	__u32 total_retrans;	/* Total retransmits for entire connection */
3234 	__u32 segs_in;		/* RFC4898 tcpEStatsPerfSegsIn
3235 				 * total number of segments in.
3236 				 */
3237 	__u32 data_segs_in;	/* RFC4898 tcpEStatsPerfDataSegsIn
3238 				 * total number of data segments in.
3239 				 */
3240 	__u32 segs_out;		/* RFC4898 tcpEStatsPerfSegsOut
3241 				 * The total number of segments sent.
3242 				 */
3243 	__u32 data_segs_out;	/* RFC4898 tcpEStatsPerfDataSegsOut
3244 				 * total number of data segments sent.
3245 				 */
3246 	__u32 lost_out;		/* Lost packets			*/
3247 	__u32 sacked_out;	/* SACK'd packets			*/
3248 	__u64 bytes_received;	/* RFC4898 tcpEStatsAppHCThruOctetsReceived
3249 				 * sum(delta(rcv_nxt)), or how many bytes
3250 				 * were acked.
3251 				 */
3252 	__u64 bytes_acked;	/* RFC4898 tcpEStatsAppHCThruOctetsAcked
3253 				 * sum(delta(snd_una)), or how many bytes
3254 				 * were acked.
3255 				 */
3256 	__u32 dsack_dups;	/* RFC4898 tcpEStatsStackDSACKDups
3257 				 * total number of DSACK blocks received
3258 				 */
3259 	__u32 delivered;	/* Total data packets delivered incl. rexmits */
3260 	__u32 delivered_ce;	/* Like the above but only ECE marked packets */
3261 	__u32 icsk_retransmits;	/* Number of unrecovered [RTO] timeouts */
3262 };
3263 
3264 struct bpf_sock_tuple {
3265 	union {
3266 		struct {
3267 			__be32 saddr;
3268 			__be32 daddr;
3269 			__be16 sport;
3270 			__be16 dport;
3271 		} ipv4;
3272 		struct {
3273 			__be32 saddr[4];
3274 			__be32 daddr[4];
3275 			__be16 sport;
3276 			__be16 dport;
3277 		} ipv6;
3278 	};
3279 };
3280 
3281 struct bpf_xdp_sock {
3282 	__u32 queue_id;
3283 };
3284 
3285 #define XDP_PACKET_HEADROOM 256
3286 
3287 /* User return codes for XDP prog type.
3288  * A valid XDP program must return one of these defined values. All other
3289  * return codes are reserved for future use. Unknown return codes will
3290  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
3291  */
3292 enum xdp_action {
3293 	XDP_ABORTED = 0,
3294 	XDP_DROP,
3295 	XDP_PASS,
3296 	XDP_TX,
3297 	XDP_REDIRECT,
3298 };
3299 
3300 /* user accessible metadata for XDP packet hook
3301  * new fields must be added to the end of this structure
3302  */
3303 struct xdp_md {
3304 	__u32 data;
3305 	__u32 data_end;
3306 	__u32 data_meta;
3307 	/* Below access go through struct xdp_rxq_info */
3308 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
3309 	__u32 rx_queue_index;  /* rxq->queue_index  */
3310 };
3311 
3312 enum sk_action {
3313 	SK_DROP = 0,
3314 	SK_PASS,
3315 };
3316 
3317 /* user accessible metadata for SK_MSG packet hook, new fields must
3318  * be added to the end of this structure
3319  */
3320 struct sk_msg_md {
3321 	__bpf_md_ptr(void *, data);
3322 	__bpf_md_ptr(void *, data_end);
3323 
3324 	__u32 family;
3325 	__u32 remote_ip4;	/* Stored in network byte order */
3326 	__u32 local_ip4;	/* Stored in network byte order */
3327 	__u32 remote_ip6[4];	/* Stored in network byte order */
3328 	__u32 local_ip6[4];	/* Stored in network byte order */
3329 	__u32 remote_port;	/* Stored in network byte order */
3330 	__u32 local_port;	/* stored in host byte order */
3331 	__u32 size;		/* Total size of sk_msg */
3332 };
3333 
3334 struct sk_reuseport_md {
3335 	/*
3336 	 * Start of directly accessible data. It begins from
3337 	 * the tcp/udp header.
3338 	 */
3339 	__bpf_md_ptr(void *, data);
3340 	/* End of directly accessible data */
3341 	__bpf_md_ptr(void *, data_end);
3342 	/*
3343 	 * Total length of packet (starting from the tcp/udp header).
3344 	 * Note that the directly accessible bytes (data_end - data)
3345 	 * could be less than this "len".  Those bytes could be
3346 	 * indirectly read by a helper "bpf_skb_load_bytes()".
3347 	 */
3348 	__u32 len;
3349 	/*
3350 	 * Eth protocol in the mac header (network byte order). e.g.
3351 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
3352 	 */
3353 	__u32 eth_protocol;
3354 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
3355 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
3356 	__u32 hash;		/* A hash of the packet 4 tuples */
3357 };
3358 
3359 #define BPF_TAG_SIZE	8
3360 
3361 struct bpf_prog_info {
3362 	__u32 type;
3363 	__u32 id;
3364 	__u8  tag[BPF_TAG_SIZE];
3365 	__u32 jited_prog_len;
3366 	__u32 xlated_prog_len;
3367 	__aligned_u64 jited_prog_insns;
3368 	__aligned_u64 xlated_prog_insns;
3369 	__u64 load_time;	/* ns since boottime */
3370 	__u32 created_by_uid;
3371 	__u32 nr_map_ids;
3372 	__aligned_u64 map_ids;
3373 	char name[BPF_OBJ_NAME_LEN];
3374 	__u32 ifindex;
3375 	__u32 gpl_compatible:1;
3376 	__u32 :31; /* alignment pad */
3377 	__u64 netns_dev;
3378 	__u64 netns_ino;
3379 	__u32 nr_jited_ksyms;
3380 	__u32 nr_jited_func_lens;
3381 	__aligned_u64 jited_ksyms;
3382 	__aligned_u64 jited_func_lens;
3383 	__u32 btf_id;
3384 	__u32 func_info_rec_size;
3385 	__aligned_u64 func_info;
3386 	__u32 nr_func_info;
3387 	__u32 nr_line_info;
3388 	__aligned_u64 line_info;
3389 	__aligned_u64 jited_line_info;
3390 	__u32 nr_jited_line_info;
3391 	__u32 line_info_rec_size;
3392 	__u32 jited_line_info_rec_size;
3393 	__u32 nr_prog_tags;
3394 	__aligned_u64 prog_tags;
3395 	__u64 run_time_ns;
3396 	__u64 run_cnt;
3397 } __attribute__((aligned(8)));
3398 
3399 struct bpf_map_info {
3400 	__u32 type;
3401 	__u32 id;
3402 	__u32 key_size;
3403 	__u32 value_size;
3404 	__u32 max_entries;
3405 	__u32 map_flags;
3406 	char  name[BPF_OBJ_NAME_LEN];
3407 	__u32 ifindex;
3408 	__u32 btf_vmlinux_value_type_id;
3409 	__u64 netns_dev;
3410 	__u64 netns_ino;
3411 	__u32 btf_id;
3412 	__u32 btf_key_type_id;
3413 	__u32 btf_value_type_id;
3414 } __attribute__((aligned(8)));
3415 
3416 struct bpf_btf_info {
3417 	__aligned_u64 btf;
3418 	__u32 btf_size;
3419 	__u32 id;
3420 } __attribute__((aligned(8)));
3421 
3422 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
3423  * by user and intended to be used by socket (e.g. to bind to, depends on
3424  * attach attach type).
3425  */
3426 struct bpf_sock_addr {
3427 	__u32 user_family;	/* Allows 4-byte read, but no write. */
3428 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
3429 				 * Stored in network byte order.
3430 				 */
3431 	__u32 user_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
3432 				 * Stored in network byte order.
3433 				 */
3434 	__u32 user_port;	/* Allows 4-byte read and write.
3435 				 * Stored in network byte order
3436 				 */
3437 	__u32 family;		/* Allows 4-byte read, but no write */
3438 	__u32 type;		/* Allows 4-byte read, but no write */
3439 	__u32 protocol;		/* Allows 4-byte read, but no write */
3440 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read and 4-byte write.
3441 				 * Stored in network byte order.
3442 				 */
3443 	__u32 msg_src_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
3444 				 * Stored in network byte order.
3445 				 */
3446 	__bpf_md_ptr(struct bpf_sock *, sk);
3447 };
3448 
3449 /* User bpf_sock_ops struct to access socket values and specify request ops
3450  * and their replies.
3451  * Some of this fields are in network (bigendian) byte order and may need
3452  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
3453  * New fields can only be added at the end of this structure
3454  */
3455 struct bpf_sock_ops {
3456 	__u32 op;
3457 	union {
3458 		__u32 args[4];		/* Optionally passed to bpf program */
3459 		__u32 reply;		/* Returned by bpf program	    */
3460 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
3461 	};
3462 	__u32 family;
3463 	__u32 remote_ip4;	/* Stored in network byte order */
3464 	__u32 local_ip4;	/* Stored in network byte order */
3465 	__u32 remote_ip6[4];	/* Stored in network byte order */
3466 	__u32 local_ip6[4];	/* Stored in network byte order */
3467 	__u32 remote_port;	/* Stored in network byte order */
3468 	__u32 local_port;	/* stored in host byte order */
3469 	__u32 is_fullsock;	/* Some TCP fields are only valid if
3470 				 * there is a full socket. If not, the
3471 				 * fields read as zero.
3472 				 */
3473 	__u32 snd_cwnd;
3474 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
3475 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
3476 	__u32 state;
3477 	__u32 rtt_min;
3478 	__u32 snd_ssthresh;
3479 	__u32 rcv_nxt;
3480 	__u32 snd_nxt;
3481 	__u32 snd_una;
3482 	__u32 mss_cache;
3483 	__u32 ecn_flags;
3484 	__u32 rate_delivered;
3485 	__u32 rate_interval_us;
3486 	__u32 packets_out;
3487 	__u32 retrans_out;
3488 	__u32 total_retrans;
3489 	__u32 segs_in;
3490 	__u32 data_segs_in;
3491 	__u32 segs_out;
3492 	__u32 data_segs_out;
3493 	__u32 lost_out;
3494 	__u32 sacked_out;
3495 	__u32 sk_txhash;
3496 	__u64 bytes_received;
3497 	__u64 bytes_acked;
3498 	__bpf_md_ptr(struct bpf_sock *, sk);
3499 };
3500 
3501 /* Definitions for bpf_sock_ops_cb_flags */
3502 #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
3503 #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
3504 #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
3505 #define BPF_SOCK_OPS_RTT_CB_FLAG	(1<<3)
3506 #define BPF_SOCK_OPS_ALL_CB_FLAGS       0xF		/* Mask of all currently
3507 							 * supported cb flags
3508 							 */
3509 
3510 /* List of known BPF sock_ops operators.
3511  * New entries can only be added at the end
3512  */
3513 enum {
3514 	BPF_SOCK_OPS_VOID,
3515 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
3516 					 * -1 if default value should be used
3517 					 */
3518 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
3519 					 * window (in packets) or -1 if default
3520 					 * value should be used
3521 					 */
3522 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
3523 					 * active connection is initialized
3524 					 */
3525 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
3526 						 * active connection is
3527 						 * established
3528 						 */
3529 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
3530 						 * passive connection is
3531 						 * established
3532 						 */
3533 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
3534 					 * needs ECN
3535 					 */
3536 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
3537 					 * based on the path and may be
3538 					 * dependent on the congestion control
3539 					 * algorithm. In general it indicates
3540 					 * a congestion threshold. RTTs above
3541 					 * this indicate congestion
3542 					 */
3543 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
3544 					 * Arg1: value of icsk_retransmits
3545 					 * Arg2: value of icsk_rto
3546 					 * Arg3: whether RTO has expired
3547 					 */
3548 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
3549 					 * Arg1: sequence number of 1st byte
3550 					 * Arg2: # segments
3551 					 * Arg3: return value of
3552 					 *       tcp_transmit_skb (0 => success)
3553 					 */
3554 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
3555 					 * Arg1: old_state
3556 					 * Arg2: new_state
3557 					 */
3558 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
3559 					 * socket transition to LISTEN state.
3560 					 */
3561 	BPF_SOCK_OPS_RTT_CB,		/* Called on every RTT.
3562 					 */
3563 };
3564 
3565 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
3566  * changes between the TCP and BPF versions. Ideally this should never happen.
3567  * If it does, we need to add code to convert them before calling
3568  * the BPF sock_ops function.
3569  */
3570 enum {
3571 	BPF_TCP_ESTABLISHED = 1,
3572 	BPF_TCP_SYN_SENT,
3573 	BPF_TCP_SYN_RECV,
3574 	BPF_TCP_FIN_WAIT1,
3575 	BPF_TCP_FIN_WAIT2,
3576 	BPF_TCP_TIME_WAIT,
3577 	BPF_TCP_CLOSE,
3578 	BPF_TCP_CLOSE_WAIT,
3579 	BPF_TCP_LAST_ACK,
3580 	BPF_TCP_LISTEN,
3581 	BPF_TCP_CLOSING,	/* Now a valid state */
3582 	BPF_TCP_NEW_SYN_RECV,
3583 
3584 	BPF_TCP_MAX_STATES	/* Leave at the end! */
3585 };
3586 
3587 #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
3588 #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
3589 
3590 struct bpf_perf_event_value {
3591 	__u64 counter;
3592 	__u64 enabled;
3593 	__u64 running;
3594 };
3595 
3596 #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
3597 #define BPF_DEVCG_ACC_READ	(1ULL << 1)
3598 #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
3599 
3600 #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
3601 #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
3602 
3603 struct bpf_cgroup_dev_ctx {
3604 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
3605 	__u32 access_type;
3606 	__u32 major;
3607 	__u32 minor;
3608 };
3609 
3610 struct bpf_raw_tracepoint_args {
3611 	__u64 args[0];
3612 };
3613 
3614 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
3615  * OUTPUT:  Do lookup from egress perspective; default is ingress
3616  */
3617 #define BPF_FIB_LOOKUP_DIRECT  (1U << 0)
3618 #define BPF_FIB_LOOKUP_OUTPUT  (1U << 1)
3619 
3620 enum {
3621 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
3622 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
3623 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
3624 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
3625 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
3626 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
3627 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
3628 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
3629 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
3630 };
3631 
3632 struct bpf_fib_lookup {
3633 	/* input:  network family for lookup (AF_INET, AF_INET6)
3634 	 * output: network family of egress nexthop
3635 	 */
3636 	__u8	family;
3637 
3638 	/* set if lookup is to consider L4 data - e.g., FIB rules */
3639 	__u8	l4_protocol;
3640 	__be16	sport;
3641 	__be16	dport;
3642 
3643 	/* total length of packet from network header - used for MTU check */
3644 	__u16	tot_len;
3645 
3646 	/* input: L3 device index for lookup
3647 	 * output: device index from FIB lookup
3648 	 */
3649 	__u32	ifindex;
3650 
3651 	union {
3652 		/* inputs to lookup */
3653 		__u8	tos;		/* AF_INET  */
3654 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
3655 
3656 		/* output: metric of fib result (IPv4/IPv6 only) */
3657 		__u32	rt_metric;
3658 	};
3659 
3660 	union {
3661 		__be32		ipv4_src;
3662 		__u32		ipv6_src[4];  /* in6_addr; network order */
3663 	};
3664 
3665 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
3666 	 * network header. output: bpf_fib_lookup sets to gateway address
3667 	 * if FIB lookup returns gateway route
3668 	 */
3669 	union {
3670 		__be32		ipv4_dst;
3671 		__u32		ipv6_dst[4];  /* in6_addr; network order */
3672 	};
3673 
3674 	/* output */
3675 	__be16	h_vlan_proto;
3676 	__be16	h_vlan_TCI;
3677 	__u8	smac[6];     /* ETH_ALEN */
3678 	__u8	dmac[6];     /* ETH_ALEN */
3679 };
3680 
3681 enum bpf_task_fd_type {
3682 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
3683 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
3684 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
3685 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
3686 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
3687 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
3688 };
3689 
3690 #define BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG		(1U << 0)
3691 #define BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL		(1U << 1)
3692 #define BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP		(1U << 2)
3693 
3694 struct bpf_flow_keys {
3695 	__u16	nhoff;
3696 	__u16	thoff;
3697 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
3698 	__u8	is_frag;
3699 	__u8	is_first_frag;
3700 	__u8	is_encap;
3701 	__u8	ip_proto;
3702 	__be16	n_proto;
3703 	__be16	sport;
3704 	__be16	dport;
3705 	union {
3706 		struct {
3707 			__be32	ipv4_src;
3708 			__be32	ipv4_dst;
3709 		};
3710 		struct {
3711 			__u32	ipv6_src[4];	/* in6_addr; network order */
3712 			__u32	ipv6_dst[4];	/* in6_addr; network order */
3713 		};
3714 	};
3715 	__u32	flags;
3716 	__be32	flow_label;
3717 };
3718 
3719 struct bpf_func_info {
3720 	__u32	insn_off;
3721 	__u32	type_id;
3722 };
3723 
3724 #define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
3725 #define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
3726 
3727 struct bpf_line_info {
3728 	__u32	insn_off;
3729 	__u32	file_name_off;
3730 	__u32	line_off;
3731 	__u32	line_col;
3732 };
3733 
3734 struct bpf_spin_lock {
3735 	__u32	val;
3736 };
3737 
3738 struct bpf_sysctl {
3739 	__u32	write;		/* Sysctl is being read (= 0) or written (= 1).
3740 				 * Allows 1,2,4-byte read, but no write.
3741 				 */
3742 	__u32	file_pos;	/* Sysctl file position to read from, write to.
3743 				 * Allows 1,2,4-byte read an 4-byte write.
3744 				 */
3745 };
3746 
3747 struct bpf_sockopt {
3748 	__bpf_md_ptr(struct bpf_sock *, sk);
3749 	__bpf_md_ptr(void *, optval);
3750 	__bpf_md_ptr(void *, optval_end);
3751 
3752 	__s32	level;
3753 	__s32	optname;
3754 	__s32	optlen;
3755 	__s32	retval;
3756 };
3757 
3758 #endif /* _UAPI__LINUX_BPF_H__ */
3759