1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef _UAPI__LINUX_BPF_H__ 9 #define _UAPI__LINUX_BPF_H__ 10 11 #include <linux/types.h> 12 #include <linux/bpf_common.h> 13 14 /* Extended instruction set based on top of classic BPF */ 15 16 /* instruction classes */ 17 #define BPF_JMP32 0x06 /* jmp mode in word width */ 18 #define BPF_ALU64 0x07 /* alu mode in double word width */ 19 20 /* ld/ldx fields */ 21 #define BPF_DW 0x18 /* double word (64-bit) */ 22 #define BPF_XADD 0xc0 /* exclusive add */ 23 24 /* alu/jmp fields */ 25 #define BPF_MOV 0xb0 /* mov reg to reg */ 26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 27 28 /* change endianness of a register */ 29 #define BPF_END 0xd0 /* flags for endianness conversion: */ 30 #define BPF_TO_LE 0x00 /* convert to little-endian */ 31 #define BPF_TO_BE 0x08 /* convert to big-endian */ 32 #define BPF_FROM_LE BPF_TO_LE 33 #define BPF_FROM_BE BPF_TO_BE 34 35 /* jmp encodings */ 36 #define BPF_JNE 0x50 /* jump != */ 37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 43 #define BPF_CALL 0x80 /* function call */ 44 #define BPF_EXIT 0x90 /* function return */ 45 46 /* Register numbers */ 47 enum { 48 BPF_REG_0 = 0, 49 BPF_REG_1, 50 BPF_REG_2, 51 BPF_REG_3, 52 BPF_REG_4, 53 BPF_REG_5, 54 BPF_REG_6, 55 BPF_REG_7, 56 BPF_REG_8, 57 BPF_REG_9, 58 BPF_REG_10, 59 __MAX_BPF_REG, 60 }; 61 62 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 63 #define MAX_BPF_REG __MAX_BPF_REG 64 65 struct bpf_insn { 66 __u8 code; /* opcode */ 67 __u8 dst_reg:4; /* dest register */ 68 __u8 src_reg:4; /* source register */ 69 __s16 off; /* signed offset */ 70 __s32 imm; /* signed immediate constant */ 71 }; 72 73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 74 struct bpf_lpm_trie_key { 75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 76 __u8 data[]; /* Arbitrary size */ 77 }; 78 79 struct bpf_cgroup_storage_key { 80 __u64 cgroup_inode_id; /* cgroup inode id */ 81 __u32 attach_type; /* program attach type */ 82 }; 83 84 /* BPF syscall commands, see bpf(2) man-page for details. */ 85 enum bpf_cmd { 86 BPF_MAP_CREATE, 87 BPF_MAP_LOOKUP_ELEM, 88 BPF_MAP_UPDATE_ELEM, 89 BPF_MAP_DELETE_ELEM, 90 BPF_MAP_GET_NEXT_KEY, 91 BPF_PROG_LOAD, 92 BPF_OBJ_PIN, 93 BPF_OBJ_GET, 94 BPF_PROG_ATTACH, 95 BPF_PROG_DETACH, 96 BPF_PROG_TEST_RUN, 97 BPF_PROG_GET_NEXT_ID, 98 BPF_MAP_GET_NEXT_ID, 99 BPF_PROG_GET_FD_BY_ID, 100 BPF_MAP_GET_FD_BY_ID, 101 BPF_OBJ_GET_INFO_BY_FD, 102 BPF_PROG_QUERY, 103 BPF_RAW_TRACEPOINT_OPEN, 104 BPF_BTF_LOAD, 105 BPF_BTF_GET_FD_BY_ID, 106 BPF_TASK_FD_QUERY, 107 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 108 BPF_MAP_FREEZE, 109 BPF_BTF_GET_NEXT_ID, 110 BPF_MAP_LOOKUP_BATCH, 111 BPF_MAP_LOOKUP_AND_DELETE_BATCH, 112 BPF_MAP_UPDATE_BATCH, 113 BPF_MAP_DELETE_BATCH, 114 }; 115 116 enum bpf_map_type { 117 BPF_MAP_TYPE_UNSPEC, 118 BPF_MAP_TYPE_HASH, 119 BPF_MAP_TYPE_ARRAY, 120 BPF_MAP_TYPE_PROG_ARRAY, 121 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 122 BPF_MAP_TYPE_PERCPU_HASH, 123 BPF_MAP_TYPE_PERCPU_ARRAY, 124 BPF_MAP_TYPE_STACK_TRACE, 125 BPF_MAP_TYPE_CGROUP_ARRAY, 126 BPF_MAP_TYPE_LRU_HASH, 127 BPF_MAP_TYPE_LRU_PERCPU_HASH, 128 BPF_MAP_TYPE_LPM_TRIE, 129 BPF_MAP_TYPE_ARRAY_OF_MAPS, 130 BPF_MAP_TYPE_HASH_OF_MAPS, 131 BPF_MAP_TYPE_DEVMAP, 132 BPF_MAP_TYPE_SOCKMAP, 133 BPF_MAP_TYPE_CPUMAP, 134 BPF_MAP_TYPE_XSKMAP, 135 BPF_MAP_TYPE_SOCKHASH, 136 BPF_MAP_TYPE_CGROUP_STORAGE, 137 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 138 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 139 BPF_MAP_TYPE_QUEUE, 140 BPF_MAP_TYPE_STACK, 141 BPF_MAP_TYPE_SK_STORAGE, 142 BPF_MAP_TYPE_DEVMAP_HASH, 143 BPF_MAP_TYPE_STRUCT_OPS, 144 }; 145 146 /* Note that tracing related programs such as 147 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 148 * are not subject to a stable API since kernel internal data 149 * structures can change from release to release and may 150 * therefore break existing tracing BPF programs. Tracing BPF 151 * programs correspond to /a/ specific kernel which is to be 152 * analyzed, and not /a/ specific kernel /and/ all future ones. 153 */ 154 enum bpf_prog_type { 155 BPF_PROG_TYPE_UNSPEC, 156 BPF_PROG_TYPE_SOCKET_FILTER, 157 BPF_PROG_TYPE_KPROBE, 158 BPF_PROG_TYPE_SCHED_CLS, 159 BPF_PROG_TYPE_SCHED_ACT, 160 BPF_PROG_TYPE_TRACEPOINT, 161 BPF_PROG_TYPE_XDP, 162 BPF_PROG_TYPE_PERF_EVENT, 163 BPF_PROG_TYPE_CGROUP_SKB, 164 BPF_PROG_TYPE_CGROUP_SOCK, 165 BPF_PROG_TYPE_LWT_IN, 166 BPF_PROG_TYPE_LWT_OUT, 167 BPF_PROG_TYPE_LWT_XMIT, 168 BPF_PROG_TYPE_SOCK_OPS, 169 BPF_PROG_TYPE_SK_SKB, 170 BPF_PROG_TYPE_CGROUP_DEVICE, 171 BPF_PROG_TYPE_SK_MSG, 172 BPF_PROG_TYPE_RAW_TRACEPOINT, 173 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 174 BPF_PROG_TYPE_LWT_SEG6LOCAL, 175 BPF_PROG_TYPE_LIRC_MODE2, 176 BPF_PROG_TYPE_SK_REUSEPORT, 177 BPF_PROG_TYPE_FLOW_DISSECTOR, 178 BPF_PROG_TYPE_CGROUP_SYSCTL, 179 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, 180 BPF_PROG_TYPE_CGROUP_SOCKOPT, 181 BPF_PROG_TYPE_TRACING, 182 BPF_PROG_TYPE_STRUCT_OPS, 183 BPF_PROG_TYPE_EXT, 184 BPF_PROG_TYPE_LSM, 185 }; 186 187 enum bpf_attach_type { 188 BPF_CGROUP_INET_INGRESS, 189 BPF_CGROUP_INET_EGRESS, 190 BPF_CGROUP_INET_SOCK_CREATE, 191 BPF_CGROUP_SOCK_OPS, 192 BPF_SK_SKB_STREAM_PARSER, 193 BPF_SK_SKB_STREAM_VERDICT, 194 BPF_CGROUP_DEVICE, 195 BPF_SK_MSG_VERDICT, 196 BPF_CGROUP_INET4_BIND, 197 BPF_CGROUP_INET6_BIND, 198 BPF_CGROUP_INET4_CONNECT, 199 BPF_CGROUP_INET6_CONNECT, 200 BPF_CGROUP_INET4_POST_BIND, 201 BPF_CGROUP_INET6_POST_BIND, 202 BPF_CGROUP_UDP4_SENDMSG, 203 BPF_CGROUP_UDP6_SENDMSG, 204 BPF_LIRC_MODE2, 205 BPF_FLOW_DISSECTOR, 206 BPF_CGROUP_SYSCTL, 207 BPF_CGROUP_UDP4_RECVMSG, 208 BPF_CGROUP_UDP6_RECVMSG, 209 BPF_CGROUP_GETSOCKOPT, 210 BPF_CGROUP_SETSOCKOPT, 211 BPF_TRACE_RAW_TP, 212 BPF_TRACE_FENTRY, 213 BPF_TRACE_FEXIT, 214 BPF_MODIFY_RETURN, 215 BPF_LSM_MAC, 216 __MAX_BPF_ATTACH_TYPE 217 }; 218 219 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 220 221 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 222 * 223 * NONE(default): No further bpf programs allowed in the subtree. 224 * 225 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 226 * the program in this cgroup yields to sub-cgroup program. 227 * 228 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 229 * that cgroup program gets run in addition to the program in this cgroup. 230 * 231 * Only one program is allowed to be attached to a cgroup with 232 * NONE or BPF_F_ALLOW_OVERRIDE flag. 233 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 234 * release old program and attach the new one. Attach flags has to match. 235 * 236 * Multiple programs are allowed to be attached to a cgroup with 237 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 238 * (those that were attached first, run first) 239 * The programs of sub-cgroup are executed first, then programs of 240 * this cgroup and then programs of parent cgroup. 241 * When children program makes decision (like picking TCP CA or sock bind) 242 * parent program has a chance to override it. 243 * 244 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of 245 * programs for a cgroup. Though it's possible to replace an old program at 246 * any position by also specifying BPF_F_REPLACE flag and position itself in 247 * replace_bpf_fd attribute. Old program at this position will be released. 248 * 249 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 250 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 251 * Ex1: 252 * cgrp1 (MULTI progs A, B) -> 253 * cgrp2 (OVERRIDE prog C) -> 254 * cgrp3 (MULTI prog D) -> 255 * cgrp4 (OVERRIDE prog E) -> 256 * cgrp5 (NONE prog F) 257 * the event in cgrp5 triggers execution of F,D,A,B in that order. 258 * if prog F is detached, the execution is E,D,A,B 259 * if prog F and D are detached, the execution is E,A,B 260 * if prog F, E and D are detached, the execution is C,A,B 261 * 262 * All eligible programs are executed regardless of return code from 263 * earlier programs. 264 */ 265 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 266 #define BPF_F_ALLOW_MULTI (1U << 1) 267 #define BPF_F_REPLACE (1U << 2) 268 269 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 270 * verifier will perform strict alignment checking as if the kernel 271 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 272 * and NET_IP_ALIGN defined to 2. 273 */ 274 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 275 276 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 277 * verifier will allow any alignment whatsoever. On platforms 278 * with strict alignment requirements for loads ands stores (such 279 * as sparc and mips) the verifier validates that all loads and 280 * stores provably follow this requirement. This flag turns that 281 * checking and enforcement off. 282 * 283 * It is mostly used for testing when we want to validate the 284 * context and memory access aspects of the verifier, but because 285 * of an unaligned access the alignment check would trigger before 286 * the one we are interested in. 287 */ 288 #define BPF_F_ANY_ALIGNMENT (1U << 1) 289 290 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose. 291 * Verifier does sub-register def/use analysis and identifies instructions whose 292 * def only matters for low 32-bit, high 32-bit is never referenced later 293 * through implicit zero extension. Therefore verifier notifies JIT back-ends 294 * that it is safe to ignore clearing high 32-bit for these instructions. This 295 * saves some back-ends a lot of code-gen. However such optimization is not 296 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends 297 * hence hasn't used verifier's analysis result. But, we really want to have a 298 * way to be able to verify the correctness of the described optimization on 299 * x86_64 on which testsuites are frequently exercised. 300 * 301 * So, this flag is introduced. Once it is set, verifier will randomize high 302 * 32-bit for those instructions who has been identified as safe to ignore them. 303 * Then, if verifier is not doing correct analysis, such randomization will 304 * regress tests to expose bugs. 305 */ 306 #define BPF_F_TEST_RND_HI32 (1U << 2) 307 308 /* The verifier internal test flag. Behavior is undefined */ 309 #define BPF_F_TEST_STATE_FREQ (1U << 3) 310 311 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have 312 * two extensions: 313 * 314 * insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE 315 * insn[0].imm: map fd map fd 316 * insn[1].imm: 0 offset into value 317 * insn[0].off: 0 0 318 * insn[1].off: 0 0 319 * ldimm64 rewrite: address of map address of map[0]+offset 320 * verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE 321 */ 322 #define BPF_PSEUDO_MAP_FD 1 323 #define BPF_PSEUDO_MAP_VALUE 2 324 325 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 326 * offset to another bpf function 327 */ 328 #define BPF_PSEUDO_CALL 1 329 330 /* flags for BPF_MAP_UPDATE_ELEM command */ 331 enum { 332 BPF_ANY = 0, /* create new element or update existing */ 333 BPF_NOEXIST = 1, /* create new element if it didn't exist */ 334 BPF_EXIST = 2, /* update existing element */ 335 BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */ 336 }; 337 338 /* flags for BPF_MAP_CREATE command */ 339 enum { 340 BPF_F_NO_PREALLOC = (1U << 0), 341 /* Instead of having one common LRU list in the 342 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 343 * which can scale and perform better. 344 * Note, the LRU nodes (including free nodes) cannot be moved 345 * across different LRU lists. 346 */ 347 BPF_F_NO_COMMON_LRU = (1U << 1), 348 /* Specify numa node during map creation */ 349 BPF_F_NUMA_NODE = (1U << 2), 350 351 /* Flags for accessing BPF object from syscall side. */ 352 BPF_F_RDONLY = (1U << 3), 353 BPF_F_WRONLY = (1U << 4), 354 355 /* Flag for stack_map, store build_id+offset instead of pointer */ 356 BPF_F_STACK_BUILD_ID = (1U << 5), 357 358 /* Zero-initialize hash function seed. This should only be used for testing. */ 359 BPF_F_ZERO_SEED = (1U << 6), 360 361 /* Flags for accessing BPF object from program side. */ 362 BPF_F_RDONLY_PROG = (1U << 7), 363 BPF_F_WRONLY_PROG = (1U << 8), 364 365 /* Clone map from listener for newly accepted socket */ 366 BPF_F_CLONE = (1U << 9), 367 368 /* Enable memory-mapping BPF map */ 369 BPF_F_MMAPABLE = (1U << 10), 370 }; 371 372 /* Flags for BPF_PROG_QUERY. */ 373 374 /* Query effective (directly attached + inherited from ancestor cgroups) 375 * programs that will be executed for events within a cgroup. 376 * attach_flags with this flag are returned only for directly attached programs. 377 */ 378 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 379 380 enum bpf_stack_build_id_status { 381 /* user space need an empty entry to identify end of a trace */ 382 BPF_STACK_BUILD_ID_EMPTY = 0, 383 /* with valid build_id and offset */ 384 BPF_STACK_BUILD_ID_VALID = 1, 385 /* couldn't get build_id, fallback to ip */ 386 BPF_STACK_BUILD_ID_IP = 2, 387 }; 388 389 #define BPF_BUILD_ID_SIZE 20 390 struct bpf_stack_build_id { 391 __s32 status; 392 unsigned char build_id[BPF_BUILD_ID_SIZE]; 393 union { 394 __u64 offset; 395 __u64 ip; 396 }; 397 }; 398 399 #define BPF_OBJ_NAME_LEN 16U 400 401 union bpf_attr { 402 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 403 __u32 map_type; /* one of enum bpf_map_type */ 404 __u32 key_size; /* size of key in bytes */ 405 __u32 value_size; /* size of value in bytes */ 406 __u32 max_entries; /* max number of entries in a map */ 407 __u32 map_flags; /* BPF_MAP_CREATE related 408 * flags defined above. 409 */ 410 __u32 inner_map_fd; /* fd pointing to the inner map */ 411 __u32 numa_node; /* numa node (effective only if 412 * BPF_F_NUMA_NODE is set). 413 */ 414 char map_name[BPF_OBJ_NAME_LEN]; 415 __u32 map_ifindex; /* ifindex of netdev to create on */ 416 __u32 btf_fd; /* fd pointing to a BTF type data */ 417 __u32 btf_key_type_id; /* BTF type_id of the key */ 418 __u32 btf_value_type_id; /* BTF type_id of the value */ 419 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel- 420 * struct stored as the 421 * map value 422 */ 423 }; 424 425 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 426 __u32 map_fd; 427 __aligned_u64 key; 428 union { 429 __aligned_u64 value; 430 __aligned_u64 next_key; 431 }; 432 __u64 flags; 433 }; 434 435 struct { /* struct used by BPF_MAP_*_BATCH commands */ 436 __aligned_u64 in_batch; /* start batch, 437 * NULL to start from beginning 438 */ 439 __aligned_u64 out_batch; /* output: next start batch */ 440 __aligned_u64 keys; 441 __aligned_u64 values; 442 __u32 count; /* input/output: 443 * input: # of key/value 444 * elements 445 * output: # of filled elements 446 */ 447 __u32 map_fd; 448 __u64 elem_flags; 449 __u64 flags; 450 } batch; 451 452 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 453 __u32 prog_type; /* one of enum bpf_prog_type */ 454 __u32 insn_cnt; 455 __aligned_u64 insns; 456 __aligned_u64 license; 457 __u32 log_level; /* verbosity level of verifier */ 458 __u32 log_size; /* size of user buffer */ 459 __aligned_u64 log_buf; /* user supplied buffer */ 460 __u32 kern_version; /* not used */ 461 __u32 prog_flags; 462 char prog_name[BPF_OBJ_NAME_LEN]; 463 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 464 /* For some prog types expected attach type must be known at 465 * load time to verify attach type specific parts of prog 466 * (context accesses, allowed helpers, etc). 467 */ 468 __u32 expected_attach_type; 469 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 470 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 471 __aligned_u64 func_info; /* func info */ 472 __u32 func_info_cnt; /* number of bpf_func_info records */ 473 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 474 __aligned_u64 line_info; /* line info */ 475 __u32 line_info_cnt; /* number of bpf_line_info records */ 476 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 477 __u32 attach_prog_fd; /* 0 to attach to vmlinux */ 478 }; 479 480 struct { /* anonymous struct used by BPF_OBJ_* commands */ 481 __aligned_u64 pathname; 482 __u32 bpf_fd; 483 __u32 file_flags; 484 }; 485 486 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 487 __u32 target_fd; /* container object to attach to */ 488 __u32 attach_bpf_fd; /* eBPF program to attach */ 489 __u32 attach_type; 490 __u32 attach_flags; 491 __u32 replace_bpf_fd; /* previously attached eBPF 492 * program to replace if 493 * BPF_F_REPLACE is used 494 */ 495 }; 496 497 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 498 __u32 prog_fd; 499 __u32 retval; 500 __u32 data_size_in; /* input: len of data_in */ 501 __u32 data_size_out; /* input/output: len of data_out 502 * returns ENOSPC if data_out 503 * is too small. 504 */ 505 __aligned_u64 data_in; 506 __aligned_u64 data_out; 507 __u32 repeat; 508 __u32 duration; 509 __u32 ctx_size_in; /* input: len of ctx_in */ 510 __u32 ctx_size_out; /* input/output: len of ctx_out 511 * returns ENOSPC if ctx_out 512 * is too small. 513 */ 514 __aligned_u64 ctx_in; 515 __aligned_u64 ctx_out; 516 } test; 517 518 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 519 union { 520 __u32 start_id; 521 __u32 prog_id; 522 __u32 map_id; 523 __u32 btf_id; 524 }; 525 __u32 next_id; 526 __u32 open_flags; 527 }; 528 529 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 530 __u32 bpf_fd; 531 __u32 info_len; 532 __aligned_u64 info; 533 } info; 534 535 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 536 __u32 target_fd; /* container object to query */ 537 __u32 attach_type; 538 __u32 query_flags; 539 __u32 attach_flags; 540 __aligned_u64 prog_ids; 541 __u32 prog_cnt; 542 } query; 543 544 struct { 545 __u64 name; 546 __u32 prog_fd; 547 } raw_tracepoint; 548 549 struct { /* anonymous struct for BPF_BTF_LOAD */ 550 __aligned_u64 btf; 551 __aligned_u64 btf_log_buf; 552 __u32 btf_size; 553 __u32 btf_log_size; 554 __u32 btf_log_level; 555 }; 556 557 struct { 558 __u32 pid; /* input: pid */ 559 __u32 fd; /* input: fd */ 560 __u32 flags; /* input: flags */ 561 __u32 buf_len; /* input/output: buf len */ 562 __aligned_u64 buf; /* input/output: 563 * tp_name for tracepoint 564 * symbol for kprobe 565 * filename for uprobe 566 */ 567 __u32 prog_id; /* output: prod_id */ 568 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 569 __u64 probe_offset; /* output: probe_offset */ 570 __u64 probe_addr; /* output: probe_addr */ 571 } task_fd_query; 572 } __attribute__((aligned(8))); 573 574 /* The description below is an attempt at providing documentation to eBPF 575 * developers about the multiple available eBPF helper functions. It can be 576 * parsed and used to produce a manual page. The workflow is the following, 577 * and requires the rst2man utility: 578 * 579 * $ ./scripts/bpf_helpers_doc.py \ 580 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 581 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 582 * $ man /tmp/bpf-helpers.7 583 * 584 * Note that in order to produce this external documentation, some RST 585 * formatting is used in the descriptions to get "bold" and "italics" in 586 * manual pages. Also note that the few trailing white spaces are 587 * intentional, removing them would break paragraphs for rst2man. 588 * 589 * Start of BPF helper function descriptions: 590 * 591 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 592 * Description 593 * Perform a lookup in *map* for an entry associated to *key*. 594 * Return 595 * Map value associated to *key*, or **NULL** if no entry was 596 * found. 597 * 598 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 599 * Description 600 * Add or update the value of the entry associated to *key* in 601 * *map* with *value*. *flags* is one of: 602 * 603 * **BPF_NOEXIST** 604 * The entry for *key* must not exist in the map. 605 * **BPF_EXIST** 606 * The entry for *key* must already exist in the map. 607 * **BPF_ANY** 608 * No condition on the existence of the entry for *key*. 609 * 610 * Flag value **BPF_NOEXIST** cannot be used for maps of types 611 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 612 * elements always exist), the helper would return an error. 613 * Return 614 * 0 on success, or a negative error in case of failure. 615 * 616 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 617 * Description 618 * Delete entry with *key* from *map*. 619 * Return 620 * 0 on success, or a negative error in case of failure. 621 * 622 * int bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr) 623 * Description 624 * For tracing programs, safely attempt to read *size* bytes from 625 * kernel space address *unsafe_ptr* and store the data in *dst*. 626 * 627 * Generally, use bpf_probe_read_user() or bpf_probe_read_kernel() 628 * instead. 629 * Return 630 * 0 on success, or a negative error in case of failure. 631 * 632 * u64 bpf_ktime_get_ns(void) 633 * Description 634 * Return the time elapsed since system boot, in nanoseconds. 635 * Return 636 * Current *ktime*. 637 * 638 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 639 * Description 640 * This helper is a "printk()-like" facility for debugging. It 641 * prints a message defined by format *fmt* (of size *fmt_size*) 642 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 643 * available. It can take up to three additional **u64** 644 * arguments (as an eBPF helpers, the total number of arguments is 645 * limited to five). 646 * 647 * Each time the helper is called, it appends a line to the trace. 648 * Lines are discarded while *\/sys/kernel/debug/tracing/trace* is 649 * open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this. 650 * The format of the trace is customizable, and the exact output 651 * one will get depends on the options set in 652 * *\/sys/kernel/debug/tracing/trace_options* (see also the 653 * *README* file under the same directory). However, it usually 654 * defaults to something like: 655 * 656 * :: 657 * 658 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 659 * 660 * In the above: 661 * 662 * * ``telnet`` is the name of the current task. 663 * * ``470`` is the PID of the current task. 664 * * ``001`` is the CPU number on which the task is 665 * running. 666 * * In ``.N..``, each character refers to a set of 667 * options (whether irqs are enabled, scheduling 668 * options, whether hard/softirqs are running, level of 669 * preempt_disabled respectively). **N** means that 670 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 671 * are set. 672 * * ``419421.045894`` is a timestamp. 673 * * ``0x00000001`` is a fake value used by BPF for the 674 * instruction pointer register. 675 * * ``<formatted msg>`` is the message formatted with 676 * *fmt*. 677 * 678 * The conversion specifiers supported by *fmt* are similar, but 679 * more limited than for printk(). They are **%d**, **%i**, 680 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 681 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 682 * of field, padding with zeroes, etc.) is available, and the 683 * helper will return **-EINVAL** (but print nothing) if it 684 * encounters an unknown specifier. 685 * 686 * Also, note that **bpf_trace_printk**\ () is slow, and should 687 * only be used for debugging purposes. For this reason, a notice 688 * bloc (spanning several lines) is printed to kernel logs and 689 * states that the helper should not be used "for production use" 690 * the first time this helper is used (or more precisely, when 691 * **trace_printk**\ () buffers are allocated). For passing values 692 * to user space, perf events should be preferred. 693 * Return 694 * The number of bytes written to the buffer, or a negative error 695 * in case of failure. 696 * 697 * u32 bpf_get_prandom_u32(void) 698 * Description 699 * Get a pseudo-random number. 700 * 701 * From a security point of view, this helper uses its own 702 * pseudo-random internal state, and cannot be used to infer the 703 * seed of other random functions in the kernel. However, it is 704 * essential to note that the generator used by the helper is not 705 * cryptographically secure. 706 * Return 707 * A random 32-bit unsigned value. 708 * 709 * u32 bpf_get_smp_processor_id(void) 710 * Description 711 * Get the SMP (symmetric multiprocessing) processor id. Note that 712 * all programs run with preemption disabled, which means that the 713 * SMP processor id is stable during all the execution of the 714 * program. 715 * Return 716 * The SMP id of the processor running the program. 717 * 718 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 719 * Description 720 * Store *len* bytes from address *from* into the packet 721 * associated to *skb*, at *offset*. *flags* are a combination of 722 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 723 * checksum for the packet after storing the bytes) and 724 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 725 * **->swhash** and *skb*\ **->l4hash** to 0). 726 * 727 * A call to this helper is susceptible to change the underlying 728 * packet buffer. Therefore, at load time, all checks on pointers 729 * previously done by the verifier are invalidated and must be 730 * performed again, if the helper is used in combination with 731 * direct packet access. 732 * Return 733 * 0 on success, or a negative error in case of failure. 734 * 735 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 736 * Description 737 * Recompute the layer 3 (e.g. IP) checksum for the packet 738 * associated to *skb*. Computation is incremental, so the helper 739 * must know the former value of the header field that was 740 * modified (*from*), the new value of this field (*to*), and the 741 * number of bytes (2 or 4) for this field, stored in *size*. 742 * Alternatively, it is possible to store the difference between 743 * the previous and the new values of the header field in *to*, by 744 * setting *from* and *size* to 0. For both methods, *offset* 745 * indicates the location of the IP checksum within the packet. 746 * 747 * This helper works in combination with **bpf_csum_diff**\ (), 748 * which does not update the checksum in-place, but offers more 749 * flexibility and can handle sizes larger than 2 or 4 for the 750 * checksum to update. 751 * 752 * A call to this helper is susceptible to change the underlying 753 * packet buffer. Therefore, at load time, all checks on pointers 754 * previously done by the verifier are invalidated and must be 755 * performed again, if the helper is used in combination with 756 * direct packet access. 757 * Return 758 * 0 on success, or a negative error in case of failure. 759 * 760 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 761 * Description 762 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 763 * packet associated to *skb*. Computation is incremental, so the 764 * helper must know the former value of the header field that was 765 * modified (*from*), the new value of this field (*to*), and the 766 * number of bytes (2 or 4) for this field, stored on the lowest 767 * four bits of *flags*. Alternatively, it is possible to store 768 * the difference between the previous and the new values of the 769 * header field in *to*, by setting *from* and the four lowest 770 * bits of *flags* to 0. For both methods, *offset* indicates the 771 * location of the IP checksum within the packet. In addition to 772 * the size of the field, *flags* can be added (bitwise OR) actual 773 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 774 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 775 * for updates resulting in a null checksum the value is set to 776 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 777 * the checksum is to be computed against a pseudo-header. 778 * 779 * This helper works in combination with **bpf_csum_diff**\ (), 780 * which does not update the checksum in-place, but offers more 781 * flexibility and can handle sizes larger than 2 or 4 for the 782 * checksum to update. 783 * 784 * A call to this helper is susceptible to change the underlying 785 * packet buffer. Therefore, at load time, all checks on pointers 786 * previously done by the verifier are invalidated and must be 787 * performed again, if the helper is used in combination with 788 * direct packet access. 789 * Return 790 * 0 on success, or a negative error in case of failure. 791 * 792 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 793 * Description 794 * This special helper is used to trigger a "tail call", or in 795 * other words, to jump into another eBPF program. The same stack 796 * frame is used (but values on stack and in registers for the 797 * caller are not accessible to the callee). This mechanism allows 798 * for program chaining, either for raising the maximum number of 799 * available eBPF instructions, or to execute given programs in 800 * conditional blocks. For security reasons, there is an upper 801 * limit to the number of successive tail calls that can be 802 * performed. 803 * 804 * Upon call of this helper, the program attempts to jump into a 805 * program referenced at index *index* in *prog_array_map*, a 806 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 807 * *ctx*, a pointer to the context. 808 * 809 * If the call succeeds, the kernel immediately runs the first 810 * instruction of the new program. This is not a function call, 811 * and it never returns to the previous program. If the call 812 * fails, then the helper has no effect, and the caller continues 813 * to run its subsequent instructions. A call can fail if the 814 * destination program for the jump does not exist (i.e. *index* 815 * is superior to the number of entries in *prog_array_map*), or 816 * if the maximum number of tail calls has been reached for this 817 * chain of programs. This limit is defined in the kernel by the 818 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 819 * which is currently set to 32. 820 * Return 821 * 0 on success, or a negative error in case of failure. 822 * 823 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 824 * Description 825 * Clone and redirect the packet associated to *skb* to another 826 * net device of index *ifindex*. Both ingress and egress 827 * interfaces can be used for redirection. The **BPF_F_INGRESS** 828 * value in *flags* is used to make the distinction (ingress path 829 * is selected if the flag is present, egress path otherwise). 830 * This is the only flag supported for now. 831 * 832 * In comparison with **bpf_redirect**\ () helper, 833 * **bpf_clone_redirect**\ () has the associated cost of 834 * duplicating the packet buffer, but this can be executed out of 835 * the eBPF program. Conversely, **bpf_redirect**\ () is more 836 * efficient, but it is handled through an action code where the 837 * redirection happens only after the eBPF program has returned. 838 * 839 * A call to this helper is susceptible to change the underlying 840 * packet buffer. Therefore, at load time, all checks on pointers 841 * previously done by the verifier are invalidated and must be 842 * performed again, if the helper is used in combination with 843 * direct packet access. 844 * Return 845 * 0 on success, or a negative error in case of failure. 846 * 847 * u64 bpf_get_current_pid_tgid(void) 848 * Return 849 * A 64-bit integer containing the current tgid and pid, and 850 * created as such: 851 * *current_task*\ **->tgid << 32 \|** 852 * *current_task*\ **->pid**. 853 * 854 * u64 bpf_get_current_uid_gid(void) 855 * Return 856 * A 64-bit integer containing the current GID and UID, and 857 * created as such: *current_gid* **<< 32 \|** *current_uid*. 858 * 859 * int bpf_get_current_comm(void *buf, u32 size_of_buf) 860 * Description 861 * Copy the **comm** attribute of the current task into *buf* of 862 * *size_of_buf*. The **comm** attribute contains the name of 863 * the executable (excluding the path) for the current task. The 864 * *size_of_buf* must be strictly positive. On success, the 865 * helper makes sure that the *buf* is NUL-terminated. On failure, 866 * it is filled with zeroes. 867 * Return 868 * 0 on success, or a negative error in case of failure. 869 * 870 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 871 * Description 872 * Retrieve the classid for the current task, i.e. for the net_cls 873 * cgroup to which *skb* belongs. 874 * 875 * This helper can be used on TC egress path, but not on ingress. 876 * 877 * The net_cls cgroup provides an interface to tag network packets 878 * based on a user-provided identifier for all traffic coming from 879 * the tasks belonging to the related cgroup. See also the related 880 * kernel documentation, available from the Linux sources in file 881 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*. 882 * 883 * The Linux kernel has two versions for cgroups: there are 884 * cgroups v1 and cgroups v2. Both are available to users, who can 885 * use a mixture of them, but note that the net_cls cgroup is for 886 * cgroup v1 only. This makes it incompatible with BPF programs 887 * run on cgroups, which is a cgroup-v2-only feature (a socket can 888 * only hold data for one version of cgroups at a time). 889 * 890 * This helper is only available is the kernel was compiled with 891 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 892 * "**y**" or to "**m**". 893 * Return 894 * The classid, or 0 for the default unconfigured classid. 895 * 896 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 897 * Description 898 * Push a *vlan_tci* (VLAN tag control information) of protocol 899 * *vlan_proto* to the packet associated to *skb*, then update 900 * the checksum. Note that if *vlan_proto* is different from 901 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 902 * be **ETH_P_8021Q**. 903 * 904 * A call to this helper is susceptible to change the underlying 905 * packet buffer. Therefore, at load time, all checks on pointers 906 * previously done by the verifier are invalidated and must be 907 * performed again, if the helper is used in combination with 908 * direct packet access. 909 * Return 910 * 0 on success, or a negative error in case of failure. 911 * 912 * int bpf_skb_vlan_pop(struct sk_buff *skb) 913 * Description 914 * Pop a VLAN header from the packet associated to *skb*. 915 * 916 * A call to this helper is susceptible to change the underlying 917 * packet buffer. Therefore, at load time, all checks on pointers 918 * previously done by the verifier are invalidated and must be 919 * performed again, if the helper is used in combination with 920 * direct packet access. 921 * Return 922 * 0 on success, or a negative error in case of failure. 923 * 924 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 925 * Description 926 * Get tunnel metadata. This helper takes a pointer *key* to an 927 * empty **struct bpf_tunnel_key** of **size**, that will be 928 * filled with tunnel metadata for the packet associated to *skb*. 929 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 930 * indicates that the tunnel is based on IPv6 protocol instead of 931 * IPv4. 932 * 933 * The **struct bpf_tunnel_key** is an object that generalizes the 934 * principal parameters used by various tunneling protocols into a 935 * single struct. This way, it can be used to easily make a 936 * decision based on the contents of the encapsulation header, 937 * "summarized" in this struct. In particular, it holds the IP 938 * address of the remote end (IPv4 or IPv6, depending on the case) 939 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 940 * this struct exposes the *key*\ **->tunnel_id**, which is 941 * generally mapped to a VNI (Virtual Network Identifier), making 942 * it programmable together with the **bpf_skb_set_tunnel_key**\ 943 * () helper. 944 * 945 * Let's imagine that the following code is part of a program 946 * attached to the TC ingress interface, on one end of a GRE 947 * tunnel, and is supposed to filter out all messages coming from 948 * remote ends with IPv4 address other than 10.0.0.1: 949 * 950 * :: 951 * 952 * int ret; 953 * struct bpf_tunnel_key key = {}; 954 * 955 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 956 * if (ret < 0) 957 * return TC_ACT_SHOT; // drop packet 958 * 959 * if (key.remote_ipv4 != 0x0a000001) 960 * return TC_ACT_SHOT; // drop packet 961 * 962 * return TC_ACT_OK; // accept packet 963 * 964 * This interface can also be used with all encapsulation devices 965 * that can operate in "collect metadata" mode: instead of having 966 * one network device per specific configuration, the "collect 967 * metadata" mode only requires a single device where the 968 * configuration can be extracted from this helper. 969 * 970 * This can be used together with various tunnels such as VXLan, 971 * Geneve, GRE or IP in IP (IPIP). 972 * Return 973 * 0 on success, or a negative error in case of failure. 974 * 975 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 976 * Description 977 * Populate tunnel metadata for packet associated to *skb.* The 978 * tunnel metadata is set to the contents of *key*, of *size*. The 979 * *flags* can be set to a combination of the following values: 980 * 981 * **BPF_F_TUNINFO_IPV6** 982 * Indicate that the tunnel is based on IPv6 protocol 983 * instead of IPv4. 984 * **BPF_F_ZERO_CSUM_TX** 985 * For IPv4 packets, add a flag to tunnel metadata 986 * indicating that checksum computation should be skipped 987 * and checksum set to zeroes. 988 * **BPF_F_DONT_FRAGMENT** 989 * Add a flag to tunnel metadata indicating that the 990 * packet should not be fragmented. 991 * **BPF_F_SEQ_NUMBER** 992 * Add a flag to tunnel metadata indicating that a 993 * sequence number should be added to tunnel header before 994 * sending the packet. This flag was added for GRE 995 * encapsulation, but might be used with other protocols 996 * as well in the future. 997 * 998 * Here is a typical usage on the transmit path: 999 * 1000 * :: 1001 * 1002 * struct bpf_tunnel_key key; 1003 * populate key ... 1004 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 1005 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 1006 * 1007 * See also the description of the **bpf_skb_get_tunnel_key**\ () 1008 * helper for additional information. 1009 * Return 1010 * 0 on success, or a negative error in case of failure. 1011 * 1012 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 1013 * Description 1014 * Read the value of a perf event counter. This helper relies on a 1015 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 1016 * the perf event counter is selected when *map* is updated with 1017 * perf event file descriptors. The *map* is an array whose size 1018 * is the number of available CPUs, and each cell contains a value 1019 * relative to one CPU. The value to retrieve is indicated by 1020 * *flags*, that contains the index of the CPU to look up, masked 1021 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1022 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1023 * current CPU should be retrieved. 1024 * 1025 * Note that before Linux 4.13, only hardware perf event can be 1026 * retrieved. 1027 * 1028 * Also, be aware that the newer helper 1029 * **bpf_perf_event_read_value**\ () is recommended over 1030 * **bpf_perf_event_read**\ () in general. The latter has some ABI 1031 * quirks where error and counter value are used as a return code 1032 * (which is wrong to do since ranges may overlap). This issue is 1033 * fixed with **bpf_perf_event_read_value**\ (), which at the same 1034 * time provides more features over the **bpf_perf_event_read**\ 1035 * () interface. Please refer to the description of 1036 * **bpf_perf_event_read_value**\ () for details. 1037 * Return 1038 * The value of the perf event counter read from the map, or a 1039 * negative error code in case of failure. 1040 * 1041 * int bpf_redirect(u32 ifindex, u64 flags) 1042 * Description 1043 * Redirect the packet to another net device of index *ifindex*. 1044 * This helper is somewhat similar to **bpf_clone_redirect**\ 1045 * (), except that the packet is not cloned, which provides 1046 * increased performance. 1047 * 1048 * Except for XDP, both ingress and egress interfaces can be used 1049 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 1050 * to make the distinction (ingress path is selected if the flag 1051 * is present, egress path otherwise). Currently, XDP only 1052 * supports redirection to the egress interface, and accepts no 1053 * flag at all. 1054 * 1055 * The same effect can also be attained with the more generic 1056 * **bpf_redirect_map**\ (), which uses a BPF map to store the 1057 * redirect target instead of providing it directly to the helper. 1058 * Return 1059 * For XDP, the helper returns **XDP_REDIRECT** on success or 1060 * **XDP_ABORTED** on error. For other program types, the values 1061 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 1062 * error. 1063 * 1064 * u32 bpf_get_route_realm(struct sk_buff *skb) 1065 * Description 1066 * Retrieve the realm or the route, that is to say the 1067 * **tclassid** field of the destination for the *skb*. The 1068 * indentifier retrieved is a user-provided tag, similar to the 1069 * one used with the net_cls cgroup (see description for 1070 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 1071 * held by a route (a destination entry), not by a task. 1072 * 1073 * Retrieving this identifier works with the clsact TC egress hook 1074 * (see also **tc-bpf(8)**), or alternatively on conventional 1075 * classful egress qdiscs, but not on TC ingress path. In case of 1076 * clsact TC egress hook, this has the advantage that, internally, 1077 * the destination entry has not been dropped yet in the transmit 1078 * path. Therefore, the destination entry does not need to be 1079 * artificially held via **netif_keep_dst**\ () for a classful 1080 * qdisc until the *skb* is freed. 1081 * 1082 * This helper is available only if the kernel was compiled with 1083 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 1084 * Return 1085 * The realm of the route for the packet associated to *skb*, or 0 1086 * if none was found. 1087 * 1088 * int bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 1089 * Description 1090 * Write raw *data* blob into a special BPF perf event held by 1091 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 1092 * event must have the following attributes: **PERF_SAMPLE_RAW** 1093 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 1094 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 1095 * 1096 * The *flags* are used to indicate the index in *map* for which 1097 * the value must be put, masked with **BPF_F_INDEX_MASK**. 1098 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 1099 * to indicate that the index of the current CPU core should be 1100 * used. 1101 * 1102 * The value to write, of *size*, is passed through eBPF stack and 1103 * pointed by *data*. 1104 * 1105 * The context of the program *ctx* needs also be passed to the 1106 * helper. 1107 * 1108 * On user space, a program willing to read the values needs to 1109 * call **perf_event_open**\ () on the perf event (either for 1110 * one or for all CPUs) and to store the file descriptor into the 1111 * *map*. This must be done before the eBPF program can send data 1112 * into it. An example is available in file 1113 * *samples/bpf/trace_output_user.c* in the Linux kernel source 1114 * tree (the eBPF program counterpart is in 1115 * *samples/bpf/trace_output_kern.c*). 1116 * 1117 * **bpf_perf_event_output**\ () achieves better performance 1118 * than **bpf_trace_printk**\ () for sharing data with user 1119 * space, and is much better suitable for streaming data from eBPF 1120 * programs. 1121 * 1122 * Note that this helper is not restricted to tracing use cases 1123 * and can be used with programs attached to TC or XDP as well, 1124 * where it allows for passing data to user space listeners. Data 1125 * can be: 1126 * 1127 * * Only custom structs, 1128 * * Only the packet payload, or 1129 * * A combination of both. 1130 * Return 1131 * 0 on success, or a negative error in case of failure. 1132 * 1133 * int bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len) 1134 * Description 1135 * This helper was provided as an easy way to load data from a 1136 * packet. It can be used to load *len* bytes from *offset* from 1137 * the packet associated to *skb*, into the buffer pointed by 1138 * *to*. 1139 * 1140 * Since Linux 4.7, usage of this helper has mostly been replaced 1141 * by "direct packet access", enabling packet data to be 1142 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1143 * pointing respectively to the first byte of packet data and to 1144 * the byte after the last byte of packet data. However, it 1145 * remains useful if one wishes to read large quantities of data 1146 * at once from a packet into the eBPF stack. 1147 * Return 1148 * 0 on success, or a negative error in case of failure. 1149 * 1150 * int bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags) 1151 * Description 1152 * Walk a user or a kernel stack and return its id. To achieve 1153 * this, the helper needs *ctx*, which is a pointer to the context 1154 * on which the tracing program is executed, and a pointer to a 1155 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1156 * 1157 * The last argument, *flags*, holds the number of stack frames to 1158 * skip (from 0 to 255), masked with 1159 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1160 * a combination of the following flags: 1161 * 1162 * **BPF_F_USER_STACK** 1163 * Collect a user space stack instead of a kernel stack. 1164 * **BPF_F_FAST_STACK_CMP** 1165 * Compare stacks by hash only. 1166 * **BPF_F_REUSE_STACKID** 1167 * If two different stacks hash into the same *stackid*, 1168 * discard the old one. 1169 * 1170 * The stack id retrieved is a 32 bit long integer handle which 1171 * can be further combined with other data (including other stack 1172 * ids) and used as a key into maps. This can be useful for 1173 * generating a variety of graphs (such as flame graphs or off-cpu 1174 * graphs). 1175 * 1176 * For walking a stack, this helper is an improvement over 1177 * **bpf_probe_read**\ (), which can be used with unrolled loops 1178 * but is not efficient and consumes a lot of eBPF instructions. 1179 * Instead, **bpf_get_stackid**\ () can collect up to 1180 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1181 * this limit can be controlled with the **sysctl** program, and 1182 * that it should be manually increased in order to profile long 1183 * user stacks (such as stacks for Java programs). To do so, use: 1184 * 1185 * :: 1186 * 1187 * # sysctl kernel.perf_event_max_stack=<new value> 1188 * Return 1189 * The positive or null stack id on success, or a negative error 1190 * in case of failure. 1191 * 1192 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1193 * Description 1194 * Compute a checksum difference, from the raw buffer pointed by 1195 * *from*, of length *from_size* (that must be a multiple of 4), 1196 * towards the raw buffer pointed by *to*, of size *to_size* 1197 * (same remark). An optional *seed* can be added to the value 1198 * (this can be cascaded, the seed may come from a previous call 1199 * to the helper). 1200 * 1201 * This is flexible enough to be used in several ways: 1202 * 1203 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1204 * checksum, it can be used when pushing new data. 1205 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1206 * checksum, it can be used when removing data from a packet. 1207 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1208 * can be used to compute a diff. Note that *from_size* and 1209 * *to_size* do not need to be equal. 1210 * 1211 * This helper can be used in combination with 1212 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1213 * which one can feed in the difference computed with 1214 * **bpf_csum_diff**\ (). 1215 * Return 1216 * The checksum result, or a negative error code in case of 1217 * failure. 1218 * 1219 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size) 1220 * Description 1221 * Retrieve tunnel options metadata for the packet associated to 1222 * *skb*, and store the raw tunnel option data to the buffer *opt* 1223 * of *size*. 1224 * 1225 * This helper can be used with encapsulation devices that can 1226 * operate in "collect metadata" mode (please refer to the related 1227 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1228 * more details). A particular example where this can be used is 1229 * in combination with the Geneve encapsulation protocol, where it 1230 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1231 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1232 * the eBPF program. This allows for full customization of these 1233 * headers. 1234 * Return 1235 * The size of the option data retrieved. 1236 * 1237 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size) 1238 * Description 1239 * Set tunnel options metadata for the packet associated to *skb* 1240 * to the option data contained in the raw buffer *opt* of *size*. 1241 * 1242 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1243 * helper for additional information. 1244 * Return 1245 * 0 on success, or a negative error in case of failure. 1246 * 1247 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1248 * Description 1249 * Change the protocol of the *skb* to *proto*. Currently 1250 * supported are transition from IPv4 to IPv6, and from IPv6 to 1251 * IPv4. The helper takes care of the groundwork for the 1252 * transition, including resizing the socket buffer. The eBPF 1253 * program is expected to fill the new headers, if any, via 1254 * **skb_store_bytes**\ () and to recompute the checksums with 1255 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1256 * (). The main case for this helper is to perform NAT64 1257 * operations out of an eBPF program. 1258 * 1259 * Internally, the GSO type is marked as dodgy so that headers are 1260 * checked and segments are recalculated by the GSO/GRO engine. 1261 * The size for GSO target is adapted as well. 1262 * 1263 * All values for *flags* are reserved for future usage, and must 1264 * be left at zero. 1265 * 1266 * A call to this helper is susceptible to change the underlying 1267 * packet buffer. Therefore, at load time, all checks on pointers 1268 * previously done by the verifier are invalidated and must be 1269 * performed again, if the helper is used in combination with 1270 * direct packet access. 1271 * Return 1272 * 0 on success, or a negative error in case of failure. 1273 * 1274 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1275 * Description 1276 * Change the packet type for the packet associated to *skb*. This 1277 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1278 * the eBPF program does not have a write access to *skb*\ 1279 * **->pkt_type** beside this helper. Using a helper here allows 1280 * for graceful handling of errors. 1281 * 1282 * The major use case is to change incoming *skb*s to 1283 * **PACKET_HOST** in a programmatic way instead of having to 1284 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1285 * example. 1286 * 1287 * Note that *type* only allows certain values. At this time, they 1288 * are: 1289 * 1290 * **PACKET_HOST** 1291 * Packet is for us. 1292 * **PACKET_BROADCAST** 1293 * Send packet to all. 1294 * **PACKET_MULTICAST** 1295 * Send packet to group. 1296 * **PACKET_OTHERHOST** 1297 * Send packet to someone else. 1298 * Return 1299 * 0 on success, or a negative error in case of failure. 1300 * 1301 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1302 * Description 1303 * Check whether *skb* is a descendant of the cgroup2 held by 1304 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1305 * Return 1306 * The return value depends on the result of the test, and can be: 1307 * 1308 * * 0, if the *skb* failed the cgroup2 descendant test. 1309 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1310 * * A negative error code, if an error occurred. 1311 * 1312 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1313 * Description 1314 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1315 * not set, in particular if the hash was cleared due to mangling, 1316 * recompute this hash. Later accesses to the hash can be done 1317 * directly with *skb*\ **->hash**. 1318 * 1319 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1320 * prototype with **bpf_skb_change_proto**\ (), or calling 1321 * **bpf_skb_store_bytes**\ () with the 1322 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1323 * the hash and to trigger a new computation for the next call to 1324 * **bpf_get_hash_recalc**\ (). 1325 * Return 1326 * The 32-bit hash. 1327 * 1328 * u64 bpf_get_current_task(void) 1329 * Return 1330 * A pointer to the current task struct. 1331 * 1332 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1333 * Description 1334 * Attempt in a safe way to write *len* bytes from the buffer 1335 * *src* to *dst* in memory. It only works for threads that are in 1336 * user context, and *dst* must be a valid user space address. 1337 * 1338 * This helper should not be used to implement any kind of 1339 * security mechanism because of TOC-TOU attacks, but rather to 1340 * debug, divert, and manipulate execution of semi-cooperative 1341 * processes. 1342 * 1343 * Keep in mind that this feature is meant for experiments, and it 1344 * has a risk of crashing the system and running programs. 1345 * Therefore, when an eBPF program using this helper is attached, 1346 * a warning including PID and process name is printed to kernel 1347 * logs. 1348 * Return 1349 * 0 on success, or a negative error in case of failure. 1350 * 1351 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1352 * Description 1353 * Check whether the probe is being run is the context of a given 1354 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1355 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1356 * Return 1357 * The return value depends on the result of the test, and can be: 1358 * 1359 * * 0, if the *skb* task belongs to the cgroup2. 1360 * * 1, if the *skb* task does not belong to the cgroup2. 1361 * * A negative error code, if an error occurred. 1362 * 1363 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1364 * Description 1365 * Resize (trim or grow) the packet associated to *skb* to the 1366 * new *len*. The *flags* are reserved for future usage, and must 1367 * be left at zero. 1368 * 1369 * The basic idea is that the helper performs the needed work to 1370 * change the size of the packet, then the eBPF program rewrites 1371 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1372 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1373 * and others. This helper is a slow path utility intended for 1374 * replies with control messages. And because it is targeted for 1375 * slow path, the helper itself can afford to be slow: it 1376 * implicitly linearizes, unclones and drops offloads from the 1377 * *skb*. 1378 * 1379 * A call to this helper is susceptible to change the underlying 1380 * packet buffer. Therefore, at load time, all checks on pointers 1381 * previously done by the verifier are invalidated and must be 1382 * performed again, if the helper is used in combination with 1383 * direct packet access. 1384 * Return 1385 * 0 on success, or a negative error in case of failure. 1386 * 1387 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1388 * Description 1389 * Pull in non-linear data in case the *skb* is non-linear and not 1390 * all of *len* are part of the linear section. Make *len* bytes 1391 * from *skb* readable and writable. If a zero value is passed for 1392 * *len*, then the whole length of the *skb* is pulled. 1393 * 1394 * This helper is only needed for reading and writing with direct 1395 * packet access. 1396 * 1397 * For direct packet access, testing that offsets to access 1398 * are within packet boundaries (test on *skb*\ **->data_end**) is 1399 * susceptible to fail if offsets are invalid, or if the requested 1400 * data is in non-linear parts of the *skb*. On failure the 1401 * program can just bail out, or in the case of a non-linear 1402 * buffer, use a helper to make the data available. The 1403 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1404 * the data. Another one consists in using **bpf_skb_pull_data** 1405 * to pull in once the non-linear parts, then retesting and 1406 * eventually access the data. 1407 * 1408 * At the same time, this also makes sure the *skb* is uncloned, 1409 * which is a necessary condition for direct write. As this needs 1410 * to be an invariant for the write part only, the verifier 1411 * detects writes and adds a prologue that is calling 1412 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1413 * the very beginning in case it is indeed cloned. 1414 * 1415 * A call to this helper is susceptible to change the underlying 1416 * packet buffer. Therefore, at load time, all checks on pointers 1417 * previously done by the verifier are invalidated and must be 1418 * performed again, if the helper is used in combination with 1419 * direct packet access. 1420 * Return 1421 * 0 on success, or a negative error in case of failure. 1422 * 1423 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1424 * Description 1425 * Add the checksum *csum* into *skb*\ **->csum** in case the 1426 * driver has supplied a checksum for the entire packet into that 1427 * field. Return an error otherwise. This helper is intended to be 1428 * used in combination with **bpf_csum_diff**\ (), in particular 1429 * when the checksum needs to be updated after data has been 1430 * written into the packet through direct packet access. 1431 * Return 1432 * The checksum on success, or a negative error code in case of 1433 * failure. 1434 * 1435 * void bpf_set_hash_invalid(struct sk_buff *skb) 1436 * Description 1437 * Invalidate the current *skb*\ **->hash**. It can be used after 1438 * mangling on headers through direct packet access, in order to 1439 * indicate that the hash is outdated and to trigger a 1440 * recalculation the next time the kernel tries to access this 1441 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1442 * 1443 * int bpf_get_numa_node_id(void) 1444 * Description 1445 * Return the id of the current NUMA node. The primary use case 1446 * for this helper is the selection of sockets for the local NUMA 1447 * node, when the program is attached to sockets using the 1448 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1449 * but the helper is also available to other eBPF program types, 1450 * similarly to **bpf_get_smp_processor_id**\ (). 1451 * Return 1452 * The id of current NUMA node. 1453 * 1454 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1455 * Description 1456 * Grows headroom of packet associated to *skb* and adjusts the 1457 * offset of the MAC header accordingly, adding *len* bytes of 1458 * space. It automatically extends and reallocates memory as 1459 * required. 1460 * 1461 * This helper can be used on a layer 3 *skb* to push a MAC header 1462 * for redirection into a layer 2 device. 1463 * 1464 * All values for *flags* are reserved for future usage, and must 1465 * be left at zero. 1466 * 1467 * A call to this helper is susceptible to change the underlying 1468 * packet buffer. Therefore, at load time, all checks on pointers 1469 * previously done by the verifier are invalidated and must be 1470 * performed again, if the helper is used in combination with 1471 * direct packet access. 1472 * Return 1473 * 0 on success, or a negative error in case of failure. 1474 * 1475 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1476 * Description 1477 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1478 * it is possible to use a negative value for *delta*. This helper 1479 * can be used to prepare the packet for pushing or popping 1480 * headers. 1481 * 1482 * A call to this helper is susceptible to change the underlying 1483 * packet buffer. Therefore, at load time, all checks on pointers 1484 * previously done by the verifier are invalidated and must be 1485 * performed again, if the helper is used in combination with 1486 * direct packet access. 1487 * Return 1488 * 0 on success, or a negative error in case of failure. 1489 * 1490 * int bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr) 1491 * Description 1492 * Copy a NUL terminated string from an unsafe kernel address 1493 * *unsafe_ptr* to *dst*. See bpf_probe_read_kernel_str() for 1494 * more details. 1495 * 1496 * Generally, use bpf_probe_read_user_str() or bpf_probe_read_kernel_str() 1497 * instead. 1498 * Return 1499 * On success, the strictly positive length of the string, 1500 * including the trailing NUL character. On error, a negative 1501 * value. 1502 * 1503 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1504 * Description 1505 * If the **struct sk_buff** pointed by *skb* has a known socket, 1506 * retrieve the cookie (generated by the kernel) of this socket. 1507 * If no cookie has been set yet, generate a new cookie. Once 1508 * generated, the socket cookie remains stable for the life of the 1509 * socket. This helper can be useful for monitoring per socket 1510 * networking traffic statistics as it provides a global socket 1511 * identifier that can be assumed unique. 1512 * Return 1513 * A 8-byte long non-decreasing number on success, or 0 if the 1514 * socket field is missing inside *skb*. 1515 * 1516 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1517 * Description 1518 * Equivalent to bpf_get_socket_cookie() helper that accepts 1519 * *skb*, but gets socket from **struct bpf_sock_addr** context. 1520 * Return 1521 * A 8-byte long non-decreasing number. 1522 * 1523 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1524 * Description 1525 * Equivalent to bpf_get_socket_cookie() helper that accepts 1526 * *skb*, but gets socket from **struct bpf_sock_ops** context. 1527 * Return 1528 * A 8-byte long non-decreasing number. 1529 * 1530 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1531 * Return 1532 * The owner UID of the socket associated to *skb*. If the socket 1533 * is **NULL**, or if it is not a full socket (i.e. if it is a 1534 * time-wait or a request socket instead), **overflowuid** value 1535 * is returned (note that **overflowuid** might also be the actual 1536 * UID value for the socket). 1537 * 1538 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1539 * Description 1540 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1541 * to value *hash*. 1542 * Return 1543 * 0 1544 * 1545 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen) 1546 * Description 1547 * Emulate a call to **setsockopt()** on the socket associated to 1548 * *bpf_socket*, which must be a full socket. The *level* at 1549 * which the option resides and the name *optname* of the option 1550 * must be specified, see **setsockopt(2)** for more information. 1551 * The option value of length *optlen* is pointed by *optval*. 1552 * 1553 * This helper actually implements a subset of **setsockopt()**. 1554 * It supports the following *level*\ s: 1555 * 1556 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1557 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1558 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1559 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1560 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1561 * **TCP_BPF_SNDCWND_CLAMP**. 1562 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1563 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1564 * Return 1565 * 0 on success, or a negative error in case of failure. 1566 * 1567 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1568 * Description 1569 * Grow or shrink the room for data in the packet associated to 1570 * *skb* by *len_diff*, and according to the selected *mode*. 1571 * 1572 * There are two supported modes at this time: 1573 * 1574 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer 1575 * (room space is added or removed below the layer 2 header). 1576 * 1577 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1578 * (room space is added or removed below the layer 3 header). 1579 * 1580 * The following flags are supported at this time: 1581 * 1582 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size. 1583 * Adjusting mss in this way is not allowed for datagrams. 1584 * 1585 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**, 1586 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**: 1587 * Any new space is reserved to hold a tunnel header. 1588 * Configure skb offsets and other fields accordingly. 1589 * 1590 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**, 1591 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**: 1592 * Use with ENCAP_L3 flags to further specify the tunnel type. 1593 * 1594 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*): 1595 * Use with ENCAP_L3/L4 flags to further specify the tunnel 1596 * type; *len* is the length of the inner MAC header. 1597 * 1598 * A call to this helper is susceptible to change the underlying 1599 * packet buffer. Therefore, at load time, all checks on pointers 1600 * previously done by the verifier are invalidated and must be 1601 * performed again, if the helper is used in combination with 1602 * direct packet access. 1603 * Return 1604 * 0 on success, or a negative error in case of failure. 1605 * 1606 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1607 * Description 1608 * Redirect the packet to the endpoint referenced by *map* at 1609 * index *key*. Depending on its type, this *map* can contain 1610 * references to net devices (for forwarding packets through other 1611 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1612 * but this is only implemented for native XDP (with driver 1613 * support) as of this writing). 1614 * 1615 * The lower two bits of *flags* are used as the return code if 1616 * the map lookup fails. This is so that the return value can be 1617 * one of the XDP program return codes up to XDP_TX, as chosen by 1618 * the caller. Any higher bits in the *flags* argument must be 1619 * unset. 1620 * 1621 * See also bpf_redirect(), which only supports redirecting to an 1622 * ifindex, but doesn't require a map to do so. 1623 * Return 1624 * **XDP_REDIRECT** on success, or the value of the two lower bits 1625 * of the **flags* argument on error. 1626 * 1627 * int bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags) 1628 * Description 1629 * Redirect the packet to the socket referenced by *map* (of type 1630 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1631 * egress interfaces can be used for redirection. The 1632 * **BPF_F_INGRESS** value in *flags* is used to make the 1633 * distinction (ingress path is selected if the flag is present, 1634 * egress path otherwise). This is the only flag supported for now. 1635 * Return 1636 * **SK_PASS** on success, or **SK_DROP** on error. 1637 * 1638 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1639 * Description 1640 * Add an entry to, or update a *map* referencing sockets. The 1641 * *skops* is used as a new value for the entry associated to 1642 * *key*. *flags* is one of: 1643 * 1644 * **BPF_NOEXIST** 1645 * The entry for *key* must not exist in the map. 1646 * **BPF_EXIST** 1647 * The entry for *key* must already exist in the map. 1648 * **BPF_ANY** 1649 * No condition on the existence of the entry for *key*. 1650 * 1651 * If the *map* has eBPF programs (parser and verdict), those will 1652 * be inherited by the socket being added. If the socket is 1653 * already attached to eBPF programs, this results in an error. 1654 * Return 1655 * 0 on success, or a negative error in case of failure. 1656 * 1657 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1658 * Description 1659 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1660 * *delta* (which can be positive or negative). Note that this 1661 * operation modifies the address stored in *xdp_md*\ **->data**, 1662 * so the latter must be loaded only after the helper has been 1663 * called. 1664 * 1665 * The use of *xdp_md*\ **->data_meta** is optional and programs 1666 * are not required to use it. The rationale is that when the 1667 * packet is processed with XDP (e.g. as DoS filter), it is 1668 * possible to push further meta data along with it before passing 1669 * to the stack, and to give the guarantee that an ingress eBPF 1670 * program attached as a TC classifier on the same device can pick 1671 * this up for further post-processing. Since TC works with socket 1672 * buffers, it remains possible to set from XDP the **mark** or 1673 * **priority** pointers, or other pointers for the socket buffer. 1674 * Having this scratch space generic and programmable allows for 1675 * more flexibility as the user is free to store whatever meta 1676 * data they need. 1677 * 1678 * A call to this helper is susceptible to change the underlying 1679 * packet buffer. Therefore, at load time, all checks on pointers 1680 * previously done by the verifier are invalidated and must be 1681 * performed again, if the helper is used in combination with 1682 * direct packet access. 1683 * Return 1684 * 0 on success, or a negative error in case of failure. 1685 * 1686 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1687 * Description 1688 * Read the value of a perf event counter, and store it into *buf* 1689 * of size *buf_size*. This helper relies on a *map* of type 1690 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1691 * counter is selected when *map* is updated with perf event file 1692 * descriptors. The *map* is an array whose size is the number of 1693 * available CPUs, and each cell contains a value relative to one 1694 * CPU. The value to retrieve is indicated by *flags*, that 1695 * contains the index of the CPU to look up, masked with 1696 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1697 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1698 * current CPU should be retrieved. 1699 * 1700 * This helper behaves in a way close to 1701 * **bpf_perf_event_read**\ () helper, save that instead of 1702 * just returning the value observed, it fills the *buf* 1703 * structure. This allows for additional data to be retrieved: in 1704 * particular, the enabled and running times (in *buf*\ 1705 * **->enabled** and *buf*\ **->running**, respectively) are 1706 * copied. In general, **bpf_perf_event_read_value**\ () is 1707 * recommended over **bpf_perf_event_read**\ (), which has some 1708 * ABI issues and provides fewer functionalities. 1709 * 1710 * These values are interesting, because hardware PMU (Performance 1711 * Monitoring Unit) counters are limited resources. When there are 1712 * more PMU based perf events opened than available counters, 1713 * kernel will multiplex these events so each event gets certain 1714 * percentage (but not all) of the PMU time. In case that 1715 * multiplexing happens, the number of samples or counter value 1716 * will not reflect the case compared to when no multiplexing 1717 * occurs. This makes comparison between different runs difficult. 1718 * Typically, the counter value should be normalized before 1719 * comparing to other experiments. The usual normalization is done 1720 * as follows. 1721 * 1722 * :: 1723 * 1724 * normalized_counter = counter * t_enabled / t_running 1725 * 1726 * Where t_enabled is the time enabled for event and t_running is 1727 * the time running for event since last normalization. The 1728 * enabled and running times are accumulated since the perf event 1729 * open. To achieve scaling factor between two invocations of an 1730 * eBPF program, users can can use CPU id as the key (which is 1731 * typical for perf array usage model) to remember the previous 1732 * value and do the calculation inside the eBPF program. 1733 * Return 1734 * 0 on success, or a negative error in case of failure. 1735 * 1736 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1737 * Description 1738 * For en eBPF program attached to a perf event, retrieve the 1739 * value of the event counter associated to *ctx* and store it in 1740 * the structure pointed by *buf* and of size *buf_size*. Enabled 1741 * and running times are also stored in the structure (see 1742 * description of helper **bpf_perf_event_read_value**\ () for 1743 * more details). 1744 * Return 1745 * 0 on success, or a negative error in case of failure. 1746 * 1747 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen) 1748 * Description 1749 * Emulate a call to **getsockopt()** on the socket associated to 1750 * *bpf_socket*, which must be a full socket. The *level* at 1751 * which the option resides and the name *optname* of the option 1752 * must be specified, see **getsockopt(2)** for more information. 1753 * The retrieved value is stored in the structure pointed by 1754 * *opval* and of length *optlen*. 1755 * 1756 * This helper actually implements a subset of **getsockopt()**. 1757 * It supports the following *level*\ s: 1758 * 1759 * * **IPPROTO_TCP**, which supports *optname* 1760 * **TCP_CONGESTION**. 1761 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1762 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1763 * Return 1764 * 0 on success, or a negative error in case of failure. 1765 * 1766 * int bpf_override_return(struct pt_regs *regs, u64 rc) 1767 * Description 1768 * Used for error injection, this helper uses kprobes to override 1769 * the return value of the probed function, and to set it to *rc*. 1770 * The first argument is the context *regs* on which the kprobe 1771 * works. 1772 * 1773 * This helper works by setting setting the PC (program counter) 1774 * to an override function which is run in place of the original 1775 * probed function. This means the probed function is not run at 1776 * all. The replacement function just returns with the required 1777 * value. 1778 * 1779 * This helper has security implications, and thus is subject to 1780 * restrictions. It is only available if the kernel was compiled 1781 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1782 * option, and in this case it only works on functions tagged with 1783 * **ALLOW_ERROR_INJECTION** in the kernel code. 1784 * 1785 * Also, the helper is only available for the architectures having 1786 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1787 * x86 architecture is the only one to support this feature. 1788 * Return 1789 * 0 1790 * 1791 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1792 * Description 1793 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1794 * for the full TCP socket associated to *bpf_sock_ops* to 1795 * *argval*. 1796 * 1797 * The primary use of this field is to determine if there should 1798 * be calls to eBPF programs of type 1799 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1800 * code. A program of the same type can change its value, per 1801 * connection and as necessary, when the connection is 1802 * established. This field is directly accessible for reading, but 1803 * this helper must be used for updates in order to return an 1804 * error if an eBPF program tries to set a callback that is not 1805 * supported in the current kernel. 1806 * 1807 * *argval* is a flag array which can combine these flags: 1808 * 1809 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1810 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1811 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1812 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT) 1813 * 1814 * Therefore, this function can be used to clear a callback flag by 1815 * setting the appropriate bit to zero. e.g. to disable the RTO 1816 * callback: 1817 * 1818 * **bpf_sock_ops_cb_flags_set(bpf_sock,** 1819 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)** 1820 * 1821 * Here are some examples of where one could call such eBPF 1822 * program: 1823 * 1824 * * When RTO fires. 1825 * * When a packet is retransmitted. 1826 * * When the connection terminates. 1827 * * When a packet is sent. 1828 * * When a packet is received. 1829 * Return 1830 * Code **-EINVAL** if the socket is not a full TCP socket; 1831 * otherwise, a positive number containing the bits that could not 1832 * be set is returned (which comes down to 0 if all bits were set 1833 * as required). 1834 * 1835 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1836 * Description 1837 * This helper is used in programs implementing policies at the 1838 * socket level. If the message *msg* is allowed to pass (i.e. if 1839 * the verdict eBPF program returns **SK_PASS**), redirect it to 1840 * the socket referenced by *map* (of type 1841 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1842 * egress interfaces can be used for redirection. The 1843 * **BPF_F_INGRESS** value in *flags* is used to make the 1844 * distinction (ingress path is selected if the flag is present, 1845 * egress path otherwise). This is the only flag supported for now. 1846 * Return 1847 * **SK_PASS** on success, or **SK_DROP** on error. 1848 * 1849 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1850 * Description 1851 * For socket policies, apply the verdict of the eBPF program to 1852 * the next *bytes* (number of bytes) of message *msg*. 1853 * 1854 * For example, this helper can be used in the following cases: 1855 * 1856 * * A single **sendmsg**\ () or **sendfile**\ () system call 1857 * contains multiple logical messages that the eBPF program is 1858 * supposed to read and for which it should apply a verdict. 1859 * * An eBPF program only cares to read the first *bytes* of a 1860 * *msg*. If the message has a large payload, then setting up 1861 * and calling the eBPF program repeatedly for all bytes, even 1862 * though the verdict is already known, would create unnecessary 1863 * overhead. 1864 * 1865 * When called from within an eBPF program, the helper sets a 1866 * counter internal to the BPF infrastructure, that is used to 1867 * apply the last verdict to the next *bytes*. If *bytes* is 1868 * smaller than the current data being processed from a 1869 * **sendmsg**\ () or **sendfile**\ () system call, the first 1870 * *bytes* will be sent and the eBPF program will be re-run with 1871 * the pointer for start of data pointing to byte number *bytes* 1872 * **+ 1**. If *bytes* is larger than the current data being 1873 * processed, then the eBPF verdict will be applied to multiple 1874 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1875 * consumed. 1876 * 1877 * Note that if a socket closes with the internal counter holding 1878 * a non-zero value, this is not a problem because data is not 1879 * being buffered for *bytes* and is sent as it is received. 1880 * Return 1881 * 0 1882 * 1883 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1884 * Description 1885 * For socket policies, prevent the execution of the verdict eBPF 1886 * program for message *msg* until *bytes* (byte number) have been 1887 * accumulated. 1888 * 1889 * This can be used when one needs a specific number of bytes 1890 * before a verdict can be assigned, even if the data spans 1891 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1892 * case would be a user calling **sendmsg**\ () repeatedly with 1893 * 1-byte long message segments. Obviously, this is bad for 1894 * performance, but it is still valid. If the eBPF program needs 1895 * *bytes* bytes to validate a header, this helper can be used to 1896 * prevent the eBPF program to be called again until *bytes* have 1897 * been accumulated. 1898 * Return 1899 * 0 1900 * 1901 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1902 * Description 1903 * For socket policies, pull in non-linear data from user space 1904 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1905 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1906 * respectively. 1907 * 1908 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1909 * *msg* it can only parse data that the (**data**, **data_end**) 1910 * pointers have already consumed. For **sendmsg**\ () hooks this 1911 * is likely the first scatterlist element. But for calls relying 1912 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1913 * be the range (**0**, **0**) because the data is shared with 1914 * user space and by default the objective is to avoid allowing 1915 * user space to modify data while (or after) eBPF verdict is 1916 * being decided. This helper can be used to pull in data and to 1917 * set the start and end pointer to given values. Data will be 1918 * copied if necessary (i.e. if data was not linear and if start 1919 * and end pointers do not point to the same chunk). 1920 * 1921 * A call to this helper is susceptible to change the underlying 1922 * packet buffer. Therefore, at load time, all checks on pointers 1923 * previously done by the verifier are invalidated and must be 1924 * performed again, if the helper is used in combination with 1925 * direct packet access. 1926 * 1927 * All values for *flags* are reserved for future usage, and must 1928 * be left at zero. 1929 * Return 1930 * 0 on success, or a negative error in case of failure. 1931 * 1932 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1933 * Description 1934 * Bind the socket associated to *ctx* to the address pointed by 1935 * *addr*, of length *addr_len*. This allows for making outgoing 1936 * connection from the desired IP address, which can be useful for 1937 * example when all processes inside a cgroup should use one 1938 * single IP address on a host that has multiple IP configured. 1939 * 1940 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1941 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1942 * **AF_INET6**). Looking for a free port to bind to can be 1943 * expensive, therefore binding to port is not permitted by the 1944 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1945 * must be set to zero. 1946 * Return 1947 * 0 on success, or a negative error in case of failure. 1948 * 1949 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1950 * Description 1951 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1952 * only possible to shrink the packet as of this writing, 1953 * therefore *delta* must be a negative integer. 1954 * 1955 * A call to this helper is susceptible to change the underlying 1956 * packet buffer. Therefore, at load time, all checks on pointers 1957 * previously done by the verifier are invalidated and must be 1958 * performed again, if the helper is used in combination with 1959 * direct packet access. 1960 * Return 1961 * 0 on success, or a negative error in case of failure. 1962 * 1963 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1964 * Description 1965 * Retrieve the XFRM state (IP transform framework, see also 1966 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1967 * 1968 * The retrieved value is stored in the **struct bpf_xfrm_state** 1969 * pointed by *xfrm_state* and of length *size*. 1970 * 1971 * All values for *flags* are reserved for future usage, and must 1972 * be left at zero. 1973 * 1974 * This helper is available only if the kernel was compiled with 1975 * **CONFIG_XFRM** configuration option. 1976 * Return 1977 * 0 on success, or a negative error in case of failure. 1978 * 1979 * int bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags) 1980 * Description 1981 * Return a user or a kernel stack in bpf program provided buffer. 1982 * To achieve this, the helper needs *ctx*, which is a pointer 1983 * to the context on which the tracing program is executed. 1984 * To store the stacktrace, the bpf program provides *buf* with 1985 * a nonnegative *size*. 1986 * 1987 * The last argument, *flags*, holds the number of stack frames to 1988 * skip (from 0 to 255), masked with 1989 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1990 * the following flags: 1991 * 1992 * **BPF_F_USER_STACK** 1993 * Collect a user space stack instead of a kernel stack. 1994 * **BPF_F_USER_BUILD_ID** 1995 * Collect buildid+offset instead of ips for user stack, 1996 * only valid if **BPF_F_USER_STACK** is also specified. 1997 * 1998 * **bpf_get_stack**\ () can collect up to 1999 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 2000 * to sufficient large buffer size. Note that 2001 * this limit can be controlled with the **sysctl** program, and 2002 * that it should be manually increased in order to profile long 2003 * user stacks (such as stacks for Java programs). To do so, use: 2004 * 2005 * :: 2006 * 2007 * # sysctl kernel.perf_event_max_stack=<new value> 2008 * Return 2009 * A non-negative value equal to or less than *size* on success, 2010 * or a negative error in case of failure. 2011 * 2012 * int bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header) 2013 * Description 2014 * This helper is similar to **bpf_skb_load_bytes**\ () in that 2015 * it provides an easy way to load *len* bytes from *offset* 2016 * from the packet associated to *skb*, into the buffer pointed 2017 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 2018 * a fifth argument *start_header* exists in order to select a 2019 * base offset to start from. *start_header* can be one of: 2020 * 2021 * **BPF_HDR_START_MAC** 2022 * Base offset to load data from is *skb*'s mac header. 2023 * **BPF_HDR_START_NET** 2024 * Base offset to load data from is *skb*'s network header. 2025 * 2026 * In general, "direct packet access" is the preferred method to 2027 * access packet data, however, this helper is in particular useful 2028 * in socket filters where *skb*\ **->data** does not always point 2029 * to the start of the mac header and where "direct packet access" 2030 * is not available. 2031 * Return 2032 * 0 on success, or a negative error in case of failure. 2033 * 2034 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 2035 * Description 2036 * Do FIB lookup in kernel tables using parameters in *params*. 2037 * If lookup is successful and result shows packet is to be 2038 * forwarded, the neighbor tables are searched for the nexthop. 2039 * If successful (ie., FIB lookup shows forwarding and nexthop 2040 * is resolved), the nexthop address is returned in ipv4_dst 2041 * or ipv6_dst based on family, smac is set to mac address of 2042 * egress device, dmac is set to nexthop mac address, rt_metric 2043 * is set to metric from route (IPv4/IPv6 only), and ifindex 2044 * is set to the device index of the nexthop from the FIB lookup. 2045 * 2046 * *plen* argument is the size of the passed in struct. 2047 * *flags* argument can be a combination of one or more of the 2048 * following values: 2049 * 2050 * **BPF_FIB_LOOKUP_DIRECT** 2051 * Do a direct table lookup vs full lookup using FIB 2052 * rules. 2053 * **BPF_FIB_LOOKUP_OUTPUT** 2054 * Perform lookup from an egress perspective (default is 2055 * ingress). 2056 * 2057 * *ctx* is either **struct xdp_md** for XDP programs or 2058 * **struct sk_buff** tc cls_act programs. 2059 * Return 2060 * * < 0 if any input argument is invalid 2061 * * 0 on success (packet is forwarded, nexthop neighbor exists) 2062 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 2063 * packet is not forwarded or needs assist from full stack 2064 * 2065 * int bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 2066 * Description 2067 * Add an entry to, or update a sockhash *map* referencing sockets. 2068 * The *skops* is used as a new value for the entry associated to 2069 * *key*. *flags* is one of: 2070 * 2071 * **BPF_NOEXIST** 2072 * The entry for *key* must not exist in the map. 2073 * **BPF_EXIST** 2074 * The entry for *key* must already exist in the map. 2075 * **BPF_ANY** 2076 * No condition on the existence of the entry for *key*. 2077 * 2078 * If the *map* has eBPF programs (parser and verdict), those will 2079 * be inherited by the socket being added. If the socket is 2080 * already attached to eBPF programs, this results in an error. 2081 * Return 2082 * 0 on success, or a negative error in case of failure. 2083 * 2084 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 2085 * Description 2086 * This helper is used in programs implementing policies at the 2087 * socket level. If the message *msg* is allowed to pass (i.e. if 2088 * the verdict eBPF program returns **SK_PASS**), redirect it to 2089 * the socket referenced by *map* (of type 2090 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2091 * egress interfaces can be used for redirection. The 2092 * **BPF_F_INGRESS** value in *flags* is used to make the 2093 * distinction (ingress path is selected if the flag is present, 2094 * egress path otherwise). This is the only flag supported for now. 2095 * Return 2096 * **SK_PASS** on success, or **SK_DROP** on error. 2097 * 2098 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 2099 * Description 2100 * This helper is used in programs implementing policies at the 2101 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 2102 * if the verdeict eBPF program returns **SK_PASS**), redirect it 2103 * to the socket referenced by *map* (of type 2104 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2105 * egress interfaces can be used for redirection. The 2106 * **BPF_F_INGRESS** value in *flags* is used to make the 2107 * distinction (ingress path is selected if the flag is present, 2108 * egress otherwise). This is the only flag supported for now. 2109 * Return 2110 * **SK_PASS** on success, or **SK_DROP** on error. 2111 * 2112 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 2113 * Description 2114 * Encapsulate the packet associated to *skb* within a Layer 3 2115 * protocol header. This header is provided in the buffer at 2116 * address *hdr*, with *len* its size in bytes. *type* indicates 2117 * the protocol of the header and can be one of: 2118 * 2119 * **BPF_LWT_ENCAP_SEG6** 2120 * IPv6 encapsulation with Segment Routing Header 2121 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2122 * the IPv6 header is computed by the kernel. 2123 * **BPF_LWT_ENCAP_SEG6_INLINE** 2124 * Only works if *skb* contains an IPv6 packet. Insert a 2125 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2126 * the IPv6 header. 2127 * **BPF_LWT_ENCAP_IP** 2128 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header 2129 * must be IPv4 or IPv6, followed by zero or more 2130 * additional headers, up to **LWT_BPF_MAX_HEADROOM** 2131 * total bytes in all prepended headers. Please note that 2132 * if **skb_is_gso**\ (*skb*) is true, no more than two 2133 * headers can be prepended, and the inner header, if 2134 * present, should be either GRE or UDP/GUE. 2135 * 2136 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs 2137 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can 2138 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and 2139 * **BPF_PROG_TYPE_LWT_XMIT**. 2140 * 2141 * A call to this helper is susceptible to change the underlying 2142 * packet buffer. Therefore, at load time, all checks on pointers 2143 * previously done by the verifier are invalidated and must be 2144 * performed again, if the helper is used in combination with 2145 * direct packet access. 2146 * Return 2147 * 0 on success, or a negative error in case of failure. 2148 * 2149 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2150 * Description 2151 * Store *len* bytes from address *from* into the packet 2152 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2153 * inside the outermost IPv6 Segment Routing Header can be 2154 * modified through this helper. 2155 * 2156 * A call to this helper is susceptible to change the underlying 2157 * packet buffer. Therefore, at load time, all checks on pointers 2158 * previously done by the verifier are invalidated and must be 2159 * performed again, if the helper is used in combination with 2160 * direct packet access. 2161 * Return 2162 * 0 on success, or a negative error in case of failure. 2163 * 2164 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2165 * Description 2166 * Adjust the size allocated to TLVs in the outermost IPv6 2167 * Segment Routing Header contained in the packet associated to 2168 * *skb*, at position *offset* by *delta* bytes. Only offsets 2169 * after the segments are accepted. *delta* can be as well 2170 * positive (growing) as negative (shrinking). 2171 * 2172 * A call to this helper is susceptible to change the underlying 2173 * packet buffer. Therefore, at load time, all checks on pointers 2174 * previously done by the verifier are invalidated and must be 2175 * performed again, if the helper is used in combination with 2176 * direct packet access. 2177 * Return 2178 * 0 on success, or a negative error in case of failure. 2179 * 2180 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2181 * Description 2182 * Apply an IPv6 Segment Routing action of type *action* to the 2183 * packet associated to *skb*. Each action takes a parameter 2184 * contained at address *param*, and of length *param_len* bytes. 2185 * *action* can be one of: 2186 * 2187 * **SEG6_LOCAL_ACTION_END_X** 2188 * End.X action: Endpoint with Layer-3 cross-connect. 2189 * Type of *param*: **struct in6_addr**. 2190 * **SEG6_LOCAL_ACTION_END_T** 2191 * End.T action: Endpoint with specific IPv6 table lookup. 2192 * Type of *param*: **int**. 2193 * **SEG6_LOCAL_ACTION_END_B6** 2194 * End.B6 action: Endpoint bound to an SRv6 policy. 2195 * Type of *param*: **struct ipv6_sr_hdr**. 2196 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2197 * End.B6.Encap action: Endpoint bound to an SRv6 2198 * encapsulation policy. 2199 * Type of *param*: **struct ipv6_sr_hdr**. 2200 * 2201 * A call to this helper is susceptible to change the underlying 2202 * packet buffer. Therefore, at load time, all checks on pointers 2203 * previously done by the verifier are invalidated and must be 2204 * performed again, if the helper is used in combination with 2205 * direct packet access. 2206 * Return 2207 * 0 on success, or a negative error in case of failure. 2208 * 2209 * int bpf_rc_repeat(void *ctx) 2210 * Description 2211 * This helper is used in programs implementing IR decoding, to 2212 * report a successfully decoded repeat key message. This delays 2213 * the generation of a key up event for previously generated 2214 * key down event. 2215 * 2216 * Some IR protocols like NEC have a special IR message for 2217 * repeating last button, for when a button is held down. 2218 * 2219 * The *ctx* should point to the lirc sample as passed into 2220 * the program. 2221 * 2222 * This helper is only available is the kernel was compiled with 2223 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2224 * "**y**". 2225 * Return 2226 * 0 2227 * 2228 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2229 * Description 2230 * This helper is used in programs implementing IR decoding, to 2231 * report a successfully decoded key press with *scancode*, 2232 * *toggle* value in the given *protocol*. The scancode will be 2233 * translated to a keycode using the rc keymap, and reported as 2234 * an input key down event. After a period a key up event is 2235 * generated. This period can be extended by calling either 2236 * **bpf_rc_keydown**\ () again with the same values, or calling 2237 * **bpf_rc_repeat**\ (). 2238 * 2239 * Some protocols include a toggle bit, in case the button was 2240 * released and pressed again between consecutive scancodes. 2241 * 2242 * The *ctx* should point to the lirc sample as passed into 2243 * the program. 2244 * 2245 * The *protocol* is the decoded protocol number (see 2246 * **enum rc_proto** for some predefined values). 2247 * 2248 * This helper is only available is the kernel was compiled with 2249 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2250 * "**y**". 2251 * Return 2252 * 0 2253 * 2254 * u64 bpf_skb_cgroup_id(struct sk_buff *skb) 2255 * Description 2256 * Return the cgroup v2 id of the socket associated with the *skb*. 2257 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2258 * helper for cgroup v1 by providing a tag resp. identifier that 2259 * can be matched on or used for map lookups e.g. to implement 2260 * policy. The cgroup v2 id of a given path in the hierarchy is 2261 * exposed in user space through the f_handle API in order to get 2262 * to the same 64-bit id. 2263 * 2264 * This helper can be used on TC egress path, but not on ingress, 2265 * and is available only if the kernel was compiled with the 2266 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2267 * Return 2268 * The id is returned or 0 in case the id could not be retrieved. 2269 * 2270 * u64 bpf_get_current_cgroup_id(void) 2271 * Return 2272 * A 64-bit integer containing the current cgroup id based 2273 * on the cgroup within which the current task is running. 2274 * 2275 * void *bpf_get_local_storage(void *map, u64 flags) 2276 * Description 2277 * Get the pointer to the local storage area. 2278 * The type and the size of the local storage is defined 2279 * by the *map* argument. 2280 * The *flags* meaning is specific for each map type, 2281 * and has to be 0 for cgroup local storage. 2282 * 2283 * Depending on the BPF program type, a local storage area 2284 * can be shared between multiple instances of the BPF program, 2285 * running simultaneously. 2286 * 2287 * A user should care about the synchronization by himself. 2288 * For example, by using the **BPF_STX_XADD** instruction to alter 2289 * the shared data. 2290 * Return 2291 * A pointer to the local storage area. 2292 * 2293 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2294 * Description 2295 * Select a **SO_REUSEPORT** socket from a 2296 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2297 * It checks the selected socket is matching the incoming 2298 * request in the socket buffer. 2299 * Return 2300 * 0 on success, or a negative error in case of failure. 2301 * 2302 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2303 * Description 2304 * Return id of cgroup v2 that is ancestor of cgroup associated 2305 * with the *skb* at the *ancestor_level*. The root cgroup is at 2306 * *ancestor_level* zero and each step down the hierarchy 2307 * increments the level. If *ancestor_level* == level of cgroup 2308 * associated with *skb*, then return value will be same as that 2309 * of **bpf_skb_cgroup_id**\ (). 2310 * 2311 * The helper is useful to implement policies based on cgroups 2312 * that are upper in hierarchy than immediate cgroup associated 2313 * with *skb*. 2314 * 2315 * The format of returned id and helper limitations are same as in 2316 * **bpf_skb_cgroup_id**\ (). 2317 * Return 2318 * The id is returned or 0 in case the id could not be retrieved. 2319 * 2320 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2321 * Description 2322 * Look for TCP socket matching *tuple*, optionally in a child 2323 * network namespace *netns*. The return value must be checked, 2324 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2325 * 2326 * The *ctx* should point to the context of the program, such as 2327 * the skb or socket (depending on the hook in use). This is used 2328 * to determine the base network namespace for the lookup. 2329 * 2330 * *tuple_size* must be one of: 2331 * 2332 * **sizeof**\ (*tuple*\ **->ipv4**) 2333 * Look for an IPv4 socket. 2334 * **sizeof**\ (*tuple*\ **->ipv6**) 2335 * Look for an IPv6 socket. 2336 * 2337 * If the *netns* is a negative signed 32-bit integer, then the 2338 * socket lookup table in the netns associated with the *ctx* will 2339 * will be used. For the TC hooks, this is the netns of the device 2340 * in the skb. For socket hooks, this is the netns of the socket. 2341 * If *netns* is any other signed 32-bit value greater than or 2342 * equal to zero then it specifies the ID of the netns relative to 2343 * the netns associated with the *ctx*. *netns* values beyond the 2344 * range of 32-bit integers are reserved for future use. 2345 * 2346 * All values for *flags* are reserved for future usage, and must 2347 * be left at zero. 2348 * 2349 * This helper is available only if the kernel was compiled with 2350 * **CONFIG_NET** configuration option. 2351 * Return 2352 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2353 * For sockets with reuseport option, the **struct bpf_sock** 2354 * result is from *reuse*\ **->socks**\ [] using the hash of the 2355 * tuple. 2356 * 2357 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2358 * Description 2359 * Look for UDP socket matching *tuple*, optionally in a child 2360 * network namespace *netns*. The return value must be checked, 2361 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2362 * 2363 * The *ctx* should point to the context of the program, such as 2364 * the skb or socket (depending on the hook in use). This is used 2365 * to determine the base network namespace for the lookup. 2366 * 2367 * *tuple_size* must be one of: 2368 * 2369 * **sizeof**\ (*tuple*\ **->ipv4**) 2370 * Look for an IPv4 socket. 2371 * **sizeof**\ (*tuple*\ **->ipv6**) 2372 * Look for an IPv6 socket. 2373 * 2374 * If the *netns* is a negative signed 32-bit integer, then the 2375 * socket lookup table in the netns associated with the *ctx* will 2376 * will be used. For the TC hooks, this is the netns of the device 2377 * in the skb. For socket hooks, this is the netns of the socket. 2378 * If *netns* is any other signed 32-bit value greater than or 2379 * equal to zero then it specifies the ID of the netns relative to 2380 * the netns associated with the *ctx*. *netns* values beyond the 2381 * range of 32-bit integers are reserved for future use. 2382 * 2383 * All values for *flags* are reserved for future usage, and must 2384 * be left at zero. 2385 * 2386 * This helper is available only if the kernel was compiled with 2387 * **CONFIG_NET** configuration option. 2388 * Return 2389 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2390 * For sockets with reuseport option, the **struct bpf_sock** 2391 * result is from *reuse*\ **->socks**\ [] using the hash of the 2392 * tuple. 2393 * 2394 * int bpf_sk_release(struct bpf_sock *sock) 2395 * Description 2396 * Release the reference held by *sock*. *sock* must be a 2397 * non-**NULL** pointer that was returned from 2398 * **bpf_sk_lookup_xxx**\ (). 2399 * Return 2400 * 0 on success, or a negative error in case of failure. 2401 * 2402 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 2403 * Description 2404 * Push an element *value* in *map*. *flags* is one of: 2405 * 2406 * **BPF_EXIST** 2407 * If the queue/stack is full, the oldest element is 2408 * removed to make room for this. 2409 * Return 2410 * 0 on success, or a negative error in case of failure. 2411 * 2412 * int bpf_map_pop_elem(struct bpf_map *map, void *value) 2413 * Description 2414 * Pop an element from *map*. 2415 * Return 2416 * 0 on success, or a negative error in case of failure. 2417 * 2418 * int bpf_map_peek_elem(struct bpf_map *map, void *value) 2419 * Description 2420 * Get an element from *map* without removing it. 2421 * Return 2422 * 0 on success, or a negative error in case of failure. 2423 * 2424 * int bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags) 2425 * Description 2426 * For socket policies, insert *len* bytes into *msg* at offset 2427 * *start*. 2428 * 2429 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2430 * *msg* it may want to insert metadata or options into the *msg*. 2431 * This can later be read and used by any of the lower layer BPF 2432 * hooks. 2433 * 2434 * This helper may fail if under memory pressure (a malloc 2435 * fails) in these cases BPF programs will get an appropriate 2436 * error and BPF programs will need to handle them. 2437 * Return 2438 * 0 on success, or a negative error in case of failure. 2439 * 2440 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags) 2441 * Description 2442 * Will remove *len* bytes from a *msg* starting at byte *start*. 2443 * This may result in **ENOMEM** errors under certain situations if 2444 * an allocation and copy are required due to a full ring buffer. 2445 * However, the helper will try to avoid doing the allocation 2446 * if possible. Other errors can occur if input parameters are 2447 * invalid either due to *start* byte not being valid part of *msg* 2448 * payload and/or *pop* value being to large. 2449 * Return 2450 * 0 on success, or a negative error in case of failure. 2451 * 2452 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2453 * Description 2454 * This helper is used in programs implementing IR decoding, to 2455 * report a successfully decoded pointer movement. 2456 * 2457 * The *ctx* should point to the lirc sample as passed into 2458 * the program. 2459 * 2460 * This helper is only available is the kernel was compiled with 2461 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2462 * "**y**". 2463 * Return 2464 * 0 2465 * 2466 * int bpf_spin_lock(struct bpf_spin_lock *lock) 2467 * Description 2468 * Acquire a spinlock represented by the pointer *lock*, which is 2469 * stored as part of a value of a map. Taking the lock allows to 2470 * safely update the rest of the fields in that value. The 2471 * spinlock can (and must) later be released with a call to 2472 * **bpf_spin_unlock**\ (\ *lock*\ ). 2473 * 2474 * Spinlocks in BPF programs come with a number of restrictions 2475 * and constraints: 2476 * 2477 * * **bpf_spin_lock** objects are only allowed inside maps of 2478 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this 2479 * list could be extended in the future). 2480 * * BTF description of the map is mandatory. 2481 * * The BPF program can take ONE lock at a time, since taking two 2482 * or more could cause dead locks. 2483 * * Only one **struct bpf_spin_lock** is allowed per map element. 2484 * * When the lock is taken, calls (either BPF to BPF or helpers) 2485 * are not allowed. 2486 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not 2487 * allowed inside a spinlock-ed region. 2488 * * The BPF program MUST call **bpf_spin_unlock**\ () to release 2489 * the lock, on all execution paths, before it returns. 2490 * * The BPF program can access **struct bpf_spin_lock** only via 2491 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ () 2492 * helpers. Loading or storing data into the **struct 2493 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed. 2494 * * To use the **bpf_spin_lock**\ () helper, the BTF description 2495 * of the map value must be a struct and have **struct 2496 * bpf_spin_lock** *anyname*\ **;** field at the top level. 2497 * Nested lock inside another struct is not allowed. 2498 * * The **struct bpf_spin_lock** *lock* field in a map value must 2499 * be aligned on a multiple of 4 bytes in that value. 2500 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy 2501 * the **bpf_spin_lock** field to user space. 2502 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from 2503 * a BPF program, do not update the **bpf_spin_lock** field. 2504 * * **bpf_spin_lock** cannot be on the stack or inside a 2505 * networking packet (it can only be inside of a map values). 2506 * * **bpf_spin_lock** is available to root only. 2507 * * Tracing programs and socket filter programs cannot use 2508 * **bpf_spin_lock**\ () due to insufficient preemption checks 2509 * (but this may change in the future). 2510 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map. 2511 * Return 2512 * 0 2513 * 2514 * int bpf_spin_unlock(struct bpf_spin_lock *lock) 2515 * Description 2516 * Release the *lock* previously locked by a call to 2517 * **bpf_spin_lock**\ (\ *lock*\ ). 2518 * Return 2519 * 0 2520 * 2521 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk) 2522 * Description 2523 * This helper gets a **struct bpf_sock** pointer such 2524 * that all the fields in this **bpf_sock** can be accessed. 2525 * Return 2526 * A **struct bpf_sock** pointer on success, or **NULL** in 2527 * case of failure. 2528 * 2529 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk) 2530 * Description 2531 * This helper gets a **struct bpf_tcp_sock** pointer from a 2532 * **struct bpf_sock** pointer. 2533 * Return 2534 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in 2535 * case of failure. 2536 * 2537 * int bpf_skb_ecn_set_ce(struct sk_buff *skb) 2538 * Description 2539 * Set ECN (Explicit Congestion Notification) field of IP header 2540 * to **CE** (Congestion Encountered) if current value is **ECT** 2541 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6 2542 * and IPv4. 2543 * Return 2544 * 1 if the **CE** flag is set (either by the current helper call 2545 * or because it was already present), 0 if it is not set. 2546 * 2547 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk) 2548 * Description 2549 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state. 2550 * **bpf_sk_release**\ () is unnecessary and not allowed. 2551 * Return 2552 * A **struct bpf_sock** pointer on success, or **NULL** in 2553 * case of failure. 2554 * 2555 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2556 * Description 2557 * Look for TCP socket matching *tuple*, optionally in a child 2558 * network namespace *netns*. The return value must be checked, 2559 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2560 * 2561 * This function is identical to **bpf_sk_lookup_tcp**\ (), except 2562 * that it also returns timewait or request sockets. Use 2563 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the 2564 * full structure. 2565 * 2566 * This helper is available only if the kernel was compiled with 2567 * **CONFIG_NET** configuration option. 2568 * Return 2569 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2570 * For sockets with reuseport option, the **struct bpf_sock** 2571 * result is from *reuse*\ **->socks**\ [] using the hash of the 2572 * tuple. 2573 * 2574 * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2575 * Description 2576 * Check whether *iph* and *th* contain a valid SYN cookie ACK for 2577 * the listening socket in *sk*. 2578 * 2579 * *iph* points to the start of the IPv4 or IPv6 header, while 2580 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2581 * **sizeof**\ (**struct ip6hdr**). 2582 * 2583 * *th* points to the start of the TCP header, while *th_len* 2584 * contains **sizeof**\ (**struct tcphdr**). 2585 * 2586 * Return 2587 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative 2588 * error otherwise. 2589 * 2590 * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags) 2591 * Description 2592 * Get name of sysctl in /proc/sys/ and copy it into provided by 2593 * program buffer *buf* of size *buf_len*. 2594 * 2595 * The buffer is always NUL terminated, unless it's zero-sized. 2596 * 2597 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is 2598 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name 2599 * only (e.g. "tcp_mem"). 2600 * Return 2601 * Number of character copied (not including the trailing NUL). 2602 * 2603 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2604 * truncated name in this case). 2605 * 2606 * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2607 * Description 2608 * Get current value of sysctl as it is presented in /proc/sys 2609 * (incl. newline, etc), and copy it as a string into provided 2610 * by program buffer *buf* of size *buf_len*. 2611 * 2612 * The whole value is copied, no matter what file position user 2613 * space issued e.g. sys_read at. 2614 * 2615 * The buffer is always NUL terminated, unless it's zero-sized. 2616 * Return 2617 * Number of character copied (not including the trailing NUL). 2618 * 2619 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2620 * truncated name in this case). 2621 * 2622 * **-EINVAL** if current value was unavailable, e.g. because 2623 * sysctl is uninitialized and read returns -EIO for it. 2624 * 2625 * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2626 * Description 2627 * Get new value being written by user space to sysctl (before 2628 * the actual write happens) and copy it as a string into 2629 * provided by program buffer *buf* of size *buf_len*. 2630 * 2631 * User space may write new value at file position > 0. 2632 * 2633 * The buffer is always NUL terminated, unless it's zero-sized. 2634 * Return 2635 * Number of character copied (not including the trailing NUL). 2636 * 2637 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2638 * truncated name in this case). 2639 * 2640 * **-EINVAL** if sysctl is being read. 2641 * 2642 * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len) 2643 * Description 2644 * Override new value being written by user space to sysctl with 2645 * value provided by program in buffer *buf* of size *buf_len*. 2646 * 2647 * *buf* should contain a string in same form as provided by user 2648 * space on sysctl write. 2649 * 2650 * User space may write new value at file position > 0. To override 2651 * the whole sysctl value file position should be set to zero. 2652 * Return 2653 * 0 on success. 2654 * 2655 * **-E2BIG** if the *buf_len* is too big. 2656 * 2657 * **-EINVAL** if sysctl is being read. 2658 * 2659 * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res) 2660 * Description 2661 * Convert the initial part of the string from buffer *buf* of 2662 * size *buf_len* to a long integer according to the given base 2663 * and save the result in *res*. 2664 * 2665 * The string may begin with an arbitrary amount of white space 2666 * (as determined by **isspace**\ (3)) followed by a single 2667 * optional '**-**' sign. 2668 * 2669 * Five least significant bits of *flags* encode base, other bits 2670 * are currently unused. 2671 * 2672 * Base must be either 8, 10, 16 or 0 to detect it automatically 2673 * similar to user space **strtol**\ (3). 2674 * Return 2675 * Number of characters consumed on success. Must be positive but 2676 * no more than *buf_len*. 2677 * 2678 * **-EINVAL** if no valid digits were found or unsupported base 2679 * was provided. 2680 * 2681 * **-ERANGE** if resulting value was out of range. 2682 * 2683 * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res) 2684 * Description 2685 * Convert the initial part of the string from buffer *buf* of 2686 * size *buf_len* to an unsigned long integer according to the 2687 * given base and save the result in *res*. 2688 * 2689 * The string may begin with an arbitrary amount of white space 2690 * (as determined by **isspace**\ (3)). 2691 * 2692 * Five least significant bits of *flags* encode base, other bits 2693 * are currently unused. 2694 * 2695 * Base must be either 8, 10, 16 or 0 to detect it automatically 2696 * similar to user space **strtoul**\ (3). 2697 * Return 2698 * Number of characters consumed on success. Must be positive but 2699 * no more than *buf_len*. 2700 * 2701 * **-EINVAL** if no valid digits were found or unsupported base 2702 * was provided. 2703 * 2704 * **-ERANGE** if resulting value was out of range. 2705 * 2706 * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags) 2707 * Description 2708 * Get a bpf-local-storage from a *sk*. 2709 * 2710 * Logically, it could be thought of getting the value from 2711 * a *map* with *sk* as the **key**. From this 2712 * perspective, the usage is not much different from 2713 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this 2714 * helper enforces the key must be a full socket and the map must 2715 * be a **BPF_MAP_TYPE_SK_STORAGE** also. 2716 * 2717 * Underneath, the value is stored locally at *sk* instead of 2718 * the *map*. The *map* is used as the bpf-local-storage 2719 * "type". The bpf-local-storage "type" (i.e. the *map*) is 2720 * searched against all bpf-local-storages residing at *sk*. 2721 * 2722 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be 2723 * used such that a new bpf-local-storage will be 2724 * created if one does not exist. *value* can be used 2725 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify 2726 * the initial value of a bpf-local-storage. If *value* is 2727 * **NULL**, the new bpf-local-storage will be zero initialized. 2728 * Return 2729 * A bpf-local-storage pointer is returned on success. 2730 * 2731 * **NULL** if not found or there was an error in adding 2732 * a new bpf-local-storage. 2733 * 2734 * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk) 2735 * Description 2736 * Delete a bpf-local-storage from a *sk*. 2737 * Return 2738 * 0 on success. 2739 * 2740 * **-ENOENT** if the bpf-local-storage cannot be found. 2741 * 2742 * int bpf_send_signal(u32 sig) 2743 * Description 2744 * Send signal *sig* to the process of the current task. 2745 * The signal may be delivered to any of this process's threads. 2746 * Return 2747 * 0 on success or successfully queued. 2748 * 2749 * **-EBUSY** if work queue under nmi is full. 2750 * 2751 * **-EINVAL** if *sig* is invalid. 2752 * 2753 * **-EPERM** if no permission to send the *sig*. 2754 * 2755 * **-EAGAIN** if bpf program can try again. 2756 * 2757 * s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2758 * Description 2759 * Try to issue a SYN cookie for the packet with corresponding 2760 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*. 2761 * 2762 * *iph* points to the start of the IPv4 or IPv6 header, while 2763 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2764 * **sizeof**\ (**struct ip6hdr**). 2765 * 2766 * *th* points to the start of the TCP header, while *th_len* 2767 * contains the length of the TCP header. 2768 * 2769 * Return 2770 * On success, lower 32 bits hold the generated SYN cookie in 2771 * followed by 16 bits which hold the MSS value for that cookie, 2772 * and the top 16 bits are unused. 2773 * 2774 * On failure, the returned value is one of the following: 2775 * 2776 * **-EINVAL** SYN cookie cannot be issued due to error 2777 * 2778 * **-ENOENT** SYN cookie should not be issued (no SYN flood) 2779 * 2780 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies 2781 * 2782 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6 2783 * 2784 * int bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 2785 * Description 2786 * Write raw *data* blob into a special BPF perf event held by 2787 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 2788 * event must have the following attributes: **PERF_SAMPLE_RAW** 2789 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 2790 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 2791 * 2792 * The *flags* are used to indicate the index in *map* for which 2793 * the value must be put, masked with **BPF_F_INDEX_MASK**. 2794 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 2795 * to indicate that the index of the current CPU core should be 2796 * used. 2797 * 2798 * The value to write, of *size*, is passed through eBPF stack and 2799 * pointed by *data*. 2800 * 2801 * *ctx* is a pointer to in-kernel struct sk_buff. 2802 * 2803 * This helper is similar to **bpf_perf_event_output**\ () but 2804 * restricted to raw_tracepoint bpf programs. 2805 * Return 2806 * 0 on success, or a negative error in case of failure. 2807 * 2808 * int bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr) 2809 * Description 2810 * Safely attempt to read *size* bytes from user space address 2811 * *unsafe_ptr* and store the data in *dst*. 2812 * Return 2813 * 0 on success, or a negative error in case of failure. 2814 * 2815 * int bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr) 2816 * Description 2817 * Safely attempt to read *size* bytes from kernel space address 2818 * *unsafe_ptr* and store the data in *dst*. 2819 * Return 2820 * 0 on success, or a negative error in case of failure. 2821 * 2822 * int bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr) 2823 * Description 2824 * Copy a NUL terminated string from an unsafe user address 2825 * *unsafe_ptr* to *dst*. The *size* should include the 2826 * terminating NUL byte. In case the string length is smaller than 2827 * *size*, the target is not padded with further NUL bytes. If the 2828 * string length is larger than *size*, just *size*-1 bytes are 2829 * copied and the last byte is set to NUL. 2830 * 2831 * On success, the length of the copied string is returned. This 2832 * makes this helper useful in tracing programs for reading 2833 * strings, and more importantly to get its length at runtime. See 2834 * the following snippet: 2835 * 2836 * :: 2837 * 2838 * SEC("kprobe/sys_open") 2839 * void bpf_sys_open(struct pt_regs *ctx) 2840 * { 2841 * char buf[PATHLEN]; // PATHLEN is defined to 256 2842 * int res = bpf_probe_read_user_str(buf, sizeof(buf), 2843 * ctx->di); 2844 * 2845 * // Consume buf, for example push it to 2846 * // userspace via bpf_perf_event_output(); we 2847 * // can use res (the string length) as event 2848 * // size, after checking its boundaries. 2849 * } 2850 * 2851 * In comparison, using **bpf_probe_read_user()** helper here 2852 * instead to read the string would require to estimate the length 2853 * at compile time, and would often result in copying more memory 2854 * than necessary. 2855 * 2856 * Another useful use case is when parsing individual process 2857 * arguments or individual environment variables navigating 2858 * *current*\ **->mm->arg_start** and *current*\ 2859 * **->mm->env_start**: using this helper and the return value, 2860 * one can quickly iterate at the right offset of the memory area. 2861 * Return 2862 * On success, the strictly positive length of the string, 2863 * including the trailing NUL character. On error, a negative 2864 * value. 2865 * 2866 * int bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr) 2867 * Description 2868 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr* 2869 * to *dst*. Same semantics as with bpf_probe_read_user_str() apply. 2870 * Return 2871 * On success, the strictly positive length of the string, including 2872 * the trailing NUL character. On error, a negative value. 2873 * 2874 * int bpf_tcp_send_ack(void *tp, u32 rcv_nxt) 2875 * Description 2876 * Send out a tcp-ack. *tp* is the in-kernel struct tcp_sock. 2877 * *rcv_nxt* is the ack_seq to be sent out. 2878 * Return 2879 * 0 on success, or a negative error in case of failure. 2880 * 2881 * int bpf_send_signal_thread(u32 sig) 2882 * Description 2883 * Send signal *sig* to the thread corresponding to the current task. 2884 * Return 2885 * 0 on success or successfully queued. 2886 * 2887 * **-EBUSY** if work queue under nmi is full. 2888 * 2889 * **-EINVAL** if *sig* is invalid. 2890 * 2891 * **-EPERM** if no permission to send the *sig*. 2892 * 2893 * **-EAGAIN** if bpf program can try again. 2894 * 2895 * u64 bpf_jiffies64(void) 2896 * Description 2897 * Obtain the 64bit jiffies 2898 * Return 2899 * The 64 bit jiffies 2900 * 2901 * int bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags) 2902 * Description 2903 * For an eBPF program attached to a perf event, retrieve the 2904 * branch records (struct perf_branch_entry) associated to *ctx* 2905 * and store it in the buffer pointed by *buf* up to size 2906 * *size* bytes. 2907 * Return 2908 * On success, number of bytes written to *buf*. On error, a 2909 * negative value. 2910 * 2911 * The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to 2912 * instead return the number of bytes required to store all the 2913 * branch entries. If this flag is set, *buf* may be NULL. 2914 * 2915 * **-EINVAL** if arguments invalid or **size** not a multiple 2916 * of sizeof(struct perf_branch_entry). 2917 * 2918 * **-ENOENT** if architecture does not support branch records. 2919 * 2920 * int bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size) 2921 * Description 2922 * Returns 0 on success, values for *pid* and *tgid* as seen from the current 2923 * *namespace* will be returned in *nsdata*. 2924 * 2925 * On failure, the returned value is one of the following: 2926 * 2927 * **-EINVAL** if dev and inum supplied don't match dev_t and inode number 2928 * with nsfs of current task, or if dev conversion to dev_t lost high bits. 2929 * 2930 * **-ENOENT** if pidns does not exists for the current task. 2931 * 2932 * int bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 2933 * Description 2934 * Write raw *data* blob into a special BPF perf event held by 2935 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 2936 * event must have the following attributes: **PERF_SAMPLE_RAW** 2937 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 2938 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 2939 * 2940 * The *flags* are used to indicate the index in *map* for which 2941 * the value must be put, masked with **BPF_F_INDEX_MASK**. 2942 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 2943 * to indicate that the index of the current CPU core should be 2944 * used. 2945 * 2946 * The value to write, of *size*, is passed through eBPF stack and 2947 * pointed by *data*. 2948 * 2949 * *ctx* is a pointer to in-kernel struct xdp_buff. 2950 * 2951 * This helper is similar to **bpf_perf_eventoutput**\ () but 2952 * restricted to raw_tracepoint bpf programs. 2953 * Return 2954 * 0 on success, or a negative error in case of failure. 2955 * 2956 * u64 bpf_get_netns_cookie(void *ctx) 2957 * Description 2958 * Retrieve the cookie (generated by the kernel) of the network 2959 * namespace the input *ctx* is associated with. The network 2960 * namespace cookie remains stable for its lifetime and provides 2961 * a global identifier that can be assumed unique. If *ctx* is 2962 * NULL, then the helper returns the cookie for the initial 2963 * network namespace. The cookie itself is very similar to that 2964 * of bpf_get_socket_cookie() helper, but for network namespaces 2965 * instead of sockets. 2966 * Return 2967 * A 8-byte long opaque number. 2968 * 2969 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level) 2970 * Description 2971 * Return id of cgroup v2 that is ancestor of the cgroup associated 2972 * with the current task at the *ancestor_level*. The root cgroup 2973 * is at *ancestor_level* zero and each step down the hierarchy 2974 * increments the level. If *ancestor_level* == level of cgroup 2975 * associated with the current task, then return value will be the 2976 * same as that of **bpf_get_current_cgroup_id**\ (). 2977 * 2978 * The helper is useful to implement policies based on cgroups 2979 * that are upper in hierarchy than immediate cgroup associated 2980 * with the current task. 2981 * 2982 * The format of returned id and helper limitations are same as in 2983 * **bpf_get_current_cgroup_id**\ (). 2984 * Return 2985 * The id is returned or 0 in case the id could not be retrieved. 2986 */ 2987 #define __BPF_FUNC_MAPPER(FN) \ 2988 FN(unspec), \ 2989 FN(map_lookup_elem), \ 2990 FN(map_update_elem), \ 2991 FN(map_delete_elem), \ 2992 FN(probe_read), \ 2993 FN(ktime_get_ns), \ 2994 FN(trace_printk), \ 2995 FN(get_prandom_u32), \ 2996 FN(get_smp_processor_id), \ 2997 FN(skb_store_bytes), \ 2998 FN(l3_csum_replace), \ 2999 FN(l4_csum_replace), \ 3000 FN(tail_call), \ 3001 FN(clone_redirect), \ 3002 FN(get_current_pid_tgid), \ 3003 FN(get_current_uid_gid), \ 3004 FN(get_current_comm), \ 3005 FN(get_cgroup_classid), \ 3006 FN(skb_vlan_push), \ 3007 FN(skb_vlan_pop), \ 3008 FN(skb_get_tunnel_key), \ 3009 FN(skb_set_tunnel_key), \ 3010 FN(perf_event_read), \ 3011 FN(redirect), \ 3012 FN(get_route_realm), \ 3013 FN(perf_event_output), \ 3014 FN(skb_load_bytes), \ 3015 FN(get_stackid), \ 3016 FN(csum_diff), \ 3017 FN(skb_get_tunnel_opt), \ 3018 FN(skb_set_tunnel_opt), \ 3019 FN(skb_change_proto), \ 3020 FN(skb_change_type), \ 3021 FN(skb_under_cgroup), \ 3022 FN(get_hash_recalc), \ 3023 FN(get_current_task), \ 3024 FN(probe_write_user), \ 3025 FN(current_task_under_cgroup), \ 3026 FN(skb_change_tail), \ 3027 FN(skb_pull_data), \ 3028 FN(csum_update), \ 3029 FN(set_hash_invalid), \ 3030 FN(get_numa_node_id), \ 3031 FN(skb_change_head), \ 3032 FN(xdp_adjust_head), \ 3033 FN(probe_read_str), \ 3034 FN(get_socket_cookie), \ 3035 FN(get_socket_uid), \ 3036 FN(set_hash), \ 3037 FN(setsockopt), \ 3038 FN(skb_adjust_room), \ 3039 FN(redirect_map), \ 3040 FN(sk_redirect_map), \ 3041 FN(sock_map_update), \ 3042 FN(xdp_adjust_meta), \ 3043 FN(perf_event_read_value), \ 3044 FN(perf_prog_read_value), \ 3045 FN(getsockopt), \ 3046 FN(override_return), \ 3047 FN(sock_ops_cb_flags_set), \ 3048 FN(msg_redirect_map), \ 3049 FN(msg_apply_bytes), \ 3050 FN(msg_cork_bytes), \ 3051 FN(msg_pull_data), \ 3052 FN(bind), \ 3053 FN(xdp_adjust_tail), \ 3054 FN(skb_get_xfrm_state), \ 3055 FN(get_stack), \ 3056 FN(skb_load_bytes_relative), \ 3057 FN(fib_lookup), \ 3058 FN(sock_hash_update), \ 3059 FN(msg_redirect_hash), \ 3060 FN(sk_redirect_hash), \ 3061 FN(lwt_push_encap), \ 3062 FN(lwt_seg6_store_bytes), \ 3063 FN(lwt_seg6_adjust_srh), \ 3064 FN(lwt_seg6_action), \ 3065 FN(rc_repeat), \ 3066 FN(rc_keydown), \ 3067 FN(skb_cgroup_id), \ 3068 FN(get_current_cgroup_id), \ 3069 FN(get_local_storage), \ 3070 FN(sk_select_reuseport), \ 3071 FN(skb_ancestor_cgroup_id), \ 3072 FN(sk_lookup_tcp), \ 3073 FN(sk_lookup_udp), \ 3074 FN(sk_release), \ 3075 FN(map_push_elem), \ 3076 FN(map_pop_elem), \ 3077 FN(map_peek_elem), \ 3078 FN(msg_push_data), \ 3079 FN(msg_pop_data), \ 3080 FN(rc_pointer_rel), \ 3081 FN(spin_lock), \ 3082 FN(spin_unlock), \ 3083 FN(sk_fullsock), \ 3084 FN(tcp_sock), \ 3085 FN(skb_ecn_set_ce), \ 3086 FN(get_listener_sock), \ 3087 FN(skc_lookup_tcp), \ 3088 FN(tcp_check_syncookie), \ 3089 FN(sysctl_get_name), \ 3090 FN(sysctl_get_current_value), \ 3091 FN(sysctl_get_new_value), \ 3092 FN(sysctl_set_new_value), \ 3093 FN(strtol), \ 3094 FN(strtoul), \ 3095 FN(sk_storage_get), \ 3096 FN(sk_storage_delete), \ 3097 FN(send_signal), \ 3098 FN(tcp_gen_syncookie), \ 3099 FN(skb_output), \ 3100 FN(probe_read_user), \ 3101 FN(probe_read_kernel), \ 3102 FN(probe_read_user_str), \ 3103 FN(probe_read_kernel_str), \ 3104 FN(tcp_send_ack), \ 3105 FN(send_signal_thread), \ 3106 FN(jiffies64), \ 3107 FN(read_branch_records), \ 3108 FN(get_ns_current_pid_tgid), \ 3109 FN(xdp_output), \ 3110 FN(get_netns_cookie), \ 3111 FN(get_current_ancestor_cgroup_id), 3112 3113 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 3114 * function eBPF program intends to call 3115 */ 3116 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 3117 enum bpf_func_id { 3118 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 3119 __BPF_FUNC_MAX_ID, 3120 }; 3121 #undef __BPF_ENUM_FN 3122 3123 /* All flags used by eBPF helper functions, placed here. */ 3124 3125 /* BPF_FUNC_skb_store_bytes flags. */ 3126 enum { 3127 BPF_F_RECOMPUTE_CSUM = (1ULL << 0), 3128 BPF_F_INVALIDATE_HASH = (1ULL << 1), 3129 }; 3130 3131 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 3132 * First 4 bits are for passing the header field size. 3133 */ 3134 enum { 3135 BPF_F_HDR_FIELD_MASK = 0xfULL, 3136 }; 3137 3138 /* BPF_FUNC_l4_csum_replace flags. */ 3139 enum { 3140 BPF_F_PSEUDO_HDR = (1ULL << 4), 3141 BPF_F_MARK_MANGLED_0 = (1ULL << 5), 3142 BPF_F_MARK_ENFORCE = (1ULL << 6), 3143 }; 3144 3145 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 3146 enum { 3147 BPF_F_INGRESS = (1ULL << 0), 3148 }; 3149 3150 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 3151 enum { 3152 BPF_F_TUNINFO_IPV6 = (1ULL << 0), 3153 }; 3154 3155 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 3156 enum { 3157 BPF_F_SKIP_FIELD_MASK = 0xffULL, 3158 BPF_F_USER_STACK = (1ULL << 8), 3159 /* flags used by BPF_FUNC_get_stackid only. */ 3160 BPF_F_FAST_STACK_CMP = (1ULL << 9), 3161 BPF_F_REUSE_STACKID = (1ULL << 10), 3162 /* flags used by BPF_FUNC_get_stack only. */ 3163 BPF_F_USER_BUILD_ID = (1ULL << 11), 3164 }; 3165 3166 /* BPF_FUNC_skb_set_tunnel_key flags. */ 3167 enum { 3168 BPF_F_ZERO_CSUM_TX = (1ULL << 1), 3169 BPF_F_DONT_FRAGMENT = (1ULL << 2), 3170 BPF_F_SEQ_NUMBER = (1ULL << 3), 3171 }; 3172 3173 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 3174 * BPF_FUNC_perf_event_read_value flags. 3175 */ 3176 enum { 3177 BPF_F_INDEX_MASK = 0xffffffffULL, 3178 BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK, 3179 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 3180 BPF_F_CTXLEN_MASK = (0xfffffULL << 32), 3181 }; 3182 3183 /* Current network namespace */ 3184 enum { 3185 BPF_F_CURRENT_NETNS = (-1L), 3186 }; 3187 3188 /* BPF_FUNC_skb_adjust_room flags. */ 3189 enum { 3190 BPF_F_ADJ_ROOM_FIXED_GSO = (1ULL << 0), 3191 BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 = (1ULL << 1), 3192 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 = (1ULL << 2), 3193 BPF_F_ADJ_ROOM_ENCAP_L4_GRE = (1ULL << 3), 3194 BPF_F_ADJ_ROOM_ENCAP_L4_UDP = (1ULL << 4), 3195 }; 3196 3197 enum { 3198 BPF_ADJ_ROOM_ENCAP_L2_MASK = 0xff, 3199 BPF_ADJ_ROOM_ENCAP_L2_SHIFT = 56, 3200 }; 3201 3202 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \ 3203 BPF_ADJ_ROOM_ENCAP_L2_MASK) \ 3204 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT) 3205 3206 /* BPF_FUNC_sysctl_get_name flags. */ 3207 enum { 3208 BPF_F_SYSCTL_BASE_NAME = (1ULL << 0), 3209 }; 3210 3211 /* BPF_FUNC_sk_storage_get flags */ 3212 enum { 3213 BPF_SK_STORAGE_GET_F_CREATE = (1ULL << 0), 3214 }; 3215 3216 /* BPF_FUNC_read_branch_records flags. */ 3217 enum { 3218 BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0), 3219 }; 3220 3221 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 3222 enum bpf_adj_room_mode { 3223 BPF_ADJ_ROOM_NET, 3224 BPF_ADJ_ROOM_MAC, 3225 }; 3226 3227 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 3228 enum bpf_hdr_start_off { 3229 BPF_HDR_START_MAC, 3230 BPF_HDR_START_NET, 3231 }; 3232 3233 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 3234 enum bpf_lwt_encap_mode { 3235 BPF_LWT_ENCAP_SEG6, 3236 BPF_LWT_ENCAP_SEG6_INLINE, 3237 BPF_LWT_ENCAP_IP, 3238 }; 3239 3240 #define __bpf_md_ptr(type, name) \ 3241 union { \ 3242 type name; \ 3243 __u64 :64; \ 3244 } __attribute__((aligned(8))) 3245 3246 /* user accessible mirror of in-kernel sk_buff. 3247 * new fields can only be added to the end of this structure 3248 */ 3249 struct __sk_buff { 3250 __u32 len; 3251 __u32 pkt_type; 3252 __u32 mark; 3253 __u32 queue_mapping; 3254 __u32 protocol; 3255 __u32 vlan_present; 3256 __u32 vlan_tci; 3257 __u32 vlan_proto; 3258 __u32 priority; 3259 __u32 ingress_ifindex; 3260 __u32 ifindex; 3261 __u32 tc_index; 3262 __u32 cb[5]; 3263 __u32 hash; 3264 __u32 tc_classid; 3265 __u32 data; 3266 __u32 data_end; 3267 __u32 napi_id; 3268 3269 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 3270 __u32 family; 3271 __u32 remote_ip4; /* Stored in network byte order */ 3272 __u32 local_ip4; /* Stored in network byte order */ 3273 __u32 remote_ip6[4]; /* Stored in network byte order */ 3274 __u32 local_ip6[4]; /* Stored in network byte order */ 3275 __u32 remote_port; /* Stored in network byte order */ 3276 __u32 local_port; /* stored in host byte order */ 3277 /* ... here. */ 3278 3279 __u32 data_meta; 3280 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 3281 __u64 tstamp; 3282 __u32 wire_len; 3283 __u32 gso_segs; 3284 __bpf_md_ptr(struct bpf_sock *, sk); 3285 __u32 gso_size; 3286 }; 3287 3288 struct bpf_tunnel_key { 3289 __u32 tunnel_id; 3290 union { 3291 __u32 remote_ipv4; 3292 __u32 remote_ipv6[4]; 3293 }; 3294 __u8 tunnel_tos; 3295 __u8 tunnel_ttl; 3296 __u16 tunnel_ext; /* Padding, future use. */ 3297 __u32 tunnel_label; 3298 }; 3299 3300 /* user accessible mirror of in-kernel xfrm_state. 3301 * new fields can only be added to the end of this structure 3302 */ 3303 struct bpf_xfrm_state { 3304 __u32 reqid; 3305 __u32 spi; /* Stored in network byte order */ 3306 __u16 family; 3307 __u16 ext; /* Padding, future use. */ 3308 union { 3309 __u32 remote_ipv4; /* Stored in network byte order */ 3310 __u32 remote_ipv6[4]; /* Stored in network byte order */ 3311 }; 3312 }; 3313 3314 /* Generic BPF return codes which all BPF program types may support. 3315 * The values are binary compatible with their TC_ACT_* counter-part to 3316 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 3317 * programs. 3318 * 3319 * XDP is handled seprately, see XDP_*. 3320 */ 3321 enum bpf_ret_code { 3322 BPF_OK = 0, 3323 /* 1 reserved */ 3324 BPF_DROP = 2, 3325 /* 3-6 reserved */ 3326 BPF_REDIRECT = 7, 3327 /* >127 are reserved for prog type specific return codes. 3328 * 3329 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and 3330 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been 3331 * changed and should be routed based on its new L3 header. 3332 * (This is an L3 redirect, as opposed to L2 redirect 3333 * represented by BPF_REDIRECT above). 3334 */ 3335 BPF_LWT_REROUTE = 128, 3336 }; 3337 3338 struct bpf_sock { 3339 __u32 bound_dev_if; 3340 __u32 family; 3341 __u32 type; 3342 __u32 protocol; 3343 __u32 mark; 3344 __u32 priority; 3345 /* IP address also allows 1 and 2 bytes access */ 3346 __u32 src_ip4; 3347 __u32 src_ip6[4]; 3348 __u32 src_port; /* host byte order */ 3349 __u32 dst_port; /* network byte order */ 3350 __u32 dst_ip4; 3351 __u32 dst_ip6[4]; 3352 __u32 state; 3353 }; 3354 3355 struct bpf_tcp_sock { 3356 __u32 snd_cwnd; /* Sending congestion window */ 3357 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */ 3358 __u32 rtt_min; 3359 __u32 snd_ssthresh; /* Slow start size threshold */ 3360 __u32 rcv_nxt; /* What we want to receive next */ 3361 __u32 snd_nxt; /* Next sequence we send */ 3362 __u32 snd_una; /* First byte we want an ack for */ 3363 __u32 mss_cache; /* Cached effective mss, not including SACKS */ 3364 __u32 ecn_flags; /* ECN status bits. */ 3365 __u32 rate_delivered; /* saved rate sample: packets delivered */ 3366 __u32 rate_interval_us; /* saved rate sample: time elapsed */ 3367 __u32 packets_out; /* Packets which are "in flight" */ 3368 __u32 retrans_out; /* Retransmitted packets out */ 3369 __u32 total_retrans; /* Total retransmits for entire connection */ 3370 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn 3371 * total number of segments in. 3372 */ 3373 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn 3374 * total number of data segments in. 3375 */ 3376 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut 3377 * The total number of segments sent. 3378 */ 3379 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut 3380 * total number of data segments sent. 3381 */ 3382 __u32 lost_out; /* Lost packets */ 3383 __u32 sacked_out; /* SACK'd packets */ 3384 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived 3385 * sum(delta(rcv_nxt)), or how many bytes 3386 * were acked. 3387 */ 3388 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked 3389 * sum(delta(snd_una)), or how many bytes 3390 * were acked. 3391 */ 3392 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups 3393 * total number of DSACK blocks received 3394 */ 3395 __u32 delivered; /* Total data packets delivered incl. rexmits */ 3396 __u32 delivered_ce; /* Like the above but only ECE marked packets */ 3397 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */ 3398 }; 3399 3400 struct bpf_sock_tuple { 3401 union { 3402 struct { 3403 __be32 saddr; 3404 __be32 daddr; 3405 __be16 sport; 3406 __be16 dport; 3407 } ipv4; 3408 struct { 3409 __be32 saddr[4]; 3410 __be32 daddr[4]; 3411 __be16 sport; 3412 __be16 dport; 3413 } ipv6; 3414 }; 3415 }; 3416 3417 struct bpf_xdp_sock { 3418 __u32 queue_id; 3419 }; 3420 3421 #define XDP_PACKET_HEADROOM 256 3422 3423 /* User return codes for XDP prog type. 3424 * A valid XDP program must return one of these defined values. All other 3425 * return codes are reserved for future use. Unknown return codes will 3426 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 3427 */ 3428 enum xdp_action { 3429 XDP_ABORTED = 0, 3430 XDP_DROP, 3431 XDP_PASS, 3432 XDP_TX, 3433 XDP_REDIRECT, 3434 }; 3435 3436 /* user accessible metadata for XDP packet hook 3437 * new fields must be added to the end of this structure 3438 */ 3439 struct xdp_md { 3440 __u32 data; 3441 __u32 data_end; 3442 __u32 data_meta; 3443 /* Below access go through struct xdp_rxq_info */ 3444 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 3445 __u32 rx_queue_index; /* rxq->queue_index */ 3446 }; 3447 3448 enum sk_action { 3449 SK_DROP = 0, 3450 SK_PASS, 3451 }; 3452 3453 /* user accessible metadata for SK_MSG packet hook, new fields must 3454 * be added to the end of this structure 3455 */ 3456 struct sk_msg_md { 3457 __bpf_md_ptr(void *, data); 3458 __bpf_md_ptr(void *, data_end); 3459 3460 __u32 family; 3461 __u32 remote_ip4; /* Stored in network byte order */ 3462 __u32 local_ip4; /* Stored in network byte order */ 3463 __u32 remote_ip6[4]; /* Stored in network byte order */ 3464 __u32 local_ip6[4]; /* Stored in network byte order */ 3465 __u32 remote_port; /* Stored in network byte order */ 3466 __u32 local_port; /* stored in host byte order */ 3467 __u32 size; /* Total size of sk_msg */ 3468 }; 3469 3470 struct sk_reuseport_md { 3471 /* 3472 * Start of directly accessible data. It begins from 3473 * the tcp/udp header. 3474 */ 3475 __bpf_md_ptr(void *, data); 3476 /* End of directly accessible data */ 3477 __bpf_md_ptr(void *, data_end); 3478 /* 3479 * Total length of packet (starting from the tcp/udp header). 3480 * Note that the directly accessible bytes (data_end - data) 3481 * could be less than this "len". Those bytes could be 3482 * indirectly read by a helper "bpf_skb_load_bytes()". 3483 */ 3484 __u32 len; 3485 /* 3486 * Eth protocol in the mac header (network byte order). e.g. 3487 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 3488 */ 3489 __u32 eth_protocol; 3490 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 3491 __u32 bind_inany; /* Is sock bound to an INANY address? */ 3492 __u32 hash; /* A hash of the packet 4 tuples */ 3493 }; 3494 3495 #define BPF_TAG_SIZE 8 3496 3497 struct bpf_prog_info { 3498 __u32 type; 3499 __u32 id; 3500 __u8 tag[BPF_TAG_SIZE]; 3501 __u32 jited_prog_len; 3502 __u32 xlated_prog_len; 3503 __aligned_u64 jited_prog_insns; 3504 __aligned_u64 xlated_prog_insns; 3505 __u64 load_time; /* ns since boottime */ 3506 __u32 created_by_uid; 3507 __u32 nr_map_ids; 3508 __aligned_u64 map_ids; 3509 char name[BPF_OBJ_NAME_LEN]; 3510 __u32 ifindex; 3511 __u32 gpl_compatible:1; 3512 __u32 :31; /* alignment pad */ 3513 __u64 netns_dev; 3514 __u64 netns_ino; 3515 __u32 nr_jited_ksyms; 3516 __u32 nr_jited_func_lens; 3517 __aligned_u64 jited_ksyms; 3518 __aligned_u64 jited_func_lens; 3519 __u32 btf_id; 3520 __u32 func_info_rec_size; 3521 __aligned_u64 func_info; 3522 __u32 nr_func_info; 3523 __u32 nr_line_info; 3524 __aligned_u64 line_info; 3525 __aligned_u64 jited_line_info; 3526 __u32 nr_jited_line_info; 3527 __u32 line_info_rec_size; 3528 __u32 jited_line_info_rec_size; 3529 __u32 nr_prog_tags; 3530 __aligned_u64 prog_tags; 3531 __u64 run_time_ns; 3532 __u64 run_cnt; 3533 } __attribute__((aligned(8))); 3534 3535 struct bpf_map_info { 3536 __u32 type; 3537 __u32 id; 3538 __u32 key_size; 3539 __u32 value_size; 3540 __u32 max_entries; 3541 __u32 map_flags; 3542 char name[BPF_OBJ_NAME_LEN]; 3543 __u32 ifindex; 3544 __u32 btf_vmlinux_value_type_id; 3545 __u64 netns_dev; 3546 __u64 netns_ino; 3547 __u32 btf_id; 3548 __u32 btf_key_type_id; 3549 __u32 btf_value_type_id; 3550 } __attribute__((aligned(8))); 3551 3552 struct bpf_btf_info { 3553 __aligned_u64 btf; 3554 __u32 btf_size; 3555 __u32 id; 3556 } __attribute__((aligned(8))); 3557 3558 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 3559 * by user and intended to be used by socket (e.g. to bind to, depends on 3560 * attach attach type). 3561 */ 3562 struct bpf_sock_addr { 3563 __u32 user_family; /* Allows 4-byte read, but no write. */ 3564 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 3565 * Stored in network byte order. 3566 */ 3567 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write. 3568 * Stored in network byte order. 3569 */ 3570 __u32 user_port; /* Allows 4-byte read and write. 3571 * Stored in network byte order 3572 */ 3573 __u32 family; /* Allows 4-byte read, but no write */ 3574 __u32 type; /* Allows 4-byte read, but no write */ 3575 __u32 protocol; /* Allows 4-byte read, but no write */ 3576 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write. 3577 * Stored in network byte order. 3578 */ 3579 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write. 3580 * Stored in network byte order. 3581 */ 3582 __bpf_md_ptr(struct bpf_sock *, sk); 3583 }; 3584 3585 /* User bpf_sock_ops struct to access socket values and specify request ops 3586 * and their replies. 3587 * Some of this fields are in network (bigendian) byte order and may need 3588 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 3589 * New fields can only be added at the end of this structure 3590 */ 3591 struct bpf_sock_ops { 3592 __u32 op; 3593 union { 3594 __u32 args[4]; /* Optionally passed to bpf program */ 3595 __u32 reply; /* Returned by bpf program */ 3596 __u32 replylong[4]; /* Optionally returned by bpf prog */ 3597 }; 3598 __u32 family; 3599 __u32 remote_ip4; /* Stored in network byte order */ 3600 __u32 local_ip4; /* Stored in network byte order */ 3601 __u32 remote_ip6[4]; /* Stored in network byte order */ 3602 __u32 local_ip6[4]; /* Stored in network byte order */ 3603 __u32 remote_port; /* Stored in network byte order */ 3604 __u32 local_port; /* stored in host byte order */ 3605 __u32 is_fullsock; /* Some TCP fields are only valid if 3606 * there is a full socket. If not, the 3607 * fields read as zero. 3608 */ 3609 __u32 snd_cwnd; 3610 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 3611 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 3612 __u32 state; 3613 __u32 rtt_min; 3614 __u32 snd_ssthresh; 3615 __u32 rcv_nxt; 3616 __u32 snd_nxt; 3617 __u32 snd_una; 3618 __u32 mss_cache; 3619 __u32 ecn_flags; 3620 __u32 rate_delivered; 3621 __u32 rate_interval_us; 3622 __u32 packets_out; 3623 __u32 retrans_out; 3624 __u32 total_retrans; 3625 __u32 segs_in; 3626 __u32 data_segs_in; 3627 __u32 segs_out; 3628 __u32 data_segs_out; 3629 __u32 lost_out; 3630 __u32 sacked_out; 3631 __u32 sk_txhash; 3632 __u64 bytes_received; 3633 __u64 bytes_acked; 3634 __bpf_md_ptr(struct bpf_sock *, sk); 3635 }; 3636 3637 /* Definitions for bpf_sock_ops_cb_flags */ 3638 enum { 3639 BPF_SOCK_OPS_RTO_CB_FLAG = (1<<0), 3640 BPF_SOCK_OPS_RETRANS_CB_FLAG = (1<<1), 3641 BPF_SOCK_OPS_STATE_CB_FLAG = (1<<2), 3642 BPF_SOCK_OPS_RTT_CB_FLAG = (1<<3), 3643 /* Mask of all currently supported cb flags */ 3644 BPF_SOCK_OPS_ALL_CB_FLAGS = 0xF, 3645 }; 3646 3647 /* List of known BPF sock_ops operators. 3648 * New entries can only be added at the end 3649 */ 3650 enum { 3651 BPF_SOCK_OPS_VOID, 3652 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 3653 * -1 if default value should be used 3654 */ 3655 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 3656 * window (in packets) or -1 if default 3657 * value should be used 3658 */ 3659 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 3660 * active connection is initialized 3661 */ 3662 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 3663 * active connection is 3664 * established 3665 */ 3666 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 3667 * passive connection is 3668 * established 3669 */ 3670 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 3671 * needs ECN 3672 */ 3673 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 3674 * based on the path and may be 3675 * dependent on the congestion control 3676 * algorithm. In general it indicates 3677 * a congestion threshold. RTTs above 3678 * this indicate congestion 3679 */ 3680 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 3681 * Arg1: value of icsk_retransmits 3682 * Arg2: value of icsk_rto 3683 * Arg3: whether RTO has expired 3684 */ 3685 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 3686 * Arg1: sequence number of 1st byte 3687 * Arg2: # segments 3688 * Arg3: return value of 3689 * tcp_transmit_skb (0 => success) 3690 */ 3691 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 3692 * Arg1: old_state 3693 * Arg2: new_state 3694 */ 3695 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 3696 * socket transition to LISTEN state. 3697 */ 3698 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT. 3699 */ 3700 }; 3701 3702 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 3703 * changes between the TCP and BPF versions. Ideally this should never happen. 3704 * If it does, we need to add code to convert them before calling 3705 * the BPF sock_ops function. 3706 */ 3707 enum { 3708 BPF_TCP_ESTABLISHED = 1, 3709 BPF_TCP_SYN_SENT, 3710 BPF_TCP_SYN_RECV, 3711 BPF_TCP_FIN_WAIT1, 3712 BPF_TCP_FIN_WAIT2, 3713 BPF_TCP_TIME_WAIT, 3714 BPF_TCP_CLOSE, 3715 BPF_TCP_CLOSE_WAIT, 3716 BPF_TCP_LAST_ACK, 3717 BPF_TCP_LISTEN, 3718 BPF_TCP_CLOSING, /* Now a valid state */ 3719 BPF_TCP_NEW_SYN_RECV, 3720 3721 BPF_TCP_MAX_STATES /* Leave at the end! */ 3722 }; 3723 3724 enum { 3725 TCP_BPF_IW = 1001, /* Set TCP initial congestion window */ 3726 TCP_BPF_SNDCWND_CLAMP = 1002, /* Set sndcwnd_clamp */ 3727 }; 3728 3729 struct bpf_perf_event_value { 3730 __u64 counter; 3731 __u64 enabled; 3732 __u64 running; 3733 }; 3734 3735 enum { 3736 BPF_DEVCG_ACC_MKNOD = (1ULL << 0), 3737 BPF_DEVCG_ACC_READ = (1ULL << 1), 3738 BPF_DEVCG_ACC_WRITE = (1ULL << 2), 3739 }; 3740 3741 enum { 3742 BPF_DEVCG_DEV_BLOCK = (1ULL << 0), 3743 BPF_DEVCG_DEV_CHAR = (1ULL << 1), 3744 }; 3745 3746 struct bpf_cgroup_dev_ctx { 3747 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 3748 __u32 access_type; 3749 __u32 major; 3750 __u32 minor; 3751 }; 3752 3753 struct bpf_raw_tracepoint_args { 3754 __u64 args[0]; 3755 }; 3756 3757 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 3758 * OUTPUT: Do lookup from egress perspective; default is ingress 3759 */ 3760 enum { 3761 BPF_FIB_LOOKUP_DIRECT = (1U << 0), 3762 BPF_FIB_LOOKUP_OUTPUT = (1U << 1), 3763 }; 3764 3765 enum { 3766 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 3767 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 3768 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 3769 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 3770 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 3771 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 3772 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 3773 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 3774 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 3775 }; 3776 3777 struct bpf_fib_lookup { 3778 /* input: network family for lookup (AF_INET, AF_INET6) 3779 * output: network family of egress nexthop 3780 */ 3781 __u8 family; 3782 3783 /* set if lookup is to consider L4 data - e.g., FIB rules */ 3784 __u8 l4_protocol; 3785 __be16 sport; 3786 __be16 dport; 3787 3788 /* total length of packet from network header - used for MTU check */ 3789 __u16 tot_len; 3790 3791 /* input: L3 device index for lookup 3792 * output: device index from FIB lookup 3793 */ 3794 __u32 ifindex; 3795 3796 union { 3797 /* inputs to lookup */ 3798 __u8 tos; /* AF_INET */ 3799 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 3800 3801 /* output: metric of fib result (IPv4/IPv6 only) */ 3802 __u32 rt_metric; 3803 }; 3804 3805 union { 3806 __be32 ipv4_src; 3807 __u32 ipv6_src[4]; /* in6_addr; network order */ 3808 }; 3809 3810 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 3811 * network header. output: bpf_fib_lookup sets to gateway address 3812 * if FIB lookup returns gateway route 3813 */ 3814 union { 3815 __be32 ipv4_dst; 3816 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3817 }; 3818 3819 /* output */ 3820 __be16 h_vlan_proto; 3821 __be16 h_vlan_TCI; 3822 __u8 smac[6]; /* ETH_ALEN */ 3823 __u8 dmac[6]; /* ETH_ALEN */ 3824 }; 3825 3826 enum bpf_task_fd_type { 3827 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 3828 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 3829 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 3830 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 3831 BPF_FD_TYPE_UPROBE, /* filename + offset */ 3832 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 3833 }; 3834 3835 enum { 3836 BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG = (1U << 0), 3837 BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL = (1U << 1), 3838 BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP = (1U << 2), 3839 }; 3840 3841 struct bpf_flow_keys { 3842 __u16 nhoff; 3843 __u16 thoff; 3844 __u16 addr_proto; /* ETH_P_* of valid addrs */ 3845 __u8 is_frag; 3846 __u8 is_first_frag; 3847 __u8 is_encap; 3848 __u8 ip_proto; 3849 __be16 n_proto; 3850 __be16 sport; 3851 __be16 dport; 3852 union { 3853 struct { 3854 __be32 ipv4_src; 3855 __be32 ipv4_dst; 3856 }; 3857 struct { 3858 __u32 ipv6_src[4]; /* in6_addr; network order */ 3859 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3860 }; 3861 }; 3862 __u32 flags; 3863 __be32 flow_label; 3864 }; 3865 3866 struct bpf_func_info { 3867 __u32 insn_off; 3868 __u32 type_id; 3869 }; 3870 3871 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 3872 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 3873 3874 struct bpf_line_info { 3875 __u32 insn_off; 3876 __u32 file_name_off; 3877 __u32 line_off; 3878 __u32 line_col; 3879 }; 3880 3881 struct bpf_spin_lock { 3882 __u32 val; 3883 }; 3884 3885 struct bpf_sysctl { 3886 __u32 write; /* Sysctl is being read (= 0) or written (= 1). 3887 * Allows 1,2,4-byte read, but no write. 3888 */ 3889 __u32 file_pos; /* Sysctl file position to read from, write to. 3890 * Allows 1,2,4-byte read an 4-byte write. 3891 */ 3892 }; 3893 3894 struct bpf_sockopt { 3895 __bpf_md_ptr(struct bpf_sock *, sk); 3896 __bpf_md_ptr(void *, optval); 3897 __bpf_md_ptr(void *, optval_end); 3898 3899 __s32 level; 3900 __s32 optname; 3901 __s32 optlen; 3902 __s32 retval; 3903 }; 3904 3905 struct bpf_pidns_info { 3906 __u32 pid; 3907 __u32 tgid; 3908 }; 3909 #endif /* _UAPI__LINUX_BPF_H__ */ 3910