xref: /linux-6.15/include/uapi/linux/bpf.h (revision 4c236d5d)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_JMP32	0x06	/* jmp mode in word width */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_ATOMIC	0xc0	/* atomic memory ops - op type in immediate */
23 #define BPF_XADD	0xc0	/* exclusive add - legacy name */
24 
25 /* alu/jmp fields */
26 #define BPF_MOV		0xb0	/* mov reg to reg */
27 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
28 
29 /* change endianness of a register */
30 #define BPF_END		0xd0	/* flags for endianness conversion: */
31 #define BPF_TO_LE	0x00	/* convert to little-endian */
32 #define BPF_TO_BE	0x08	/* convert to big-endian */
33 #define BPF_FROM_LE	BPF_TO_LE
34 #define BPF_FROM_BE	BPF_TO_BE
35 
36 /* jmp encodings */
37 #define BPF_JNE		0x50	/* jump != */
38 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
39 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
40 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
41 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
42 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
43 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
44 #define BPF_CALL	0x80	/* function call */
45 #define BPF_EXIT	0x90	/* function return */
46 
47 /* atomic op type fields (stored in immediate) */
48 #define BPF_FETCH	0x01	/* not an opcode on its own, used to build others */
49 #define BPF_XCHG	(0xe0 | BPF_FETCH)	/* atomic exchange */
50 #define BPF_CMPXCHG	(0xf0 | BPF_FETCH)	/* atomic compare-and-write */
51 
52 /* Register numbers */
53 enum {
54 	BPF_REG_0 = 0,
55 	BPF_REG_1,
56 	BPF_REG_2,
57 	BPF_REG_3,
58 	BPF_REG_4,
59 	BPF_REG_5,
60 	BPF_REG_6,
61 	BPF_REG_7,
62 	BPF_REG_8,
63 	BPF_REG_9,
64 	BPF_REG_10,
65 	__MAX_BPF_REG,
66 };
67 
68 /* BPF has 10 general purpose 64-bit registers and stack frame. */
69 #define MAX_BPF_REG	__MAX_BPF_REG
70 
71 struct bpf_insn {
72 	__u8	code;		/* opcode */
73 	__u8	dst_reg:4;	/* dest register */
74 	__u8	src_reg:4;	/* source register */
75 	__s16	off;		/* signed offset */
76 	__s32	imm;		/* signed immediate constant */
77 };
78 
79 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
80 struct bpf_lpm_trie_key {
81 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
82 	__u8	data[0];	/* Arbitrary size */
83 };
84 
85 struct bpf_cgroup_storage_key {
86 	__u64	cgroup_inode_id;	/* cgroup inode id */
87 	__u32	attach_type;		/* program attach type */
88 };
89 
90 union bpf_iter_link_info {
91 	struct {
92 		__u32	map_fd;
93 	} map;
94 };
95 
96 /* BPF syscall commands, see bpf(2) man-page for details. */
97 enum bpf_cmd {
98 	BPF_MAP_CREATE,
99 	BPF_MAP_LOOKUP_ELEM,
100 	BPF_MAP_UPDATE_ELEM,
101 	BPF_MAP_DELETE_ELEM,
102 	BPF_MAP_GET_NEXT_KEY,
103 	BPF_PROG_LOAD,
104 	BPF_OBJ_PIN,
105 	BPF_OBJ_GET,
106 	BPF_PROG_ATTACH,
107 	BPF_PROG_DETACH,
108 	BPF_PROG_TEST_RUN,
109 	BPF_PROG_GET_NEXT_ID,
110 	BPF_MAP_GET_NEXT_ID,
111 	BPF_PROG_GET_FD_BY_ID,
112 	BPF_MAP_GET_FD_BY_ID,
113 	BPF_OBJ_GET_INFO_BY_FD,
114 	BPF_PROG_QUERY,
115 	BPF_RAW_TRACEPOINT_OPEN,
116 	BPF_BTF_LOAD,
117 	BPF_BTF_GET_FD_BY_ID,
118 	BPF_TASK_FD_QUERY,
119 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
120 	BPF_MAP_FREEZE,
121 	BPF_BTF_GET_NEXT_ID,
122 	BPF_MAP_LOOKUP_BATCH,
123 	BPF_MAP_LOOKUP_AND_DELETE_BATCH,
124 	BPF_MAP_UPDATE_BATCH,
125 	BPF_MAP_DELETE_BATCH,
126 	BPF_LINK_CREATE,
127 	BPF_LINK_UPDATE,
128 	BPF_LINK_GET_FD_BY_ID,
129 	BPF_LINK_GET_NEXT_ID,
130 	BPF_ENABLE_STATS,
131 	BPF_ITER_CREATE,
132 	BPF_LINK_DETACH,
133 	BPF_PROG_BIND_MAP,
134 };
135 
136 enum bpf_map_type {
137 	BPF_MAP_TYPE_UNSPEC,
138 	BPF_MAP_TYPE_HASH,
139 	BPF_MAP_TYPE_ARRAY,
140 	BPF_MAP_TYPE_PROG_ARRAY,
141 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
142 	BPF_MAP_TYPE_PERCPU_HASH,
143 	BPF_MAP_TYPE_PERCPU_ARRAY,
144 	BPF_MAP_TYPE_STACK_TRACE,
145 	BPF_MAP_TYPE_CGROUP_ARRAY,
146 	BPF_MAP_TYPE_LRU_HASH,
147 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
148 	BPF_MAP_TYPE_LPM_TRIE,
149 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
150 	BPF_MAP_TYPE_HASH_OF_MAPS,
151 	BPF_MAP_TYPE_DEVMAP,
152 	BPF_MAP_TYPE_SOCKMAP,
153 	BPF_MAP_TYPE_CPUMAP,
154 	BPF_MAP_TYPE_XSKMAP,
155 	BPF_MAP_TYPE_SOCKHASH,
156 	BPF_MAP_TYPE_CGROUP_STORAGE,
157 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
158 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
159 	BPF_MAP_TYPE_QUEUE,
160 	BPF_MAP_TYPE_STACK,
161 	BPF_MAP_TYPE_SK_STORAGE,
162 	BPF_MAP_TYPE_DEVMAP_HASH,
163 	BPF_MAP_TYPE_STRUCT_OPS,
164 	BPF_MAP_TYPE_RINGBUF,
165 	BPF_MAP_TYPE_INODE_STORAGE,
166 	BPF_MAP_TYPE_TASK_STORAGE,
167 };
168 
169 /* Note that tracing related programs such as
170  * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
171  * are not subject to a stable API since kernel internal data
172  * structures can change from release to release and may
173  * therefore break existing tracing BPF programs. Tracing BPF
174  * programs correspond to /a/ specific kernel which is to be
175  * analyzed, and not /a/ specific kernel /and/ all future ones.
176  */
177 enum bpf_prog_type {
178 	BPF_PROG_TYPE_UNSPEC,
179 	BPF_PROG_TYPE_SOCKET_FILTER,
180 	BPF_PROG_TYPE_KPROBE,
181 	BPF_PROG_TYPE_SCHED_CLS,
182 	BPF_PROG_TYPE_SCHED_ACT,
183 	BPF_PROG_TYPE_TRACEPOINT,
184 	BPF_PROG_TYPE_XDP,
185 	BPF_PROG_TYPE_PERF_EVENT,
186 	BPF_PROG_TYPE_CGROUP_SKB,
187 	BPF_PROG_TYPE_CGROUP_SOCK,
188 	BPF_PROG_TYPE_LWT_IN,
189 	BPF_PROG_TYPE_LWT_OUT,
190 	BPF_PROG_TYPE_LWT_XMIT,
191 	BPF_PROG_TYPE_SOCK_OPS,
192 	BPF_PROG_TYPE_SK_SKB,
193 	BPF_PROG_TYPE_CGROUP_DEVICE,
194 	BPF_PROG_TYPE_SK_MSG,
195 	BPF_PROG_TYPE_RAW_TRACEPOINT,
196 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
197 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
198 	BPF_PROG_TYPE_LIRC_MODE2,
199 	BPF_PROG_TYPE_SK_REUSEPORT,
200 	BPF_PROG_TYPE_FLOW_DISSECTOR,
201 	BPF_PROG_TYPE_CGROUP_SYSCTL,
202 	BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
203 	BPF_PROG_TYPE_CGROUP_SOCKOPT,
204 	BPF_PROG_TYPE_TRACING,
205 	BPF_PROG_TYPE_STRUCT_OPS,
206 	BPF_PROG_TYPE_EXT,
207 	BPF_PROG_TYPE_LSM,
208 	BPF_PROG_TYPE_SK_LOOKUP,
209 };
210 
211 enum bpf_attach_type {
212 	BPF_CGROUP_INET_INGRESS,
213 	BPF_CGROUP_INET_EGRESS,
214 	BPF_CGROUP_INET_SOCK_CREATE,
215 	BPF_CGROUP_SOCK_OPS,
216 	BPF_SK_SKB_STREAM_PARSER,
217 	BPF_SK_SKB_STREAM_VERDICT,
218 	BPF_CGROUP_DEVICE,
219 	BPF_SK_MSG_VERDICT,
220 	BPF_CGROUP_INET4_BIND,
221 	BPF_CGROUP_INET6_BIND,
222 	BPF_CGROUP_INET4_CONNECT,
223 	BPF_CGROUP_INET6_CONNECT,
224 	BPF_CGROUP_INET4_POST_BIND,
225 	BPF_CGROUP_INET6_POST_BIND,
226 	BPF_CGROUP_UDP4_SENDMSG,
227 	BPF_CGROUP_UDP6_SENDMSG,
228 	BPF_LIRC_MODE2,
229 	BPF_FLOW_DISSECTOR,
230 	BPF_CGROUP_SYSCTL,
231 	BPF_CGROUP_UDP4_RECVMSG,
232 	BPF_CGROUP_UDP6_RECVMSG,
233 	BPF_CGROUP_GETSOCKOPT,
234 	BPF_CGROUP_SETSOCKOPT,
235 	BPF_TRACE_RAW_TP,
236 	BPF_TRACE_FENTRY,
237 	BPF_TRACE_FEXIT,
238 	BPF_MODIFY_RETURN,
239 	BPF_LSM_MAC,
240 	BPF_TRACE_ITER,
241 	BPF_CGROUP_INET4_GETPEERNAME,
242 	BPF_CGROUP_INET6_GETPEERNAME,
243 	BPF_CGROUP_INET4_GETSOCKNAME,
244 	BPF_CGROUP_INET6_GETSOCKNAME,
245 	BPF_XDP_DEVMAP,
246 	BPF_CGROUP_INET_SOCK_RELEASE,
247 	BPF_XDP_CPUMAP,
248 	BPF_SK_LOOKUP,
249 	BPF_XDP,
250 	__MAX_BPF_ATTACH_TYPE
251 };
252 
253 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
254 
255 enum bpf_link_type {
256 	BPF_LINK_TYPE_UNSPEC = 0,
257 	BPF_LINK_TYPE_RAW_TRACEPOINT = 1,
258 	BPF_LINK_TYPE_TRACING = 2,
259 	BPF_LINK_TYPE_CGROUP = 3,
260 	BPF_LINK_TYPE_ITER = 4,
261 	BPF_LINK_TYPE_NETNS = 5,
262 	BPF_LINK_TYPE_XDP = 6,
263 
264 	MAX_BPF_LINK_TYPE,
265 };
266 
267 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
268  *
269  * NONE(default): No further bpf programs allowed in the subtree.
270  *
271  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
272  * the program in this cgroup yields to sub-cgroup program.
273  *
274  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
275  * that cgroup program gets run in addition to the program in this cgroup.
276  *
277  * Only one program is allowed to be attached to a cgroup with
278  * NONE or BPF_F_ALLOW_OVERRIDE flag.
279  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
280  * release old program and attach the new one. Attach flags has to match.
281  *
282  * Multiple programs are allowed to be attached to a cgroup with
283  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
284  * (those that were attached first, run first)
285  * The programs of sub-cgroup are executed first, then programs of
286  * this cgroup and then programs of parent cgroup.
287  * When children program makes decision (like picking TCP CA or sock bind)
288  * parent program has a chance to override it.
289  *
290  * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
291  * programs for a cgroup. Though it's possible to replace an old program at
292  * any position by also specifying BPF_F_REPLACE flag and position itself in
293  * replace_bpf_fd attribute. Old program at this position will be released.
294  *
295  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
296  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
297  * Ex1:
298  * cgrp1 (MULTI progs A, B) ->
299  *    cgrp2 (OVERRIDE prog C) ->
300  *      cgrp3 (MULTI prog D) ->
301  *        cgrp4 (OVERRIDE prog E) ->
302  *          cgrp5 (NONE prog F)
303  * the event in cgrp5 triggers execution of F,D,A,B in that order.
304  * if prog F is detached, the execution is E,D,A,B
305  * if prog F and D are detached, the execution is E,A,B
306  * if prog F, E and D are detached, the execution is C,A,B
307  *
308  * All eligible programs are executed regardless of return code from
309  * earlier programs.
310  */
311 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
312 #define BPF_F_ALLOW_MULTI	(1U << 1)
313 #define BPF_F_REPLACE		(1U << 2)
314 
315 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
316  * verifier will perform strict alignment checking as if the kernel
317  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
318  * and NET_IP_ALIGN defined to 2.
319  */
320 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
321 
322 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
323  * verifier will allow any alignment whatsoever.  On platforms
324  * with strict alignment requirements for loads ands stores (such
325  * as sparc and mips) the verifier validates that all loads and
326  * stores provably follow this requirement.  This flag turns that
327  * checking and enforcement off.
328  *
329  * It is mostly used for testing when we want to validate the
330  * context and memory access aspects of the verifier, but because
331  * of an unaligned access the alignment check would trigger before
332  * the one we are interested in.
333  */
334 #define BPF_F_ANY_ALIGNMENT	(1U << 1)
335 
336 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
337  * Verifier does sub-register def/use analysis and identifies instructions whose
338  * def only matters for low 32-bit, high 32-bit is never referenced later
339  * through implicit zero extension. Therefore verifier notifies JIT back-ends
340  * that it is safe to ignore clearing high 32-bit for these instructions. This
341  * saves some back-ends a lot of code-gen. However such optimization is not
342  * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
343  * hence hasn't used verifier's analysis result. But, we really want to have a
344  * way to be able to verify the correctness of the described optimization on
345  * x86_64 on which testsuites are frequently exercised.
346  *
347  * So, this flag is introduced. Once it is set, verifier will randomize high
348  * 32-bit for those instructions who has been identified as safe to ignore them.
349  * Then, if verifier is not doing correct analysis, such randomization will
350  * regress tests to expose bugs.
351  */
352 #define BPF_F_TEST_RND_HI32	(1U << 2)
353 
354 /* The verifier internal test flag. Behavior is undefined */
355 #define BPF_F_TEST_STATE_FREQ	(1U << 3)
356 
357 /* If BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will
358  * restrict map and helper usage for such programs. Sleepable BPF programs can
359  * only be attached to hooks where kernel execution context allows sleeping.
360  * Such programs are allowed to use helpers that may sleep like
361  * bpf_copy_from_user().
362  */
363 #define BPF_F_SLEEPABLE		(1U << 4)
364 
365 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
366  * the following extensions:
367  *
368  * insn[0].src_reg:  BPF_PSEUDO_MAP_FD
369  * insn[0].imm:      map fd
370  * insn[1].imm:      0
371  * insn[0].off:      0
372  * insn[1].off:      0
373  * ldimm64 rewrite:  address of map
374  * verifier type:    CONST_PTR_TO_MAP
375  */
376 #define BPF_PSEUDO_MAP_FD	1
377 /* insn[0].src_reg:  BPF_PSEUDO_MAP_VALUE
378  * insn[0].imm:      map fd
379  * insn[1].imm:      offset into value
380  * insn[0].off:      0
381  * insn[1].off:      0
382  * ldimm64 rewrite:  address of map[0]+offset
383  * verifier type:    PTR_TO_MAP_VALUE
384  */
385 #define BPF_PSEUDO_MAP_VALUE	2
386 /* insn[0].src_reg:  BPF_PSEUDO_BTF_ID
387  * insn[0].imm:      kernel btd id of VAR
388  * insn[1].imm:      0
389  * insn[0].off:      0
390  * insn[1].off:      0
391  * ldimm64 rewrite:  address of the kernel variable
392  * verifier type:    PTR_TO_BTF_ID or PTR_TO_MEM, depending on whether the var
393  *                   is struct/union.
394  */
395 #define BPF_PSEUDO_BTF_ID	3
396 
397 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
398  * offset to another bpf function
399  */
400 #define BPF_PSEUDO_CALL		1
401 
402 /* flags for BPF_MAP_UPDATE_ELEM command */
403 enum {
404 	BPF_ANY		= 0, /* create new element or update existing */
405 	BPF_NOEXIST	= 1, /* create new element if it didn't exist */
406 	BPF_EXIST	= 2, /* update existing element */
407 	BPF_F_LOCK	= 4, /* spin_lock-ed map_lookup/map_update */
408 };
409 
410 /* flags for BPF_MAP_CREATE command */
411 enum {
412 	BPF_F_NO_PREALLOC	= (1U << 0),
413 /* Instead of having one common LRU list in the
414  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
415  * which can scale and perform better.
416  * Note, the LRU nodes (including free nodes) cannot be moved
417  * across different LRU lists.
418  */
419 	BPF_F_NO_COMMON_LRU	= (1U << 1),
420 /* Specify numa node during map creation */
421 	BPF_F_NUMA_NODE		= (1U << 2),
422 
423 /* Flags for accessing BPF object from syscall side. */
424 	BPF_F_RDONLY		= (1U << 3),
425 	BPF_F_WRONLY		= (1U << 4),
426 
427 /* Flag for stack_map, store build_id+offset instead of pointer */
428 	BPF_F_STACK_BUILD_ID	= (1U << 5),
429 
430 /* Zero-initialize hash function seed. This should only be used for testing. */
431 	BPF_F_ZERO_SEED		= (1U << 6),
432 
433 /* Flags for accessing BPF object from program side. */
434 	BPF_F_RDONLY_PROG	= (1U << 7),
435 	BPF_F_WRONLY_PROG	= (1U << 8),
436 
437 /* Clone map from listener for newly accepted socket */
438 	BPF_F_CLONE		= (1U << 9),
439 
440 /* Enable memory-mapping BPF map */
441 	BPF_F_MMAPABLE		= (1U << 10),
442 
443 /* Share perf_event among processes */
444 	BPF_F_PRESERVE_ELEMS	= (1U << 11),
445 
446 /* Create a map that is suitable to be an inner map with dynamic max entries */
447 	BPF_F_INNER_MAP		= (1U << 12),
448 };
449 
450 /* Flags for BPF_PROG_QUERY. */
451 
452 /* Query effective (directly attached + inherited from ancestor cgroups)
453  * programs that will be executed for events within a cgroup.
454  * attach_flags with this flag are returned only for directly attached programs.
455  */
456 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
457 
458 /* Flags for BPF_PROG_TEST_RUN */
459 
460 /* If set, run the test on the cpu specified by bpf_attr.test.cpu */
461 #define BPF_F_TEST_RUN_ON_CPU	(1U << 0)
462 
463 /* type for BPF_ENABLE_STATS */
464 enum bpf_stats_type {
465 	/* enabled run_time_ns and run_cnt */
466 	BPF_STATS_RUN_TIME = 0,
467 };
468 
469 enum bpf_stack_build_id_status {
470 	/* user space need an empty entry to identify end of a trace */
471 	BPF_STACK_BUILD_ID_EMPTY = 0,
472 	/* with valid build_id and offset */
473 	BPF_STACK_BUILD_ID_VALID = 1,
474 	/* couldn't get build_id, fallback to ip */
475 	BPF_STACK_BUILD_ID_IP = 2,
476 };
477 
478 #define BPF_BUILD_ID_SIZE 20
479 struct bpf_stack_build_id {
480 	__s32		status;
481 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
482 	union {
483 		__u64	offset;
484 		__u64	ip;
485 	};
486 };
487 
488 #define BPF_OBJ_NAME_LEN 16U
489 
490 union bpf_attr {
491 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
492 		__u32	map_type;	/* one of enum bpf_map_type */
493 		__u32	key_size;	/* size of key in bytes */
494 		__u32	value_size;	/* size of value in bytes */
495 		__u32	max_entries;	/* max number of entries in a map */
496 		__u32	map_flags;	/* BPF_MAP_CREATE related
497 					 * flags defined above.
498 					 */
499 		__u32	inner_map_fd;	/* fd pointing to the inner map */
500 		__u32	numa_node;	/* numa node (effective only if
501 					 * BPF_F_NUMA_NODE is set).
502 					 */
503 		char	map_name[BPF_OBJ_NAME_LEN];
504 		__u32	map_ifindex;	/* ifindex of netdev to create on */
505 		__u32	btf_fd;		/* fd pointing to a BTF type data */
506 		__u32	btf_key_type_id;	/* BTF type_id of the key */
507 		__u32	btf_value_type_id;	/* BTF type_id of the value */
508 		__u32	btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
509 						   * struct stored as the
510 						   * map value
511 						   */
512 	};
513 
514 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
515 		__u32		map_fd;
516 		__aligned_u64	key;
517 		union {
518 			__aligned_u64 value;
519 			__aligned_u64 next_key;
520 		};
521 		__u64		flags;
522 	};
523 
524 	struct { /* struct used by BPF_MAP_*_BATCH commands */
525 		__aligned_u64	in_batch;	/* start batch,
526 						 * NULL to start from beginning
527 						 */
528 		__aligned_u64	out_batch;	/* output: next start batch */
529 		__aligned_u64	keys;
530 		__aligned_u64	values;
531 		__u32		count;		/* input/output:
532 						 * input: # of key/value
533 						 * elements
534 						 * output: # of filled elements
535 						 */
536 		__u32		map_fd;
537 		__u64		elem_flags;
538 		__u64		flags;
539 	} batch;
540 
541 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
542 		__u32		prog_type;	/* one of enum bpf_prog_type */
543 		__u32		insn_cnt;
544 		__aligned_u64	insns;
545 		__aligned_u64	license;
546 		__u32		log_level;	/* verbosity level of verifier */
547 		__u32		log_size;	/* size of user buffer */
548 		__aligned_u64	log_buf;	/* user supplied buffer */
549 		__u32		kern_version;	/* not used */
550 		__u32		prog_flags;
551 		char		prog_name[BPF_OBJ_NAME_LEN];
552 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
553 		/* For some prog types expected attach type must be known at
554 		 * load time to verify attach type specific parts of prog
555 		 * (context accesses, allowed helpers, etc).
556 		 */
557 		__u32		expected_attach_type;
558 		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
559 		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
560 		__aligned_u64	func_info;	/* func info */
561 		__u32		func_info_cnt;	/* number of bpf_func_info records */
562 		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
563 		__aligned_u64	line_info;	/* line info */
564 		__u32		line_info_cnt;	/* number of bpf_line_info records */
565 		__u32		attach_btf_id;	/* in-kernel BTF type id to attach to */
566 		union {
567 			/* valid prog_fd to attach to bpf prog */
568 			__u32		attach_prog_fd;
569 			/* or valid module BTF object fd or 0 to attach to vmlinux */
570 			__u32		attach_btf_obj_fd;
571 		};
572 	};
573 
574 	struct { /* anonymous struct used by BPF_OBJ_* commands */
575 		__aligned_u64	pathname;
576 		__u32		bpf_fd;
577 		__u32		file_flags;
578 	};
579 
580 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
581 		__u32		target_fd;	/* container object to attach to */
582 		__u32		attach_bpf_fd;	/* eBPF program to attach */
583 		__u32		attach_type;
584 		__u32		attach_flags;
585 		__u32		replace_bpf_fd;	/* previously attached eBPF
586 						 * program to replace if
587 						 * BPF_F_REPLACE is used
588 						 */
589 	};
590 
591 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
592 		__u32		prog_fd;
593 		__u32		retval;
594 		__u32		data_size_in;	/* input: len of data_in */
595 		__u32		data_size_out;	/* input/output: len of data_out
596 						 *   returns ENOSPC if data_out
597 						 *   is too small.
598 						 */
599 		__aligned_u64	data_in;
600 		__aligned_u64	data_out;
601 		__u32		repeat;
602 		__u32		duration;
603 		__u32		ctx_size_in;	/* input: len of ctx_in */
604 		__u32		ctx_size_out;	/* input/output: len of ctx_out
605 						 *   returns ENOSPC if ctx_out
606 						 *   is too small.
607 						 */
608 		__aligned_u64	ctx_in;
609 		__aligned_u64	ctx_out;
610 		__u32		flags;
611 		__u32		cpu;
612 	} test;
613 
614 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
615 		union {
616 			__u32		start_id;
617 			__u32		prog_id;
618 			__u32		map_id;
619 			__u32		btf_id;
620 			__u32		link_id;
621 		};
622 		__u32		next_id;
623 		__u32		open_flags;
624 	};
625 
626 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
627 		__u32		bpf_fd;
628 		__u32		info_len;
629 		__aligned_u64	info;
630 	} info;
631 
632 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
633 		__u32		target_fd;	/* container object to query */
634 		__u32		attach_type;
635 		__u32		query_flags;
636 		__u32		attach_flags;
637 		__aligned_u64	prog_ids;
638 		__u32		prog_cnt;
639 	} query;
640 
641 	struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
642 		__u64 name;
643 		__u32 prog_fd;
644 	} raw_tracepoint;
645 
646 	struct { /* anonymous struct for BPF_BTF_LOAD */
647 		__aligned_u64	btf;
648 		__aligned_u64	btf_log_buf;
649 		__u32		btf_size;
650 		__u32		btf_log_size;
651 		__u32		btf_log_level;
652 	};
653 
654 	struct {
655 		__u32		pid;		/* input: pid */
656 		__u32		fd;		/* input: fd */
657 		__u32		flags;		/* input: flags */
658 		__u32		buf_len;	/* input/output: buf len */
659 		__aligned_u64	buf;		/* input/output:
660 						 *   tp_name for tracepoint
661 						 *   symbol for kprobe
662 						 *   filename for uprobe
663 						 */
664 		__u32		prog_id;	/* output: prod_id */
665 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
666 		__u64		probe_offset;	/* output: probe_offset */
667 		__u64		probe_addr;	/* output: probe_addr */
668 	} task_fd_query;
669 
670 	struct { /* struct used by BPF_LINK_CREATE command */
671 		__u32		prog_fd;	/* eBPF program to attach */
672 		union {
673 			__u32		target_fd;	/* object to attach to */
674 			__u32		target_ifindex; /* target ifindex */
675 		};
676 		__u32		attach_type;	/* attach type */
677 		__u32		flags;		/* extra flags */
678 		union {
679 			__u32		target_btf_id;	/* btf_id of target to attach to */
680 			struct {
681 				__aligned_u64	iter_info;	/* extra bpf_iter_link_info */
682 				__u32		iter_info_len;	/* iter_info length */
683 			};
684 		};
685 	} link_create;
686 
687 	struct { /* struct used by BPF_LINK_UPDATE command */
688 		__u32		link_fd;	/* link fd */
689 		/* new program fd to update link with */
690 		__u32		new_prog_fd;
691 		__u32		flags;		/* extra flags */
692 		/* expected link's program fd; is specified only if
693 		 * BPF_F_REPLACE flag is set in flags */
694 		__u32		old_prog_fd;
695 	} link_update;
696 
697 	struct {
698 		__u32		link_fd;
699 	} link_detach;
700 
701 	struct { /* struct used by BPF_ENABLE_STATS command */
702 		__u32		type;
703 	} enable_stats;
704 
705 	struct { /* struct used by BPF_ITER_CREATE command */
706 		__u32		link_fd;
707 		__u32		flags;
708 	} iter_create;
709 
710 	struct { /* struct used by BPF_PROG_BIND_MAP command */
711 		__u32		prog_fd;
712 		__u32		map_fd;
713 		__u32		flags;		/* extra flags */
714 	} prog_bind_map;
715 
716 } __attribute__((aligned(8)));
717 
718 /* The description below is an attempt at providing documentation to eBPF
719  * developers about the multiple available eBPF helper functions. It can be
720  * parsed and used to produce a manual page. The workflow is the following,
721  * and requires the rst2man utility:
722  *
723  *     $ ./scripts/bpf_helpers_doc.py \
724  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
725  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
726  *     $ man /tmp/bpf-helpers.7
727  *
728  * Note that in order to produce this external documentation, some RST
729  * formatting is used in the descriptions to get "bold" and "italics" in
730  * manual pages. Also note that the few trailing white spaces are
731  * intentional, removing them would break paragraphs for rst2man.
732  *
733  * Start of BPF helper function descriptions:
734  *
735  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
736  * 	Description
737  * 		Perform a lookup in *map* for an entry associated to *key*.
738  * 	Return
739  * 		Map value associated to *key*, or **NULL** if no entry was
740  * 		found.
741  *
742  * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
743  * 	Description
744  * 		Add or update the value of the entry associated to *key* in
745  * 		*map* with *value*. *flags* is one of:
746  *
747  * 		**BPF_NOEXIST**
748  * 			The entry for *key* must not exist in the map.
749  * 		**BPF_EXIST**
750  * 			The entry for *key* must already exist in the map.
751  * 		**BPF_ANY**
752  * 			No condition on the existence of the entry for *key*.
753  *
754  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
755  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
756  * 		elements always exist), the helper would return an error.
757  * 	Return
758  * 		0 on success, or a negative error in case of failure.
759  *
760  * long bpf_map_delete_elem(struct bpf_map *map, const void *key)
761  * 	Description
762  * 		Delete entry with *key* from *map*.
763  * 	Return
764  * 		0 on success, or a negative error in case of failure.
765  *
766  * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
767  * 	Description
768  * 		For tracing programs, safely attempt to read *size* bytes from
769  * 		kernel space address *unsafe_ptr* and store the data in *dst*.
770  *
771  * 		Generally, use **bpf_probe_read_user**\ () or
772  * 		**bpf_probe_read_kernel**\ () instead.
773  * 	Return
774  * 		0 on success, or a negative error in case of failure.
775  *
776  * u64 bpf_ktime_get_ns(void)
777  * 	Description
778  * 		Return the time elapsed since system boot, in nanoseconds.
779  * 		Does not include time the system was suspended.
780  * 		See: **clock_gettime**\ (**CLOCK_MONOTONIC**)
781  * 	Return
782  * 		Current *ktime*.
783  *
784  * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
785  * 	Description
786  * 		This helper is a "printk()-like" facility for debugging. It
787  * 		prints a message defined by format *fmt* (of size *fmt_size*)
788  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
789  * 		available. It can take up to three additional **u64**
790  * 		arguments (as an eBPF helpers, the total number of arguments is
791  * 		limited to five).
792  *
793  * 		Each time the helper is called, it appends a line to the trace.
794  * 		Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
795  * 		open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
796  * 		The format of the trace is customizable, and the exact output
797  * 		one will get depends on the options set in
798  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
799  * 		*README* file under the same directory). However, it usually
800  * 		defaults to something like:
801  *
802  * 		::
803  *
804  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
805  *
806  * 		In the above:
807  *
808  * 			* ``telnet`` is the name of the current task.
809  * 			* ``470`` is the PID of the current task.
810  * 			* ``001`` is the CPU number on which the task is
811  * 			  running.
812  * 			* In ``.N..``, each character refers to a set of
813  * 			  options (whether irqs are enabled, scheduling
814  * 			  options, whether hard/softirqs are running, level of
815  * 			  preempt_disabled respectively). **N** means that
816  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
817  * 			  are set.
818  * 			* ``419421.045894`` is a timestamp.
819  * 			* ``0x00000001`` is a fake value used by BPF for the
820  * 			  instruction pointer register.
821  * 			* ``<formatted msg>`` is the message formatted with
822  * 			  *fmt*.
823  *
824  * 		The conversion specifiers supported by *fmt* are similar, but
825  * 		more limited than for printk(). They are **%d**, **%i**,
826  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
827  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
828  * 		of field, padding with zeroes, etc.) is available, and the
829  * 		helper will return **-EINVAL** (but print nothing) if it
830  * 		encounters an unknown specifier.
831  *
832  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
833  * 		only be used for debugging purposes. For this reason, a notice
834  * 		block (spanning several lines) is printed to kernel logs and
835  * 		states that the helper should not be used "for production use"
836  * 		the first time this helper is used (or more precisely, when
837  * 		**trace_printk**\ () buffers are allocated). For passing values
838  * 		to user space, perf events should be preferred.
839  * 	Return
840  * 		The number of bytes written to the buffer, or a negative error
841  * 		in case of failure.
842  *
843  * u32 bpf_get_prandom_u32(void)
844  * 	Description
845  * 		Get a pseudo-random number.
846  *
847  * 		From a security point of view, this helper uses its own
848  * 		pseudo-random internal state, and cannot be used to infer the
849  * 		seed of other random functions in the kernel. However, it is
850  * 		essential to note that the generator used by the helper is not
851  * 		cryptographically secure.
852  * 	Return
853  * 		A random 32-bit unsigned value.
854  *
855  * u32 bpf_get_smp_processor_id(void)
856  * 	Description
857  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
858  * 		all programs run with preemption disabled, which means that the
859  * 		SMP processor id is stable during all the execution of the
860  * 		program.
861  * 	Return
862  * 		The SMP id of the processor running the program.
863  *
864  * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
865  * 	Description
866  * 		Store *len* bytes from address *from* into the packet
867  * 		associated to *skb*, at *offset*. *flags* are a combination of
868  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
869  * 		checksum for the packet after storing the bytes) and
870  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
871  * 		**->swhash** and *skb*\ **->l4hash** to 0).
872  *
873  * 		A call to this helper is susceptible to change the underlying
874  * 		packet buffer. Therefore, at load time, all checks on pointers
875  * 		previously done by the verifier are invalidated and must be
876  * 		performed again, if the helper is used in combination with
877  * 		direct packet access.
878  * 	Return
879  * 		0 on success, or a negative error in case of failure.
880  *
881  * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
882  * 	Description
883  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
884  * 		associated to *skb*. Computation is incremental, so the helper
885  * 		must know the former value of the header field that was
886  * 		modified (*from*), the new value of this field (*to*), and the
887  * 		number of bytes (2 or 4) for this field, stored in *size*.
888  * 		Alternatively, it is possible to store the difference between
889  * 		the previous and the new values of the header field in *to*, by
890  * 		setting *from* and *size* to 0. For both methods, *offset*
891  * 		indicates the location of the IP checksum within the packet.
892  *
893  * 		This helper works in combination with **bpf_csum_diff**\ (),
894  * 		which does not update the checksum in-place, but offers more
895  * 		flexibility and can handle sizes larger than 2 or 4 for the
896  * 		checksum to update.
897  *
898  * 		A call to this helper is susceptible to change the underlying
899  * 		packet buffer. Therefore, at load time, all checks on pointers
900  * 		previously done by the verifier are invalidated and must be
901  * 		performed again, if the helper is used in combination with
902  * 		direct packet access.
903  * 	Return
904  * 		0 on success, or a negative error in case of failure.
905  *
906  * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
907  * 	Description
908  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
909  * 		packet associated to *skb*. Computation is incremental, so the
910  * 		helper must know the former value of the header field that was
911  * 		modified (*from*), the new value of this field (*to*), and the
912  * 		number of bytes (2 or 4) for this field, stored on the lowest
913  * 		four bits of *flags*. Alternatively, it is possible to store
914  * 		the difference between the previous and the new values of the
915  * 		header field in *to*, by setting *from* and the four lowest
916  * 		bits of *flags* to 0. For both methods, *offset* indicates the
917  * 		location of the IP checksum within the packet. In addition to
918  * 		the size of the field, *flags* can be added (bitwise OR) actual
919  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
920  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
921  * 		for updates resulting in a null checksum the value is set to
922  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
923  * 		the checksum is to be computed against a pseudo-header.
924  *
925  * 		This helper works in combination with **bpf_csum_diff**\ (),
926  * 		which does not update the checksum in-place, but offers more
927  * 		flexibility and can handle sizes larger than 2 or 4 for the
928  * 		checksum to update.
929  *
930  * 		A call to this helper is susceptible to change the underlying
931  * 		packet buffer. Therefore, at load time, all checks on pointers
932  * 		previously done by the verifier are invalidated and must be
933  * 		performed again, if the helper is used in combination with
934  * 		direct packet access.
935  * 	Return
936  * 		0 on success, or a negative error in case of failure.
937  *
938  * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
939  * 	Description
940  * 		This special helper is used to trigger a "tail call", or in
941  * 		other words, to jump into another eBPF program. The same stack
942  * 		frame is used (but values on stack and in registers for the
943  * 		caller are not accessible to the callee). This mechanism allows
944  * 		for program chaining, either for raising the maximum number of
945  * 		available eBPF instructions, or to execute given programs in
946  * 		conditional blocks. For security reasons, there is an upper
947  * 		limit to the number of successive tail calls that can be
948  * 		performed.
949  *
950  * 		Upon call of this helper, the program attempts to jump into a
951  * 		program referenced at index *index* in *prog_array_map*, a
952  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
953  * 		*ctx*, a pointer to the context.
954  *
955  * 		If the call succeeds, the kernel immediately runs the first
956  * 		instruction of the new program. This is not a function call,
957  * 		and it never returns to the previous program. If the call
958  * 		fails, then the helper has no effect, and the caller continues
959  * 		to run its subsequent instructions. A call can fail if the
960  * 		destination program for the jump does not exist (i.e. *index*
961  * 		is superior to the number of entries in *prog_array_map*), or
962  * 		if the maximum number of tail calls has been reached for this
963  * 		chain of programs. This limit is defined in the kernel by the
964  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
965  * 		which is currently set to 32.
966  * 	Return
967  * 		0 on success, or a negative error in case of failure.
968  *
969  * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
970  * 	Description
971  * 		Clone and redirect the packet associated to *skb* to another
972  * 		net device of index *ifindex*. Both ingress and egress
973  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
974  * 		value in *flags* is used to make the distinction (ingress path
975  * 		is selected if the flag is present, egress path otherwise).
976  * 		This is the only flag supported for now.
977  *
978  * 		In comparison with **bpf_redirect**\ () helper,
979  * 		**bpf_clone_redirect**\ () has the associated cost of
980  * 		duplicating the packet buffer, but this can be executed out of
981  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
982  * 		efficient, but it is handled through an action code where the
983  * 		redirection happens only after the eBPF program has returned.
984  *
985  * 		A call to this helper is susceptible to change the underlying
986  * 		packet buffer. Therefore, at load time, all checks on pointers
987  * 		previously done by the verifier are invalidated and must be
988  * 		performed again, if the helper is used in combination with
989  * 		direct packet access.
990  * 	Return
991  * 		0 on success, or a negative error in case of failure.
992  *
993  * u64 bpf_get_current_pid_tgid(void)
994  * 	Return
995  * 		A 64-bit integer containing the current tgid and pid, and
996  * 		created as such:
997  * 		*current_task*\ **->tgid << 32 \|**
998  * 		*current_task*\ **->pid**.
999  *
1000  * u64 bpf_get_current_uid_gid(void)
1001  * 	Return
1002  * 		A 64-bit integer containing the current GID and UID, and
1003  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
1004  *
1005  * long bpf_get_current_comm(void *buf, u32 size_of_buf)
1006  * 	Description
1007  * 		Copy the **comm** attribute of the current task into *buf* of
1008  * 		*size_of_buf*. The **comm** attribute contains the name of
1009  * 		the executable (excluding the path) for the current task. The
1010  * 		*size_of_buf* must be strictly positive. On success, the
1011  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
1012  * 		it is filled with zeroes.
1013  * 	Return
1014  * 		0 on success, or a negative error in case of failure.
1015  *
1016  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
1017  * 	Description
1018  * 		Retrieve the classid for the current task, i.e. for the net_cls
1019  * 		cgroup to which *skb* belongs.
1020  *
1021  * 		This helper can be used on TC egress path, but not on ingress.
1022  *
1023  * 		The net_cls cgroup provides an interface to tag network packets
1024  * 		based on a user-provided identifier for all traffic coming from
1025  * 		the tasks belonging to the related cgroup. See also the related
1026  * 		kernel documentation, available from the Linux sources in file
1027  * 		*Documentation/admin-guide/cgroup-v1/net_cls.rst*.
1028  *
1029  * 		The Linux kernel has two versions for cgroups: there are
1030  * 		cgroups v1 and cgroups v2. Both are available to users, who can
1031  * 		use a mixture of them, but note that the net_cls cgroup is for
1032  * 		cgroup v1 only. This makes it incompatible with BPF programs
1033  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
1034  * 		only hold data for one version of cgroups at a time).
1035  *
1036  * 		This helper is only available is the kernel was compiled with
1037  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
1038  * 		"**y**" or to "**m**".
1039  * 	Return
1040  * 		The classid, or 0 for the default unconfigured classid.
1041  *
1042  * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
1043  * 	Description
1044  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
1045  * 		*vlan_proto* to the packet associated to *skb*, then update
1046  * 		the checksum. Note that if *vlan_proto* is different from
1047  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
1048  * 		be **ETH_P_8021Q**.
1049  *
1050  * 		A call to this helper is susceptible to change the underlying
1051  * 		packet buffer. Therefore, at load time, all checks on pointers
1052  * 		previously done by the verifier are invalidated and must be
1053  * 		performed again, if the helper is used in combination with
1054  * 		direct packet access.
1055  * 	Return
1056  * 		0 on success, or a negative error in case of failure.
1057  *
1058  * long bpf_skb_vlan_pop(struct sk_buff *skb)
1059  * 	Description
1060  * 		Pop a VLAN header from the packet associated to *skb*.
1061  *
1062  * 		A call to this helper is susceptible to change the underlying
1063  * 		packet buffer. Therefore, at load time, all checks on pointers
1064  * 		previously done by the verifier are invalidated and must be
1065  * 		performed again, if the helper is used in combination with
1066  * 		direct packet access.
1067  * 	Return
1068  * 		0 on success, or a negative error in case of failure.
1069  *
1070  * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1071  * 	Description
1072  * 		Get tunnel metadata. This helper takes a pointer *key* to an
1073  * 		empty **struct bpf_tunnel_key** of **size**, that will be
1074  * 		filled with tunnel metadata for the packet associated to *skb*.
1075  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
1076  * 		indicates that the tunnel is based on IPv6 protocol instead of
1077  * 		IPv4.
1078  *
1079  * 		The **struct bpf_tunnel_key** is an object that generalizes the
1080  * 		principal parameters used by various tunneling protocols into a
1081  * 		single struct. This way, it can be used to easily make a
1082  * 		decision based on the contents of the encapsulation header,
1083  * 		"summarized" in this struct. In particular, it holds the IP
1084  * 		address of the remote end (IPv4 or IPv6, depending on the case)
1085  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
1086  * 		this struct exposes the *key*\ **->tunnel_id**, which is
1087  * 		generally mapped to a VNI (Virtual Network Identifier), making
1088  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
1089  * 		() helper.
1090  *
1091  * 		Let's imagine that the following code is part of a program
1092  * 		attached to the TC ingress interface, on one end of a GRE
1093  * 		tunnel, and is supposed to filter out all messages coming from
1094  * 		remote ends with IPv4 address other than 10.0.0.1:
1095  *
1096  * 		::
1097  *
1098  * 			int ret;
1099  * 			struct bpf_tunnel_key key = {};
1100  *
1101  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
1102  * 			if (ret < 0)
1103  * 				return TC_ACT_SHOT;	// drop packet
1104  *
1105  * 			if (key.remote_ipv4 != 0x0a000001)
1106  * 				return TC_ACT_SHOT;	// drop packet
1107  *
1108  * 			return TC_ACT_OK;		// accept packet
1109  *
1110  * 		This interface can also be used with all encapsulation devices
1111  * 		that can operate in "collect metadata" mode: instead of having
1112  * 		one network device per specific configuration, the "collect
1113  * 		metadata" mode only requires a single device where the
1114  * 		configuration can be extracted from this helper.
1115  *
1116  * 		This can be used together with various tunnels such as VXLan,
1117  * 		Geneve, GRE or IP in IP (IPIP).
1118  * 	Return
1119  * 		0 on success, or a negative error in case of failure.
1120  *
1121  * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1122  * 	Description
1123  * 		Populate tunnel metadata for packet associated to *skb.* The
1124  * 		tunnel metadata is set to the contents of *key*, of *size*. The
1125  * 		*flags* can be set to a combination of the following values:
1126  *
1127  * 		**BPF_F_TUNINFO_IPV6**
1128  * 			Indicate that the tunnel is based on IPv6 protocol
1129  * 			instead of IPv4.
1130  * 		**BPF_F_ZERO_CSUM_TX**
1131  * 			For IPv4 packets, add a flag to tunnel metadata
1132  * 			indicating that checksum computation should be skipped
1133  * 			and checksum set to zeroes.
1134  * 		**BPF_F_DONT_FRAGMENT**
1135  * 			Add a flag to tunnel metadata indicating that the
1136  * 			packet should not be fragmented.
1137  * 		**BPF_F_SEQ_NUMBER**
1138  * 			Add a flag to tunnel metadata indicating that a
1139  * 			sequence number should be added to tunnel header before
1140  * 			sending the packet. This flag was added for GRE
1141  * 			encapsulation, but might be used with other protocols
1142  * 			as well in the future.
1143  *
1144  * 		Here is a typical usage on the transmit path:
1145  *
1146  * 		::
1147  *
1148  * 			struct bpf_tunnel_key key;
1149  * 			     populate key ...
1150  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
1151  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
1152  *
1153  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
1154  * 		helper for additional information.
1155  * 	Return
1156  * 		0 on success, or a negative error in case of failure.
1157  *
1158  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
1159  * 	Description
1160  * 		Read the value of a perf event counter. This helper relies on a
1161  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
1162  * 		the perf event counter is selected when *map* is updated with
1163  * 		perf event file descriptors. The *map* is an array whose size
1164  * 		is the number of available CPUs, and each cell contains a value
1165  * 		relative to one CPU. The value to retrieve is indicated by
1166  * 		*flags*, that contains the index of the CPU to look up, masked
1167  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1168  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1169  * 		current CPU should be retrieved.
1170  *
1171  * 		Note that before Linux 4.13, only hardware perf event can be
1172  * 		retrieved.
1173  *
1174  * 		Also, be aware that the newer helper
1175  * 		**bpf_perf_event_read_value**\ () is recommended over
1176  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
1177  * 		quirks where error and counter value are used as a return code
1178  * 		(which is wrong to do since ranges may overlap). This issue is
1179  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
1180  * 		time provides more features over the **bpf_perf_event_read**\
1181  * 		() interface. Please refer to the description of
1182  * 		**bpf_perf_event_read_value**\ () for details.
1183  * 	Return
1184  * 		The value of the perf event counter read from the map, or a
1185  * 		negative error code in case of failure.
1186  *
1187  * long bpf_redirect(u32 ifindex, u64 flags)
1188  * 	Description
1189  * 		Redirect the packet to another net device of index *ifindex*.
1190  * 		This helper is somewhat similar to **bpf_clone_redirect**\
1191  * 		(), except that the packet is not cloned, which provides
1192  * 		increased performance.
1193  *
1194  * 		Except for XDP, both ingress and egress interfaces can be used
1195  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
1196  * 		to make the distinction (ingress path is selected if the flag
1197  * 		is present, egress path otherwise). Currently, XDP only
1198  * 		supports redirection to the egress interface, and accepts no
1199  * 		flag at all.
1200  *
1201  * 		The same effect can also be attained with the more generic
1202  * 		**bpf_redirect_map**\ (), which uses a BPF map to store the
1203  * 		redirect target instead of providing it directly to the helper.
1204  * 	Return
1205  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
1206  * 		**XDP_ABORTED** on error. For other program types, the values
1207  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1208  * 		error.
1209  *
1210  * u32 bpf_get_route_realm(struct sk_buff *skb)
1211  * 	Description
1212  * 		Retrieve the realm or the route, that is to say the
1213  * 		**tclassid** field of the destination for the *skb*. The
1214  * 		identifier retrieved is a user-provided tag, similar to the
1215  * 		one used with the net_cls cgroup (see description for
1216  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
1217  * 		held by a route (a destination entry), not by a task.
1218  *
1219  * 		Retrieving this identifier works with the clsact TC egress hook
1220  * 		(see also **tc-bpf(8)**), or alternatively on conventional
1221  * 		classful egress qdiscs, but not on TC ingress path. In case of
1222  * 		clsact TC egress hook, this has the advantage that, internally,
1223  * 		the destination entry has not been dropped yet in the transmit
1224  * 		path. Therefore, the destination entry does not need to be
1225  * 		artificially held via **netif_keep_dst**\ () for a classful
1226  * 		qdisc until the *skb* is freed.
1227  *
1228  * 		This helper is available only if the kernel was compiled with
1229  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
1230  * 	Return
1231  * 		The realm of the route for the packet associated to *skb*, or 0
1232  * 		if none was found.
1233  *
1234  * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
1235  * 	Description
1236  * 		Write raw *data* blob into a special BPF perf event held by
1237  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
1238  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
1239  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
1240  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
1241  *
1242  * 		The *flags* are used to indicate the index in *map* for which
1243  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
1244  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
1245  * 		to indicate that the index of the current CPU core should be
1246  * 		used.
1247  *
1248  * 		The value to write, of *size*, is passed through eBPF stack and
1249  * 		pointed by *data*.
1250  *
1251  * 		The context of the program *ctx* needs also be passed to the
1252  * 		helper.
1253  *
1254  * 		On user space, a program willing to read the values needs to
1255  * 		call **perf_event_open**\ () on the perf event (either for
1256  * 		one or for all CPUs) and to store the file descriptor into the
1257  * 		*map*. This must be done before the eBPF program can send data
1258  * 		into it. An example is available in file
1259  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
1260  * 		tree (the eBPF program counterpart is in
1261  * 		*samples/bpf/trace_output_kern.c*).
1262  *
1263  * 		**bpf_perf_event_output**\ () achieves better performance
1264  * 		than **bpf_trace_printk**\ () for sharing data with user
1265  * 		space, and is much better suitable for streaming data from eBPF
1266  * 		programs.
1267  *
1268  * 		Note that this helper is not restricted to tracing use cases
1269  * 		and can be used with programs attached to TC or XDP as well,
1270  * 		where it allows for passing data to user space listeners. Data
1271  * 		can be:
1272  *
1273  * 		* Only custom structs,
1274  * 		* Only the packet payload, or
1275  * 		* A combination of both.
1276  * 	Return
1277  * 		0 on success, or a negative error in case of failure.
1278  *
1279  * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
1280  * 	Description
1281  * 		This helper was provided as an easy way to load data from a
1282  * 		packet. It can be used to load *len* bytes from *offset* from
1283  * 		the packet associated to *skb*, into the buffer pointed by
1284  * 		*to*.
1285  *
1286  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1287  * 		by "direct packet access", enabling packet data to be
1288  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1289  * 		pointing respectively to the first byte of packet data and to
1290  * 		the byte after the last byte of packet data. However, it
1291  * 		remains useful if one wishes to read large quantities of data
1292  * 		at once from a packet into the eBPF stack.
1293  * 	Return
1294  * 		0 on success, or a negative error in case of failure.
1295  *
1296  * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
1297  * 	Description
1298  * 		Walk a user or a kernel stack and return its id. To achieve
1299  * 		this, the helper needs *ctx*, which is a pointer to the context
1300  * 		on which the tracing program is executed, and a pointer to a
1301  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1302  *
1303  * 		The last argument, *flags*, holds the number of stack frames to
1304  * 		skip (from 0 to 255), masked with
1305  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1306  * 		a combination of the following flags:
1307  *
1308  * 		**BPF_F_USER_STACK**
1309  * 			Collect a user space stack instead of a kernel stack.
1310  * 		**BPF_F_FAST_STACK_CMP**
1311  * 			Compare stacks by hash only.
1312  * 		**BPF_F_REUSE_STACKID**
1313  * 			If two different stacks hash into the same *stackid*,
1314  * 			discard the old one.
1315  *
1316  * 		The stack id retrieved is a 32 bit long integer handle which
1317  * 		can be further combined with other data (including other stack
1318  * 		ids) and used as a key into maps. This can be useful for
1319  * 		generating a variety of graphs (such as flame graphs or off-cpu
1320  * 		graphs).
1321  *
1322  * 		For walking a stack, this helper is an improvement over
1323  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1324  * 		but is not efficient and consumes a lot of eBPF instructions.
1325  * 		Instead, **bpf_get_stackid**\ () can collect up to
1326  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1327  * 		this limit can be controlled with the **sysctl** program, and
1328  * 		that it should be manually increased in order to profile long
1329  * 		user stacks (such as stacks for Java programs). To do so, use:
1330  *
1331  * 		::
1332  *
1333  * 			# sysctl kernel.perf_event_max_stack=<new value>
1334  * 	Return
1335  * 		The positive or null stack id on success, or a negative error
1336  * 		in case of failure.
1337  *
1338  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1339  * 	Description
1340  * 		Compute a checksum difference, from the raw buffer pointed by
1341  * 		*from*, of length *from_size* (that must be a multiple of 4),
1342  * 		towards the raw buffer pointed by *to*, of size *to_size*
1343  * 		(same remark). An optional *seed* can be added to the value
1344  * 		(this can be cascaded, the seed may come from a previous call
1345  * 		to the helper).
1346  *
1347  * 		This is flexible enough to be used in several ways:
1348  *
1349  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1350  * 		  checksum, it can be used when pushing new data.
1351  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1352  * 		  checksum, it can be used when removing data from a packet.
1353  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1354  * 		  can be used to compute a diff. Note that *from_size* and
1355  * 		  *to_size* do not need to be equal.
1356  *
1357  * 		This helper can be used in combination with
1358  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1359  * 		which one can feed in the difference computed with
1360  * 		**bpf_csum_diff**\ ().
1361  * 	Return
1362  * 		The checksum result, or a negative error code in case of
1363  * 		failure.
1364  *
1365  * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1366  * 	Description
1367  * 		Retrieve tunnel options metadata for the packet associated to
1368  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1369  * 		of *size*.
1370  *
1371  * 		This helper can be used with encapsulation devices that can
1372  * 		operate in "collect metadata" mode (please refer to the related
1373  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1374  * 		more details). A particular example where this can be used is
1375  * 		in combination with the Geneve encapsulation protocol, where it
1376  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1377  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1378  * 		the eBPF program. This allows for full customization of these
1379  * 		headers.
1380  * 	Return
1381  * 		The size of the option data retrieved.
1382  *
1383  * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1384  * 	Description
1385  * 		Set tunnel options metadata for the packet associated to *skb*
1386  * 		to the option data contained in the raw buffer *opt* of *size*.
1387  *
1388  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1389  * 		helper for additional information.
1390  * 	Return
1391  * 		0 on success, or a negative error in case of failure.
1392  *
1393  * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1394  * 	Description
1395  * 		Change the protocol of the *skb* to *proto*. Currently
1396  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1397  * 		IPv4. The helper takes care of the groundwork for the
1398  * 		transition, including resizing the socket buffer. The eBPF
1399  * 		program is expected to fill the new headers, if any, via
1400  * 		**skb_store_bytes**\ () and to recompute the checksums with
1401  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1402  * 		(). The main case for this helper is to perform NAT64
1403  * 		operations out of an eBPF program.
1404  *
1405  * 		Internally, the GSO type is marked as dodgy so that headers are
1406  * 		checked and segments are recalculated by the GSO/GRO engine.
1407  * 		The size for GSO target is adapted as well.
1408  *
1409  * 		All values for *flags* are reserved for future usage, and must
1410  * 		be left at zero.
1411  *
1412  * 		A call to this helper is susceptible to change the underlying
1413  * 		packet buffer. Therefore, at load time, all checks on pointers
1414  * 		previously done by the verifier are invalidated and must be
1415  * 		performed again, if the helper is used in combination with
1416  * 		direct packet access.
1417  * 	Return
1418  * 		0 on success, or a negative error in case of failure.
1419  *
1420  * long bpf_skb_change_type(struct sk_buff *skb, u32 type)
1421  * 	Description
1422  * 		Change the packet type for the packet associated to *skb*. This
1423  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1424  * 		the eBPF program does not have a write access to *skb*\
1425  * 		**->pkt_type** beside this helper. Using a helper here allows
1426  * 		for graceful handling of errors.
1427  *
1428  * 		The major use case is to change incoming *skb*s to
1429  * 		**PACKET_HOST** in a programmatic way instead of having to
1430  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1431  * 		example.
1432  *
1433  * 		Note that *type* only allows certain values. At this time, they
1434  * 		are:
1435  *
1436  * 		**PACKET_HOST**
1437  * 			Packet is for us.
1438  * 		**PACKET_BROADCAST**
1439  * 			Send packet to all.
1440  * 		**PACKET_MULTICAST**
1441  * 			Send packet to group.
1442  * 		**PACKET_OTHERHOST**
1443  * 			Send packet to someone else.
1444  * 	Return
1445  * 		0 on success, or a negative error in case of failure.
1446  *
1447  * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1448  * 	Description
1449  * 		Check whether *skb* is a descendant of the cgroup2 held by
1450  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1451  * 	Return
1452  * 		The return value depends on the result of the test, and can be:
1453  *
1454  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1455  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1456  * 		* A negative error code, if an error occurred.
1457  *
1458  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1459  * 	Description
1460  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1461  * 		not set, in particular if the hash was cleared due to mangling,
1462  * 		recompute this hash. Later accesses to the hash can be done
1463  * 		directly with *skb*\ **->hash**.
1464  *
1465  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1466  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1467  * 		**bpf_skb_store_bytes**\ () with the
1468  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1469  * 		the hash and to trigger a new computation for the next call to
1470  * 		**bpf_get_hash_recalc**\ ().
1471  * 	Return
1472  * 		The 32-bit hash.
1473  *
1474  * u64 bpf_get_current_task(void)
1475  * 	Return
1476  * 		A pointer to the current task struct.
1477  *
1478  * long bpf_probe_write_user(void *dst, const void *src, u32 len)
1479  * 	Description
1480  * 		Attempt in a safe way to write *len* bytes from the buffer
1481  * 		*src* to *dst* in memory. It only works for threads that are in
1482  * 		user context, and *dst* must be a valid user space address.
1483  *
1484  * 		This helper should not be used to implement any kind of
1485  * 		security mechanism because of TOC-TOU attacks, but rather to
1486  * 		debug, divert, and manipulate execution of semi-cooperative
1487  * 		processes.
1488  *
1489  * 		Keep in mind that this feature is meant for experiments, and it
1490  * 		has a risk of crashing the system and running programs.
1491  * 		Therefore, when an eBPF program using this helper is attached,
1492  * 		a warning including PID and process name is printed to kernel
1493  * 		logs.
1494  * 	Return
1495  * 		0 on success, or a negative error in case of failure.
1496  *
1497  * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1498  * 	Description
1499  * 		Check whether the probe is being run is the context of a given
1500  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1501  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1502  * 	Return
1503  * 		The return value depends on the result of the test, and can be:
1504  *
1505  *		* 0, if current task belongs to the cgroup2.
1506  *		* 1, if current task does not belong to the cgroup2.
1507  * 		* A negative error code, if an error occurred.
1508  *
1509  * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1510  * 	Description
1511  * 		Resize (trim or grow) the packet associated to *skb* to the
1512  * 		new *len*. The *flags* are reserved for future usage, and must
1513  * 		be left at zero.
1514  *
1515  * 		The basic idea is that the helper performs the needed work to
1516  * 		change the size of the packet, then the eBPF program rewrites
1517  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1518  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1519  * 		and others. This helper is a slow path utility intended for
1520  * 		replies with control messages. And because it is targeted for
1521  * 		slow path, the helper itself can afford to be slow: it
1522  * 		implicitly linearizes, unclones and drops offloads from the
1523  * 		*skb*.
1524  *
1525  * 		A call to this helper is susceptible to change the underlying
1526  * 		packet buffer. Therefore, at load time, all checks on pointers
1527  * 		previously done by the verifier are invalidated and must be
1528  * 		performed again, if the helper is used in combination with
1529  * 		direct packet access.
1530  * 	Return
1531  * 		0 on success, or a negative error in case of failure.
1532  *
1533  * long bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1534  * 	Description
1535  * 		Pull in non-linear data in case the *skb* is non-linear and not
1536  * 		all of *len* are part of the linear section. Make *len* bytes
1537  * 		from *skb* readable and writable. If a zero value is passed for
1538  * 		*len*, then the whole length of the *skb* is pulled.
1539  *
1540  * 		This helper is only needed for reading and writing with direct
1541  * 		packet access.
1542  *
1543  * 		For direct packet access, testing that offsets to access
1544  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1545  * 		susceptible to fail if offsets are invalid, or if the requested
1546  * 		data is in non-linear parts of the *skb*. On failure the
1547  * 		program can just bail out, or in the case of a non-linear
1548  * 		buffer, use a helper to make the data available. The
1549  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1550  * 		the data. Another one consists in using **bpf_skb_pull_data**
1551  * 		to pull in once the non-linear parts, then retesting and
1552  * 		eventually access the data.
1553  *
1554  * 		At the same time, this also makes sure the *skb* is uncloned,
1555  * 		which is a necessary condition for direct write. As this needs
1556  * 		to be an invariant for the write part only, the verifier
1557  * 		detects writes and adds a prologue that is calling
1558  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1559  * 		the very beginning in case it is indeed cloned.
1560  *
1561  * 		A call to this helper is susceptible to change the underlying
1562  * 		packet buffer. Therefore, at load time, all checks on pointers
1563  * 		previously done by the verifier are invalidated and must be
1564  * 		performed again, if the helper is used in combination with
1565  * 		direct packet access.
1566  * 	Return
1567  * 		0 on success, or a negative error in case of failure.
1568  *
1569  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1570  * 	Description
1571  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1572  * 		driver has supplied a checksum for the entire packet into that
1573  * 		field. Return an error otherwise. This helper is intended to be
1574  * 		used in combination with **bpf_csum_diff**\ (), in particular
1575  * 		when the checksum needs to be updated after data has been
1576  * 		written into the packet through direct packet access.
1577  * 	Return
1578  * 		The checksum on success, or a negative error code in case of
1579  * 		failure.
1580  *
1581  * void bpf_set_hash_invalid(struct sk_buff *skb)
1582  * 	Description
1583  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1584  * 		mangling on headers through direct packet access, in order to
1585  * 		indicate that the hash is outdated and to trigger a
1586  * 		recalculation the next time the kernel tries to access this
1587  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1588  *
1589  * long bpf_get_numa_node_id(void)
1590  * 	Description
1591  * 		Return the id of the current NUMA node. The primary use case
1592  * 		for this helper is the selection of sockets for the local NUMA
1593  * 		node, when the program is attached to sockets using the
1594  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1595  * 		but the helper is also available to other eBPF program types,
1596  * 		similarly to **bpf_get_smp_processor_id**\ ().
1597  * 	Return
1598  * 		The id of current NUMA node.
1599  *
1600  * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1601  * 	Description
1602  * 		Grows headroom of packet associated to *skb* and adjusts the
1603  * 		offset of the MAC header accordingly, adding *len* bytes of
1604  * 		space. It automatically extends and reallocates memory as
1605  * 		required.
1606  *
1607  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1608  * 		for redirection into a layer 2 device.
1609  *
1610  * 		All values for *flags* are reserved for future usage, and must
1611  * 		be left at zero.
1612  *
1613  * 		A call to this helper is susceptible to change the underlying
1614  * 		packet buffer. Therefore, at load time, all checks on pointers
1615  * 		previously done by the verifier are invalidated and must be
1616  * 		performed again, if the helper is used in combination with
1617  * 		direct packet access.
1618  * 	Return
1619  * 		0 on success, or a negative error in case of failure.
1620  *
1621  * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1622  * 	Description
1623  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1624  * 		it is possible to use a negative value for *delta*. This helper
1625  * 		can be used to prepare the packet for pushing or popping
1626  * 		headers.
1627  *
1628  * 		A call to this helper is susceptible to change the underlying
1629  * 		packet buffer. Therefore, at load time, all checks on pointers
1630  * 		previously done by the verifier are invalidated and must be
1631  * 		performed again, if the helper is used in combination with
1632  * 		direct packet access.
1633  * 	Return
1634  * 		0 on success, or a negative error in case of failure.
1635  *
1636  * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
1637  * 	Description
1638  * 		Copy a NUL terminated string from an unsafe kernel address
1639  * 		*unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for
1640  * 		more details.
1641  *
1642  * 		Generally, use **bpf_probe_read_user_str**\ () or
1643  * 		**bpf_probe_read_kernel_str**\ () instead.
1644  * 	Return
1645  * 		On success, the strictly positive length of the string,
1646  * 		including the trailing NUL character. On error, a negative
1647  * 		value.
1648  *
1649  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1650  * 	Description
1651  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1652  * 		retrieve the cookie (generated by the kernel) of this socket.
1653  * 		If no cookie has been set yet, generate a new cookie. Once
1654  * 		generated, the socket cookie remains stable for the life of the
1655  * 		socket. This helper can be useful for monitoring per socket
1656  * 		networking traffic statistics as it provides a global socket
1657  * 		identifier that can be assumed unique.
1658  * 	Return
1659  * 		A 8-byte long non-decreasing number on success, or 0 if the
1660  * 		socket field is missing inside *skb*.
1661  *
1662  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1663  * 	Description
1664  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1665  * 		*skb*, but gets socket from **struct bpf_sock_addr** context.
1666  * 	Return
1667  * 		A 8-byte long non-decreasing number.
1668  *
1669  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1670  * 	Description
1671  * 		Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
1672  * 		*skb*, but gets socket from **struct bpf_sock_ops** context.
1673  * 	Return
1674  * 		A 8-byte long non-decreasing number.
1675  *
1676  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1677  * 	Return
1678  * 		The owner UID of the socket associated to *skb*. If the socket
1679  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1680  * 		time-wait or a request socket instead), **overflowuid** value
1681  * 		is returned (note that **overflowuid** might also be the actual
1682  * 		UID value for the socket).
1683  *
1684  * long bpf_set_hash(struct sk_buff *skb, u32 hash)
1685  * 	Description
1686  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1687  * 		to value *hash*.
1688  * 	Return
1689  * 		0
1690  *
1691  * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
1692  * 	Description
1693  * 		Emulate a call to **setsockopt()** on the socket associated to
1694  * 		*bpf_socket*, which must be a full socket. The *level* at
1695  * 		which the option resides and the name *optname* of the option
1696  * 		must be specified, see **setsockopt(2)** for more information.
1697  * 		The option value of length *optlen* is pointed by *optval*.
1698  *
1699  * 		*bpf_socket* should be one of the following:
1700  *
1701  * 		* **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
1702  * 		* **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
1703  * 		  and **BPF_CGROUP_INET6_CONNECT**.
1704  *
1705  * 		This helper actually implements a subset of **setsockopt()**.
1706  * 		It supports the following *level*\ s:
1707  *
1708  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1709  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1710  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**,
1711  * 		  **SO_BINDTODEVICE**, **SO_KEEPALIVE**.
1712  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1713  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1714  * 		  **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**,
1715  * 		  **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**,
1716  *		  **TCP_SYNCNT**, **TCP_USER_TIMEOUT**, **TCP_NOTSENT_LOWAT**.
1717  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1718  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1719  * 	Return
1720  * 		0 on success, or a negative error in case of failure.
1721  *
1722  * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1723  * 	Description
1724  * 		Grow or shrink the room for data in the packet associated to
1725  * 		*skb* by *len_diff*, and according to the selected *mode*.
1726  *
1727  * 		By default, the helper will reset any offloaded checksum
1728  * 		indicator of the skb to CHECKSUM_NONE. This can be avoided
1729  * 		by the following flag:
1730  *
1731  * 		* **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded
1732  * 		  checksum data of the skb to CHECKSUM_NONE.
1733  *
1734  *		There are two supported modes at this time:
1735  *
1736  *		* **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1737  *		  (room space is added or removed below the layer 2 header).
1738  *
1739  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1740  * 		  (room space is added or removed below the layer 3 header).
1741  *
1742  *		The following flags are supported at this time:
1743  *
1744  *		* **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1745  *		  Adjusting mss in this way is not allowed for datagrams.
1746  *
1747  *		* **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
1748  *		  **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
1749  *		  Any new space is reserved to hold a tunnel header.
1750  *		  Configure skb offsets and other fields accordingly.
1751  *
1752  *		* **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
1753  *		  **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
1754  *		  Use with ENCAP_L3 flags to further specify the tunnel type.
1755  *
1756  *		* **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
1757  *		  Use with ENCAP_L3/L4 flags to further specify the tunnel
1758  *		  type; *len* is the length of the inner MAC header.
1759  *
1760  * 		A call to this helper is susceptible to change the underlying
1761  * 		packet buffer. Therefore, at load time, all checks on pointers
1762  * 		previously done by the verifier are invalidated and must be
1763  * 		performed again, if the helper is used in combination with
1764  * 		direct packet access.
1765  * 	Return
1766  * 		0 on success, or a negative error in case of failure.
1767  *
1768  * long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1769  * 	Description
1770  * 		Redirect the packet to the endpoint referenced by *map* at
1771  * 		index *key*. Depending on its type, this *map* can contain
1772  * 		references to net devices (for forwarding packets through other
1773  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1774  * 		but this is only implemented for native XDP (with driver
1775  * 		support) as of this writing).
1776  *
1777  * 		The lower two bits of *flags* are used as the return code if
1778  * 		the map lookup fails. This is so that the return value can be
1779  * 		one of the XDP program return codes up to **XDP_TX**, as chosen
1780  * 		by the caller. Any higher bits in the *flags* argument must be
1781  * 		unset.
1782  *
1783  * 		See also **bpf_redirect**\ (), which only supports redirecting
1784  * 		to an ifindex, but doesn't require a map to do so.
1785  * 	Return
1786  * 		**XDP_REDIRECT** on success, or the value of the two lower bits
1787  * 		of the *flags* argument on error.
1788  *
1789  * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
1790  * 	Description
1791  * 		Redirect the packet to the socket referenced by *map* (of type
1792  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1793  * 		egress interfaces can be used for redirection. The
1794  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1795  * 		distinction (ingress path is selected if the flag is present,
1796  * 		egress path otherwise). This is the only flag supported for now.
1797  * 	Return
1798  * 		**SK_PASS** on success, or **SK_DROP** on error.
1799  *
1800  * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1801  * 	Description
1802  * 		Add an entry to, or update a *map* referencing sockets. The
1803  * 		*skops* is used as a new value for the entry associated to
1804  * 		*key*. *flags* is one of:
1805  *
1806  * 		**BPF_NOEXIST**
1807  * 			The entry for *key* must not exist in the map.
1808  * 		**BPF_EXIST**
1809  * 			The entry for *key* must already exist in the map.
1810  * 		**BPF_ANY**
1811  * 			No condition on the existence of the entry for *key*.
1812  *
1813  * 		If the *map* has eBPF programs (parser and verdict), those will
1814  * 		be inherited by the socket being added. If the socket is
1815  * 		already attached to eBPF programs, this results in an error.
1816  * 	Return
1817  * 		0 on success, or a negative error in case of failure.
1818  *
1819  * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1820  * 	Description
1821  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1822  * 		*delta* (which can be positive or negative). Note that this
1823  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1824  * 		so the latter must be loaded only after the helper has been
1825  * 		called.
1826  *
1827  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1828  * 		are not required to use it. The rationale is that when the
1829  * 		packet is processed with XDP (e.g. as DoS filter), it is
1830  * 		possible to push further meta data along with it before passing
1831  * 		to the stack, and to give the guarantee that an ingress eBPF
1832  * 		program attached as a TC classifier on the same device can pick
1833  * 		this up for further post-processing. Since TC works with socket
1834  * 		buffers, it remains possible to set from XDP the **mark** or
1835  * 		**priority** pointers, or other pointers for the socket buffer.
1836  * 		Having this scratch space generic and programmable allows for
1837  * 		more flexibility as the user is free to store whatever meta
1838  * 		data they need.
1839  *
1840  * 		A call to this helper is susceptible to change the underlying
1841  * 		packet buffer. Therefore, at load time, all checks on pointers
1842  * 		previously done by the verifier are invalidated and must be
1843  * 		performed again, if the helper is used in combination with
1844  * 		direct packet access.
1845  * 	Return
1846  * 		0 on success, or a negative error in case of failure.
1847  *
1848  * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1849  * 	Description
1850  * 		Read the value of a perf event counter, and store it into *buf*
1851  * 		of size *buf_size*. This helper relies on a *map* of type
1852  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1853  * 		counter is selected when *map* is updated with perf event file
1854  * 		descriptors. The *map* is an array whose size is the number of
1855  * 		available CPUs, and each cell contains a value relative to one
1856  * 		CPU. The value to retrieve is indicated by *flags*, that
1857  * 		contains the index of the CPU to look up, masked with
1858  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1859  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1860  * 		current CPU should be retrieved.
1861  *
1862  * 		This helper behaves in a way close to
1863  * 		**bpf_perf_event_read**\ () helper, save that instead of
1864  * 		just returning the value observed, it fills the *buf*
1865  * 		structure. This allows for additional data to be retrieved: in
1866  * 		particular, the enabled and running times (in *buf*\
1867  * 		**->enabled** and *buf*\ **->running**, respectively) are
1868  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1869  * 		recommended over **bpf_perf_event_read**\ (), which has some
1870  * 		ABI issues and provides fewer functionalities.
1871  *
1872  * 		These values are interesting, because hardware PMU (Performance
1873  * 		Monitoring Unit) counters are limited resources. When there are
1874  * 		more PMU based perf events opened than available counters,
1875  * 		kernel will multiplex these events so each event gets certain
1876  * 		percentage (but not all) of the PMU time. In case that
1877  * 		multiplexing happens, the number of samples or counter value
1878  * 		will not reflect the case compared to when no multiplexing
1879  * 		occurs. This makes comparison between different runs difficult.
1880  * 		Typically, the counter value should be normalized before
1881  * 		comparing to other experiments. The usual normalization is done
1882  * 		as follows.
1883  *
1884  * 		::
1885  *
1886  * 			normalized_counter = counter * t_enabled / t_running
1887  *
1888  * 		Where t_enabled is the time enabled for event and t_running is
1889  * 		the time running for event since last normalization. The
1890  * 		enabled and running times are accumulated since the perf event
1891  * 		open. To achieve scaling factor between two invocations of an
1892  * 		eBPF program, users can use CPU id as the key (which is
1893  * 		typical for perf array usage model) to remember the previous
1894  * 		value and do the calculation inside the eBPF program.
1895  * 	Return
1896  * 		0 on success, or a negative error in case of failure.
1897  *
1898  * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1899  * 	Description
1900  * 		For en eBPF program attached to a perf event, retrieve the
1901  * 		value of the event counter associated to *ctx* and store it in
1902  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1903  * 		and running times are also stored in the structure (see
1904  * 		description of helper **bpf_perf_event_read_value**\ () for
1905  * 		more details).
1906  * 	Return
1907  * 		0 on success, or a negative error in case of failure.
1908  *
1909  * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
1910  * 	Description
1911  * 		Emulate a call to **getsockopt()** on the socket associated to
1912  * 		*bpf_socket*, which must be a full socket. The *level* at
1913  * 		which the option resides and the name *optname* of the option
1914  * 		must be specified, see **getsockopt(2)** for more information.
1915  * 		The retrieved value is stored in the structure pointed by
1916  * 		*opval* and of length *optlen*.
1917  *
1918  * 		*bpf_socket* should be one of the following:
1919  *
1920  * 		* **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
1921  * 		* **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
1922  * 		  and **BPF_CGROUP_INET6_CONNECT**.
1923  *
1924  * 		This helper actually implements a subset of **getsockopt()**.
1925  * 		It supports the following *level*\ s:
1926  *
1927  * 		* **IPPROTO_TCP**, which supports *optname*
1928  * 		  **TCP_CONGESTION**.
1929  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1930  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1931  * 	Return
1932  * 		0 on success, or a negative error in case of failure.
1933  *
1934  * long bpf_override_return(struct pt_regs *regs, u64 rc)
1935  * 	Description
1936  * 		Used for error injection, this helper uses kprobes to override
1937  * 		the return value of the probed function, and to set it to *rc*.
1938  * 		The first argument is the context *regs* on which the kprobe
1939  * 		works.
1940  *
1941  * 		This helper works by setting the PC (program counter)
1942  * 		to an override function which is run in place of the original
1943  * 		probed function. This means the probed function is not run at
1944  * 		all. The replacement function just returns with the required
1945  * 		value.
1946  *
1947  * 		This helper has security implications, and thus is subject to
1948  * 		restrictions. It is only available if the kernel was compiled
1949  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1950  * 		option, and in this case it only works on functions tagged with
1951  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1952  *
1953  * 		Also, the helper is only available for the architectures having
1954  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1955  * 		x86 architecture is the only one to support this feature.
1956  * 	Return
1957  * 		0
1958  *
1959  * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1960  * 	Description
1961  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1962  * 		for the full TCP socket associated to *bpf_sock_ops* to
1963  * 		*argval*.
1964  *
1965  * 		The primary use of this field is to determine if there should
1966  * 		be calls to eBPF programs of type
1967  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1968  * 		code. A program of the same type can change its value, per
1969  * 		connection and as necessary, when the connection is
1970  * 		established. This field is directly accessible for reading, but
1971  * 		this helper must be used for updates in order to return an
1972  * 		error if an eBPF program tries to set a callback that is not
1973  * 		supported in the current kernel.
1974  *
1975  * 		*argval* is a flag array which can combine these flags:
1976  *
1977  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1978  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1979  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1980  * 		* **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
1981  *
1982  * 		Therefore, this function can be used to clear a callback flag by
1983  * 		setting the appropriate bit to zero. e.g. to disable the RTO
1984  * 		callback:
1985  *
1986  * 		**bpf_sock_ops_cb_flags_set(bpf_sock,**
1987  * 			**bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
1988  *
1989  * 		Here are some examples of where one could call such eBPF
1990  * 		program:
1991  *
1992  * 		* When RTO fires.
1993  * 		* When a packet is retransmitted.
1994  * 		* When the connection terminates.
1995  * 		* When a packet is sent.
1996  * 		* When a packet is received.
1997  * 	Return
1998  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1999  * 		otherwise, a positive number containing the bits that could not
2000  * 		be set is returned (which comes down to 0 if all bits were set
2001  * 		as required).
2002  *
2003  * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
2004  * 	Description
2005  * 		This helper is used in programs implementing policies at the
2006  * 		socket level. If the message *msg* is allowed to pass (i.e. if
2007  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
2008  * 		the socket referenced by *map* (of type
2009  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2010  * 		egress interfaces can be used for redirection. The
2011  * 		**BPF_F_INGRESS** value in *flags* is used to make the
2012  * 		distinction (ingress path is selected if the flag is present,
2013  * 		egress path otherwise). This is the only flag supported for now.
2014  * 	Return
2015  * 		**SK_PASS** on success, or **SK_DROP** on error.
2016  *
2017  * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
2018  * 	Description
2019  * 		For socket policies, apply the verdict of the eBPF program to
2020  * 		the next *bytes* (number of bytes) of message *msg*.
2021  *
2022  * 		For example, this helper can be used in the following cases:
2023  *
2024  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
2025  * 		  contains multiple logical messages that the eBPF program is
2026  * 		  supposed to read and for which it should apply a verdict.
2027  * 		* An eBPF program only cares to read the first *bytes* of a
2028  * 		  *msg*. If the message has a large payload, then setting up
2029  * 		  and calling the eBPF program repeatedly for all bytes, even
2030  * 		  though the verdict is already known, would create unnecessary
2031  * 		  overhead.
2032  *
2033  * 		When called from within an eBPF program, the helper sets a
2034  * 		counter internal to the BPF infrastructure, that is used to
2035  * 		apply the last verdict to the next *bytes*. If *bytes* is
2036  * 		smaller than the current data being processed from a
2037  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
2038  * 		*bytes* will be sent and the eBPF program will be re-run with
2039  * 		the pointer for start of data pointing to byte number *bytes*
2040  * 		**+ 1**. If *bytes* is larger than the current data being
2041  * 		processed, then the eBPF verdict will be applied to multiple
2042  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
2043  * 		consumed.
2044  *
2045  * 		Note that if a socket closes with the internal counter holding
2046  * 		a non-zero value, this is not a problem because data is not
2047  * 		being buffered for *bytes* and is sent as it is received.
2048  * 	Return
2049  * 		0
2050  *
2051  * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
2052  * 	Description
2053  * 		For socket policies, prevent the execution of the verdict eBPF
2054  * 		program for message *msg* until *bytes* (byte number) have been
2055  * 		accumulated.
2056  *
2057  * 		This can be used when one needs a specific number of bytes
2058  * 		before a verdict can be assigned, even if the data spans
2059  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
2060  * 		case would be a user calling **sendmsg**\ () repeatedly with
2061  * 		1-byte long message segments. Obviously, this is bad for
2062  * 		performance, but it is still valid. If the eBPF program needs
2063  * 		*bytes* bytes to validate a header, this helper can be used to
2064  * 		prevent the eBPF program to be called again until *bytes* have
2065  * 		been accumulated.
2066  * 	Return
2067  * 		0
2068  *
2069  * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
2070  * 	Description
2071  * 		For socket policies, pull in non-linear data from user space
2072  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
2073  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
2074  * 		respectively.
2075  *
2076  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2077  * 		*msg* it can only parse data that the (**data**, **data_end**)
2078  * 		pointers have already consumed. For **sendmsg**\ () hooks this
2079  * 		is likely the first scatterlist element. But for calls relying
2080  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
2081  * 		be the range (**0**, **0**) because the data is shared with
2082  * 		user space and by default the objective is to avoid allowing
2083  * 		user space to modify data while (or after) eBPF verdict is
2084  * 		being decided. This helper can be used to pull in data and to
2085  * 		set the start and end pointer to given values. Data will be
2086  * 		copied if necessary (i.e. if data was not linear and if start
2087  * 		and end pointers do not point to the same chunk).
2088  *
2089  * 		A call to this helper is susceptible to change the underlying
2090  * 		packet buffer. Therefore, at load time, all checks on pointers
2091  * 		previously done by the verifier are invalidated and must be
2092  * 		performed again, if the helper is used in combination with
2093  * 		direct packet access.
2094  *
2095  * 		All values for *flags* are reserved for future usage, and must
2096  * 		be left at zero.
2097  * 	Return
2098  * 		0 on success, or a negative error in case of failure.
2099  *
2100  * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
2101  * 	Description
2102  * 		Bind the socket associated to *ctx* to the address pointed by
2103  * 		*addr*, of length *addr_len*. This allows for making outgoing
2104  * 		connection from the desired IP address, which can be useful for
2105  * 		example when all processes inside a cgroup should use one
2106  * 		single IP address on a host that has multiple IP configured.
2107  *
2108  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
2109  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
2110  * 		**AF_INET6**). It's advised to pass zero port (**sin_port**
2111  * 		or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like
2112  * 		behavior and lets the kernel efficiently pick up an unused
2113  * 		port as long as 4-tuple is unique. Passing non-zero port might
2114  * 		lead to degraded performance.
2115  * 	Return
2116  * 		0 on success, or a negative error in case of failure.
2117  *
2118  * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
2119  * 	Description
2120  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
2121  * 		possible to both shrink and grow the packet tail.
2122  * 		Shrink done via *delta* being a negative integer.
2123  *
2124  * 		A call to this helper is susceptible to change the underlying
2125  * 		packet buffer. Therefore, at load time, all checks on pointers
2126  * 		previously done by the verifier are invalidated and must be
2127  * 		performed again, if the helper is used in combination with
2128  * 		direct packet access.
2129  * 	Return
2130  * 		0 on success, or a negative error in case of failure.
2131  *
2132  * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
2133  * 	Description
2134  * 		Retrieve the XFRM state (IP transform framework, see also
2135  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
2136  *
2137  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
2138  * 		pointed by *xfrm_state* and of length *size*.
2139  *
2140  * 		All values for *flags* are reserved for future usage, and must
2141  * 		be left at zero.
2142  *
2143  * 		This helper is available only if the kernel was compiled with
2144  * 		**CONFIG_XFRM** configuration option.
2145  * 	Return
2146  * 		0 on success, or a negative error in case of failure.
2147  *
2148  * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
2149  * 	Description
2150  * 		Return a user or a kernel stack in bpf program provided buffer.
2151  * 		To achieve this, the helper needs *ctx*, which is a pointer
2152  * 		to the context on which the tracing program is executed.
2153  * 		To store the stacktrace, the bpf program provides *buf* with
2154  * 		a nonnegative *size*.
2155  *
2156  * 		The last argument, *flags*, holds the number of stack frames to
2157  * 		skip (from 0 to 255), masked with
2158  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2159  * 		the following flags:
2160  *
2161  * 		**BPF_F_USER_STACK**
2162  * 			Collect a user space stack instead of a kernel stack.
2163  * 		**BPF_F_USER_BUILD_ID**
2164  * 			Collect buildid+offset instead of ips for user stack,
2165  * 			only valid if **BPF_F_USER_STACK** is also specified.
2166  *
2167  * 		**bpf_get_stack**\ () can collect up to
2168  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
2169  * 		to sufficient large buffer size. Note that
2170  * 		this limit can be controlled with the **sysctl** program, and
2171  * 		that it should be manually increased in order to profile long
2172  * 		user stacks (such as stacks for Java programs). To do so, use:
2173  *
2174  * 		::
2175  *
2176  * 			# sysctl kernel.perf_event_max_stack=<new value>
2177  * 	Return
2178  * 		A non-negative value equal to or less than *size* on success,
2179  * 		or a negative error in case of failure.
2180  *
2181  * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
2182  * 	Description
2183  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
2184  * 		it provides an easy way to load *len* bytes from *offset*
2185  * 		from the packet associated to *skb*, into the buffer pointed
2186  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
2187  * 		a fifth argument *start_header* exists in order to select a
2188  * 		base offset to start from. *start_header* can be one of:
2189  *
2190  * 		**BPF_HDR_START_MAC**
2191  * 			Base offset to load data from is *skb*'s mac header.
2192  * 		**BPF_HDR_START_NET**
2193  * 			Base offset to load data from is *skb*'s network header.
2194  *
2195  * 		In general, "direct packet access" is the preferred method to
2196  * 		access packet data, however, this helper is in particular useful
2197  * 		in socket filters where *skb*\ **->data** does not always point
2198  * 		to the start of the mac header and where "direct packet access"
2199  * 		is not available.
2200  * 	Return
2201  * 		0 on success, or a negative error in case of failure.
2202  *
2203  * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
2204  *	Description
2205  *		Do FIB lookup in kernel tables using parameters in *params*.
2206  *		If lookup is successful and result shows packet is to be
2207  *		forwarded, the neighbor tables are searched for the nexthop.
2208  *		If successful (ie., FIB lookup shows forwarding and nexthop
2209  *		is resolved), the nexthop address is returned in ipv4_dst
2210  *		or ipv6_dst based on family, smac is set to mac address of
2211  *		egress device, dmac is set to nexthop mac address, rt_metric
2212  *		is set to metric from route (IPv4/IPv6 only), and ifindex
2213  *		is set to the device index of the nexthop from the FIB lookup.
2214  *
2215  *		*plen* argument is the size of the passed in struct.
2216  *		*flags* argument can be a combination of one or more of the
2217  *		following values:
2218  *
2219  *		**BPF_FIB_LOOKUP_DIRECT**
2220  *			Do a direct table lookup vs full lookup using FIB
2221  *			rules.
2222  *		**BPF_FIB_LOOKUP_OUTPUT**
2223  *			Perform lookup from an egress perspective (default is
2224  *			ingress).
2225  *
2226  *		*ctx* is either **struct xdp_md** for XDP programs or
2227  *		**struct sk_buff** tc cls_act programs.
2228  *	Return
2229  *		* < 0 if any input argument is invalid
2230  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
2231  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
2232  *		  packet is not forwarded or needs assist from full stack
2233  *
2234  * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2235  *	Description
2236  *		Add an entry to, or update a sockhash *map* referencing sockets.
2237  *		The *skops* is used as a new value for the entry associated to
2238  *		*key*. *flags* is one of:
2239  *
2240  *		**BPF_NOEXIST**
2241  *			The entry for *key* must not exist in the map.
2242  *		**BPF_EXIST**
2243  *			The entry for *key* must already exist in the map.
2244  *		**BPF_ANY**
2245  *			No condition on the existence of the entry for *key*.
2246  *
2247  *		If the *map* has eBPF programs (parser and verdict), those will
2248  *		be inherited by the socket being added. If the socket is
2249  *		already attached to eBPF programs, this results in an error.
2250  *	Return
2251  *		0 on success, or a negative error in case of failure.
2252  *
2253  * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
2254  *	Description
2255  *		This helper is used in programs implementing policies at the
2256  *		socket level. If the message *msg* is allowed to pass (i.e. if
2257  *		the verdict eBPF program returns **SK_PASS**), redirect it to
2258  *		the socket referenced by *map* (of type
2259  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2260  *		egress interfaces can be used for redirection. The
2261  *		**BPF_F_INGRESS** value in *flags* is used to make the
2262  *		distinction (ingress path is selected if the flag is present,
2263  *		egress path otherwise). This is the only flag supported for now.
2264  *	Return
2265  *		**SK_PASS** on success, or **SK_DROP** on error.
2266  *
2267  * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2268  *	Description
2269  *		This helper is used in programs implementing policies at the
2270  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2271  *		if the verdict eBPF program returns **SK_PASS**), redirect it
2272  *		to the socket referenced by *map* (of type
2273  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2274  *		egress interfaces can be used for redirection. The
2275  *		**BPF_F_INGRESS** value in *flags* is used to make the
2276  *		distinction (ingress path is selected if the flag is present,
2277  *		egress otherwise). This is the only flag supported for now.
2278  *	Return
2279  *		**SK_PASS** on success, or **SK_DROP** on error.
2280  *
2281  * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2282  *	Description
2283  *		Encapsulate the packet associated to *skb* within a Layer 3
2284  *		protocol header. This header is provided in the buffer at
2285  *		address *hdr*, with *len* its size in bytes. *type* indicates
2286  *		the protocol of the header and can be one of:
2287  *
2288  *		**BPF_LWT_ENCAP_SEG6**
2289  *			IPv6 encapsulation with Segment Routing Header
2290  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2291  *			the IPv6 header is computed by the kernel.
2292  *		**BPF_LWT_ENCAP_SEG6_INLINE**
2293  *			Only works if *skb* contains an IPv6 packet. Insert a
2294  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
2295  *			the IPv6 header.
2296  *		**BPF_LWT_ENCAP_IP**
2297  *			IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2298  *			must be IPv4 or IPv6, followed by zero or more
2299  *			additional headers, up to **LWT_BPF_MAX_HEADROOM**
2300  *			total bytes in all prepended headers. Please note that
2301  *			if **skb_is_gso**\ (*skb*) is true, no more than two
2302  *			headers can be prepended, and the inner header, if
2303  *			present, should be either GRE or UDP/GUE.
2304  *
2305  *		**BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
2306  *		of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
2307  *		be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
2308  *		**BPF_PROG_TYPE_LWT_XMIT**.
2309  *
2310  * 		A call to this helper is susceptible to change the underlying
2311  * 		packet buffer. Therefore, at load time, all checks on pointers
2312  * 		previously done by the verifier are invalidated and must be
2313  * 		performed again, if the helper is used in combination with
2314  * 		direct packet access.
2315  *	Return
2316  * 		0 on success, or a negative error in case of failure.
2317  *
2318  * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2319  *	Description
2320  *		Store *len* bytes from address *from* into the packet
2321  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2322  *		inside the outermost IPv6 Segment Routing Header can be
2323  *		modified through this helper.
2324  *
2325  * 		A call to this helper is susceptible to change the underlying
2326  * 		packet buffer. Therefore, at load time, all checks on pointers
2327  * 		previously done by the verifier are invalidated and must be
2328  * 		performed again, if the helper is used in combination with
2329  * 		direct packet access.
2330  *	Return
2331  * 		0 on success, or a negative error in case of failure.
2332  *
2333  * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2334  *	Description
2335  *		Adjust the size allocated to TLVs in the outermost IPv6
2336  *		Segment Routing Header contained in the packet associated to
2337  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2338  *		after the segments are accepted. *delta* can be as well
2339  *		positive (growing) as negative (shrinking).
2340  *
2341  * 		A call to this helper is susceptible to change the underlying
2342  * 		packet buffer. Therefore, at load time, all checks on pointers
2343  * 		previously done by the verifier are invalidated and must be
2344  * 		performed again, if the helper is used in combination with
2345  * 		direct packet access.
2346  *	Return
2347  * 		0 on success, or a negative error in case of failure.
2348  *
2349  * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2350  *	Description
2351  *		Apply an IPv6 Segment Routing action of type *action* to the
2352  *		packet associated to *skb*. Each action takes a parameter
2353  *		contained at address *param*, and of length *param_len* bytes.
2354  *		*action* can be one of:
2355  *
2356  *		**SEG6_LOCAL_ACTION_END_X**
2357  *			End.X action: Endpoint with Layer-3 cross-connect.
2358  *			Type of *param*: **struct in6_addr**.
2359  *		**SEG6_LOCAL_ACTION_END_T**
2360  *			End.T action: Endpoint with specific IPv6 table lookup.
2361  *			Type of *param*: **int**.
2362  *		**SEG6_LOCAL_ACTION_END_B6**
2363  *			End.B6 action: Endpoint bound to an SRv6 policy.
2364  *			Type of *param*: **struct ipv6_sr_hdr**.
2365  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2366  *			End.B6.Encap action: Endpoint bound to an SRv6
2367  *			encapsulation policy.
2368  *			Type of *param*: **struct ipv6_sr_hdr**.
2369  *
2370  * 		A call to this helper is susceptible to change the underlying
2371  * 		packet buffer. Therefore, at load time, all checks on pointers
2372  * 		previously done by the verifier are invalidated and must be
2373  * 		performed again, if the helper is used in combination with
2374  * 		direct packet access.
2375  *	Return
2376  * 		0 on success, or a negative error in case of failure.
2377  *
2378  * long bpf_rc_repeat(void *ctx)
2379  *	Description
2380  *		This helper is used in programs implementing IR decoding, to
2381  *		report a successfully decoded repeat key message. This delays
2382  *		the generation of a key up event for previously generated
2383  *		key down event.
2384  *
2385  *		Some IR protocols like NEC have a special IR message for
2386  *		repeating last button, for when a button is held down.
2387  *
2388  *		The *ctx* should point to the lirc sample as passed into
2389  *		the program.
2390  *
2391  *		This helper is only available is the kernel was compiled with
2392  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2393  *		"**y**".
2394  *	Return
2395  *		0
2396  *
2397  * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2398  *	Description
2399  *		This helper is used in programs implementing IR decoding, to
2400  *		report a successfully decoded key press with *scancode*,
2401  *		*toggle* value in the given *protocol*. The scancode will be
2402  *		translated to a keycode using the rc keymap, and reported as
2403  *		an input key down event. After a period a key up event is
2404  *		generated. This period can be extended by calling either
2405  *		**bpf_rc_keydown**\ () again with the same values, or calling
2406  *		**bpf_rc_repeat**\ ().
2407  *
2408  *		Some protocols include a toggle bit, in case the button was
2409  *		released and pressed again between consecutive scancodes.
2410  *
2411  *		The *ctx* should point to the lirc sample as passed into
2412  *		the program.
2413  *
2414  *		The *protocol* is the decoded protocol number (see
2415  *		**enum rc_proto** for some predefined values).
2416  *
2417  *		This helper is only available is the kernel was compiled with
2418  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2419  *		"**y**".
2420  *	Return
2421  *		0
2422  *
2423  * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2424  * 	Description
2425  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2426  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2427  * 		helper for cgroup v1 by providing a tag resp. identifier that
2428  * 		can be matched on or used for map lookups e.g. to implement
2429  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2430  * 		exposed in user space through the f_handle API in order to get
2431  * 		to the same 64-bit id.
2432  *
2433  * 		This helper can be used on TC egress path, but not on ingress,
2434  * 		and is available only if the kernel was compiled with the
2435  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2436  * 	Return
2437  * 		The id is returned or 0 in case the id could not be retrieved.
2438  *
2439  * u64 bpf_get_current_cgroup_id(void)
2440  * 	Return
2441  * 		A 64-bit integer containing the current cgroup id based
2442  * 		on the cgroup within which the current task is running.
2443  *
2444  * void *bpf_get_local_storage(void *map, u64 flags)
2445  *	Description
2446  *		Get the pointer to the local storage area.
2447  *		The type and the size of the local storage is defined
2448  *		by the *map* argument.
2449  *		The *flags* meaning is specific for each map type,
2450  *		and has to be 0 for cgroup local storage.
2451  *
2452  *		Depending on the BPF program type, a local storage area
2453  *		can be shared between multiple instances of the BPF program,
2454  *		running simultaneously.
2455  *
2456  *		A user should care about the synchronization by himself.
2457  *		For example, by using the **BPF_ATOMIC** instructions to alter
2458  *		the shared data.
2459  *	Return
2460  *		A pointer to the local storage area.
2461  *
2462  * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2463  *	Description
2464  *		Select a **SO_REUSEPORT** socket from a
2465  *		**BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2466  *		It checks the selected socket is matching the incoming
2467  *		request in the socket buffer.
2468  *	Return
2469  *		0 on success, or a negative error in case of failure.
2470  *
2471  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2472  *	Description
2473  *		Return id of cgroup v2 that is ancestor of cgroup associated
2474  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2475  *		*ancestor_level* zero and each step down the hierarchy
2476  *		increments the level. If *ancestor_level* == level of cgroup
2477  *		associated with *skb*, then return value will be same as that
2478  *		of **bpf_skb_cgroup_id**\ ().
2479  *
2480  *		The helper is useful to implement policies based on cgroups
2481  *		that are upper in hierarchy than immediate cgroup associated
2482  *		with *skb*.
2483  *
2484  *		The format of returned id and helper limitations are same as in
2485  *		**bpf_skb_cgroup_id**\ ().
2486  *	Return
2487  *		The id is returned or 0 in case the id could not be retrieved.
2488  *
2489  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2490  *	Description
2491  *		Look for TCP socket matching *tuple*, optionally in a child
2492  *		network namespace *netns*. The return value must be checked,
2493  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2494  *
2495  *		The *ctx* should point to the context of the program, such as
2496  *		the skb or socket (depending on the hook in use). This is used
2497  *		to determine the base network namespace for the lookup.
2498  *
2499  *		*tuple_size* must be one of:
2500  *
2501  *		**sizeof**\ (*tuple*\ **->ipv4**)
2502  *			Look for an IPv4 socket.
2503  *		**sizeof**\ (*tuple*\ **->ipv6**)
2504  *			Look for an IPv6 socket.
2505  *
2506  *		If the *netns* is a negative signed 32-bit integer, then the
2507  *		socket lookup table in the netns associated with the *ctx*
2508  *		will be used. For the TC hooks, this is the netns of the device
2509  *		in the skb. For socket hooks, this is the netns of the socket.
2510  *		If *netns* is any other signed 32-bit value greater than or
2511  *		equal to zero then it specifies the ID of the netns relative to
2512  *		the netns associated with the *ctx*. *netns* values beyond the
2513  *		range of 32-bit integers are reserved for future use.
2514  *
2515  *		All values for *flags* are reserved for future usage, and must
2516  *		be left at zero.
2517  *
2518  *		This helper is available only if the kernel was compiled with
2519  *		**CONFIG_NET** configuration option.
2520  *	Return
2521  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2522  *		For sockets with reuseport option, the **struct bpf_sock**
2523  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2524  *		tuple.
2525  *
2526  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2527  *	Description
2528  *		Look for UDP socket matching *tuple*, optionally in a child
2529  *		network namespace *netns*. The return value must be checked,
2530  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2531  *
2532  *		The *ctx* should point to the context of the program, such as
2533  *		the skb or socket (depending on the hook in use). This is used
2534  *		to determine the base network namespace for the lookup.
2535  *
2536  *		*tuple_size* must be one of:
2537  *
2538  *		**sizeof**\ (*tuple*\ **->ipv4**)
2539  *			Look for an IPv4 socket.
2540  *		**sizeof**\ (*tuple*\ **->ipv6**)
2541  *			Look for an IPv6 socket.
2542  *
2543  *		If the *netns* is a negative signed 32-bit integer, then the
2544  *		socket lookup table in the netns associated with the *ctx*
2545  *		will be used. For the TC hooks, this is the netns of the device
2546  *		in the skb. For socket hooks, this is the netns of the socket.
2547  *		If *netns* is any other signed 32-bit value greater than or
2548  *		equal to zero then it specifies the ID of the netns relative to
2549  *		the netns associated with the *ctx*. *netns* values beyond the
2550  *		range of 32-bit integers are reserved for future use.
2551  *
2552  *		All values for *flags* are reserved for future usage, and must
2553  *		be left at zero.
2554  *
2555  *		This helper is available only if the kernel was compiled with
2556  *		**CONFIG_NET** configuration option.
2557  *	Return
2558  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2559  *		For sockets with reuseport option, the **struct bpf_sock**
2560  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2561  *		tuple.
2562  *
2563  * long bpf_sk_release(void *sock)
2564  *	Description
2565  *		Release the reference held by *sock*. *sock* must be a
2566  *		non-**NULL** pointer that was returned from
2567  *		**bpf_sk_lookup_xxx**\ ().
2568  *	Return
2569  *		0 on success, or a negative error in case of failure.
2570  *
2571  * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2572  * 	Description
2573  * 		Push an element *value* in *map*. *flags* is one of:
2574  *
2575  * 		**BPF_EXIST**
2576  * 			If the queue/stack is full, the oldest element is
2577  * 			removed to make room for this.
2578  * 	Return
2579  * 		0 on success, or a negative error in case of failure.
2580  *
2581  * long bpf_map_pop_elem(struct bpf_map *map, void *value)
2582  * 	Description
2583  * 		Pop an element from *map*.
2584  * 	Return
2585  * 		0 on success, or a negative error in case of failure.
2586  *
2587  * long bpf_map_peek_elem(struct bpf_map *map, void *value)
2588  * 	Description
2589  * 		Get an element from *map* without removing it.
2590  * 	Return
2591  * 		0 on success, or a negative error in case of failure.
2592  *
2593  * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2594  *	Description
2595  *		For socket policies, insert *len* bytes into *msg* at offset
2596  *		*start*.
2597  *
2598  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2599  *		*msg* it may want to insert metadata or options into the *msg*.
2600  *		This can later be read and used by any of the lower layer BPF
2601  *		hooks.
2602  *
2603  *		This helper may fail if under memory pressure (a malloc
2604  *		fails) in these cases BPF programs will get an appropriate
2605  *		error and BPF programs will need to handle them.
2606  *	Return
2607  *		0 on success, or a negative error in case of failure.
2608  *
2609  * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2610  *	Description
2611  *		Will remove *len* bytes from a *msg* starting at byte *start*.
2612  *		This may result in **ENOMEM** errors under certain situations if
2613  *		an allocation and copy are required due to a full ring buffer.
2614  *		However, the helper will try to avoid doing the allocation
2615  *		if possible. Other errors can occur if input parameters are
2616  *		invalid either due to *start* byte not being valid part of *msg*
2617  *		payload and/or *pop* value being to large.
2618  *	Return
2619  *		0 on success, or a negative error in case of failure.
2620  *
2621  * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2622  *	Description
2623  *		This helper is used in programs implementing IR decoding, to
2624  *		report a successfully decoded pointer movement.
2625  *
2626  *		The *ctx* should point to the lirc sample as passed into
2627  *		the program.
2628  *
2629  *		This helper is only available is the kernel was compiled with
2630  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2631  *		"**y**".
2632  *	Return
2633  *		0
2634  *
2635  * long bpf_spin_lock(struct bpf_spin_lock *lock)
2636  *	Description
2637  *		Acquire a spinlock represented by the pointer *lock*, which is
2638  *		stored as part of a value of a map. Taking the lock allows to
2639  *		safely update the rest of the fields in that value. The
2640  *		spinlock can (and must) later be released with a call to
2641  *		**bpf_spin_unlock**\ (\ *lock*\ ).
2642  *
2643  *		Spinlocks in BPF programs come with a number of restrictions
2644  *		and constraints:
2645  *
2646  *		* **bpf_spin_lock** objects are only allowed inside maps of
2647  *		  types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2648  *		  list could be extended in the future).
2649  *		* BTF description of the map is mandatory.
2650  *		* The BPF program can take ONE lock at a time, since taking two
2651  *		  or more could cause dead locks.
2652  *		* Only one **struct bpf_spin_lock** is allowed per map element.
2653  *		* When the lock is taken, calls (either BPF to BPF or helpers)
2654  *		  are not allowed.
2655  *		* The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2656  *		  allowed inside a spinlock-ed region.
2657  *		* The BPF program MUST call **bpf_spin_unlock**\ () to release
2658  *		  the lock, on all execution paths, before it returns.
2659  *		* The BPF program can access **struct bpf_spin_lock** only via
2660  *		  the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2661  *		  helpers. Loading or storing data into the **struct
2662  *		  bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2663  *		* To use the **bpf_spin_lock**\ () helper, the BTF description
2664  *		  of the map value must be a struct and have **struct
2665  *		  bpf_spin_lock** *anyname*\ **;** field at the top level.
2666  *		  Nested lock inside another struct is not allowed.
2667  *		* The **struct bpf_spin_lock** *lock* field in a map value must
2668  *		  be aligned on a multiple of 4 bytes in that value.
2669  *		* Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2670  *		  the **bpf_spin_lock** field to user space.
2671  *		* Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2672  *		  a BPF program, do not update the **bpf_spin_lock** field.
2673  *		* **bpf_spin_lock** cannot be on the stack or inside a
2674  *		  networking packet (it can only be inside of a map values).
2675  *		* **bpf_spin_lock** is available to root only.
2676  *		* Tracing programs and socket filter programs cannot use
2677  *		  **bpf_spin_lock**\ () due to insufficient preemption checks
2678  *		  (but this may change in the future).
2679  *		* **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2680  *	Return
2681  *		0
2682  *
2683  * long bpf_spin_unlock(struct bpf_spin_lock *lock)
2684  *	Description
2685  *		Release the *lock* previously locked by a call to
2686  *		**bpf_spin_lock**\ (\ *lock*\ ).
2687  *	Return
2688  *		0
2689  *
2690  * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2691  *	Description
2692  *		This helper gets a **struct bpf_sock** pointer such
2693  *		that all the fields in this **bpf_sock** can be accessed.
2694  *	Return
2695  *		A **struct bpf_sock** pointer on success, or **NULL** in
2696  *		case of failure.
2697  *
2698  * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2699  *	Description
2700  *		This helper gets a **struct bpf_tcp_sock** pointer from a
2701  *		**struct bpf_sock** pointer.
2702  *	Return
2703  *		A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2704  *		case of failure.
2705  *
2706  * long bpf_skb_ecn_set_ce(struct sk_buff *skb)
2707  *	Description
2708  *		Set ECN (Explicit Congestion Notification) field of IP header
2709  *		to **CE** (Congestion Encountered) if current value is **ECT**
2710  *		(ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2711  *		and IPv4.
2712  *	Return
2713  *		1 if the **CE** flag is set (either by the current helper call
2714  *		or because it was already present), 0 if it is not set.
2715  *
2716  * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2717  *	Description
2718  *		Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2719  *		**bpf_sk_release**\ () is unnecessary and not allowed.
2720  *	Return
2721  *		A **struct bpf_sock** pointer on success, or **NULL** in
2722  *		case of failure.
2723  *
2724  * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2725  *	Description
2726  *		Look for TCP socket matching *tuple*, optionally in a child
2727  *		network namespace *netns*. The return value must be checked,
2728  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2729  *
2730  *		This function is identical to **bpf_sk_lookup_tcp**\ (), except
2731  *		that it also returns timewait or request sockets. Use
2732  *		**bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
2733  *		full structure.
2734  *
2735  *		This helper is available only if the kernel was compiled with
2736  *		**CONFIG_NET** configuration option.
2737  *	Return
2738  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2739  *		For sockets with reuseport option, the **struct bpf_sock**
2740  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2741  *		tuple.
2742  *
2743  * long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2744  * 	Description
2745  * 		Check whether *iph* and *th* contain a valid SYN cookie ACK for
2746  * 		the listening socket in *sk*.
2747  *
2748  * 		*iph* points to the start of the IPv4 or IPv6 header, while
2749  * 		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2750  * 		**sizeof**\ (**struct ip6hdr**).
2751  *
2752  * 		*th* points to the start of the TCP header, while *th_len*
2753  * 		contains **sizeof**\ (**struct tcphdr**).
2754  * 	Return
2755  * 		0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
2756  * 		error otherwise.
2757  *
2758  * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
2759  *	Description
2760  *		Get name of sysctl in /proc/sys/ and copy it into provided by
2761  *		program buffer *buf* of size *buf_len*.
2762  *
2763  *		The buffer is always NUL terminated, unless it's zero-sized.
2764  *
2765  *		If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
2766  *		copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
2767  *		only (e.g. "tcp_mem").
2768  *	Return
2769  *		Number of character copied (not including the trailing NUL).
2770  *
2771  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2772  *		truncated name in this case).
2773  *
2774  * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2775  *	Description
2776  *		Get current value of sysctl as it is presented in /proc/sys
2777  *		(incl. newline, etc), and copy it as a string into provided
2778  *		by program buffer *buf* of size *buf_len*.
2779  *
2780  *		The whole value is copied, no matter what file position user
2781  *		space issued e.g. sys_read at.
2782  *
2783  *		The buffer is always NUL terminated, unless it's zero-sized.
2784  *	Return
2785  *		Number of character copied (not including the trailing NUL).
2786  *
2787  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2788  *		truncated name in this case).
2789  *
2790  *		**-EINVAL** if current value was unavailable, e.g. because
2791  *		sysctl is uninitialized and read returns -EIO for it.
2792  *
2793  * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2794  *	Description
2795  *		Get new value being written by user space to sysctl (before
2796  *		the actual write happens) and copy it as a string into
2797  *		provided by program buffer *buf* of size *buf_len*.
2798  *
2799  *		User space may write new value at file position > 0.
2800  *
2801  *		The buffer is always NUL terminated, unless it's zero-sized.
2802  *	Return
2803  *		Number of character copied (not including the trailing NUL).
2804  *
2805  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2806  *		truncated name in this case).
2807  *
2808  *		**-EINVAL** if sysctl is being read.
2809  *
2810  * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
2811  *	Description
2812  *		Override new value being written by user space to sysctl with
2813  *		value provided by program in buffer *buf* of size *buf_len*.
2814  *
2815  *		*buf* should contain a string in same form as provided by user
2816  *		space on sysctl write.
2817  *
2818  *		User space may write new value at file position > 0. To override
2819  *		the whole sysctl value file position should be set to zero.
2820  *	Return
2821  *		0 on success.
2822  *
2823  *		**-E2BIG** if the *buf_len* is too big.
2824  *
2825  *		**-EINVAL** if sysctl is being read.
2826  *
2827  * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
2828  *	Description
2829  *		Convert the initial part of the string from buffer *buf* of
2830  *		size *buf_len* to a long integer according to the given base
2831  *		and save the result in *res*.
2832  *
2833  *		The string may begin with an arbitrary amount of white space
2834  *		(as determined by **isspace**\ (3)) followed by a single
2835  *		optional '**-**' sign.
2836  *
2837  *		Five least significant bits of *flags* encode base, other bits
2838  *		are currently unused.
2839  *
2840  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2841  *		similar to user space **strtol**\ (3).
2842  *	Return
2843  *		Number of characters consumed on success. Must be positive but
2844  *		no more than *buf_len*.
2845  *
2846  *		**-EINVAL** if no valid digits were found or unsupported base
2847  *		was provided.
2848  *
2849  *		**-ERANGE** if resulting value was out of range.
2850  *
2851  * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
2852  *	Description
2853  *		Convert the initial part of the string from buffer *buf* of
2854  *		size *buf_len* to an unsigned long integer according to the
2855  *		given base and save the result in *res*.
2856  *
2857  *		The string may begin with an arbitrary amount of white space
2858  *		(as determined by **isspace**\ (3)).
2859  *
2860  *		Five least significant bits of *flags* encode base, other bits
2861  *		are currently unused.
2862  *
2863  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2864  *		similar to user space **strtoul**\ (3).
2865  *	Return
2866  *		Number of characters consumed on success. Must be positive but
2867  *		no more than *buf_len*.
2868  *
2869  *		**-EINVAL** if no valid digits were found or unsupported base
2870  *		was provided.
2871  *
2872  *		**-ERANGE** if resulting value was out of range.
2873  *
2874  * void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)
2875  *	Description
2876  *		Get a bpf-local-storage from a *sk*.
2877  *
2878  *		Logically, it could be thought of getting the value from
2879  *		a *map* with *sk* as the **key**.  From this
2880  *		perspective,  the usage is not much different from
2881  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
2882  *		helper enforces the key must be a full socket and the map must
2883  *		be a **BPF_MAP_TYPE_SK_STORAGE** also.
2884  *
2885  *		Underneath, the value is stored locally at *sk* instead of
2886  *		the *map*.  The *map* is used as the bpf-local-storage
2887  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
2888  *		searched against all bpf-local-storages residing at *sk*.
2889  *
2890  *		*sk* is a kernel **struct sock** pointer for LSM program.
2891  *		*sk* is a **struct bpf_sock** pointer for other program types.
2892  *
2893  *		An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
2894  *		used such that a new bpf-local-storage will be
2895  *		created if one does not exist.  *value* can be used
2896  *		together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
2897  *		the initial value of a bpf-local-storage.  If *value* is
2898  *		**NULL**, the new bpf-local-storage will be zero initialized.
2899  *	Return
2900  *		A bpf-local-storage pointer is returned on success.
2901  *
2902  *		**NULL** if not found or there was an error in adding
2903  *		a new bpf-local-storage.
2904  *
2905  * long bpf_sk_storage_delete(struct bpf_map *map, void *sk)
2906  *	Description
2907  *		Delete a bpf-local-storage from a *sk*.
2908  *	Return
2909  *		0 on success.
2910  *
2911  *		**-ENOENT** if the bpf-local-storage cannot be found.
2912  *		**-EINVAL** if sk is not a fullsock (e.g. a request_sock).
2913  *
2914  * long bpf_send_signal(u32 sig)
2915  *	Description
2916  *		Send signal *sig* to the process of the current task.
2917  *		The signal may be delivered to any of this process's threads.
2918  *	Return
2919  *		0 on success or successfully queued.
2920  *
2921  *		**-EBUSY** if work queue under nmi is full.
2922  *
2923  *		**-EINVAL** if *sig* is invalid.
2924  *
2925  *		**-EPERM** if no permission to send the *sig*.
2926  *
2927  *		**-EAGAIN** if bpf program can try again.
2928  *
2929  * s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2930  *	Description
2931  *		Try to issue a SYN cookie for the packet with corresponding
2932  *		IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
2933  *
2934  *		*iph* points to the start of the IPv4 or IPv6 header, while
2935  *		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2936  *		**sizeof**\ (**struct ip6hdr**).
2937  *
2938  *		*th* points to the start of the TCP header, while *th_len*
2939  *		contains the length of the TCP header.
2940  *	Return
2941  *		On success, lower 32 bits hold the generated SYN cookie in
2942  *		followed by 16 bits which hold the MSS value for that cookie,
2943  *		and the top 16 bits are unused.
2944  *
2945  *		On failure, the returned value is one of the following:
2946  *
2947  *		**-EINVAL** SYN cookie cannot be issued due to error
2948  *
2949  *		**-ENOENT** SYN cookie should not be issued (no SYN flood)
2950  *
2951  *		**-EOPNOTSUPP** kernel configuration does not enable SYN cookies
2952  *
2953  *		**-EPROTONOSUPPORT** IP packet version is not 4 or 6
2954  *
2955  * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2956  * 	Description
2957  * 		Write raw *data* blob into a special BPF perf event held by
2958  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2959  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
2960  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2961  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2962  *
2963  * 		The *flags* are used to indicate the index in *map* for which
2964  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
2965  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2966  * 		to indicate that the index of the current CPU core should be
2967  * 		used.
2968  *
2969  * 		The value to write, of *size*, is passed through eBPF stack and
2970  * 		pointed by *data*.
2971  *
2972  * 		*ctx* is a pointer to in-kernel struct sk_buff.
2973  *
2974  * 		This helper is similar to **bpf_perf_event_output**\ () but
2975  * 		restricted to raw_tracepoint bpf programs.
2976  * 	Return
2977  * 		0 on success, or a negative error in case of failure.
2978  *
2979  * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
2980  * 	Description
2981  * 		Safely attempt to read *size* bytes from user space address
2982  * 		*unsafe_ptr* and store the data in *dst*.
2983  * 	Return
2984  * 		0 on success, or a negative error in case of failure.
2985  *
2986  * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2987  * 	Description
2988  * 		Safely attempt to read *size* bytes from kernel space address
2989  * 		*unsafe_ptr* and store the data in *dst*.
2990  * 	Return
2991  * 		0 on success, or a negative error in case of failure.
2992  *
2993  * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
2994  * 	Description
2995  * 		Copy a NUL terminated string from an unsafe user address
2996  * 		*unsafe_ptr* to *dst*. The *size* should include the
2997  * 		terminating NUL byte. In case the string length is smaller than
2998  * 		*size*, the target is not padded with further NUL bytes. If the
2999  * 		string length is larger than *size*, just *size*-1 bytes are
3000  * 		copied and the last byte is set to NUL.
3001  *
3002  * 		On success, returns the number of bytes that were written,
3003  * 		including the terminal NUL. This makes this helper useful in
3004  * 		tracing programs for reading strings, and more importantly to
3005  * 		get its length at runtime. See the following snippet:
3006  *
3007  * 		::
3008  *
3009  * 			SEC("kprobe/sys_open")
3010  * 			void bpf_sys_open(struct pt_regs *ctx)
3011  * 			{
3012  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
3013  * 			        int res = bpf_probe_read_user_str(buf, sizeof(buf),
3014  * 				                                  ctx->di);
3015  *
3016  * 				// Consume buf, for example push it to
3017  * 				// userspace via bpf_perf_event_output(); we
3018  * 				// can use res (the string length) as event
3019  * 				// size, after checking its boundaries.
3020  * 			}
3021  *
3022  * 		In comparison, using **bpf_probe_read_user**\ () helper here
3023  * 		instead to read the string would require to estimate the length
3024  * 		at compile time, and would often result in copying more memory
3025  * 		than necessary.
3026  *
3027  * 		Another useful use case is when parsing individual process
3028  * 		arguments or individual environment variables navigating
3029  * 		*current*\ **->mm->arg_start** and *current*\
3030  * 		**->mm->env_start**: using this helper and the return value,
3031  * 		one can quickly iterate at the right offset of the memory area.
3032  * 	Return
3033  * 		On success, the strictly positive length of the output string,
3034  * 		including the trailing NUL character. On error, a negative
3035  * 		value.
3036  *
3037  * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
3038  * 	Description
3039  * 		Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
3040  * 		to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply.
3041  * 	Return
3042  * 		On success, the strictly positive length of the string, including
3043  * 		the trailing NUL character. On error, a negative value.
3044  *
3045  * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
3046  *	Description
3047  *		Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**.
3048  *		*rcv_nxt* is the ack_seq to be sent out.
3049  *	Return
3050  *		0 on success, or a negative error in case of failure.
3051  *
3052  * long bpf_send_signal_thread(u32 sig)
3053  *	Description
3054  *		Send signal *sig* to the thread corresponding to the current task.
3055  *	Return
3056  *		0 on success or successfully queued.
3057  *
3058  *		**-EBUSY** if work queue under nmi is full.
3059  *
3060  *		**-EINVAL** if *sig* is invalid.
3061  *
3062  *		**-EPERM** if no permission to send the *sig*.
3063  *
3064  *		**-EAGAIN** if bpf program can try again.
3065  *
3066  * u64 bpf_jiffies64(void)
3067  *	Description
3068  *		Obtain the 64bit jiffies
3069  *	Return
3070  *		The 64 bit jiffies
3071  *
3072  * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
3073  *	Description
3074  *		For an eBPF program attached to a perf event, retrieve the
3075  *		branch records (**struct perf_branch_entry**) associated to *ctx*
3076  *		and store it in the buffer pointed by *buf* up to size
3077  *		*size* bytes.
3078  *	Return
3079  *		On success, number of bytes written to *buf*. On error, a
3080  *		negative value.
3081  *
3082  *		The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
3083  *		instead return the number of bytes required to store all the
3084  *		branch entries. If this flag is set, *buf* may be NULL.
3085  *
3086  *		**-EINVAL** if arguments invalid or **size** not a multiple
3087  *		of **sizeof**\ (**struct perf_branch_entry**\ ).
3088  *
3089  *		**-ENOENT** if architecture does not support branch records.
3090  *
3091  * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
3092  *	Description
3093  *		Returns 0 on success, values for *pid* and *tgid* as seen from the current
3094  *		*namespace* will be returned in *nsdata*.
3095  *	Return
3096  *		0 on success, or one of the following in case of failure:
3097  *
3098  *		**-EINVAL** if dev and inum supplied don't match dev_t and inode number
3099  *              with nsfs of current task, or if dev conversion to dev_t lost high bits.
3100  *
3101  *		**-ENOENT** if pidns does not exists for the current task.
3102  *
3103  * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
3104  *	Description
3105  *		Write raw *data* blob into a special BPF perf event held by
3106  *		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
3107  *		event must have the following attributes: **PERF_SAMPLE_RAW**
3108  *		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
3109  *		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
3110  *
3111  *		The *flags* are used to indicate the index in *map* for which
3112  *		the value must be put, masked with **BPF_F_INDEX_MASK**.
3113  *		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
3114  *		to indicate that the index of the current CPU core should be
3115  *		used.
3116  *
3117  *		The value to write, of *size*, is passed through eBPF stack and
3118  *		pointed by *data*.
3119  *
3120  *		*ctx* is a pointer to in-kernel struct xdp_buff.
3121  *
3122  *		This helper is similar to **bpf_perf_eventoutput**\ () but
3123  *		restricted to raw_tracepoint bpf programs.
3124  *	Return
3125  *		0 on success, or a negative error in case of failure.
3126  *
3127  * u64 bpf_get_netns_cookie(void *ctx)
3128  * 	Description
3129  * 		Retrieve the cookie (generated by the kernel) of the network
3130  * 		namespace the input *ctx* is associated with. The network
3131  * 		namespace cookie remains stable for its lifetime and provides
3132  * 		a global identifier that can be assumed unique. If *ctx* is
3133  * 		NULL, then the helper returns the cookie for the initial
3134  * 		network namespace. The cookie itself is very similar to that
3135  * 		of **bpf_get_socket_cookie**\ () helper, but for network
3136  * 		namespaces instead of sockets.
3137  * 	Return
3138  * 		A 8-byte long opaque number.
3139  *
3140  * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
3141  * 	Description
3142  * 		Return id of cgroup v2 that is ancestor of the cgroup associated
3143  * 		with the current task at the *ancestor_level*. The root cgroup
3144  * 		is at *ancestor_level* zero and each step down the hierarchy
3145  * 		increments the level. If *ancestor_level* == level of cgroup
3146  * 		associated with the current task, then return value will be the
3147  * 		same as that of **bpf_get_current_cgroup_id**\ ().
3148  *
3149  * 		The helper is useful to implement policies based on cgroups
3150  * 		that are upper in hierarchy than immediate cgroup associated
3151  * 		with the current task.
3152  *
3153  * 		The format of returned id and helper limitations are same as in
3154  * 		**bpf_get_current_cgroup_id**\ ().
3155  * 	Return
3156  * 		The id is returned or 0 in case the id could not be retrieved.
3157  *
3158  * long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)
3159  *	Description
3160  *		Helper is overloaded depending on BPF program type. This
3161  *		description applies to **BPF_PROG_TYPE_SCHED_CLS** and
3162  *		**BPF_PROG_TYPE_SCHED_ACT** programs.
3163  *
3164  *		Assign the *sk* to the *skb*. When combined with appropriate
3165  *		routing configuration to receive the packet towards the socket,
3166  *		will cause *skb* to be delivered to the specified socket.
3167  *		Subsequent redirection of *skb* via  **bpf_redirect**\ (),
3168  *		**bpf_clone_redirect**\ () or other methods outside of BPF may
3169  *		interfere with successful delivery to the socket.
3170  *
3171  *		This operation is only valid from TC ingress path.
3172  *
3173  *		The *flags* argument must be zero.
3174  *	Return
3175  *		0 on success, or a negative error in case of failure:
3176  *
3177  *		**-EINVAL** if specified *flags* are not supported.
3178  *
3179  *		**-ENOENT** if the socket is unavailable for assignment.
3180  *
3181  *		**-ENETUNREACH** if the socket is unreachable (wrong netns).
3182  *
3183  *		**-EOPNOTSUPP** if the operation is not supported, for example
3184  *		a call from outside of TC ingress.
3185  *
3186  *		**-ESOCKTNOSUPPORT** if the socket type is not supported
3187  *		(reuseport).
3188  *
3189  * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)
3190  *	Description
3191  *		Helper is overloaded depending on BPF program type. This
3192  *		description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs.
3193  *
3194  *		Select the *sk* as a result of a socket lookup.
3195  *
3196  *		For the operation to succeed passed socket must be compatible
3197  *		with the packet description provided by the *ctx* object.
3198  *
3199  *		L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must
3200  *		be an exact match. While IP family (**AF_INET** or
3201  *		**AF_INET6**) must be compatible, that is IPv6 sockets
3202  *		that are not v6-only can be selected for IPv4 packets.
3203  *
3204  *		Only TCP listeners and UDP unconnected sockets can be
3205  *		selected. *sk* can also be NULL to reset any previous
3206  *		selection.
3207  *
3208  *		*flags* argument can combination of following values:
3209  *
3210  *		* **BPF_SK_LOOKUP_F_REPLACE** to override the previous
3211  *		  socket selection, potentially done by a BPF program
3212  *		  that ran before us.
3213  *
3214  *		* **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip
3215  *		  load-balancing within reuseport group for the socket
3216  *		  being selected.
3217  *
3218  *		On success *ctx->sk* will point to the selected socket.
3219  *
3220  *	Return
3221  *		0 on success, or a negative errno in case of failure.
3222  *
3223  *		* **-EAFNOSUPPORT** if socket family (*sk->family*) is
3224  *		  not compatible with packet family (*ctx->family*).
3225  *
3226  *		* **-EEXIST** if socket has been already selected,
3227  *		  potentially by another program, and
3228  *		  **BPF_SK_LOOKUP_F_REPLACE** flag was not specified.
3229  *
3230  *		* **-EINVAL** if unsupported flags were specified.
3231  *
3232  *		* **-EPROTOTYPE** if socket L4 protocol
3233  *		  (*sk->protocol*) doesn't match packet protocol
3234  *		  (*ctx->protocol*).
3235  *
3236  *		* **-ESOCKTNOSUPPORT** if socket is not in allowed
3237  *		  state (TCP listening or UDP unconnected).
3238  *
3239  * u64 bpf_ktime_get_boot_ns(void)
3240  * 	Description
3241  * 		Return the time elapsed since system boot, in nanoseconds.
3242  * 		Does include the time the system was suspended.
3243  * 		See: **clock_gettime**\ (**CLOCK_BOOTTIME**)
3244  * 	Return
3245  * 		Current *ktime*.
3246  *
3247  * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len)
3248  * 	Description
3249  * 		**bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print
3250  * 		out the format string.
3251  * 		The *m* represents the seq_file. The *fmt* and *fmt_size* are for
3252  * 		the format string itself. The *data* and *data_len* are format string
3253  * 		arguments. The *data* are a **u64** array and corresponding format string
3254  * 		values are stored in the array. For strings and pointers where pointees
3255  * 		are accessed, only the pointer values are stored in the *data* array.
3256  * 		The *data_len* is the size of *data* in bytes.
3257  *
3258  *		Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory.
3259  *		Reading kernel memory may fail due to either invalid address or
3260  *		valid address but requiring a major memory fault. If reading kernel memory
3261  *		fails, the string for **%s** will be an empty string, and the ip
3262  *		address for **%p{i,I}{4,6}** will be 0. Not returning error to
3263  *		bpf program is consistent with what **bpf_trace_printk**\ () does for now.
3264  * 	Return
3265  * 		0 on success, or a negative error in case of failure:
3266  *
3267  *		**-EBUSY** if per-CPU memory copy buffer is busy, can try again
3268  *		by returning 1 from bpf program.
3269  *
3270  *		**-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported.
3271  *
3272  *		**-E2BIG** if *fmt* contains too many format specifiers.
3273  *
3274  *		**-EOVERFLOW** if an overflow happened: The same object will be tried again.
3275  *
3276  * long bpf_seq_write(struct seq_file *m, const void *data, u32 len)
3277  * 	Description
3278  * 		**bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data.
3279  * 		The *m* represents the seq_file. The *data* and *len* represent the
3280  * 		data to write in bytes.
3281  * 	Return
3282  * 		0 on success, or a negative error in case of failure:
3283  *
3284  *		**-EOVERFLOW** if an overflow happened: The same object will be tried again.
3285  *
3286  * u64 bpf_sk_cgroup_id(void *sk)
3287  *	Description
3288  *		Return the cgroup v2 id of the socket *sk*.
3289  *
3290  *		*sk* must be a non-**NULL** pointer to a socket, e.g. one
3291  *		returned from **bpf_sk_lookup_xxx**\ (),
3292  *		**bpf_sk_fullsock**\ (), etc. The format of returned id is
3293  *		same as in **bpf_skb_cgroup_id**\ ().
3294  *
3295  *		This helper is available only if the kernel was compiled with
3296  *		the **CONFIG_SOCK_CGROUP_DATA** configuration option.
3297  *	Return
3298  *		The id is returned or 0 in case the id could not be retrieved.
3299  *
3300  * u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)
3301  *	Description
3302  *		Return id of cgroup v2 that is ancestor of cgroup associated
3303  *		with the *sk* at the *ancestor_level*.  The root cgroup is at
3304  *		*ancestor_level* zero and each step down the hierarchy
3305  *		increments the level. If *ancestor_level* == level of cgroup
3306  *		associated with *sk*, then return value will be same as that
3307  *		of **bpf_sk_cgroup_id**\ ().
3308  *
3309  *		The helper is useful to implement policies based on cgroups
3310  *		that are upper in hierarchy than immediate cgroup associated
3311  *		with *sk*.
3312  *
3313  *		The format of returned id and helper limitations are same as in
3314  *		**bpf_sk_cgroup_id**\ ().
3315  *	Return
3316  *		The id is returned or 0 in case the id could not be retrieved.
3317  *
3318  * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)
3319  * 	Description
3320  * 		Copy *size* bytes from *data* into a ring buffer *ringbuf*.
3321  * 		If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
3322  * 		of new data availability is sent.
3323  * 		If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
3324  * 		of new data availability is sent unconditionally.
3325  * 	Return
3326  * 		0 on success, or a negative error in case of failure.
3327  *
3328  * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)
3329  * 	Description
3330  * 		Reserve *size* bytes of payload in a ring buffer *ringbuf*.
3331  * 	Return
3332  * 		Valid pointer with *size* bytes of memory available; NULL,
3333  * 		otherwise.
3334  *
3335  * void bpf_ringbuf_submit(void *data, u64 flags)
3336  * 	Description
3337  * 		Submit reserved ring buffer sample, pointed to by *data*.
3338  * 		If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
3339  * 		of new data availability is sent.
3340  * 		If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
3341  * 		of new data availability is sent unconditionally.
3342  * 	Return
3343  * 		Nothing. Always succeeds.
3344  *
3345  * void bpf_ringbuf_discard(void *data, u64 flags)
3346  * 	Description
3347  * 		Discard reserved ring buffer sample, pointed to by *data*.
3348  * 		If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
3349  * 		of new data availability is sent.
3350  * 		If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
3351  * 		of new data availability is sent unconditionally.
3352  * 	Return
3353  * 		Nothing. Always succeeds.
3354  *
3355  * u64 bpf_ringbuf_query(void *ringbuf, u64 flags)
3356  *	Description
3357  *		Query various characteristics of provided ring buffer. What
3358  *		exactly is queries is determined by *flags*:
3359  *
3360  *		* **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed.
3361  *		* **BPF_RB_RING_SIZE**: The size of ring buffer.
3362  *		* **BPF_RB_CONS_POS**: Consumer position (can wrap around).
3363  *		* **BPF_RB_PROD_POS**: Producer(s) position (can wrap around).
3364  *
3365  *		Data returned is just a momentary snapshot of actual values
3366  *		and could be inaccurate, so this facility should be used to
3367  *		power heuristics and for reporting, not to make 100% correct
3368  *		calculation.
3369  *	Return
3370  *		Requested value, or 0, if *flags* are not recognized.
3371  *
3372  * long bpf_csum_level(struct sk_buff *skb, u64 level)
3373  * 	Description
3374  * 		Change the skbs checksum level by one layer up or down, or
3375  * 		reset it entirely to none in order to have the stack perform
3376  * 		checksum validation. The level is applicable to the following
3377  * 		protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of
3378  * 		| ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |
3379  * 		through **bpf_skb_adjust_room**\ () helper with passing in
3380  * 		**BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one	call
3381  * 		to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since
3382  * 		the UDP header is removed. Similarly, an encap of the latter
3383  * 		into the former could be accompanied by a helper call to
3384  * 		**bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the
3385  * 		skb is still intended to be processed in higher layers of the
3386  * 		stack instead of just egressing at tc.
3387  *
3388  * 		There are three supported level settings at this time:
3389  *
3390  * 		* **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs
3391  * 		  with CHECKSUM_UNNECESSARY.
3392  * 		* **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs
3393  * 		  with CHECKSUM_UNNECESSARY.
3394  * 		* **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and
3395  * 		  sets CHECKSUM_NONE to force checksum validation by the stack.
3396  * 		* **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current
3397  * 		  skb->csum_level.
3398  * 	Return
3399  * 		0 on success, or a negative error in case of failure. In the
3400  * 		case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level
3401  * 		is returned or the error code -EACCES in case the skb is not
3402  * 		subject to CHECKSUM_UNNECESSARY.
3403  *
3404  * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)
3405  *	Description
3406  *		Dynamically cast a *sk* pointer to a *tcp6_sock* pointer.
3407  *	Return
3408  *		*sk* if casting is valid, or **NULL** otherwise.
3409  *
3410  * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)
3411  *	Description
3412  *		Dynamically cast a *sk* pointer to a *tcp_sock* pointer.
3413  *	Return
3414  *		*sk* if casting is valid, or **NULL** otherwise.
3415  *
3416  * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)
3417  * 	Description
3418  *		Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer.
3419  *	Return
3420  *		*sk* if casting is valid, or **NULL** otherwise.
3421  *
3422  * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)
3423  * 	Description
3424  *		Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer.
3425  *	Return
3426  *		*sk* if casting is valid, or **NULL** otherwise.
3427  *
3428  * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)
3429  * 	Description
3430  *		Dynamically cast a *sk* pointer to a *udp6_sock* pointer.
3431  *	Return
3432  *		*sk* if casting is valid, or **NULL** otherwise.
3433  *
3434  * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)
3435  *	Description
3436  *		Return a user or a kernel stack in bpf program provided buffer.
3437  *		To achieve this, the helper needs *task*, which is a valid
3438  *		pointer to **struct task_struct**. To store the stacktrace, the
3439  *		bpf program provides *buf* with a nonnegative *size*.
3440  *
3441  *		The last argument, *flags*, holds the number of stack frames to
3442  *		skip (from 0 to 255), masked with
3443  *		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
3444  *		the following flags:
3445  *
3446  *		**BPF_F_USER_STACK**
3447  *			Collect a user space stack instead of a kernel stack.
3448  *		**BPF_F_USER_BUILD_ID**
3449  *			Collect buildid+offset instead of ips for user stack,
3450  *			only valid if **BPF_F_USER_STACK** is also specified.
3451  *
3452  *		**bpf_get_task_stack**\ () can collect up to
3453  *		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
3454  *		to sufficient large buffer size. Note that
3455  *		this limit can be controlled with the **sysctl** program, and
3456  *		that it should be manually increased in order to profile long
3457  *		user stacks (such as stacks for Java programs). To do so, use:
3458  *
3459  *		::
3460  *
3461  *			# sysctl kernel.perf_event_max_stack=<new value>
3462  *	Return
3463  *		A non-negative value equal to or less than *size* on success,
3464  *		or a negative error in case of failure.
3465  *
3466  * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags)
3467  *	Description
3468  *		Load header option.  Support reading a particular TCP header
3469  *		option for bpf program (**BPF_PROG_TYPE_SOCK_OPS**).
3470  *
3471  *		If *flags* is 0, it will search the option from the
3472  *		*skops*\ **->skb_data**.  The comment in **struct bpf_sock_ops**
3473  *		has details on what skb_data contains under different
3474  *		*skops*\ **->op**.
3475  *
3476  *		The first byte of the *searchby_res* specifies the
3477  *		kind that it wants to search.
3478  *
3479  *		If the searching kind is an experimental kind
3480  *		(i.e. 253 or 254 according to RFC6994).  It also
3481  *		needs to specify the "magic" which is either
3482  *		2 bytes or 4 bytes.  It then also needs to
3483  *		specify the size of the magic by using
3484  *		the 2nd byte which is "kind-length" of a TCP
3485  *		header option and the "kind-length" also
3486  *		includes the first 2 bytes "kind" and "kind-length"
3487  *		itself as a normal TCP header option also does.
3488  *
3489  *		For example, to search experimental kind 254 with
3490  *		2 byte magic 0xeB9F, the searchby_res should be
3491  *		[ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ].
3492  *
3493  *		To search for the standard window scale option (3),
3494  *		the *searchby_res* should be [ 3, 0, 0, .... 0 ].
3495  *		Note, kind-length must be 0 for regular option.
3496  *
3497  *		Searching for No-Op (0) and End-of-Option-List (1) are
3498  *		not supported.
3499  *
3500  *		*len* must be at least 2 bytes which is the minimal size
3501  *		of a header option.
3502  *
3503  *		Supported flags:
3504  *
3505  *		* **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the
3506  *		  saved_syn packet or the just-received syn packet.
3507  *
3508  *	Return
3509  *		> 0 when found, the header option is copied to *searchby_res*.
3510  *		The return value is the total length copied. On failure, a
3511  *		negative error code is returned:
3512  *
3513  *		**-EINVAL** if a parameter is invalid.
3514  *
3515  *		**-ENOMSG** if the option is not found.
3516  *
3517  *		**-ENOENT** if no syn packet is available when
3518  *		**BPF_LOAD_HDR_OPT_TCP_SYN** is used.
3519  *
3520  *		**-ENOSPC** if there is not enough space.  Only *len* number of
3521  *		bytes are copied.
3522  *
3523  *		**-EFAULT** on failure to parse the header options in the
3524  *		packet.
3525  *
3526  *		**-EPERM** if the helper cannot be used under the current
3527  *		*skops*\ **->op**.
3528  *
3529  * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags)
3530  *	Description
3531  *		Store header option.  The data will be copied
3532  *		from buffer *from* with length *len* to the TCP header.
3533  *
3534  *		The buffer *from* should have the whole option that
3535  *		includes the kind, kind-length, and the actual
3536  *		option data.  The *len* must be at least kind-length
3537  *		long.  The kind-length does not have to be 4 byte
3538  *		aligned.  The kernel will take care of the padding
3539  *		and setting the 4 bytes aligned value to th->doff.
3540  *
3541  *		This helper will check for duplicated option
3542  *		by searching the same option in the outgoing skb.
3543  *
3544  *		This helper can only be called during
3545  *		**BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
3546  *
3547  *	Return
3548  *		0 on success, or negative error in case of failure:
3549  *
3550  *		**-EINVAL** If param is invalid.
3551  *
3552  *		**-ENOSPC** if there is not enough space in the header.
3553  *		Nothing has been written
3554  *
3555  *		**-EEXIST** if the option already exists.
3556  *
3557  *		**-EFAULT** on failrue to parse the existing header options.
3558  *
3559  *		**-EPERM** if the helper cannot be used under the current
3560  *		*skops*\ **->op**.
3561  *
3562  * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)
3563  *	Description
3564  *		Reserve *len* bytes for the bpf header option.  The
3565  *		space will be used by **bpf_store_hdr_opt**\ () later in
3566  *		**BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
3567  *
3568  *		If **bpf_reserve_hdr_opt**\ () is called multiple times,
3569  *		the total number of bytes will be reserved.
3570  *
3571  *		This helper can only be called during
3572  *		**BPF_SOCK_OPS_HDR_OPT_LEN_CB**.
3573  *
3574  *	Return
3575  *		0 on success, or negative error in case of failure:
3576  *
3577  *		**-EINVAL** if a parameter is invalid.
3578  *
3579  *		**-ENOSPC** if there is not enough space in the header.
3580  *
3581  *		**-EPERM** if the helper cannot be used under the current
3582  *		*skops*\ **->op**.
3583  *
3584  * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags)
3585  *	Description
3586  *		Get a bpf_local_storage from an *inode*.
3587  *
3588  *		Logically, it could be thought of as getting the value from
3589  *		a *map* with *inode* as the **key**.  From this
3590  *		perspective,  the usage is not much different from
3591  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this
3592  *		helper enforces the key must be an inode and the map must also
3593  *		be a **BPF_MAP_TYPE_INODE_STORAGE**.
3594  *
3595  *		Underneath, the value is stored locally at *inode* instead of
3596  *		the *map*.  The *map* is used as the bpf-local-storage
3597  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
3598  *		searched against all bpf_local_storage residing at *inode*.
3599  *
3600  *		An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
3601  *		used such that a new bpf_local_storage will be
3602  *		created if one does not exist.  *value* can be used
3603  *		together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
3604  *		the initial value of a bpf_local_storage.  If *value* is
3605  *		**NULL**, the new bpf_local_storage will be zero initialized.
3606  *	Return
3607  *		A bpf_local_storage pointer is returned on success.
3608  *
3609  *		**NULL** if not found or there was an error in adding
3610  *		a new bpf_local_storage.
3611  *
3612  * int bpf_inode_storage_delete(struct bpf_map *map, void *inode)
3613  *	Description
3614  *		Delete a bpf_local_storage from an *inode*.
3615  *	Return
3616  *		0 on success.
3617  *
3618  *		**-ENOENT** if the bpf_local_storage cannot be found.
3619  *
3620  * long bpf_d_path(struct path *path, char *buf, u32 sz)
3621  *	Description
3622  *		Return full path for given **struct path** object, which
3623  *		needs to be the kernel BTF *path* object. The path is
3624  *		returned in the provided buffer *buf* of size *sz* and
3625  *		is zero terminated.
3626  *
3627  *	Return
3628  *		On success, the strictly positive length of the string,
3629  *		including the trailing NUL character. On error, a negative
3630  *		value.
3631  *
3632  * long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)
3633  * 	Description
3634  * 		Read *size* bytes from user space address *user_ptr* and store
3635  * 		the data in *dst*. This is a wrapper of **copy_from_user**\ ().
3636  * 	Return
3637  * 		0 on success, or a negative error in case of failure.
3638  *
3639  * long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags)
3640  *	Description
3641  *		Use BTF to store a string representation of *ptr*->ptr in *str*,
3642  *		using *ptr*->type_id.  This value should specify the type
3643  *		that *ptr*->ptr points to. LLVM __builtin_btf_type_id(type, 1)
3644  *		can be used to look up vmlinux BTF type ids. Traversing the
3645  *		data structure using BTF, the type information and values are
3646  *		stored in the first *str_size* - 1 bytes of *str*.  Safe copy of
3647  *		the pointer data is carried out to avoid kernel crashes during
3648  *		operation.  Smaller types can use string space on the stack;
3649  *		larger programs can use map data to store the string
3650  *		representation.
3651  *
3652  *		The string can be subsequently shared with userspace via
3653  *		bpf_perf_event_output() or ring buffer interfaces.
3654  *		bpf_trace_printk() is to be avoided as it places too small
3655  *		a limit on string size to be useful.
3656  *
3657  *		*flags* is a combination of
3658  *
3659  *		**BTF_F_COMPACT**
3660  *			no formatting around type information
3661  *		**BTF_F_NONAME**
3662  *			no struct/union member names/types
3663  *		**BTF_F_PTR_RAW**
3664  *			show raw (unobfuscated) pointer values;
3665  *			equivalent to printk specifier %px.
3666  *		**BTF_F_ZERO**
3667  *			show zero-valued struct/union members; they
3668  *			are not displayed by default
3669  *
3670  *	Return
3671  *		The number of bytes that were written (or would have been
3672  *		written if output had to be truncated due to string size),
3673  *		or a negative error in cases of failure.
3674  *
3675  * long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64 flags)
3676  *	Description
3677  *		Use BTF to write to seq_write a string representation of
3678  *		*ptr*->ptr, using *ptr*->type_id as per bpf_snprintf_btf().
3679  *		*flags* are identical to those used for bpf_snprintf_btf.
3680  *	Return
3681  *		0 on success or a negative error in case of failure.
3682  *
3683  * u64 bpf_skb_cgroup_classid(struct sk_buff *skb)
3684  * 	Description
3685  * 		See **bpf_get_cgroup_classid**\ () for the main description.
3686  * 		This helper differs from **bpf_get_cgroup_classid**\ () in that
3687  * 		the cgroup v1 net_cls class is retrieved only from the *skb*'s
3688  * 		associated socket instead of the current process.
3689  * 	Return
3690  * 		The id is returned or 0 in case the id could not be retrieved.
3691  *
3692  * long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64 flags)
3693  * 	Description
3694  * 		Redirect the packet to another net device of index *ifindex*
3695  * 		and fill in L2 addresses from neighboring subsystem. This helper
3696  * 		is somewhat similar to **bpf_redirect**\ (), except that it
3697  * 		populates L2 addresses as well, meaning, internally, the helper
3698  * 		relies on the neighbor lookup for the L2 address of the nexthop.
3699  *
3700  * 		The helper will perform a FIB lookup based on the skb's
3701  * 		networking header to get the address of the next hop, unless
3702  * 		this is supplied by the caller in the *params* argument. The
3703  * 		*plen* argument indicates the len of *params* and should be set
3704  * 		to 0 if *params* is NULL.
3705  *
3706  * 		The *flags* argument is reserved and must be 0. The helper is
3707  * 		currently only supported for tc BPF program types, and enabled
3708  * 		for IPv4 and IPv6 protocols.
3709  * 	Return
3710  * 		The helper returns **TC_ACT_REDIRECT** on success or
3711  * 		**TC_ACT_SHOT** on error.
3712  *
3713  * void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)
3714  *     Description
3715  *             Take a pointer to a percpu ksym, *percpu_ptr*, and return a
3716  *             pointer to the percpu kernel variable on *cpu*. A ksym is an
3717  *             extern variable decorated with '__ksym'. For ksym, there is a
3718  *             global var (either static or global) defined of the same name
3719  *             in the kernel. The ksym is percpu if the global var is percpu.
3720  *             The returned pointer points to the global percpu var on *cpu*.
3721  *
3722  *             bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the
3723  *             kernel, except that bpf_per_cpu_ptr() may return NULL. This
3724  *             happens if *cpu* is larger than nr_cpu_ids. The caller of
3725  *             bpf_per_cpu_ptr() must check the returned value.
3726  *     Return
3727  *             A pointer pointing to the kernel percpu variable on *cpu*, or
3728  *             NULL, if *cpu* is invalid.
3729  *
3730  * void *bpf_this_cpu_ptr(const void *percpu_ptr)
3731  *	Description
3732  *		Take a pointer to a percpu ksym, *percpu_ptr*, and return a
3733  *		pointer to the percpu kernel variable on this cpu. See the
3734  *		description of 'ksym' in **bpf_per_cpu_ptr**\ ().
3735  *
3736  *		bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in
3737  *		the kernel. Different from **bpf_per_cpu_ptr**\ (), it would
3738  *		never return NULL.
3739  *	Return
3740  *		A pointer pointing to the kernel percpu variable on this cpu.
3741  *
3742  * long bpf_redirect_peer(u32 ifindex, u64 flags)
3743  * 	Description
3744  * 		Redirect the packet to another net device of index *ifindex*.
3745  * 		This helper is somewhat similar to **bpf_redirect**\ (), except
3746  * 		that the redirection happens to the *ifindex*' peer device and
3747  * 		the netns switch takes place from ingress to ingress without
3748  * 		going through the CPU's backlog queue.
3749  *
3750  * 		The *flags* argument is reserved and must be 0. The helper is
3751  * 		currently only supported for tc BPF program types at the ingress
3752  * 		hook and for veth device types. The peer device must reside in a
3753  * 		different network namespace.
3754  * 	Return
3755  * 		The helper returns **TC_ACT_REDIRECT** on success or
3756  * 		**TC_ACT_SHOT** on error.
3757  *
3758  * void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags)
3759  *	Description
3760  *		Get a bpf_local_storage from the *task*.
3761  *
3762  *		Logically, it could be thought of as getting the value from
3763  *		a *map* with *task* as the **key**.  From this
3764  *		perspective,  the usage is not much different from
3765  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *task*) except this
3766  *		helper enforces the key must be an task_struct and the map must also
3767  *		be a **BPF_MAP_TYPE_TASK_STORAGE**.
3768  *
3769  *		Underneath, the value is stored locally at *task* instead of
3770  *		the *map*.  The *map* is used as the bpf-local-storage
3771  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
3772  *		searched against all bpf_local_storage residing at *task*.
3773  *
3774  *		An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
3775  *		used such that a new bpf_local_storage will be
3776  *		created if one does not exist.  *value* can be used
3777  *		together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
3778  *		the initial value of a bpf_local_storage.  If *value* is
3779  *		**NULL**, the new bpf_local_storage will be zero initialized.
3780  *	Return
3781  *		A bpf_local_storage pointer is returned on success.
3782  *
3783  *		**NULL** if not found or there was an error in adding
3784  *		a new bpf_local_storage.
3785  *
3786  * long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)
3787  *	Description
3788  *		Delete a bpf_local_storage from a *task*.
3789  *	Return
3790  *		0 on success.
3791  *
3792  *		**-ENOENT** if the bpf_local_storage cannot be found.
3793  *
3794  * struct task_struct *bpf_get_current_task_btf(void)
3795  *	Description
3796  *		Return a BTF pointer to the "current" task.
3797  *		This pointer can also be used in helpers that accept an
3798  *		*ARG_PTR_TO_BTF_ID* of type *task_struct*.
3799  *	Return
3800  *		Pointer to the current task.
3801  *
3802  * long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)
3803  *	Description
3804  *		Set or clear certain options on *bprm*:
3805  *
3806  *		**BPF_F_BPRM_SECUREEXEC** Set the secureexec bit
3807  *		which sets the **AT_SECURE** auxv for glibc. The bit
3808  *		is cleared if the flag is not specified.
3809  *	Return
3810  *		**-EINVAL** if invalid *flags* are passed, zero otherwise.
3811  *
3812  * u64 bpf_ktime_get_coarse_ns(void)
3813  * 	Description
3814  * 		Return a coarse-grained version of the time elapsed since
3815  * 		system boot, in nanoseconds. Does not include time the system
3816  * 		was suspended.
3817  *
3818  * 		See: **clock_gettime**\ (**CLOCK_MONOTONIC_COARSE**)
3819  * 	Return
3820  * 		Current *ktime*.
3821  *
3822  * long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)
3823  *	Description
3824  *		Returns the stored IMA hash of the *inode* (if it's avaialable).
3825  *		If the hash is larger than *size*, then only *size*
3826  *		bytes will be copied to *dst*
3827  *	Return
3828  *		The **hash_algo** is returned on success,
3829  *		**-EOPNOTSUP** if IMA is disabled or **-EINVAL** if
3830  *		invalid arguments are passed.
3831  *
3832  * struct socket *bpf_sock_from_file(struct file *file)
3833  *	Description
3834  *		If the given file represents a socket, returns the associated
3835  *		socket.
3836  *	Return
3837  *		A pointer to a struct socket on success or NULL if the file is
3838  *		not a socket.
3839  */
3840 #define __BPF_FUNC_MAPPER(FN)		\
3841 	FN(unspec),			\
3842 	FN(map_lookup_elem),		\
3843 	FN(map_update_elem),		\
3844 	FN(map_delete_elem),		\
3845 	FN(probe_read),			\
3846 	FN(ktime_get_ns),		\
3847 	FN(trace_printk),		\
3848 	FN(get_prandom_u32),		\
3849 	FN(get_smp_processor_id),	\
3850 	FN(skb_store_bytes),		\
3851 	FN(l3_csum_replace),		\
3852 	FN(l4_csum_replace),		\
3853 	FN(tail_call),			\
3854 	FN(clone_redirect),		\
3855 	FN(get_current_pid_tgid),	\
3856 	FN(get_current_uid_gid),	\
3857 	FN(get_current_comm),		\
3858 	FN(get_cgroup_classid),		\
3859 	FN(skb_vlan_push),		\
3860 	FN(skb_vlan_pop),		\
3861 	FN(skb_get_tunnel_key),		\
3862 	FN(skb_set_tunnel_key),		\
3863 	FN(perf_event_read),		\
3864 	FN(redirect),			\
3865 	FN(get_route_realm),		\
3866 	FN(perf_event_output),		\
3867 	FN(skb_load_bytes),		\
3868 	FN(get_stackid),		\
3869 	FN(csum_diff),			\
3870 	FN(skb_get_tunnel_opt),		\
3871 	FN(skb_set_tunnel_opt),		\
3872 	FN(skb_change_proto),		\
3873 	FN(skb_change_type),		\
3874 	FN(skb_under_cgroup),		\
3875 	FN(get_hash_recalc),		\
3876 	FN(get_current_task),		\
3877 	FN(probe_write_user),		\
3878 	FN(current_task_under_cgroup),	\
3879 	FN(skb_change_tail),		\
3880 	FN(skb_pull_data),		\
3881 	FN(csum_update),		\
3882 	FN(set_hash_invalid),		\
3883 	FN(get_numa_node_id),		\
3884 	FN(skb_change_head),		\
3885 	FN(xdp_adjust_head),		\
3886 	FN(probe_read_str),		\
3887 	FN(get_socket_cookie),		\
3888 	FN(get_socket_uid),		\
3889 	FN(set_hash),			\
3890 	FN(setsockopt),			\
3891 	FN(skb_adjust_room),		\
3892 	FN(redirect_map),		\
3893 	FN(sk_redirect_map),		\
3894 	FN(sock_map_update),		\
3895 	FN(xdp_adjust_meta),		\
3896 	FN(perf_event_read_value),	\
3897 	FN(perf_prog_read_value),	\
3898 	FN(getsockopt),			\
3899 	FN(override_return),		\
3900 	FN(sock_ops_cb_flags_set),	\
3901 	FN(msg_redirect_map),		\
3902 	FN(msg_apply_bytes),		\
3903 	FN(msg_cork_bytes),		\
3904 	FN(msg_pull_data),		\
3905 	FN(bind),			\
3906 	FN(xdp_adjust_tail),		\
3907 	FN(skb_get_xfrm_state),		\
3908 	FN(get_stack),			\
3909 	FN(skb_load_bytes_relative),	\
3910 	FN(fib_lookup),			\
3911 	FN(sock_hash_update),		\
3912 	FN(msg_redirect_hash),		\
3913 	FN(sk_redirect_hash),		\
3914 	FN(lwt_push_encap),		\
3915 	FN(lwt_seg6_store_bytes),	\
3916 	FN(lwt_seg6_adjust_srh),	\
3917 	FN(lwt_seg6_action),		\
3918 	FN(rc_repeat),			\
3919 	FN(rc_keydown),			\
3920 	FN(skb_cgroup_id),		\
3921 	FN(get_current_cgroup_id),	\
3922 	FN(get_local_storage),		\
3923 	FN(sk_select_reuseport),	\
3924 	FN(skb_ancestor_cgroup_id),	\
3925 	FN(sk_lookup_tcp),		\
3926 	FN(sk_lookup_udp),		\
3927 	FN(sk_release),			\
3928 	FN(map_push_elem),		\
3929 	FN(map_pop_elem),		\
3930 	FN(map_peek_elem),		\
3931 	FN(msg_push_data),		\
3932 	FN(msg_pop_data),		\
3933 	FN(rc_pointer_rel),		\
3934 	FN(spin_lock),			\
3935 	FN(spin_unlock),		\
3936 	FN(sk_fullsock),		\
3937 	FN(tcp_sock),			\
3938 	FN(skb_ecn_set_ce),		\
3939 	FN(get_listener_sock),		\
3940 	FN(skc_lookup_tcp),		\
3941 	FN(tcp_check_syncookie),	\
3942 	FN(sysctl_get_name),		\
3943 	FN(sysctl_get_current_value),	\
3944 	FN(sysctl_get_new_value),	\
3945 	FN(sysctl_set_new_value),	\
3946 	FN(strtol),			\
3947 	FN(strtoul),			\
3948 	FN(sk_storage_get),		\
3949 	FN(sk_storage_delete),		\
3950 	FN(send_signal),		\
3951 	FN(tcp_gen_syncookie),		\
3952 	FN(skb_output),			\
3953 	FN(probe_read_user),		\
3954 	FN(probe_read_kernel),		\
3955 	FN(probe_read_user_str),	\
3956 	FN(probe_read_kernel_str),	\
3957 	FN(tcp_send_ack),		\
3958 	FN(send_signal_thread),		\
3959 	FN(jiffies64),			\
3960 	FN(read_branch_records),	\
3961 	FN(get_ns_current_pid_tgid),	\
3962 	FN(xdp_output),			\
3963 	FN(get_netns_cookie),		\
3964 	FN(get_current_ancestor_cgroup_id),	\
3965 	FN(sk_assign),			\
3966 	FN(ktime_get_boot_ns),		\
3967 	FN(seq_printf),			\
3968 	FN(seq_write),			\
3969 	FN(sk_cgroup_id),		\
3970 	FN(sk_ancestor_cgroup_id),	\
3971 	FN(ringbuf_output),		\
3972 	FN(ringbuf_reserve),		\
3973 	FN(ringbuf_submit),		\
3974 	FN(ringbuf_discard),		\
3975 	FN(ringbuf_query),		\
3976 	FN(csum_level),			\
3977 	FN(skc_to_tcp6_sock),		\
3978 	FN(skc_to_tcp_sock),		\
3979 	FN(skc_to_tcp_timewait_sock),	\
3980 	FN(skc_to_tcp_request_sock),	\
3981 	FN(skc_to_udp6_sock),		\
3982 	FN(get_task_stack),		\
3983 	FN(load_hdr_opt),		\
3984 	FN(store_hdr_opt),		\
3985 	FN(reserve_hdr_opt),		\
3986 	FN(inode_storage_get),		\
3987 	FN(inode_storage_delete),	\
3988 	FN(d_path),			\
3989 	FN(copy_from_user),		\
3990 	FN(snprintf_btf),		\
3991 	FN(seq_printf_btf),		\
3992 	FN(skb_cgroup_classid),		\
3993 	FN(redirect_neigh),		\
3994 	FN(per_cpu_ptr),		\
3995 	FN(this_cpu_ptr),		\
3996 	FN(redirect_peer),		\
3997 	FN(task_storage_get),		\
3998 	FN(task_storage_delete),	\
3999 	FN(get_current_task_btf),	\
4000 	FN(bprm_opts_set),		\
4001 	FN(ktime_get_coarse_ns),	\
4002 	FN(ima_inode_hash),		\
4003 	FN(sock_from_file),		\
4004 	/* */
4005 
4006 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
4007  * function eBPF program intends to call
4008  */
4009 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
4010 enum bpf_func_id {
4011 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
4012 	__BPF_FUNC_MAX_ID,
4013 };
4014 #undef __BPF_ENUM_FN
4015 
4016 /* All flags used by eBPF helper functions, placed here. */
4017 
4018 /* BPF_FUNC_skb_store_bytes flags. */
4019 enum {
4020 	BPF_F_RECOMPUTE_CSUM		= (1ULL << 0),
4021 	BPF_F_INVALIDATE_HASH		= (1ULL << 1),
4022 };
4023 
4024 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
4025  * First 4 bits are for passing the header field size.
4026  */
4027 enum {
4028 	BPF_F_HDR_FIELD_MASK		= 0xfULL,
4029 };
4030 
4031 /* BPF_FUNC_l4_csum_replace flags. */
4032 enum {
4033 	BPF_F_PSEUDO_HDR		= (1ULL << 4),
4034 	BPF_F_MARK_MANGLED_0		= (1ULL << 5),
4035 	BPF_F_MARK_ENFORCE		= (1ULL << 6),
4036 };
4037 
4038 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
4039 enum {
4040 	BPF_F_INGRESS			= (1ULL << 0),
4041 };
4042 
4043 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
4044 enum {
4045 	BPF_F_TUNINFO_IPV6		= (1ULL << 0),
4046 };
4047 
4048 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
4049 enum {
4050 	BPF_F_SKIP_FIELD_MASK		= 0xffULL,
4051 	BPF_F_USER_STACK		= (1ULL << 8),
4052 /* flags used by BPF_FUNC_get_stackid only. */
4053 	BPF_F_FAST_STACK_CMP		= (1ULL << 9),
4054 	BPF_F_REUSE_STACKID		= (1ULL << 10),
4055 /* flags used by BPF_FUNC_get_stack only. */
4056 	BPF_F_USER_BUILD_ID		= (1ULL << 11),
4057 };
4058 
4059 /* BPF_FUNC_skb_set_tunnel_key flags. */
4060 enum {
4061 	BPF_F_ZERO_CSUM_TX		= (1ULL << 1),
4062 	BPF_F_DONT_FRAGMENT		= (1ULL << 2),
4063 	BPF_F_SEQ_NUMBER		= (1ULL << 3),
4064 };
4065 
4066 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
4067  * BPF_FUNC_perf_event_read_value flags.
4068  */
4069 enum {
4070 	BPF_F_INDEX_MASK		= 0xffffffffULL,
4071 	BPF_F_CURRENT_CPU		= BPF_F_INDEX_MASK,
4072 /* BPF_FUNC_perf_event_output for sk_buff input context. */
4073 	BPF_F_CTXLEN_MASK		= (0xfffffULL << 32),
4074 };
4075 
4076 /* Current network namespace */
4077 enum {
4078 	BPF_F_CURRENT_NETNS		= (-1L),
4079 };
4080 
4081 /* BPF_FUNC_csum_level level values. */
4082 enum {
4083 	BPF_CSUM_LEVEL_QUERY,
4084 	BPF_CSUM_LEVEL_INC,
4085 	BPF_CSUM_LEVEL_DEC,
4086 	BPF_CSUM_LEVEL_RESET,
4087 };
4088 
4089 /* BPF_FUNC_skb_adjust_room flags. */
4090 enum {
4091 	BPF_F_ADJ_ROOM_FIXED_GSO	= (1ULL << 0),
4092 	BPF_F_ADJ_ROOM_ENCAP_L3_IPV4	= (1ULL << 1),
4093 	BPF_F_ADJ_ROOM_ENCAP_L3_IPV6	= (1ULL << 2),
4094 	BPF_F_ADJ_ROOM_ENCAP_L4_GRE	= (1ULL << 3),
4095 	BPF_F_ADJ_ROOM_ENCAP_L4_UDP	= (1ULL << 4),
4096 	BPF_F_ADJ_ROOM_NO_CSUM_RESET	= (1ULL << 5),
4097 };
4098 
4099 enum {
4100 	BPF_ADJ_ROOM_ENCAP_L2_MASK	= 0xff,
4101 	BPF_ADJ_ROOM_ENCAP_L2_SHIFT	= 56,
4102 };
4103 
4104 #define BPF_F_ADJ_ROOM_ENCAP_L2(len)	(((__u64)len & \
4105 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) \
4106 					 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
4107 
4108 /* BPF_FUNC_sysctl_get_name flags. */
4109 enum {
4110 	BPF_F_SYSCTL_BASE_NAME		= (1ULL << 0),
4111 };
4112 
4113 /* BPF_FUNC_<kernel_obj>_storage_get flags */
4114 enum {
4115 	BPF_LOCAL_STORAGE_GET_F_CREATE	= (1ULL << 0),
4116 	/* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility
4117 	 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead.
4118 	 */
4119 	BPF_SK_STORAGE_GET_F_CREATE  = BPF_LOCAL_STORAGE_GET_F_CREATE,
4120 };
4121 
4122 /* BPF_FUNC_read_branch_records flags. */
4123 enum {
4124 	BPF_F_GET_BRANCH_RECORDS_SIZE	= (1ULL << 0),
4125 };
4126 
4127 /* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and
4128  * BPF_FUNC_bpf_ringbuf_output flags.
4129  */
4130 enum {
4131 	BPF_RB_NO_WAKEUP		= (1ULL << 0),
4132 	BPF_RB_FORCE_WAKEUP		= (1ULL << 1),
4133 };
4134 
4135 /* BPF_FUNC_bpf_ringbuf_query flags */
4136 enum {
4137 	BPF_RB_AVAIL_DATA = 0,
4138 	BPF_RB_RING_SIZE = 1,
4139 	BPF_RB_CONS_POS = 2,
4140 	BPF_RB_PROD_POS = 3,
4141 };
4142 
4143 /* BPF ring buffer constants */
4144 enum {
4145 	BPF_RINGBUF_BUSY_BIT		= (1U << 31),
4146 	BPF_RINGBUF_DISCARD_BIT		= (1U << 30),
4147 	BPF_RINGBUF_HDR_SZ		= 8,
4148 };
4149 
4150 /* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */
4151 enum {
4152 	BPF_SK_LOOKUP_F_REPLACE		= (1ULL << 0),
4153 	BPF_SK_LOOKUP_F_NO_REUSEPORT	= (1ULL << 1),
4154 };
4155 
4156 /* Mode for BPF_FUNC_skb_adjust_room helper. */
4157 enum bpf_adj_room_mode {
4158 	BPF_ADJ_ROOM_NET,
4159 	BPF_ADJ_ROOM_MAC,
4160 };
4161 
4162 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
4163 enum bpf_hdr_start_off {
4164 	BPF_HDR_START_MAC,
4165 	BPF_HDR_START_NET,
4166 };
4167 
4168 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
4169 enum bpf_lwt_encap_mode {
4170 	BPF_LWT_ENCAP_SEG6,
4171 	BPF_LWT_ENCAP_SEG6_INLINE,
4172 	BPF_LWT_ENCAP_IP,
4173 };
4174 
4175 /* Flags for bpf_bprm_opts_set helper */
4176 enum {
4177 	BPF_F_BPRM_SECUREEXEC	= (1ULL << 0),
4178 };
4179 
4180 #define __bpf_md_ptr(type, name)	\
4181 union {					\
4182 	type name;			\
4183 	__u64 :64;			\
4184 } __attribute__((aligned(8)))
4185 
4186 /* user accessible mirror of in-kernel sk_buff.
4187  * new fields can only be added to the end of this structure
4188  */
4189 struct __sk_buff {
4190 	__u32 len;
4191 	__u32 pkt_type;
4192 	__u32 mark;
4193 	__u32 queue_mapping;
4194 	__u32 protocol;
4195 	__u32 vlan_present;
4196 	__u32 vlan_tci;
4197 	__u32 vlan_proto;
4198 	__u32 priority;
4199 	__u32 ingress_ifindex;
4200 	__u32 ifindex;
4201 	__u32 tc_index;
4202 	__u32 cb[5];
4203 	__u32 hash;
4204 	__u32 tc_classid;
4205 	__u32 data;
4206 	__u32 data_end;
4207 	__u32 napi_id;
4208 
4209 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
4210 	__u32 family;
4211 	__u32 remote_ip4;	/* Stored in network byte order */
4212 	__u32 local_ip4;	/* Stored in network byte order */
4213 	__u32 remote_ip6[4];	/* Stored in network byte order */
4214 	__u32 local_ip6[4];	/* Stored in network byte order */
4215 	__u32 remote_port;	/* Stored in network byte order */
4216 	__u32 local_port;	/* stored in host byte order */
4217 	/* ... here. */
4218 
4219 	__u32 data_meta;
4220 	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
4221 	__u64 tstamp;
4222 	__u32 wire_len;
4223 	__u32 gso_segs;
4224 	__bpf_md_ptr(struct bpf_sock *, sk);
4225 	__u32 gso_size;
4226 };
4227 
4228 struct bpf_tunnel_key {
4229 	__u32 tunnel_id;
4230 	union {
4231 		__u32 remote_ipv4;
4232 		__u32 remote_ipv6[4];
4233 	};
4234 	__u8 tunnel_tos;
4235 	__u8 tunnel_ttl;
4236 	__u16 tunnel_ext;	/* Padding, future use. */
4237 	__u32 tunnel_label;
4238 };
4239 
4240 /* user accessible mirror of in-kernel xfrm_state.
4241  * new fields can only be added to the end of this structure
4242  */
4243 struct bpf_xfrm_state {
4244 	__u32 reqid;
4245 	__u32 spi;	/* Stored in network byte order */
4246 	__u16 family;
4247 	__u16 ext;	/* Padding, future use. */
4248 	union {
4249 		__u32 remote_ipv4;	/* Stored in network byte order */
4250 		__u32 remote_ipv6[4];	/* Stored in network byte order */
4251 	};
4252 };
4253 
4254 /* Generic BPF return codes which all BPF program types may support.
4255  * The values are binary compatible with their TC_ACT_* counter-part to
4256  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
4257  * programs.
4258  *
4259  * XDP is handled seprately, see XDP_*.
4260  */
4261 enum bpf_ret_code {
4262 	BPF_OK = 0,
4263 	/* 1 reserved */
4264 	BPF_DROP = 2,
4265 	/* 3-6 reserved */
4266 	BPF_REDIRECT = 7,
4267 	/* >127 are reserved for prog type specific return codes.
4268 	 *
4269 	 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
4270 	 *    BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
4271 	 *    changed and should be routed based on its new L3 header.
4272 	 *    (This is an L3 redirect, as opposed to L2 redirect
4273 	 *    represented by BPF_REDIRECT above).
4274 	 */
4275 	BPF_LWT_REROUTE = 128,
4276 };
4277 
4278 struct bpf_sock {
4279 	__u32 bound_dev_if;
4280 	__u32 family;
4281 	__u32 type;
4282 	__u32 protocol;
4283 	__u32 mark;
4284 	__u32 priority;
4285 	/* IP address also allows 1 and 2 bytes access */
4286 	__u32 src_ip4;
4287 	__u32 src_ip6[4];
4288 	__u32 src_port;		/* host byte order */
4289 	__u32 dst_port;		/* network byte order */
4290 	__u32 dst_ip4;
4291 	__u32 dst_ip6[4];
4292 	__u32 state;
4293 	__s32 rx_queue_mapping;
4294 };
4295 
4296 struct bpf_tcp_sock {
4297 	__u32 snd_cwnd;		/* Sending congestion window		*/
4298 	__u32 srtt_us;		/* smoothed round trip time << 3 in usecs */
4299 	__u32 rtt_min;
4300 	__u32 snd_ssthresh;	/* Slow start size threshold		*/
4301 	__u32 rcv_nxt;		/* What we want to receive next		*/
4302 	__u32 snd_nxt;		/* Next sequence we send		*/
4303 	__u32 snd_una;		/* First byte we want an ack for	*/
4304 	__u32 mss_cache;	/* Cached effective mss, not including SACKS */
4305 	__u32 ecn_flags;	/* ECN status bits.			*/
4306 	__u32 rate_delivered;	/* saved rate sample: packets delivered */
4307 	__u32 rate_interval_us;	/* saved rate sample: time elapsed */
4308 	__u32 packets_out;	/* Packets which are "in flight"	*/
4309 	__u32 retrans_out;	/* Retransmitted packets out		*/
4310 	__u32 total_retrans;	/* Total retransmits for entire connection */
4311 	__u32 segs_in;		/* RFC4898 tcpEStatsPerfSegsIn
4312 				 * total number of segments in.
4313 				 */
4314 	__u32 data_segs_in;	/* RFC4898 tcpEStatsPerfDataSegsIn
4315 				 * total number of data segments in.
4316 				 */
4317 	__u32 segs_out;		/* RFC4898 tcpEStatsPerfSegsOut
4318 				 * The total number of segments sent.
4319 				 */
4320 	__u32 data_segs_out;	/* RFC4898 tcpEStatsPerfDataSegsOut
4321 				 * total number of data segments sent.
4322 				 */
4323 	__u32 lost_out;		/* Lost packets			*/
4324 	__u32 sacked_out;	/* SACK'd packets			*/
4325 	__u64 bytes_received;	/* RFC4898 tcpEStatsAppHCThruOctetsReceived
4326 				 * sum(delta(rcv_nxt)), or how many bytes
4327 				 * were acked.
4328 				 */
4329 	__u64 bytes_acked;	/* RFC4898 tcpEStatsAppHCThruOctetsAcked
4330 				 * sum(delta(snd_una)), or how many bytes
4331 				 * were acked.
4332 				 */
4333 	__u32 dsack_dups;	/* RFC4898 tcpEStatsStackDSACKDups
4334 				 * total number of DSACK blocks received
4335 				 */
4336 	__u32 delivered;	/* Total data packets delivered incl. rexmits */
4337 	__u32 delivered_ce;	/* Like the above but only ECE marked packets */
4338 	__u32 icsk_retransmits;	/* Number of unrecovered [RTO] timeouts */
4339 };
4340 
4341 struct bpf_sock_tuple {
4342 	union {
4343 		struct {
4344 			__be32 saddr;
4345 			__be32 daddr;
4346 			__be16 sport;
4347 			__be16 dport;
4348 		} ipv4;
4349 		struct {
4350 			__be32 saddr[4];
4351 			__be32 daddr[4];
4352 			__be16 sport;
4353 			__be16 dport;
4354 		} ipv6;
4355 	};
4356 };
4357 
4358 struct bpf_xdp_sock {
4359 	__u32 queue_id;
4360 };
4361 
4362 #define XDP_PACKET_HEADROOM 256
4363 
4364 /* User return codes for XDP prog type.
4365  * A valid XDP program must return one of these defined values. All other
4366  * return codes are reserved for future use. Unknown return codes will
4367  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
4368  */
4369 enum xdp_action {
4370 	XDP_ABORTED = 0,
4371 	XDP_DROP,
4372 	XDP_PASS,
4373 	XDP_TX,
4374 	XDP_REDIRECT,
4375 };
4376 
4377 /* user accessible metadata for XDP packet hook
4378  * new fields must be added to the end of this structure
4379  */
4380 struct xdp_md {
4381 	__u32 data;
4382 	__u32 data_end;
4383 	__u32 data_meta;
4384 	/* Below access go through struct xdp_rxq_info */
4385 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
4386 	__u32 rx_queue_index;  /* rxq->queue_index  */
4387 
4388 	__u32 egress_ifindex;  /* txq->dev->ifindex */
4389 };
4390 
4391 /* DEVMAP map-value layout
4392  *
4393  * The struct data-layout of map-value is a configuration interface.
4394  * New members can only be added to the end of this structure.
4395  */
4396 struct bpf_devmap_val {
4397 	__u32 ifindex;   /* device index */
4398 	union {
4399 		int   fd;  /* prog fd on map write */
4400 		__u32 id;  /* prog id on map read */
4401 	} bpf_prog;
4402 };
4403 
4404 /* CPUMAP map-value layout
4405  *
4406  * The struct data-layout of map-value is a configuration interface.
4407  * New members can only be added to the end of this structure.
4408  */
4409 struct bpf_cpumap_val {
4410 	__u32 qsize;	/* queue size to remote target CPU */
4411 	union {
4412 		int   fd;	/* prog fd on map write */
4413 		__u32 id;	/* prog id on map read */
4414 	} bpf_prog;
4415 };
4416 
4417 enum sk_action {
4418 	SK_DROP = 0,
4419 	SK_PASS,
4420 };
4421 
4422 /* user accessible metadata for SK_MSG packet hook, new fields must
4423  * be added to the end of this structure
4424  */
4425 struct sk_msg_md {
4426 	__bpf_md_ptr(void *, data);
4427 	__bpf_md_ptr(void *, data_end);
4428 
4429 	__u32 family;
4430 	__u32 remote_ip4;	/* Stored in network byte order */
4431 	__u32 local_ip4;	/* Stored in network byte order */
4432 	__u32 remote_ip6[4];	/* Stored in network byte order */
4433 	__u32 local_ip6[4];	/* Stored in network byte order */
4434 	__u32 remote_port;	/* Stored in network byte order */
4435 	__u32 local_port;	/* stored in host byte order */
4436 	__u32 size;		/* Total size of sk_msg */
4437 
4438 	__bpf_md_ptr(struct bpf_sock *, sk); /* current socket */
4439 };
4440 
4441 struct sk_reuseport_md {
4442 	/*
4443 	 * Start of directly accessible data. It begins from
4444 	 * the tcp/udp header.
4445 	 */
4446 	__bpf_md_ptr(void *, data);
4447 	/* End of directly accessible data */
4448 	__bpf_md_ptr(void *, data_end);
4449 	/*
4450 	 * Total length of packet (starting from the tcp/udp header).
4451 	 * Note that the directly accessible bytes (data_end - data)
4452 	 * could be less than this "len".  Those bytes could be
4453 	 * indirectly read by a helper "bpf_skb_load_bytes()".
4454 	 */
4455 	__u32 len;
4456 	/*
4457 	 * Eth protocol in the mac header (network byte order). e.g.
4458 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
4459 	 */
4460 	__u32 eth_protocol;
4461 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
4462 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
4463 	__u32 hash;		/* A hash of the packet 4 tuples */
4464 };
4465 
4466 #define BPF_TAG_SIZE	8
4467 
4468 struct bpf_prog_info {
4469 	__u32 type;
4470 	__u32 id;
4471 	__u8  tag[BPF_TAG_SIZE];
4472 	__u32 jited_prog_len;
4473 	__u32 xlated_prog_len;
4474 	__aligned_u64 jited_prog_insns;
4475 	__aligned_u64 xlated_prog_insns;
4476 	__u64 load_time;	/* ns since boottime */
4477 	__u32 created_by_uid;
4478 	__u32 nr_map_ids;
4479 	__aligned_u64 map_ids;
4480 	char name[BPF_OBJ_NAME_LEN];
4481 	__u32 ifindex;
4482 	__u32 gpl_compatible:1;
4483 	__u32 :31; /* alignment pad */
4484 	__u64 netns_dev;
4485 	__u64 netns_ino;
4486 	__u32 nr_jited_ksyms;
4487 	__u32 nr_jited_func_lens;
4488 	__aligned_u64 jited_ksyms;
4489 	__aligned_u64 jited_func_lens;
4490 	__u32 btf_id;
4491 	__u32 func_info_rec_size;
4492 	__aligned_u64 func_info;
4493 	__u32 nr_func_info;
4494 	__u32 nr_line_info;
4495 	__aligned_u64 line_info;
4496 	__aligned_u64 jited_line_info;
4497 	__u32 nr_jited_line_info;
4498 	__u32 line_info_rec_size;
4499 	__u32 jited_line_info_rec_size;
4500 	__u32 nr_prog_tags;
4501 	__aligned_u64 prog_tags;
4502 	__u64 run_time_ns;
4503 	__u64 run_cnt;
4504 } __attribute__((aligned(8)));
4505 
4506 struct bpf_map_info {
4507 	__u32 type;
4508 	__u32 id;
4509 	__u32 key_size;
4510 	__u32 value_size;
4511 	__u32 max_entries;
4512 	__u32 map_flags;
4513 	char  name[BPF_OBJ_NAME_LEN];
4514 	__u32 ifindex;
4515 	__u32 btf_vmlinux_value_type_id;
4516 	__u64 netns_dev;
4517 	__u64 netns_ino;
4518 	__u32 btf_id;
4519 	__u32 btf_key_type_id;
4520 	__u32 btf_value_type_id;
4521 } __attribute__((aligned(8)));
4522 
4523 struct bpf_btf_info {
4524 	__aligned_u64 btf;
4525 	__u32 btf_size;
4526 	__u32 id;
4527 	__aligned_u64 name;
4528 	__u32 name_len;
4529 	__u32 kernel_btf;
4530 } __attribute__((aligned(8)));
4531 
4532 struct bpf_link_info {
4533 	__u32 type;
4534 	__u32 id;
4535 	__u32 prog_id;
4536 	union {
4537 		struct {
4538 			__aligned_u64 tp_name; /* in/out: tp_name buffer ptr */
4539 			__u32 tp_name_len;     /* in/out: tp_name buffer len */
4540 		} raw_tracepoint;
4541 		struct {
4542 			__u32 attach_type;
4543 		} tracing;
4544 		struct {
4545 			__u64 cgroup_id;
4546 			__u32 attach_type;
4547 		} cgroup;
4548 		struct {
4549 			__aligned_u64 target_name; /* in/out: target_name buffer ptr */
4550 			__u32 target_name_len;	   /* in/out: target_name buffer len */
4551 			union {
4552 				struct {
4553 					__u32 map_id;
4554 				} map;
4555 			};
4556 		} iter;
4557 		struct  {
4558 			__u32 netns_ino;
4559 			__u32 attach_type;
4560 		} netns;
4561 		struct {
4562 			__u32 ifindex;
4563 		} xdp;
4564 	};
4565 } __attribute__((aligned(8)));
4566 
4567 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
4568  * by user and intended to be used by socket (e.g. to bind to, depends on
4569  * attach type).
4570  */
4571 struct bpf_sock_addr {
4572 	__u32 user_family;	/* Allows 4-byte read, but no write. */
4573 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
4574 				 * Stored in network byte order.
4575 				 */
4576 	__u32 user_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
4577 				 * Stored in network byte order.
4578 				 */
4579 	__u32 user_port;	/* Allows 1,2,4-byte read and 4-byte write.
4580 				 * Stored in network byte order
4581 				 */
4582 	__u32 family;		/* Allows 4-byte read, but no write */
4583 	__u32 type;		/* Allows 4-byte read, but no write */
4584 	__u32 protocol;		/* Allows 4-byte read, but no write */
4585 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read and 4-byte write.
4586 				 * Stored in network byte order.
4587 				 */
4588 	__u32 msg_src_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
4589 				 * Stored in network byte order.
4590 				 */
4591 	__bpf_md_ptr(struct bpf_sock *, sk);
4592 };
4593 
4594 /* User bpf_sock_ops struct to access socket values and specify request ops
4595  * and their replies.
4596  * Some of this fields are in network (bigendian) byte order and may need
4597  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
4598  * New fields can only be added at the end of this structure
4599  */
4600 struct bpf_sock_ops {
4601 	__u32 op;
4602 	union {
4603 		__u32 args[4];		/* Optionally passed to bpf program */
4604 		__u32 reply;		/* Returned by bpf program	    */
4605 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
4606 	};
4607 	__u32 family;
4608 	__u32 remote_ip4;	/* Stored in network byte order */
4609 	__u32 local_ip4;	/* Stored in network byte order */
4610 	__u32 remote_ip6[4];	/* Stored in network byte order */
4611 	__u32 local_ip6[4];	/* Stored in network byte order */
4612 	__u32 remote_port;	/* Stored in network byte order */
4613 	__u32 local_port;	/* stored in host byte order */
4614 	__u32 is_fullsock;	/* Some TCP fields are only valid if
4615 				 * there is a full socket. If not, the
4616 				 * fields read as zero.
4617 				 */
4618 	__u32 snd_cwnd;
4619 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
4620 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
4621 	__u32 state;
4622 	__u32 rtt_min;
4623 	__u32 snd_ssthresh;
4624 	__u32 rcv_nxt;
4625 	__u32 snd_nxt;
4626 	__u32 snd_una;
4627 	__u32 mss_cache;
4628 	__u32 ecn_flags;
4629 	__u32 rate_delivered;
4630 	__u32 rate_interval_us;
4631 	__u32 packets_out;
4632 	__u32 retrans_out;
4633 	__u32 total_retrans;
4634 	__u32 segs_in;
4635 	__u32 data_segs_in;
4636 	__u32 segs_out;
4637 	__u32 data_segs_out;
4638 	__u32 lost_out;
4639 	__u32 sacked_out;
4640 	__u32 sk_txhash;
4641 	__u64 bytes_received;
4642 	__u64 bytes_acked;
4643 	__bpf_md_ptr(struct bpf_sock *, sk);
4644 	/* [skb_data, skb_data_end) covers the whole TCP header.
4645 	 *
4646 	 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received
4647 	 * BPF_SOCK_OPS_HDR_OPT_LEN_CB:   Not useful because the
4648 	 *                                header has not been written.
4649 	 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have
4650 	 *				  been written so far.
4651 	 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB:  The SYNACK that concludes
4652 	 *					the 3WHS.
4653 	 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes
4654 	 *					the 3WHS.
4655 	 *
4656 	 * bpf_load_hdr_opt() can also be used to read a particular option.
4657 	 */
4658 	__bpf_md_ptr(void *, skb_data);
4659 	__bpf_md_ptr(void *, skb_data_end);
4660 	__u32 skb_len;		/* The total length of a packet.
4661 				 * It includes the header, options,
4662 				 * and payload.
4663 				 */
4664 	__u32 skb_tcp_flags;	/* tcp_flags of the header.  It provides
4665 				 * an easy way to check for tcp_flags
4666 				 * without parsing skb_data.
4667 				 *
4668 				 * In particular, the skb_tcp_flags
4669 				 * will still be available in
4670 				 * BPF_SOCK_OPS_HDR_OPT_LEN even though
4671 				 * the outgoing header has not
4672 				 * been written yet.
4673 				 */
4674 };
4675 
4676 /* Definitions for bpf_sock_ops_cb_flags */
4677 enum {
4678 	BPF_SOCK_OPS_RTO_CB_FLAG	= (1<<0),
4679 	BPF_SOCK_OPS_RETRANS_CB_FLAG	= (1<<1),
4680 	BPF_SOCK_OPS_STATE_CB_FLAG	= (1<<2),
4681 	BPF_SOCK_OPS_RTT_CB_FLAG	= (1<<3),
4682 	/* Call bpf for all received TCP headers.  The bpf prog will be
4683 	 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB
4684 	 *
4685 	 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
4686 	 * for the header option related helpers that will be useful
4687 	 * to the bpf programs.
4688 	 *
4689 	 * It could be used at the client/active side (i.e. connect() side)
4690 	 * when the server told it that the server was in syncookie
4691 	 * mode and required the active side to resend the bpf-written
4692 	 * options.  The active side can keep writing the bpf-options until
4693 	 * it received a valid packet from the server side to confirm
4694 	 * the earlier packet (and options) has been received.  The later
4695 	 * example patch is using it like this at the active side when the
4696 	 * server is in syncookie mode.
4697 	 *
4698 	 * The bpf prog will usually turn this off in the common cases.
4699 	 */
4700 	BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG	= (1<<4),
4701 	/* Call bpf when kernel has received a header option that
4702 	 * the kernel cannot handle.  The bpf prog will be called under
4703 	 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB.
4704 	 *
4705 	 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
4706 	 * for the header option related helpers that will be useful
4707 	 * to the bpf programs.
4708 	 */
4709 	BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5),
4710 	/* Call bpf when the kernel is writing header options for the
4711 	 * outgoing packet.  The bpf prog will first be called
4712 	 * to reserve space in a skb under
4713 	 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB.  Then
4714 	 * the bpf prog will be called to write the header option(s)
4715 	 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
4716 	 *
4717 	 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB
4718 	 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option
4719 	 * related helpers that will be useful to the bpf programs.
4720 	 *
4721 	 * The kernel gets its chance to reserve space and write
4722 	 * options first before the BPF program does.
4723 	 */
4724 	BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6),
4725 /* Mask of all currently supported cb flags */
4726 	BPF_SOCK_OPS_ALL_CB_FLAGS       = 0x7F,
4727 };
4728 
4729 /* List of known BPF sock_ops operators.
4730  * New entries can only be added at the end
4731  */
4732 enum {
4733 	BPF_SOCK_OPS_VOID,
4734 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
4735 					 * -1 if default value should be used
4736 					 */
4737 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
4738 					 * window (in packets) or -1 if default
4739 					 * value should be used
4740 					 */
4741 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
4742 					 * active connection is initialized
4743 					 */
4744 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
4745 						 * active connection is
4746 						 * established
4747 						 */
4748 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
4749 						 * passive connection is
4750 						 * established
4751 						 */
4752 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
4753 					 * needs ECN
4754 					 */
4755 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
4756 					 * based on the path and may be
4757 					 * dependent on the congestion control
4758 					 * algorithm. In general it indicates
4759 					 * a congestion threshold. RTTs above
4760 					 * this indicate congestion
4761 					 */
4762 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
4763 					 * Arg1: value of icsk_retransmits
4764 					 * Arg2: value of icsk_rto
4765 					 * Arg3: whether RTO has expired
4766 					 */
4767 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
4768 					 * Arg1: sequence number of 1st byte
4769 					 * Arg2: # segments
4770 					 * Arg3: return value of
4771 					 *       tcp_transmit_skb (0 => success)
4772 					 */
4773 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
4774 					 * Arg1: old_state
4775 					 * Arg2: new_state
4776 					 */
4777 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
4778 					 * socket transition to LISTEN state.
4779 					 */
4780 	BPF_SOCK_OPS_RTT_CB,		/* Called on every RTT.
4781 					 */
4782 	BPF_SOCK_OPS_PARSE_HDR_OPT_CB,	/* Parse the header option.
4783 					 * It will be called to handle
4784 					 * the packets received at
4785 					 * an already established
4786 					 * connection.
4787 					 *
4788 					 * sock_ops->skb_data:
4789 					 * Referring to the received skb.
4790 					 * It covers the TCP header only.
4791 					 *
4792 					 * bpf_load_hdr_opt() can also
4793 					 * be used to search for a
4794 					 * particular option.
4795 					 */
4796 	BPF_SOCK_OPS_HDR_OPT_LEN_CB,	/* Reserve space for writing the
4797 					 * header option later in
4798 					 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
4799 					 * Arg1: bool want_cookie. (in
4800 					 *       writing SYNACK only)
4801 					 *
4802 					 * sock_ops->skb_data:
4803 					 * Not available because no header has
4804 					 * been	written yet.
4805 					 *
4806 					 * sock_ops->skb_tcp_flags:
4807 					 * The tcp_flags of the
4808 					 * outgoing skb. (e.g. SYN, ACK, FIN).
4809 					 *
4810 					 * bpf_reserve_hdr_opt() should
4811 					 * be used to reserve space.
4812 					 */
4813 	BPF_SOCK_OPS_WRITE_HDR_OPT_CB,	/* Write the header options
4814 					 * Arg1: bool want_cookie. (in
4815 					 *       writing SYNACK only)
4816 					 *
4817 					 * sock_ops->skb_data:
4818 					 * Referring to the outgoing skb.
4819 					 * It covers the TCP header
4820 					 * that has already been written
4821 					 * by the kernel and the
4822 					 * earlier bpf-progs.
4823 					 *
4824 					 * sock_ops->skb_tcp_flags:
4825 					 * The tcp_flags of the outgoing
4826 					 * skb. (e.g. SYN, ACK, FIN).
4827 					 *
4828 					 * bpf_store_hdr_opt() should
4829 					 * be used to write the
4830 					 * option.
4831 					 *
4832 					 * bpf_load_hdr_opt() can also
4833 					 * be used to search for a
4834 					 * particular option that
4835 					 * has already been written
4836 					 * by the kernel or the
4837 					 * earlier bpf-progs.
4838 					 */
4839 };
4840 
4841 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
4842  * changes between the TCP and BPF versions. Ideally this should never happen.
4843  * If it does, we need to add code to convert them before calling
4844  * the BPF sock_ops function.
4845  */
4846 enum {
4847 	BPF_TCP_ESTABLISHED = 1,
4848 	BPF_TCP_SYN_SENT,
4849 	BPF_TCP_SYN_RECV,
4850 	BPF_TCP_FIN_WAIT1,
4851 	BPF_TCP_FIN_WAIT2,
4852 	BPF_TCP_TIME_WAIT,
4853 	BPF_TCP_CLOSE,
4854 	BPF_TCP_CLOSE_WAIT,
4855 	BPF_TCP_LAST_ACK,
4856 	BPF_TCP_LISTEN,
4857 	BPF_TCP_CLOSING,	/* Now a valid state */
4858 	BPF_TCP_NEW_SYN_RECV,
4859 
4860 	BPF_TCP_MAX_STATES	/* Leave at the end! */
4861 };
4862 
4863 enum {
4864 	TCP_BPF_IW		= 1001,	/* Set TCP initial congestion window */
4865 	TCP_BPF_SNDCWND_CLAMP	= 1002,	/* Set sndcwnd_clamp */
4866 	TCP_BPF_DELACK_MAX	= 1003, /* Max delay ack in usecs */
4867 	TCP_BPF_RTO_MIN		= 1004, /* Min delay ack in usecs */
4868 	/* Copy the SYN pkt to optval
4869 	 *
4870 	 * BPF_PROG_TYPE_SOCK_OPS only.  It is similar to the
4871 	 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit
4872 	 * to only getting from the saved_syn.  It can either get the
4873 	 * syn packet from:
4874 	 *
4875 	 * 1. the just-received SYN packet (only available when writing the
4876 	 *    SYNACK).  It will be useful when it is not necessary to
4877 	 *    save the SYN packet for latter use.  It is also the only way
4878 	 *    to get the SYN during syncookie mode because the syn
4879 	 *    packet cannot be saved during syncookie.
4880 	 *
4881 	 * OR
4882 	 *
4883 	 * 2. the earlier saved syn which was done by
4884 	 *    bpf_setsockopt(TCP_SAVE_SYN).
4885 	 *
4886 	 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the
4887 	 * SYN packet is obtained.
4888 	 *
4889 	 * If the bpf-prog does not need the IP[46] header,  the
4890 	 * bpf-prog can avoid parsing the IP header by using
4891 	 * TCP_BPF_SYN.  Otherwise, the bpf-prog can get both
4892 	 * IP[46] and TCP header by using TCP_BPF_SYN_IP.
4893 	 *
4894 	 *      >0: Total number of bytes copied
4895 	 * -ENOSPC: Not enough space in optval. Only optlen number of
4896 	 *          bytes is copied.
4897 	 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt
4898 	 *	    is not saved by setsockopt(TCP_SAVE_SYN).
4899 	 */
4900 	TCP_BPF_SYN		= 1005, /* Copy the TCP header */
4901 	TCP_BPF_SYN_IP		= 1006, /* Copy the IP[46] and TCP header */
4902 	TCP_BPF_SYN_MAC         = 1007, /* Copy the MAC, IP[46], and TCP header */
4903 };
4904 
4905 enum {
4906 	BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0),
4907 };
4908 
4909 /* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and
4910  * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
4911  */
4912 enum {
4913 	BPF_WRITE_HDR_TCP_CURRENT_MSS = 1,	/* Kernel is finding the
4914 						 * total option spaces
4915 						 * required for an established
4916 						 * sk in order to calculate the
4917 						 * MSS.  No skb is actually
4918 						 * sent.
4919 						 */
4920 	BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2,	/* Kernel is in syncookie mode
4921 						 * when sending a SYN.
4922 						 */
4923 };
4924 
4925 struct bpf_perf_event_value {
4926 	__u64 counter;
4927 	__u64 enabled;
4928 	__u64 running;
4929 };
4930 
4931 enum {
4932 	BPF_DEVCG_ACC_MKNOD	= (1ULL << 0),
4933 	BPF_DEVCG_ACC_READ	= (1ULL << 1),
4934 	BPF_DEVCG_ACC_WRITE	= (1ULL << 2),
4935 };
4936 
4937 enum {
4938 	BPF_DEVCG_DEV_BLOCK	= (1ULL << 0),
4939 	BPF_DEVCG_DEV_CHAR	= (1ULL << 1),
4940 };
4941 
4942 struct bpf_cgroup_dev_ctx {
4943 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
4944 	__u32 access_type;
4945 	__u32 major;
4946 	__u32 minor;
4947 };
4948 
4949 struct bpf_raw_tracepoint_args {
4950 	__u64 args[0];
4951 };
4952 
4953 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
4954  * OUTPUT:  Do lookup from egress perspective; default is ingress
4955  */
4956 enum {
4957 	BPF_FIB_LOOKUP_DIRECT  = (1U << 0),
4958 	BPF_FIB_LOOKUP_OUTPUT  = (1U << 1),
4959 };
4960 
4961 enum {
4962 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
4963 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
4964 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
4965 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
4966 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
4967 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
4968 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
4969 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
4970 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
4971 };
4972 
4973 struct bpf_fib_lookup {
4974 	/* input:  network family for lookup (AF_INET, AF_INET6)
4975 	 * output: network family of egress nexthop
4976 	 */
4977 	__u8	family;
4978 
4979 	/* set if lookup is to consider L4 data - e.g., FIB rules */
4980 	__u8	l4_protocol;
4981 	__be16	sport;
4982 	__be16	dport;
4983 
4984 	/* total length of packet from network header - used for MTU check */
4985 	__u16	tot_len;
4986 
4987 	/* input: L3 device index for lookup
4988 	 * output: device index from FIB lookup
4989 	 */
4990 	__u32	ifindex;
4991 
4992 	union {
4993 		/* inputs to lookup */
4994 		__u8	tos;		/* AF_INET  */
4995 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
4996 
4997 		/* output: metric of fib result (IPv4/IPv6 only) */
4998 		__u32	rt_metric;
4999 	};
5000 
5001 	union {
5002 		__be32		ipv4_src;
5003 		__u32		ipv6_src[4];  /* in6_addr; network order */
5004 	};
5005 
5006 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
5007 	 * network header. output: bpf_fib_lookup sets to gateway address
5008 	 * if FIB lookup returns gateway route
5009 	 */
5010 	union {
5011 		__be32		ipv4_dst;
5012 		__u32		ipv6_dst[4];  /* in6_addr; network order */
5013 	};
5014 
5015 	/* output */
5016 	__be16	h_vlan_proto;
5017 	__be16	h_vlan_TCI;
5018 	__u8	smac[6];     /* ETH_ALEN */
5019 	__u8	dmac[6];     /* ETH_ALEN */
5020 };
5021 
5022 struct bpf_redir_neigh {
5023 	/* network family for lookup (AF_INET, AF_INET6) */
5024 	__u32 nh_family;
5025 	/* network address of nexthop; skips fib lookup to find gateway */
5026 	union {
5027 		__be32		ipv4_nh;
5028 		__u32		ipv6_nh[4];  /* in6_addr; network order */
5029 	};
5030 };
5031 
5032 enum bpf_task_fd_type {
5033 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
5034 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
5035 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
5036 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
5037 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
5038 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
5039 };
5040 
5041 enum {
5042 	BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG		= (1U << 0),
5043 	BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL		= (1U << 1),
5044 	BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP		= (1U << 2),
5045 };
5046 
5047 struct bpf_flow_keys {
5048 	__u16	nhoff;
5049 	__u16	thoff;
5050 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
5051 	__u8	is_frag;
5052 	__u8	is_first_frag;
5053 	__u8	is_encap;
5054 	__u8	ip_proto;
5055 	__be16	n_proto;
5056 	__be16	sport;
5057 	__be16	dport;
5058 	union {
5059 		struct {
5060 			__be32	ipv4_src;
5061 			__be32	ipv4_dst;
5062 		};
5063 		struct {
5064 			__u32	ipv6_src[4];	/* in6_addr; network order */
5065 			__u32	ipv6_dst[4];	/* in6_addr; network order */
5066 		};
5067 	};
5068 	__u32	flags;
5069 	__be32	flow_label;
5070 };
5071 
5072 struct bpf_func_info {
5073 	__u32	insn_off;
5074 	__u32	type_id;
5075 };
5076 
5077 #define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
5078 #define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
5079 
5080 struct bpf_line_info {
5081 	__u32	insn_off;
5082 	__u32	file_name_off;
5083 	__u32	line_off;
5084 	__u32	line_col;
5085 };
5086 
5087 struct bpf_spin_lock {
5088 	__u32	val;
5089 };
5090 
5091 struct bpf_sysctl {
5092 	__u32	write;		/* Sysctl is being read (= 0) or written (= 1).
5093 				 * Allows 1,2,4-byte read, but no write.
5094 				 */
5095 	__u32	file_pos;	/* Sysctl file position to read from, write to.
5096 				 * Allows 1,2,4-byte read an 4-byte write.
5097 				 */
5098 };
5099 
5100 struct bpf_sockopt {
5101 	__bpf_md_ptr(struct bpf_sock *, sk);
5102 	__bpf_md_ptr(void *, optval);
5103 	__bpf_md_ptr(void *, optval_end);
5104 
5105 	__s32	level;
5106 	__s32	optname;
5107 	__s32	optlen;
5108 	__s32	retval;
5109 };
5110 
5111 struct bpf_pidns_info {
5112 	__u32 pid;
5113 	__u32 tgid;
5114 };
5115 
5116 /* User accessible data for SK_LOOKUP programs. Add new fields at the end. */
5117 struct bpf_sk_lookup {
5118 	__bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */
5119 
5120 	__u32 family;		/* Protocol family (AF_INET, AF_INET6) */
5121 	__u32 protocol;		/* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */
5122 	__u32 remote_ip4;	/* Network byte order */
5123 	__u32 remote_ip6[4];	/* Network byte order */
5124 	__u32 remote_port;	/* Network byte order */
5125 	__u32 local_ip4;	/* Network byte order */
5126 	__u32 local_ip6[4];	/* Network byte order */
5127 	__u32 local_port;	/* Host byte order */
5128 };
5129 
5130 /*
5131  * struct btf_ptr is used for typed pointer representation; the
5132  * type id is used to render the pointer data as the appropriate type
5133  * via the bpf_snprintf_btf() helper described above.  A flags field -
5134  * potentially to specify additional details about the BTF pointer
5135  * (rather than its mode of display) - is included for future use.
5136  * Display flags - BTF_F_* - are passed to bpf_snprintf_btf separately.
5137  */
5138 struct btf_ptr {
5139 	void *ptr;
5140 	__u32 type_id;
5141 	__u32 flags;		/* BTF ptr flags; unused at present. */
5142 };
5143 
5144 /*
5145  * Flags to control bpf_snprintf_btf() behaviour.
5146  *     - BTF_F_COMPACT: no formatting around type information
5147  *     - BTF_F_NONAME: no struct/union member names/types
5148  *     - BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
5149  *       equivalent to %px.
5150  *     - BTF_F_ZERO: show zero-valued struct/union members; they
5151  *       are not displayed by default
5152  */
5153 enum {
5154 	BTF_F_COMPACT	=	(1ULL << 0),
5155 	BTF_F_NONAME	=	(1ULL << 1),
5156 	BTF_F_PTR_RAW	=	(1ULL << 2),
5157 	BTF_F_ZERO	=	(1ULL << 3),
5158 };
5159 
5160 #endif /* _UAPI__LINUX_BPF_H__ */
5161