xref: /linux-6.15/include/uapi/linux/bpf.h (revision 3df0e680)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_ALU64	0x07	/* alu mode in double word width */
18 
19 /* ld/ldx fields */
20 #define BPF_DW		0x18	/* double word (64-bit) */
21 #define BPF_XADD	0xc0	/* exclusive add */
22 
23 /* alu/jmp fields */
24 #define BPF_MOV		0xb0	/* mov reg to reg */
25 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
26 
27 /* change endianness of a register */
28 #define BPF_END		0xd0	/* flags for endianness conversion: */
29 #define BPF_TO_LE	0x00	/* convert to little-endian */
30 #define BPF_TO_BE	0x08	/* convert to big-endian */
31 #define BPF_FROM_LE	BPF_TO_LE
32 #define BPF_FROM_BE	BPF_TO_BE
33 
34 /* jmp encodings */
35 #define BPF_JNE		0x50	/* jump != */
36 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
37 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
38 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
39 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
40 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
41 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
42 #define BPF_CALL	0x80	/* function call */
43 #define BPF_EXIT	0x90	/* function return */
44 
45 /* Register numbers */
46 enum {
47 	BPF_REG_0 = 0,
48 	BPF_REG_1,
49 	BPF_REG_2,
50 	BPF_REG_3,
51 	BPF_REG_4,
52 	BPF_REG_5,
53 	BPF_REG_6,
54 	BPF_REG_7,
55 	BPF_REG_8,
56 	BPF_REG_9,
57 	BPF_REG_10,
58 	__MAX_BPF_REG,
59 };
60 
61 /* BPF has 10 general purpose 64-bit registers and stack frame. */
62 #define MAX_BPF_REG	__MAX_BPF_REG
63 
64 struct bpf_insn {
65 	__u8	code;		/* opcode */
66 	__u8	dst_reg:4;	/* dest register */
67 	__u8	src_reg:4;	/* source register */
68 	__s16	off;		/* signed offset */
69 	__s32	imm;		/* signed immediate constant */
70 };
71 
72 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
73 struct bpf_lpm_trie_key {
74 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
75 	__u8	data[0];	/* Arbitrary size */
76 };
77 
78 struct bpf_cgroup_storage_key {
79 	__u64	cgroup_inode_id;	/* cgroup inode id */
80 	__u32	attach_type;		/* program attach type */
81 };
82 
83 /* BPF syscall commands, see bpf(2) man-page for details. */
84 enum bpf_cmd {
85 	BPF_MAP_CREATE,
86 	BPF_MAP_LOOKUP_ELEM,
87 	BPF_MAP_UPDATE_ELEM,
88 	BPF_MAP_DELETE_ELEM,
89 	BPF_MAP_GET_NEXT_KEY,
90 	BPF_PROG_LOAD,
91 	BPF_OBJ_PIN,
92 	BPF_OBJ_GET,
93 	BPF_PROG_ATTACH,
94 	BPF_PROG_DETACH,
95 	BPF_PROG_TEST_RUN,
96 	BPF_PROG_GET_NEXT_ID,
97 	BPF_MAP_GET_NEXT_ID,
98 	BPF_PROG_GET_FD_BY_ID,
99 	BPF_MAP_GET_FD_BY_ID,
100 	BPF_OBJ_GET_INFO_BY_FD,
101 	BPF_PROG_QUERY,
102 	BPF_RAW_TRACEPOINT_OPEN,
103 	BPF_BTF_LOAD,
104 	BPF_BTF_GET_FD_BY_ID,
105 	BPF_TASK_FD_QUERY,
106 };
107 
108 enum bpf_map_type {
109 	BPF_MAP_TYPE_UNSPEC,
110 	BPF_MAP_TYPE_HASH,
111 	BPF_MAP_TYPE_ARRAY,
112 	BPF_MAP_TYPE_PROG_ARRAY,
113 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
114 	BPF_MAP_TYPE_PERCPU_HASH,
115 	BPF_MAP_TYPE_PERCPU_ARRAY,
116 	BPF_MAP_TYPE_STACK_TRACE,
117 	BPF_MAP_TYPE_CGROUP_ARRAY,
118 	BPF_MAP_TYPE_LRU_HASH,
119 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
120 	BPF_MAP_TYPE_LPM_TRIE,
121 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
122 	BPF_MAP_TYPE_HASH_OF_MAPS,
123 	BPF_MAP_TYPE_DEVMAP,
124 	BPF_MAP_TYPE_SOCKMAP,
125 	BPF_MAP_TYPE_CPUMAP,
126 	BPF_MAP_TYPE_XSKMAP,
127 	BPF_MAP_TYPE_SOCKHASH,
128 	BPF_MAP_TYPE_CGROUP_STORAGE,
129 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
130 };
131 
132 enum bpf_prog_type {
133 	BPF_PROG_TYPE_UNSPEC,
134 	BPF_PROG_TYPE_SOCKET_FILTER,
135 	BPF_PROG_TYPE_KPROBE,
136 	BPF_PROG_TYPE_SCHED_CLS,
137 	BPF_PROG_TYPE_SCHED_ACT,
138 	BPF_PROG_TYPE_TRACEPOINT,
139 	BPF_PROG_TYPE_XDP,
140 	BPF_PROG_TYPE_PERF_EVENT,
141 	BPF_PROG_TYPE_CGROUP_SKB,
142 	BPF_PROG_TYPE_CGROUP_SOCK,
143 	BPF_PROG_TYPE_LWT_IN,
144 	BPF_PROG_TYPE_LWT_OUT,
145 	BPF_PROG_TYPE_LWT_XMIT,
146 	BPF_PROG_TYPE_SOCK_OPS,
147 	BPF_PROG_TYPE_SK_SKB,
148 	BPF_PROG_TYPE_CGROUP_DEVICE,
149 	BPF_PROG_TYPE_SK_MSG,
150 	BPF_PROG_TYPE_RAW_TRACEPOINT,
151 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
152 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
153 	BPF_PROG_TYPE_LIRC_MODE2,
154 	BPF_PROG_TYPE_SK_REUSEPORT,
155 	BPF_PROG_TYPE_FLOW_DISSECTOR,
156 };
157 
158 enum bpf_attach_type {
159 	BPF_CGROUP_INET_INGRESS,
160 	BPF_CGROUP_INET_EGRESS,
161 	BPF_CGROUP_INET_SOCK_CREATE,
162 	BPF_CGROUP_SOCK_OPS,
163 	BPF_SK_SKB_STREAM_PARSER,
164 	BPF_SK_SKB_STREAM_VERDICT,
165 	BPF_CGROUP_DEVICE,
166 	BPF_SK_MSG_VERDICT,
167 	BPF_CGROUP_INET4_BIND,
168 	BPF_CGROUP_INET6_BIND,
169 	BPF_CGROUP_INET4_CONNECT,
170 	BPF_CGROUP_INET6_CONNECT,
171 	BPF_CGROUP_INET4_POST_BIND,
172 	BPF_CGROUP_INET6_POST_BIND,
173 	BPF_CGROUP_UDP4_SENDMSG,
174 	BPF_CGROUP_UDP6_SENDMSG,
175 	BPF_LIRC_MODE2,
176 	BPF_FLOW_DISSECTOR,
177 	__MAX_BPF_ATTACH_TYPE
178 };
179 
180 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
181 
182 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
183  *
184  * NONE(default): No further bpf programs allowed in the subtree.
185  *
186  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
187  * the program in this cgroup yields to sub-cgroup program.
188  *
189  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
190  * that cgroup program gets run in addition to the program in this cgroup.
191  *
192  * Only one program is allowed to be attached to a cgroup with
193  * NONE or BPF_F_ALLOW_OVERRIDE flag.
194  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
195  * release old program and attach the new one. Attach flags has to match.
196  *
197  * Multiple programs are allowed to be attached to a cgroup with
198  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
199  * (those that were attached first, run first)
200  * The programs of sub-cgroup are executed first, then programs of
201  * this cgroup and then programs of parent cgroup.
202  * When children program makes decision (like picking TCP CA or sock bind)
203  * parent program has a chance to override it.
204  *
205  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
206  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
207  * Ex1:
208  * cgrp1 (MULTI progs A, B) ->
209  *    cgrp2 (OVERRIDE prog C) ->
210  *      cgrp3 (MULTI prog D) ->
211  *        cgrp4 (OVERRIDE prog E) ->
212  *          cgrp5 (NONE prog F)
213  * the event in cgrp5 triggers execution of F,D,A,B in that order.
214  * if prog F is detached, the execution is E,D,A,B
215  * if prog F and D are detached, the execution is E,A,B
216  * if prog F, E and D are detached, the execution is C,A,B
217  *
218  * All eligible programs are executed regardless of return code from
219  * earlier programs.
220  */
221 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
222 #define BPF_F_ALLOW_MULTI	(1U << 1)
223 
224 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
225  * verifier will perform strict alignment checking as if the kernel
226  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
227  * and NET_IP_ALIGN defined to 2.
228  */
229 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
230 
231 /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */
232 #define BPF_PSEUDO_MAP_FD	1
233 
234 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
235  * offset to another bpf function
236  */
237 #define BPF_PSEUDO_CALL		1
238 
239 /* flags for BPF_MAP_UPDATE_ELEM command */
240 #define BPF_ANY		0 /* create new element or update existing */
241 #define BPF_NOEXIST	1 /* create new element if it didn't exist */
242 #define BPF_EXIST	2 /* update existing element */
243 
244 /* flags for BPF_MAP_CREATE command */
245 #define BPF_F_NO_PREALLOC	(1U << 0)
246 /* Instead of having one common LRU list in the
247  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
248  * which can scale and perform better.
249  * Note, the LRU nodes (including free nodes) cannot be moved
250  * across different LRU lists.
251  */
252 #define BPF_F_NO_COMMON_LRU	(1U << 1)
253 /* Specify numa node during map creation */
254 #define BPF_F_NUMA_NODE		(1U << 2)
255 
256 /* flags for BPF_PROG_QUERY */
257 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
258 
259 #define BPF_OBJ_NAME_LEN 16U
260 
261 /* Flags for accessing BPF object */
262 #define BPF_F_RDONLY		(1U << 3)
263 #define BPF_F_WRONLY		(1U << 4)
264 
265 /* Flag for stack_map, store build_id+offset instead of pointer */
266 #define BPF_F_STACK_BUILD_ID	(1U << 5)
267 
268 enum bpf_stack_build_id_status {
269 	/* user space need an empty entry to identify end of a trace */
270 	BPF_STACK_BUILD_ID_EMPTY = 0,
271 	/* with valid build_id and offset */
272 	BPF_STACK_BUILD_ID_VALID = 1,
273 	/* couldn't get build_id, fallback to ip */
274 	BPF_STACK_BUILD_ID_IP = 2,
275 };
276 
277 #define BPF_BUILD_ID_SIZE 20
278 struct bpf_stack_build_id {
279 	__s32		status;
280 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
281 	union {
282 		__u64	offset;
283 		__u64	ip;
284 	};
285 };
286 
287 union bpf_attr {
288 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
289 		__u32	map_type;	/* one of enum bpf_map_type */
290 		__u32	key_size;	/* size of key in bytes */
291 		__u32	value_size;	/* size of value in bytes */
292 		__u32	max_entries;	/* max number of entries in a map */
293 		__u32	map_flags;	/* BPF_MAP_CREATE related
294 					 * flags defined above.
295 					 */
296 		__u32	inner_map_fd;	/* fd pointing to the inner map */
297 		__u32	numa_node;	/* numa node (effective only if
298 					 * BPF_F_NUMA_NODE is set).
299 					 */
300 		char	map_name[BPF_OBJ_NAME_LEN];
301 		__u32	map_ifindex;	/* ifindex of netdev to create on */
302 		__u32	btf_fd;		/* fd pointing to a BTF type data */
303 		__u32	btf_key_type_id;	/* BTF type_id of the key */
304 		__u32	btf_value_type_id;	/* BTF type_id of the value */
305 	};
306 
307 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
308 		__u32		map_fd;
309 		__aligned_u64	key;
310 		union {
311 			__aligned_u64 value;
312 			__aligned_u64 next_key;
313 		};
314 		__u64		flags;
315 	};
316 
317 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
318 		__u32		prog_type;	/* one of enum bpf_prog_type */
319 		__u32		insn_cnt;
320 		__aligned_u64	insns;
321 		__aligned_u64	license;
322 		__u32		log_level;	/* verbosity level of verifier */
323 		__u32		log_size;	/* size of user buffer */
324 		__aligned_u64	log_buf;	/* user supplied buffer */
325 		__u32		kern_version;	/* checked when prog_type=kprobe */
326 		__u32		prog_flags;
327 		char		prog_name[BPF_OBJ_NAME_LEN];
328 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
329 		/* For some prog types expected attach type must be known at
330 		 * load time to verify attach type specific parts of prog
331 		 * (context accesses, allowed helpers, etc).
332 		 */
333 		__u32		expected_attach_type;
334 	};
335 
336 	struct { /* anonymous struct used by BPF_OBJ_* commands */
337 		__aligned_u64	pathname;
338 		__u32		bpf_fd;
339 		__u32		file_flags;
340 	};
341 
342 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
343 		__u32		target_fd;	/* container object to attach to */
344 		__u32		attach_bpf_fd;	/* eBPF program to attach */
345 		__u32		attach_type;
346 		__u32		attach_flags;
347 	};
348 
349 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
350 		__u32		prog_fd;
351 		__u32		retval;
352 		__u32		data_size_in;
353 		__u32		data_size_out;
354 		__aligned_u64	data_in;
355 		__aligned_u64	data_out;
356 		__u32		repeat;
357 		__u32		duration;
358 	} test;
359 
360 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
361 		union {
362 			__u32		start_id;
363 			__u32		prog_id;
364 			__u32		map_id;
365 			__u32		btf_id;
366 		};
367 		__u32		next_id;
368 		__u32		open_flags;
369 	};
370 
371 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
372 		__u32		bpf_fd;
373 		__u32		info_len;
374 		__aligned_u64	info;
375 	} info;
376 
377 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
378 		__u32		target_fd;	/* container object to query */
379 		__u32		attach_type;
380 		__u32		query_flags;
381 		__u32		attach_flags;
382 		__aligned_u64	prog_ids;
383 		__u32		prog_cnt;
384 	} query;
385 
386 	struct {
387 		__u64 name;
388 		__u32 prog_fd;
389 	} raw_tracepoint;
390 
391 	struct { /* anonymous struct for BPF_BTF_LOAD */
392 		__aligned_u64	btf;
393 		__aligned_u64	btf_log_buf;
394 		__u32		btf_size;
395 		__u32		btf_log_size;
396 		__u32		btf_log_level;
397 	};
398 
399 	struct {
400 		__u32		pid;		/* input: pid */
401 		__u32		fd;		/* input: fd */
402 		__u32		flags;		/* input: flags */
403 		__u32		buf_len;	/* input/output: buf len */
404 		__aligned_u64	buf;		/* input/output:
405 						 *   tp_name for tracepoint
406 						 *   symbol for kprobe
407 						 *   filename for uprobe
408 						 */
409 		__u32		prog_id;	/* output: prod_id */
410 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
411 		__u64		probe_offset;	/* output: probe_offset */
412 		__u64		probe_addr;	/* output: probe_addr */
413 	} task_fd_query;
414 } __attribute__((aligned(8)));
415 
416 /* The description below is an attempt at providing documentation to eBPF
417  * developers about the multiple available eBPF helper functions. It can be
418  * parsed and used to produce a manual page. The workflow is the following,
419  * and requires the rst2man utility:
420  *
421  *     $ ./scripts/bpf_helpers_doc.py \
422  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
423  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
424  *     $ man /tmp/bpf-helpers.7
425  *
426  * Note that in order to produce this external documentation, some RST
427  * formatting is used in the descriptions to get "bold" and "italics" in
428  * manual pages. Also note that the few trailing white spaces are
429  * intentional, removing them would break paragraphs for rst2man.
430  *
431  * Start of BPF helper function descriptions:
432  *
433  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
434  * 	Description
435  * 		Perform a lookup in *map* for an entry associated to *key*.
436  * 	Return
437  * 		Map value associated to *key*, or **NULL** if no entry was
438  * 		found.
439  *
440  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
441  * 	Description
442  * 		Add or update the value of the entry associated to *key* in
443  * 		*map* with *value*. *flags* is one of:
444  *
445  * 		**BPF_NOEXIST**
446  * 			The entry for *key* must not exist in the map.
447  * 		**BPF_EXIST**
448  * 			The entry for *key* must already exist in the map.
449  * 		**BPF_ANY**
450  * 			No condition on the existence of the entry for *key*.
451  *
452  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
453  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
454  * 		elements always exist), the helper would return an error.
455  * 	Return
456  * 		0 on success, or a negative error in case of failure.
457  *
458  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
459  * 	Description
460  * 		Delete entry with *key* from *map*.
461  * 	Return
462  * 		0 on success, or a negative error in case of failure.
463  *
464  * int bpf_probe_read(void *dst, u32 size, const void *src)
465  * 	Description
466  * 		For tracing programs, safely attempt to read *size* bytes from
467  * 		address *src* and store the data in *dst*.
468  * 	Return
469  * 		0 on success, or a negative error in case of failure.
470  *
471  * u64 bpf_ktime_get_ns(void)
472  * 	Description
473  * 		Return the time elapsed since system boot, in nanoseconds.
474  * 	Return
475  * 		Current *ktime*.
476  *
477  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
478  * 	Description
479  * 		This helper is a "printk()-like" facility for debugging. It
480  * 		prints a message defined by format *fmt* (of size *fmt_size*)
481  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
482  * 		available. It can take up to three additional **u64**
483  * 		arguments (as an eBPF helpers, the total number of arguments is
484  * 		limited to five).
485  *
486  * 		Each time the helper is called, it appends a line to the trace.
487  * 		The format of the trace is customizable, and the exact output
488  * 		one will get depends on the options set in
489  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
490  * 		*README* file under the same directory). However, it usually
491  * 		defaults to something like:
492  *
493  * 		::
494  *
495  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
496  *
497  * 		In the above:
498  *
499  * 			* ``telnet`` is the name of the current task.
500  * 			* ``470`` is the PID of the current task.
501  * 			* ``001`` is the CPU number on which the task is
502  * 			  running.
503  * 			* In ``.N..``, each character refers to a set of
504  * 			  options (whether irqs are enabled, scheduling
505  * 			  options, whether hard/softirqs are running, level of
506  * 			  preempt_disabled respectively). **N** means that
507  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
508  * 			  are set.
509  * 			* ``419421.045894`` is a timestamp.
510  * 			* ``0x00000001`` is a fake value used by BPF for the
511  * 			  instruction pointer register.
512  * 			* ``<formatted msg>`` is the message formatted with
513  * 			  *fmt*.
514  *
515  * 		The conversion specifiers supported by *fmt* are similar, but
516  * 		more limited than for printk(). They are **%d**, **%i**,
517  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
518  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
519  * 		of field, padding with zeroes, etc.) is available, and the
520  * 		helper will return **-EINVAL** (but print nothing) if it
521  * 		encounters an unknown specifier.
522  *
523  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
524  * 		only be used for debugging purposes. For this reason, a notice
525  * 		bloc (spanning several lines) is printed to kernel logs and
526  * 		states that the helper should not be used "for production use"
527  * 		the first time this helper is used (or more precisely, when
528  * 		**trace_printk**\ () buffers are allocated). For passing values
529  * 		to user space, perf events should be preferred.
530  * 	Return
531  * 		The number of bytes written to the buffer, or a negative error
532  * 		in case of failure.
533  *
534  * u32 bpf_get_prandom_u32(void)
535  * 	Description
536  * 		Get a pseudo-random number.
537  *
538  * 		From a security point of view, this helper uses its own
539  * 		pseudo-random internal state, and cannot be used to infer the
540  * 		seed of other random functions in the kernel. However, it is
541  * 		essential to note that the generator used by the helper is not
542  * 		cryptographically secure.
543  * 	Return
544  * 		A random 32-bit unsigned value.
545  *
546  * u32 bpf_get_smp_processor_id(void)
547  * 	Description
548  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
549  * 		all programs run with preemption disabled, which means that the
550  * 		SMP processor id is stable during all the execution of the
551  * 		program.
552  * 	Return
553  * 		The SMP id of the processor running the program.
554  *
555  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
556  * 	Description
557  * 		Store *len* bytes from address *from* into the packet
558  * 		associated to *skb*, at *offset*. *flags* are a combination of
559  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
560  * 		checksum for the packet after storing the bytes) and
561  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
562  * 		**->swhash** and *skb*\ **->l4hash** to 0).
563  *
564  * 		A call to this helper is susceptible to change the underlaying
565  * 		packet buffer. Therefore, at load time, all checks on pointers
566  * 		previously done by the verifier are invalidated and must be
567  * 		performed again, if the helper is used in combination with
568  * 		direct packet access.
569  * 	Return
570  * 		0 on success, or a negative error in case of failure.
571  *
572  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
573  * 	Description
574  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
575  * 		associated to *skb*. Computation is incremental, so the helper
576  * 		must know the former value of the header field that was
577  * 		modified (*from*), the new value of this field (*to*), and the
578  * 		number of bytes (2 or 4) for this field, stored in *size*.
579  * 		Alternatively, it is possible to store the difference between
580  * 		the previous and the new values of the header field in *to*, by
581  * 		setting *from* and *size* to 0. For both methods, *offset*
582  * 		indicates the location of the IP checksum within the packet.
583  *
584  * 		This helper works in combination with **bpf_csum_diff**\ (),
585  * 		which does not update the checksum in-place, but offers more
586  * 		flexibility and can handle sizes larger than 2 or 4 for the
587  * 		checksum to update.
588  *
589  * 		A call to this helper is susceptible to change the underlaying
590  * 		packet buffer. Therefore, at load time, all checks on pointers
591  * 		previously done by the verifier are invalidated and must be
592  * 		performed again, if the helper is used in combination with
593  * 		direct packet access.
594  * 	Return
595  * 		0 on success, or a negative error in case of failure.
596  *
597  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
598  * 	Description
599  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
600  * 		packet associated to *skb*. Computation is incremental, so the
601  * 		helper must know the former value of the header field that was
602  * 		modified (*from*), the new value of this field (*to*), and the
603  * 		number of bytes (2 or 4) for this field, stored on the lowest
604  * 		four bits of *flags*. Alternatively, it is possible to store
605  * 		the difference between the previous and the new values of the
606  * 		header field in *to*, by setting *from* and the four lowest
607  * 		bits of *flags* to 0. For both methods, *offset* indicates the
608  * 		location of the IP checksum within the packet. In addition to
609  * 		the size of the field, *flags* can be added (bitwise OR) actual
610  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
611  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
612  * 		for updates resulting in a null checksum the value is set to
613  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
614  * 		the checksum is to be computed against a pseudo-header.
615  *
616  * 		This helper works in combination with **bpf_csum_diff**\ (),
617  * 		which does not update the checksum in-place, but offers more
618  * 		flexibility and can handle sizes larger than 2 or 4 for the
619  * 		checksum to update.
620  *
621  * 		A call to this helper is susceptible to change the underlaying
622  * 		packet buffer. Therefore, at load time, all checks on pointers
623  * 		previously done by the verifier are invalidated and must be
624  * 		performed again, if the helper is used in combination with
625  * 		direct packet access.
626  * 	Return
627  * 		0 on success, or a negative error in case of failure.
628  *
629  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
630  * 	Description
631  * 		This special helper is used to trigger a "tail call", or in
632  * 		other words, to jump into another eBPF program. The same stack
633  * 		frame is used (but values on stack and in registers for the
634  * 		caller are not accessible to the callee). This mechanism allows
635  * 		for program chaining, either for raising the maximum number of
636  * 		available eBPF instructions, or to execute given programs in
637  * 		conditional blocks. For security reasons, there is an upper
638  * 		limit to the number of successive tail calls that can be
639  * 		performed.
640  *
641  * 		Upon call of this helper, the program attempts to jump into a
642  * 		program referenced at index *index* in *prog_array_map*, a
643  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
644  * 		*ctx*, a pointer to the context.
645  *
646  * 		If the call succeeds, the kernel immediately runs the first
647  * 		instruction of the new program. This is not a function call,
648  * 		and it never returns to the previous program. If the call
649  * 		fails, then the helper has no effect, and the caller continues
650  * 		to run its subsequent instructions. A call can fail if the
651  * 		destination program for the jump does not exist (i.e. *index*
652  * 		is superior to the number of entries in *prog_array_map*), or
653  * 		if the maximum number of tail calls has been reached for this
654  * 		chain of programs. This limit is defined in the kernel by the
655  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
656  * 		which is currently set to 32.
657  * 	Return
658  * 		0 on success, or a negative error in case of failure.
659  *
660  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
661  * 	Description
662  * 		Clone and redirect the packet associated to *skb* to another
663  * 		net device of index *ifindex*. Both ingress and egress
664  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
665  * 		value in *flags* is used to make the distinction (ingress path
666  * 		is selected if the flag is present, egress path otherwise).
667  * 		This is the only flag supported for now.
668  *
669  * 		In comparison with **bpf_redirect**\ () helper,
670  * 		**bpf_clone_redirect**\ () has the associated cost of
671  * 		duplicating the packet buffer, but this can be executed out of
672  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
673  * 		efficient, but it is handled through an action code where the
674  * 		redirection happens only after the eBPF program has returned.
675  *
676  * 		A call to this helper is susceptible to change the underlaying
677  * 		packet buffer. Therefore, at load time, all checks on pointers
678  * 		previously done by the verifier are invalidated and must be
679  * 		performed again, if the helper is used in combination with
680  * 		direct packet access.
681  * 	Return
682  * 		0 on success, or a negative error in case of failure.
683  *
684  * u64 bpf_get_current_pid_tgid(void)
685  * 	Return
686  * 		A 64-bit integer containing the current tgid and pid, and
687  * 		created as such:
688  * 		*current_task*\ **->tgid << 32 \|**
689  * 		*current_task*\ **->pid**.
690  *
691  * u64 bpf_get_current_uid_gid(void)
692  * 	Return
693  * 		A 64-bit integer containing the current GID and UID, and
694  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
695  *
696  * int bpf_get_current_comm(char *buf, u32 size_of_buf)
697  * 	Description
698  * 		Copy the **comm** attribute of the current task into *buf* of
699  * 		*size_of_buf*. The **comm** attribute contains the name of
700  * 		the executable (excluding the path) for the current task. The
701  * 		*size_of_buf* must be strictly positive. On success, the
702  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
703  * 		it is filled with zeroes.
704  * 	Return
705  * 		0 on success, or a negative error in case of failure.
706  *
707  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
708  * 	Description
709  * 		Retrieve the classid for the current task, i.e. for the net_cls
710  * 		cgroup to which *skb* belongs.
711  *
712  * 		This helper can be used on TC egress path, but not on ingress.
713  *
714  * 		The net_cls cgroup provides an interface to tag network packets
715  * 		based on a user-provided identifier for all traffic coming from
716  * 		the tasks belonging to the related cgroup. See also the related
717  * 		kernel documentation, available from the Linux sources in file
718  * 		*Documentation/cgroup-v1/net_cls.txt*.
719  *
720  * 		The Linux kernel has two versions for cgroups: there are
721  * 		cgroups v1 and cgroups v2. Both are available to users, who can
722  * 		use a mixture of them, but note that the net_cls cgroup is for
723  * 		cgroup v1 only. This makes it incompatible with BPF programs
724  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
725  * 		only hold data for one version of cgroups at a time).
726  *
727  * 		This helper is only available is the kernel was compiled with
728  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
729  * 		"**y**" or to "**m**".
730  * 	Return
731  * 		The classid, or 0 for the default unconfigured classid.
732  *
733  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
734  * 	Description
735  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
736  * 		*vlan_proto* to the packet associated to *skb*, then update
737  * 		the checksum. Note that if *vlan_proto* is different from
738  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
739  * 		be **ETH_P_8021Q**.
740  *
741  * 		A call to this helper is susceptible to change the underlaying
742  * 		packet buffer. Therefore, at load time, all checks on pointers
743  * 		previously done by the verifier are invalidated and must be
744  * 		performed again, if the helper is used in combination with
745  * 		direct packet access.
746  * 	Return
747  * 		0 on success, or a negative error in case of failure.
748  *
749  * int bpf_skb_vlan_pop(struct sk_buff *skb)
750  * 	Description
751  * 		Pop a VLAN header from the packet associated to *skb*.
752  *
753  * 		A call to this helper is susceptible to change the underlaying
754  * 		packet buffer. Therefore, at load time, all checks on pointers
755  * 		previously done by the verifier are invalidated and must be
756  * 		performed again, if the helper is used in combination with
757  * 		direct packet access.
758  * 	Return
759  * 		0 on success, or a negative error in case of failure.
760  *
761  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
762  * 	Description
763  * 		Get tunnel metadata. This helper takes a pointer *key* to an
764  * 		empty **struct bpf_tunnel_key** of **size**, that will be
765  * 		filled with tunnel metadata for the packet associated to *skb*.
766  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
767  * 		indicates that the tunnel is based on IPv6 protocol instead of
768  * 		IPv4.
769  *
770  * 		The **struct bpf_tunnel_key** is an object that generalizes the
771  * 		principal parameters used by various tunneling protocols into a
772  * 		single struct. This way, it can be used to easily make a
773  * 		decision based on the contents of the encapsulation header,
774  * 		"summarized" in this struct. In particular, it holds the IP
775  * 		address of the remote end (IPv4 or IPv6, depending on the case)
776  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
777  * 		this struct exposes the *key*\ **->tunnel_id**, which is
778  * 		generally mapped to a VNI (Virtual Network Identifier), making
779  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
780  * 		() helper.
781  *
782  * 		Let's imagine that the following code is part of a program
783  * 		attached to the TC ingress interface, on one end of a GRE
784  * 		tunnel, and is supposed to filter out all messages coming from
785  * 		remote ends with IPv4 address other than 10.0.0.1:
786  *
787  * 		::
788  *
789  * 			int ret;
790  * 			struct bpf_tunnel_key key = {};
791  *
792  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
793  * 			if (ret < 0)
794  * 				return TC_ACT_SHOT;	// drop packet
795  *
796  * 			if (key.remote_ipv4 != 0x0a000001)
797  * 				return TC_ACT_SHOT;	// drop packet
798  *
799  * 			return TC_ACT_OK;		// accept packet
800  *
801  * 		This interface can also be used with all encapsulation devices
802  * 		that can operate in "collect metadata" mode: instead of having
803  * 		one network device per specific configuration, the "collect
804  * 		metadata" mode only requires a single device where the
805  * 		configuration can be extracted from this helper.
806  *
807  * 		This can be used together with various tunnels such as VXLan,
808  * 		Geneve, GRE or IP in IP (IPIP).
809  * 	Return
810  * 		0 on success, or a negative error in case of failure.
811  *
812  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
813  * 	Description
814  * 		Populate tunnel metadata for packet associated to *skb.* The
815  * 		tunnel metadata is set to the contents of *key*, of *size*. The
816  * 		*flags* can be set to a combination of the following values:
817  *
818  * 		**BPF_F_TUNINFO_IPV6**
819  * 			Indicate that the tunnel is based on IPv6 protocol
820  * 			instead of IPv4.
821  * 		**BPF_F_ZERO_CSUM_TX**
822  * 			For IPv4 packets, add a flag to tunnel metadata
823  * 			indicating that checksum computation should be skipped
824  * 			and checksum set to zeroes.
825  * 		**BPF_F_DONT_FRAGMENT**
826  * 			Add a flag to tunnel metadata indicating that the
827  * 			packet should not be fragmented.
828  * 		**BPF_F_SEQ_NUMBER**
829  * 			Add a flag to tunnel metadata indicating that a
830  * 			sequence number should be added to tunnel header before
831  * 			sending the packet. This flag was added for GRE
832  * 			encapsulation, but might be used with other protocols
833  * 			as well in the future.
834  *
835  * 		Here is a typical usage on the transmit path:
836  *
837  * 		::
838  *
839  * 			struct bpf_tunnel_key key;
840  * 			     populate key ...
841  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
842  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
843  *
844  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
845  * 		helper for additional information.
846  * 	Return
847  * 		0 on success, or a negative error in case of failure.
848  *
849  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
850  * 	Description
851  * 		Read the value of a perf event counter. This helper relies on a
852  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
853  * 		the perf event counter is selected when *map* is updated with
854  * 		perf event file descriptors. The *map* is an array whose size
855  * 		is the number of available CPUs, and each cell contains a value
856  * 		relative to one CPU. The value to retrieve is indicated by
857  * 		*flags*, that contains the index of the CPU to look up, masked
858  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
859  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
860  * 		current CPU should be retrieved.
861  *
862  * 		Note that before Linux 4.13, only hardware perf event can be
863  * 		retrieved.
864  *
865  * 		Also, be aware that the newer helper
866  * 		**bpf_perf_event_read_value**\ () is recommended over
867  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
868  * 		quirks where error and counter value are used as a return code
869  * 		(which is wrong to do since ranges may overlap). This issue is
870  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
871  * 		time provides more features over the **bpf_perf_event_read**\
872  * 		() interface. Please refer to the description of
873  * 		**bpf_perf_event_read_value**\ () for details.
874  * 	Return
875  * 		The value of the perf event counter read from the map, or a
876  * 		negative error code in case of failure.
877  *
878  * int bpf_redirect(u32 ifindex, u64 flags)
879  * 	Description
880  * 		Redirect the packet to another net device of index *ifindex*.
881  * 		This helper is somewhat similar to **bpf_clone_redirect**\
882  * 		(), except that the packet is not cloned, which provides
883  * 		increased performance.
884  *
885  * 		Except for XDP, both ingress and egress interfaces can be used
886  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
887  * 		to make the distinction (ingress path is selected if the flag
888  * 		is present, egress path otherwise). Currently, XDP only
889  * 		supports redirection to the egress interface, and accepts no
890  * 		flag at all.
891  *
892  * 		The same effect can be attained with the more generic
893  * 		**bpf_redirect_map**\ (), which requires specific maps to be
894  * 		used but offers better performance.
895  * 	Return
896  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
897  * 		**XDP_ABORTED** on error. For other program types, the values
898  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
899  * 		error.
900  *
901  * u32 bpf_get_route_realm(struct sk_buff *skb)
902  * 	Description
903  * 		Retrieve the realm or the route, that is to say the
904  * 		**tclassid** field of the destination for the *skb*. The
905  * 		indentifier retrieved is a user-provided tag, similar to the
906  * 		one used with the net_cls cgroup (see description for
907  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
908  * 		held by a route (a destination entry), not by a task.
909  *
910  * 		Retrieving this identifier works with the clsact TC egress hook
911  * 		(see also **tc-bpf(8)**), or alternatively on conventional
912  * 		classful egress qdiscs, but not on TC ingress path. In case of
913  * 		clsact TC egress hook, this has the advantage that, internally,
914  * 		the destination entry has not been dropped yet in the transmit
915  * 		path. Therefore, the destination entry does not need to be
916  * 		artificially held via **netif_keep_dst**\ () for a classful
917  * 		qdisc until the *skb* is freed.
918  *
919  * 		This helper is available only if the kernel was compiled with
920  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
921  * 	Return
922  * 		The realm of the route for the packet associated to *skb*, or 0
923  * 		if none was found.
924  *
925  * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
926  * 	Description
927  * 		Write raw *data* blob into a special BPF perf event held by
928  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
929  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
930  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
931  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
932  *
933  * 		The *flags* are used to indicate the index in *map* for which
934  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
935  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
936  * 		to indicate that the index of the current CPU core should be
937  * 		used.
938  *
939  * 		The value to write, of *size*, is passed through eBPF stack and
940  * 		pointed by *data*.
941  *
942  * 		The context of the program *ctx* needs also be passed to the
943  * 		helper.
944  *
945  * 		On user space, a program willing to read the values needs to
946  * 		call **perf_event_open**\ () on the perf event (either for
947  * 		one or for all CPUs) and to store the file descriptor into the
948  * 		*map*. This must be done before the eBPF program can send data
949  * 		into it. An example is available in file
950  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
951  * 		tree (the eBPF program counterpart is in
952  * 		*samples/bpf/trace_output_kern.c*).
953  *
954  * 		**bpf_perf_event_output**\ () achieves better performance
955  * 		than **bpf_trace_printk**\ () for sharing data with user
956  * 		space, and is much better suitable for streaming data from eBPF
957  * 		programs.
958  *
959  * 		Note that this helper is not restricted to tracing use cases
960  * 		and can be used with programs attached to TC or XDP as well,
961  * 		where it allows for passing data to user space listeners. Data
962  * 		can be:
963  *
964  * 		* Only custom structs,
965  * 		* Only the packet payload, or
966  * 		* A combination of both.
967  * 	Return
968  * 		0 on success, or a negative error in case of failure.
969  *
970  * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
971  * 	Description
972  * 		This helper was provided as an easy way to load data from a
973  * 		packet. It can be used to load *len* bytes from *offset* from
974  * 		the packet associated to *skb*, into the buffer pointed by
975  * 		*to*.
976  *
977  * 		Since Linux 4.7, usage of this helper has mostly been replaced
978  * 		by "direct packet access", enabling packet data to be
979  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
980  * 		pointing respectively to the first byte of packet data and to
981  * 		the byte after the last byte of packet data. However, it
982  * 		remains useful if one wishes to read large quantities of data
983  * 		at once from a packet into the eBPF stack.
984  * 	Return
985  * 		0 on success, or a negative error in case of failure.
986  *
987  * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
988  * 	Description
989  * 		Walk a user or a kernel stack and return its id. To achieve
990  * 		this, the helper needs *ctx*, which is a pointer to the context
991  * 		on which the tracing program is executed, and a pointer to a
992  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
993  *
994  * 		The last argument, *flags*, holds the number of stack frames to
995  * 		skip (from 0 to 255), masked with
996  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
997  * 		a combination of the following flags:
998  *
999  * 		**BPF_F_USER_STACK**
1000  * 			Collect a user space stack instead of a kernel stack.
1001  * 		**BPF_F_FAST_STACK_CMP**
1002  * 			Compare stacks by hash only.
1003  * 		**BPF_F_REUSE_STACKID**
1004  * 			If two different stacks hash into the same *stackid*,
1005  * 			discard the old one.
1006  *
1007  * 		The stack id retrieved is a 32 bit long integer handle which
1008  * 		can be further combined with other data (including other stack
1009  * 		ids) and used as a key into maps. This can be useful for
1010  * 		generating a variety of graphs (such as flame graphs or off-cpu
1011  * 		graphs).
1012  *
1013  * 		For walking a stack, this helper is an improvement over
1014  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1015  * 		but is not efficient and consumes a lot of eBPF instructions.
1016  * 		Instead, **bpf_get_stackid**\ () can collect up to
1017  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1018  * 		this limit can be controlled with the **sysctl** program, and
1019  * 		that it should be manually increased in order to profile long
1020  * 		user stacks (such as stacks for Java programs). To do so, use:
1021  *
1022  * 		::
1023  *
1024  * 			# sysctl kernel.perf_event_max_stack=<new value>
1025  * 	Return
1026  * 		The positive or null stack id on success, or a negative error
1027  * 		in case of failure.
1028  *
1029  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1030  * 	Description
1031  * 		Compute a checksum difference, from the raw buffer pointed by
1032  * 		*from*, of length *from_size* (that must be a multiple of 4),
1033  * 		towards the raw buffer pointed by *to*, of size *to_size*
1034  * 		(same remark). An optional *seed* can be added to the value
1035  * 		(this can be cascaded, the seed may come from a previous call
1036  * 		to the helper).
1037  *
1038  * 		This is flexible enough to be used in several ways:
1039  *
1040  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1041  * 		  checksum, it can be used when pushing new data.
1042  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1043  * 		  checksum, it can be used when removing data from a packet.
1044  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1045  * 		  can be used to compute a diff. Note that *from_size* and
1046  * 		  *to_size* do not need to be equal.
1047  *
1048  * 		This helper can be used in combination with
1049  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1050  * 		which one can feed in the difference computed with
1051  * 		**bpf_csum_diff**\ ().
1052  * 	Return
1053  * 		The checksum result, or a negative error code in case of
1054  * 		failure.
1055  *
1056  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1057  * 	Description
1058  * 		Retrieve tunnel options metadata for the packet associated to
1059  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1060  * 		of *size*.
1061  *
1062  * 		This helper can be used with encapsulation devices that can
1063  * 		operate in "collect metadata" mode (please refer to the related
1064  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1065  * 		more details). A particular example where this can be used is
1066  * 		in combination with the Geneve encapsulation protocol, where it
1067  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1068  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1069  * 		the eBPF program. This allows for full customization of these
1070  * 		headers.
1071  * 	Return
1072  * 		The size of the option data retrieved.
1073  *
1074  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1075  * 	Description
1076  * 		Set tunnel options metadata for the packet associated to *skb*
1077  * 		to the option data contained in the raw buffer *opt* of *size*.
1078  *
1079  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1080  * 		helper for additional information.
1081  * 	Return
1082  * 		0 on success, or a negative error in case of failure.
1083  *
1084  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1085  * 	Description
1086  * 		Change the protocol of the *skb* to *proto*. Currently
1087  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1088  * 		IPv4. The helper takes care of the groundwork for the
1089  * 		transition, including resizing the socket buffer. The eBPF
1090  * 		program is expected to fill the new headers, if any, via
1091  * 		**skb_store_bytes**\ () and to recompute the checksums with
1092  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1093  * 		(). The main case for this helper is to perform NAT64
1094  * 		operations out of an eBPF program.
1095  *
1096  * 		Internally, the GSO type is marked as dodgy so that headers are
1097  * 		checked and segments are recalculated by the GSO/GRO engine.
1098  * 		The size for GSO target is adapted as well.
1099  *
1100  * 		All values for *flags* are reserved for future usage, and must
1101  * 		be left at zero.
1102  *
1103  * 		A call to this helper is susceptible to change the underlaying
1104  * 		packet buffer. Therefore, at load time, all checks on pointers
1105  * 		previously done by the verifier are invalidated and must be
1106  * 		performed again, if the helper is used in combination with
1107  * 		direct packet access.
1108  * 	Return
1109  * 		0 on success, or a negative error in case of failure.
1110  *
1111  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1112  * 	Description
1113  * 		Change the packet type for the packet associated to *skb*. This
1114  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1115  * 		the eBPF program does not have a write access to *skb*\
1116  * 		**->pkt_type** beside this helper. Using a helper here allows
1117  * 		for graceful handling of errors.
1118  *
1119  * 		The major use case is to change incoming *skb*s to
1120  * 		**PACKET_HOST** in a programmatic way instead of having to
1121  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1122  * 		example.
1123  *
1124  * 		Note that *type* only allows certain values. At this time, they
1125  * 		are:
1126  *
1127  * 		**PACKET_HOST**
1128  * 			Packet is for us.
1129  * 		**PACKET_BROADCAST**
1130  * 			Send packet to all.
1131  * 		**PACKET_MULTICAST**
1132  * 			Send packet to group.
1133  * 		**PACKET_OTHERHOST**
1134  * 			Send packet to someone else.
1135  * 	Return
1136  * 		0 on success, or a negative error in case of failure.
1137  *
1138  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1139  * 	Description
1140  * 		Check whether *skb* is a descendant of the cgroup2 held by
1141  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1142  * 	Return
1143  * 		The return value depends on the result of the test, and can be:
1144  *
1145  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1146  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1147  * 		* A negative error code, if an error occurred.
1148  *
1149  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1150  * 	Description
1151  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1152  * 		not set, in particular if the hash was cleared due to mangling,
1153  * 		recompute this hash. Later accesses to the hash can be done
1154  * 		directly with *skb*\ **->hash**.
1155  *
1156  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1157  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1158  * 		**bpf_skb_store_bytes**\ () with the
1159  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1160  * 		the hash and to trigger a new computation for the next call to
1161  * 		**bpf_get_hash_recalc**\ ().
1162  * 	Return
1163  * 		The 32-bit hash.
1164  *
1165  * u64 bpf_get_current_task(void)
1166  * 	Return
1167  * 		A pointer to the current task struct.
1168  *
1169  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1170  * 	Description
1171  * 		Attempt in a safe way to write *len* bytes from the buffer
1172  * 		*src* to *dst* in memory. It only works for threads that are in
1173  * 		user context, and *dst* must be a valid user space address.
1174  *
1175  * 		This helper should not be used to implement any kind of
1176  * 		security mechanism because of TOC-TOU attacks, but rather to
1177  * 		debug, divert, and manipulate execution of semi-cooperative
1178  * 		processes.
1179  *
1180  * 		Keep in mind that this feature is meant for experiments, and it
1181  * 		has a risk of crashing the system and running programs.
1182  * 		Therefore, when an eBPF program using this helper is attached,
1183  * 		a warning including PID and process name is printed to kernel
1184  * 		logs.
1185  * 	Return
1186  * 		0 on success, or a negative error in case of failure.
1187  *
1188  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1189  * 	Description
1190  * 		Check whether the probe is being run is the context of a given
1191  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1192  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1193  * 	Return
1194  * 		The return value depends on the result of the test, and can be:
1195  *
1196  * 		* 0, if the *skb* task belongs to the cgroup2.
1197  * 		* 1, if the *skb* task does not belong to the cgroup2.
1198  * 		* A negative error code, if an error occurred.
1199  *
1200  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1201  * 	Description
1202  * 		Resize (trim or grow) the packet associated to *skb* to the
1203  * 		new *len*. The *flags* are reserved for future usage, and must
1204  * 		be left at zero.
1205  *
1206  * 		The basic idea is that the helper performs the needed work to
1207  * 		change the size of the packet, then the eBPF program rewrites
1208  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1209  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1210  * 		and others. This helper is a slow path utility intended for
1211  * 		replies with control messages. And because it is targeted for
1212  * 		slow path, the helper itself can afford to be slow: it
1213  * 		implicitly linearizes, unclones and drops offloads from the
1214  * 		*skb*.
1215  *
1216  * 		A call to this helper is susceptible to change the underlaying
1217  * 		packet buffer. Therefore, at load time, all checks on pointers
1218  * 		previously done by the verifier are invalidated and must be
1219  * 		performed again, if the helper is used in combination with
1220  * 		direct packet access.
1221  * 	Return
1222  * 		0 on success, or a negative error in case of failure.
1223  *
1224  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1225  * 	Description
1226  * 		Pull in non-linear data in case the *skb* is non-linear and not
1227  * 		all of *len* are part of the linear section. Make *len* bytes
1228  * 		from *skb* readable and writable. If a zero value is passed for
1229  * 		*len*, then the whole length of the *skb* is pulled.
1230  *
1231  * 		This helper is only needed for reading and writing with direct
1232  * 		packet access.
1233  *
1234  * 		For direct packet access, testing that offsets to access
1235  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1236  * 		susceptible to fail if offsets are invalid, or if the requested
1237  * 		data is in non-linear parts of the *skb*. On failure the
1238  * 		program can just bail out, or in the case of a non-linear
1239  * 		buffer, use a helper to make the data available. The
1240  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1241  * 		the data. Another one consists in using **bpf_skb_pull_data**
1242  * 		to pull in once the non-linear parts, then retesting and
1243  * 		eventually access the data.
1244  *
1245  * 		At the same time, this also makes sure the *skb* is uncloned,
1246  * 		which is a necessary condition for direct write. As this needs
1247  * 		to be an invariant for the write part only, the verifier
1248  * 		detects writes and adds a prologue that is calling
1249  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1250  * 		the very beginning in case it is indeed cloned.
1251  *
1252  * 		A call to this helper is susceptible to change the underlaying
1253  * 		packet buffer. Therefore, at load time, all checks on pointers
1254  * 		previously done by the verifier are invalidated and must be
1255  * 		performed again, if the helper is used in combination with
1256  * 		direct packet access.
1257  * 	Return
1258  * 		0 on success, or a negative error in case of failure.
1259  *
1260  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1261  * 	Description
1262  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1263  * 		driver has supplied a checksum for the entire packet into that
1264  * 		field. Return an error otherwise. This helper is intended to be
1265  * 		used in combination with **bpf_csum_diff**\ (), in particular
1266  * 		when the checksum needs to be updated after data has been
1267  * 		written into the packet through direct packet access.
1268  * 	Return
1269  * 		The checksum on success, or a negative error code in case of
1270  * 		failure.
1271  *
1272  * void bpf_set_hash_invalid(struct sk_buff *skb)
1273  * 	Description
1274  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1275  * 		mangling on headers through direct packet access, in order to
1276  * 		indicate that the hash is outdated and to trigger a
1277  * 		recalculation the next time the kernel tries to access this
1278  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1279  *
1280  * int bpf_get_numa_node_id(void)
1281  * 	Description
1282  * 		Return the id of the current NUMA node. The primary use case
1283  * 		for this helper is the selection of sockets for the local NUMA
1284  * 		node, when the program is attached to sockets using the
1285  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1286  * 		but the helper is also available to other eBPF program types,
1287  * 		similarly to **bpf_get_smp_processor_id**\ ().
1288  * 	Return
1289  * 		The id of current NUMA node.
1290  *
1291  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1292  * 	Description
1293  * 		Grows headroom of packet associated to *skb* and adjusts the
1294  * 		offset of the MAC header accordingly, adding *len* bytes of
1295  * 		space. It automatically extends and reallocates memory as
1296  * 		required.
1297  *
1298  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1299  * 		for redirection into a layer 2 device.
1300  *
1301  * 		All values for *flags* are reserved for future usage, and must
1302  * 		be left at zero.
1303  *
1304  * 		A call to this helper is susceptible to change the underlaying
1305  * 		packet buffer. Therefore, at load time, all checks on pointers
1306  * 		previously done by the verifier are invalidated and must be
1307  * 		performed again, if the helper is used in combination with
1308  * 		direct packet access.
1309  * 	Return
1310  * 		0 on success, or a negative error in case of failure.
1311  *
1312  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1313  * 	Description
1314  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1315  * 		it is possible to use a negative value for *delta*. This helper
1316  * 		can be used to prepare the packet for pushing or popping
1317  * 		headers.
1318  *
1319  * 		A call to this helper is susceptible to change the underlaying
1320  * 		packet buffer. Therefore, at load time, all checks on pointers
1321  * 		previously done by the verifier are invalidated and must be
1322  * 		performed again, if the helper is used in combination with
1323  * 		direct packet access.
1324  * 	Return
1325  * 		0 on success, or a negative error in case of failure.
1326  *
1327  * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
1328  * 	Description
1329  * 		Copy a NUL terminated string from an unsafe address
1330  * 		*unsafe_ptr* to *dst*. The *size* should include the
1331  * 		terminating NUL byte. In case the string length is smaller than
1332  * 		*size*, the target is not padded with further NUL bytes. If the
1333  * 		string length is larger than *size*, just *size*-1 bytes are
1334  * 		copied and the last byte is set to NUL.
1335  *
1336  * 		On success, the length of the copied string is returned. This
1337  * 		makes this helper useful in tracing programs for reading
1338  * 		strings, and more importantly to get its length at runtime. See
1339  * 		the following snippet:
1340  *
1341  * 		::
1342  *
1343  * 			SEC("kprobe/sys_open")
1344  * 			void bpf_sys_open(struct pt_regs *ctx)
1345  * 			{
1346  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
1347  * 			        int res = bpf_probe_read_str(buf, sizeof(buf),
1348  * 				                             ctx->di);
1349  *
1350  * 				// Consume buf, for example push it to
1351  * 				// userspace via bpf_perf_event_output(); we
1352  * 				// can use res (the string length) as event
1353  * 				// size, after checking its boundaries.
1354  * 			}
1355  *
1356  * 		In comparison, using **bpf_probe_read()** helper here instead
1357  * 		to read the string would require to estimate the length at
1358  * 		compile time, and would often result in copying more memory
1359  * 		than necessary.
1360  *
1361  * 		Another useful use case is when parsing individual process
1362  * 		arguments or individual environment variables navigating
1363  * 		*current*\ **->mm->arg_start** and *current*\
1364  * 		**->mm->env_start**: using this helper and the return value,
1365  * 		one can quickly iterate at the right offset of the memory area.
1366  * 	Return
1367  * 		On success, the strictly positive length of the string,
1368  * 		including the trailing NUL character. On error, a negative
1369  * 		value.
1370  *
1371  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1372  * 	Description
1373  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1374  * 		retrieve the cookie (generated by the kernel) of this socket.
1375  * 		If no cookie has been set yet, generate a new cookie. Once
1376  * 		generated, the socket cookie remains stable for the life of the
1377  * 		socket. This helper can be useful for monitoring per socket
1378  * 		networking traffic statistics as it provides a unique socket
1379  * 		identifier per namespace.
1380  * 	Return
1381  * 		A 8-byte long non-decreasing number on success, or 0 if the
1382  * 		socket field is missing inside *skb*.
1383  *
1384  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1385  * 	Description
1386  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1387  * 		*skb*, but gets socket from **struct bpf_sock_addr** contex.
1388  * 	Return
1389  * 		A 8-byte long non-decreasing number.
1390  *
1391  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1392  * 	Description
1393  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1394  * 		*skb*, but gets socket from **struct bpf_sock_ops** contex.
1395  * 	Return
1396  * 		A 8-byte long non-decreasing number.
1397  *
1398  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1399  * 	Return
1400  * 		The owner UID of the socket associated to *skb*. If the socket
1401  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1402  * 		time-wait or a request socket instead), **overflowuid** value
1403  * 		is returned (note that **overflowuid** might also be the actual
1404  * 		UID value for the socket).
1405  *
1406  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1407  * 	Description
1408  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1409  * 		to value *hash*.
1410  * 	Return
1411  * 		0
1412  *
1413  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1414  * 	Description
1415  * 		Emulate a call to **setsockopt()** on the socket associated to
1416  * 		*bpf_socket*, which must be a full socket. The *level* at
1417  * 		which the option resides and the name *optname* of the option
1418  * 		must be specified, see **setsockopt(2)** for more information.
1419  * 		The option value of length *optlen* is pointed by *optval*.
1420  *
1421  * 		This helper actually implements a subset of **setsockopt()**.
1422  * 		It supports the following *level*\ s:
1423  *
1424  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1425  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1426  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1427  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1428  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1429  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1430  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1431  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1432  * 	Return
1433  * 		0 on success, or a negative error in case of failure.
1434  *
1435  * int bpf_skb_adjust_room(struct sk_buff *skb, u32 len_diff, u32 mode, u64 flags)
1436  * 	Description
1437  * 		Grow or shrink the room for data in the packet associated to
1438  * 		*skb* by *len_diff*, and according to the selected *mode*.
1439  *
1440  * 		There is a single supported mode at this time:
1441  *
1442  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1443  * 		  (room space is added or removed below the layer 3 header).
1444  *
1445  * 		All values for *flags* are reserved for future usage, and must
1446  * 		be left at zero.
1447  *
1448  * 		A call to this helper is susceptible to change the underlaying
1449  * 		packet buffer. Therefore, at load time, all checks on pointers
1450  * 		previously done by the verifier are invalidated and must be
1451  * 		performed again, if the helper is used in combination with
1452  * 		direct packet access.
1453  * 	Return
1454  * 		0 on success, or a negative error in case of failure.
1455  *
1456  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1457  * 	Description
1458  * 		Redirect the packet to the endpoint referenced by *map* at
1459  * 		index *key*. Depending on its type, this *map* can contain
1460  * 		references to net devices (for forwarding packets through other
1461  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1462  * 		but this is only implemented for native XDP (with driver
1463  * 		support) as of this writing).
1464  *
1465  * 		All values for *flags* are reserved for future usage, and must
1466  * 		be left at zero.
1467  *
1468  * 		When used to redirect packets to net devices, this helper
1469  * 		provides a high performance increase over **bpf_redirect**\ ().
1470  * 		This is due to various implementation details of the underlying
1471  * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
1472  * 		() tries to send packet as a "bulk" to the device.
1473  * 	Return
1474  * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1475  *
1476  * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1477  * 	Description
1478  * 		Redirect the packet to the socket referenced by *map* (of type
1479  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1480  * 		egress interfaces can be used for redirection. The
1481  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1482  * 		distinction (ingress path is selected if the flag is present,
1483  * 		egress path otherwise). This is the only flag supported for now.
1484  * 	Return
1485  * 		**SK_PASS** on success, or **SK_DROP** on error.
1486  *
1487  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1488  * 	Description
1489  * 		Add an entry to, or update a *map* referencing sockets. The
1490  * 		*skops* is used as a new value for the entry associated to
1491  * 		*key*. *flags* is one of:
1492  *
1493  * 		**BPF_NOEXIST**
1494  * 			The entry for *key* must not exist in the map.
1495  * 		**BPF_EXIST**
1496  * 			The entry for *key* must already exist in the map.
1497  * 		**BPF_ANY**
1498  * 			No condition on the existence of the entry for *key*.
1499  *
1500  * 		If the *map* has eBPF programs (parser and verdict), those will
1501  * 		be inherited by the socket being added. If the socket is
1502  * 		already attached to eBPF programs, this results in an error.
1503  * 	Return
1504  * 		0 on success, or a negative error in case of failure.
1505  *
1506  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1507  * 	Description
1508  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1509  * 		*delta* (which can be positive or negative). Note that this
1510  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1511  * 		so the latter must be loaded only after the helper has been
1512  * 		called.
1513  *
1514  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1515  * 		are not required to use it. The rationale is that when the
1516  * 		packet is processed with XDP (e.g. as DoS filter), it is
1517  * 		possible to push further meta data along with it before passing
1518  * 		to the stack, and to give the guarantee that an ingress eBPF
1519  * 		program attached as a TC classifier on the same device can pick
1520  * 		this up for further post-processing. Since TC works with socket
1521  * 		buffers, it remains possible to set from XDP the **mark** or
1522  * 		**priority** pointers, or other pointers for the socket buffer.
1523  * 		Having this scratch space generic and programmable allows for
1524  * 		more flexibility as the user is free to store whatever meta
1525  * 		data they need.
1526  *
1527  * 		A call to this helper is susceptible to change the underlaying
1528  * 		packet buffer. Therefore, at load time, all checks on pointers
1529  * 		previously done by the verifier are invalidated and must be
1530  * 		performed again, if the helper is used in combination with
1531  * 		direct packet access.
1532  * 	Return
1533  * 		0 on success, or a negative error in case of failure.
1534  *
1535  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1536  * 	Description
1537  * 		Read the value of a perf event counter, and store it into *buf*
1538  * 		of size *buf_size*. This helper relies on a *map* of type
1539  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1540  * 		counter is selected when *map* is updated with perf event file
1541  * 		descriptors. The *map* is an array whose size is the number of
1542  * 		available CPUs, and each cell contains a value relative to one
1543  * 		CPU. The value to retrieve is indicated by *flags*, that
1544  * 		contains the index of the CPU to look up, masked with
1545  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1546  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1547  * 		current CPU should be retrieved.
1548  *
1549  * 		This helper behaves in a way close to
1550  * 		**bpf_perf_event_read**\ () helper, save that instead of
1551  * 		just returning the value observed, it fills the *buf*
1552  * 		structure. This allows for additional data to be retrieved: in
1553  * 		particular, the enabled and running times (in *buf*\
1554  * 		**->enabled** and *buf*\ **->running**, respectively) are
1555  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1556  * 		recommended over **bpf_perf_event_read**\ (), which has some
1557  * 		ABI issues and provides fewer functionalities.
1558  *
1559  * 		These values are interesting, because hardware PMU (Performance
1560  * 		Monitoring Unit) counters are limited resources. When there are
1561  * 		more PMU based perf events opened than available counters,
1562  * 		kernel will multiplex these events so each event gets certain
1563  * 		percentage (but not all) of the PMU time. In case that
1564  * 		multiplexing happens, the number of samples or counter value
1565  * 		will not reflect the case compared to when no multiplexing
1566  * 		occurs. This makes comparison between different runs difficult.
1567  * 		Typically, the counter value should be normalized before
1568  * 		comparing to other experiments. The usual normalization is done
1569  * 		as follows.
1570  *
1571  * 		::
1572  *
1573  * 			normalized_counter = counter * t_enabled / t_running
1574  *
1575  * 		Where t_enabled is the time enabled for event and t_running is
1576  * 		the time running for event since last normalization. The
1577  * 		enabled and running times are accumulated since the perf event
1578  * 		open. To achieve scaling factor between two invocations of an
1579  * 		eBPF program, users can can use CPU id as the key (which is
1580  * 		typical for perf array usage model) to remember the previous
1581  * 		value and do the calculation inside the eBPF program.
1582  * 	Return
1583  * 		0 on success, or a negative error in case of failure.
1584  *
1585  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1586  * 	Description
1587  * 		For en eBPF program attached to a perf event, retrieve the
1588  * 		value of the event counter associated to *ctx* and store it in
1589  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1590  * 		and running times are also stored in the structure (see
1591  * 		description of helper **bpf_perf_event_read_value**\ () for
1592  * 		more details).
1593  * 	Return
1594  * 		0 on success, or a negative error in case of failure.
1595  *
1596  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1597  * 	Description
1598  * 		Emulate a call to **getsockopt()** on the socket associated to
1599  * 		*bpf_socket*, which must be a full socket. The *level* at
1600  * 		which the option resides and the name *optname* of the option
1601  * 		must be specified, see **getsockopt(2)** for more information.
1602  * 		The retrieved value is stored in the structure pointed by
1603  * 		*opval* and of length *optlen*.
1604  *
1605  * 		This helper actually implements a subset of **getsockopt()**.
1606  * 		It supports the following *level*\ s:
1607  *
1608  * 		* **IPPROTO_TCP**, which supports *optname*
1609  * 		  **TCP_CONGESTION**.
1610  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1611  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1612  * 	Return
1613  * 		0 on success, or a negative error in case of failure.
1614  *
1615  * int bpf_override_return(struct pt_reg *regs, u64 rc)
1616  * 	Description
1617  * 		Used for error injection, this helper uses kprobes to override
1618  * 		the return value of the probed function, and to set it to *rc*.
1619  * 		The first argument is the context *regs* on which the kprobe
1620  * 		works.
1621  *
1622  * 		This helper works by setting setting the PC (program counter)
1623  * 		to an override function which is run in place of the original
1624  * 		probed function. This means the probed function is not run at
1625  * 		all. The replacement function just returns with the required
1626  * 		value.
1627  *
1628  * 		This helper has security implications, and thus is subject to
1629  * 		restrictions. It is only available if the kernel was compiled
1630  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1631  * 		option, and in this case it only works on functions tagged with
1632  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1633  *
1634  * 		Also, the helper is only available for the architectures having
1635  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1636  * 		x86 architecture is the only one to support this feature.
1637  * 	Return
1638  * 		0
1639  *
1640  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1641  * 	Description
1642  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1643  * 		for the full TCP socket associated to *bpf_sock_ops* to
1644  * 		*argval*.
1645  *
1646  * 		The primary use of this field is to determine if there should
1647  * 		be calls to eBPF programs of type
1648  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1649  * 		code. A program of the same type can change its value, per
1650  * 		connection and as necessary, when the connection is
1651  * 		established. This field is directly accessible for reading, but
1652  * 		this helper must be used for updates in order to return an
1653  * 		error if an eBPF program tries to set a callback that is not
1654  * 		supported in the current kernel.
1655  *
1656  * 		The supported callback values that *argval* can combine are:
1657  *
1658  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1659  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1660  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1661  *
1662  * 		Here are some examples of where one could call such eBPF
1663  * 		program:
1664  *
1665  * 		* When RTO fires.
1666  * 		* When a packet is retransmitted.
1667  * 		* When the connection terminates.
1668  * 		* When a packet is sent.
1669  * 		* When a packet is received.
1670  * 	Return
1671  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1672  * 		otherwise, a positive number containing the bits that could not
1673  * 		be set is returned (which comes down to 0 if all bits were set
1674  * 		as required).
1675  *
1676  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1677  * 	Description
1678  * 		This helper is used in programs implementing policies at the
1679  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1680  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1681  * 		the socket referenced by *map* (of type
1682  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1683  * 		egress interfaces can be used for redirection. The
1684  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1685  * 		distinction (ingress path is selected if the flag is present,
1686  * 		egress path otherwise). This is the only flag supported for now.
1687  * 	Return
1688  * 		**SK_PASS** on success, or **SK_DROP** on error.
1689  *
1690  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1691  * 	Description
1692  * 		For socket policies, apply the verdict of the eBPF program to
1693  * 		the next *bytes* (number of bytes) of message *msg*.
1694  *
1695  * 		For example, this helper can be used in the following cases:
1696  *
1697  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1698  * 		  contains multiple logical messages that the eBPF program is
1699  * 		  supposed to read and for which it should apply a verdict.
1700  * 		* An eBPF program only cares to read the first *bytes* of a
1701  * 		  *msg*. If the message has a large payload, then setting up
1702  * 		  and calling the eBPF program repeatedly for all bytes, even
1703  * 		  though the verdict is already known, would create unnecessary
1704  * 		  overhead.
1705  *
1706  * 		When called from within an eBPF program, the helper sets a
1707  * 		counter internal to the BPF infrastructure, that is used to
1708  * 		apply the last verdict to the next *bytes*. If *bytes* is
1709  * 		smaller than the current data being processed from a
1710  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1711  * 		*bytes* will be sent and the eBPF program will be re-run with
1712  * 		the pointer for start of data pointing to byte number *bytes*
1713  * 		**+ 1**. If *bytes* is larger than the current data being
1714  * 		processed, then the eBPF verdict will be applied to multiple
1715  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1716  * 		consumed.
1717  *
1718  * 		Note that if a socket closes with the internal counter holding
1719  * 		a non-zero value, this is not a problem because data is not
1720  * 		being buffered for *bytes* and is sent as it is received.
1721  * 	Return
1722  * 		0
1723  *
1724  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1725  * 	Description
1726  * 		For socket policies, prevent the execution of the verdict eBPF
1727  * 		program for message *msg* until *bytes* (byte number) have been
1728  * 		accumulated.
1729  *
1730  * 		This can be used when one needs a specific number of bytes
1731  * 		before a verdict can be assigned, even if the data spans
1732  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1733  * 		case would be a user calling **sendmsg**\ () repeatedly with
1734  * 		1-byte long message segments. Obviously, this is bad for
1735  * 		performance, but it is still valid. If the eBPF program needs
1736  * 		*bytes* bytes to validate a header, this helper can be used to
1737  * 		prevent the eBPF program to be called again until *bytes* have
1738  * 		been accumulated.
1739  * 	Return
1740  * 		0
1741  *
1742  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1743  * 	Description
1744  * 		For socket policies, pull in non-linear data from user space
1745  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1746  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1747  * 		respectively.
1748  *
1749  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1750  * 		*msg* it can only parse data that the (**data**, **data_end**)
1751  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1752  * 		is likely the first scatterlist element. But for calls relying
1753  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1754  * 		be the range (**0**, **0**) because the data is shared with
1755  * 		user space and by default the objective is to avoid allowing
1756  * 		user space to modify data while (or after) eBPF verdict is
1757  * 		being decided. This helper can be used to pull in data and to
1758  * 		set the start and end pointer to given values. Data will be
1759  * 		copied if necessary (i.e. if data was not linear and if start
1760  * 		and end pointers do not point to the same chunk).
1761  *
1762  * 		A call to this helper is susceptible to change the underlaying
1763  * 		packet buffer. Therefore, at load time, all checks on pointers
1764  * 		previously done by the verifier are invalidated and must be
1765  * 		performed again, if the helper is used in combination with
1766  * 		direct packet access.
1767  *
1768  * 		All values for *flags* are reserved for future usage, and must
1769  * 		be left at zero.
1770  * 	Return
1771  * 		0 on success, or a negative error in case of failure.
1772  *
1773  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1774  * 	Description
1775  * 		Bind the socket associated to *ctx* to the address pointed by
1776  * 		*addr*, of length *addr_len*. This allows for making outgoing
1777  * 		connection from the desired IP address, which can be useful for
1778  * 		example when all processes inside a cgroup should use one
1779  * 		single IP address on a host that has multiple IP configured.
1780  *
1781  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1782  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1783  * 		**AF_INET6**). Looking for a free port to bind to can be
1784  * 		expensive, therefore binding to port is not permitted by the
1785  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1786  * 		must be set to zero.
1787  * 	Return
1788  * 		0 on success, or a negative error in case of failure.
1789  *
1790  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1791  * 	Description
1792  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1793  * 		only possible to shrink the packet as of this writing,
1794  * 		therefore *delta* must be a negative integer.
1795  *
1796  * 		A call to this helper is susceptible to change the underlaying
1797  * 		packet buffer. Therefore, at load time, all checks on pointers
1798  * 		previously done by the verifier are invalidated and must be
1799  * 		performed again, if the helper is used in combination with
1800  * 		direct packet access.
1801  * 	Return
1802  * 		0 on success, or a negative error in case of failure.
1803  *
1804  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1805  * 	Description
1806  * 		Retrieve the XFRM state (IP transform framework, see also
1807  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1808  *
1809  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1810  * 		pointed by *xfrm_state* and of length *size*.
1811  *
1812  * 		All values for *flags* are reserved for future usage, and must
1813  * 		be left at zero.
1814  *
1815  * 		This helper is available only if the kernel was compiled with
1816  * 		**CONFIG_XFRM** configuration option.
1817  * 	Return
1818  * 		0 on success, or a negative error in case of failure.
1819  *
1820  * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
1821  * 	Description
1822  * 		Return a user or a kernel stack in bpf program provided buffer.
1823  * 		To achieve this, the helper needs *ctx*, which is a pointer
1824  * 		to the context on which the tracing program is executed.
1825  * 		To store the stacktrace, the bpf program provides *buf* with
1826  * 		a nonnegative *size*.
1827  *
1828  * 		The last argument, *flags*, holds the number of stack frames to
1829  * 		skip (from 0 to 255), masked with
1830  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1831  * 		the following flags:
1832  *
1833  * 		**BPF_F_USER_STACK**
1834  * 			Collect a user space stack instead of a kernel stack.
1835  * 		**BPF_F_USER_BUILD_ID**
1836  * 			Collect buildid+offset instead of ips for user stack,
1837  * 			only valid if **BPF_F_USER_STACK** is also specified.
1838  *
1839  * 		**bpf_get_stack**\ () can collect up to
1840  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1841  * 		to sufficient large buffer size. Note that
1842  * 		this limit can be controlled with the **sysctl** program, and
1843  * 		that it should be manually increased in order to profile long
1844  * 		user stacks (such as stacks for Java programs). To do so, use:
1845  *
1846  * 		::
1847  *
1848  * 			# sysctl kernel.perf_event_max_stack=<new value>
1849  * 	Return
1850  * 		A non-negative value equal to or less than *size* on success,
1851  * 		or a negative error in case of failure.
1852  *
1853  * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
1854  * 	Description
1855  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
1856  * 		it provides an easy way to load *len* bytes from *offset*
1857  * 		from the packet associated to *skb*, into the buffer pointed
1858  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1859  * 		a fifth argument *start_header* exists in order to select a
1860  * 		base offset to start from. *start_header* can be one of:
1861  *
1862  * 		**BPF_HDR_START_MAC**
1863  * 			Base offset to load data from is *skb*'s mac header.
1864  * 		**BPF_HDR_START_NET**
1865  * 			Base offset to load data from is *skb*'s network header.
1866  *
1867  * 		In general, "direct packet access" is the preferred method to
1868  * 		access packet data, however, this helper is in particular useful
1869  * 		in socket filters where *skb*\ **->data** does not always point
1870  * 		to the start of the mac header and where "direct packet access"
1871  * 		is not available.
1872  * 	Return
1873  * 		0 on success, or a negative error in case of failure.
1874  *
1875  * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
1876  *	Description
1877  *		Do FIB lookup in kernel tables using parameters in *params*.
1878  *		If lookup is successful and result shows packet is to be
1879  *		forwarded, the neighbor tables are searched for the nexthop.
1880  *		If successful (ie., FIB lookup shows forwarding and nexthop
1881  *		is resolved), the nexthop address is returned in ipv4_dst
1882  *		or ipv6_dst based on family, smac is set to mac address of
1883  *		egress device, dmac is set to nexthop mac address, rt_metric
1884  *		is set to metric from route (IPv4/IPv6 only), and ifindex
1885  *		is set to the device index of the nexthop from the FIB lookup.
1886  *
1887  *             *plen* argument is the size of the passed in struct.
1888  *             *flags* argument can be a combination of one or more of the
1889  *             following values:
1890  *
1891  *		**BPF_FIB_LOOKUP_DIRECT**
1892  *			Do a direct table lookup vs full lookup using FIB
1893  *			rules.
1894  *		**BPF_FIB_LOOKUP_OUTPUT**
1895  *			Perform lookup from an egress perspective (default is
1896  *			ingress).
1897  *
1898  *             *ctx* is either **struct xdp_md** for XDP programs or
1899  *             **struct sk_buff** tc cls_act programs.
1900  *     Return
1901  *		* < 0 if any input argument is invalid
1902  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
1903  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
1904  *		  packet is not forwarded or needs assist from full stack
1905  *
1906  * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags)
1907  *	Description
1908  *		Add an entry to, or update a sockhash *map* referencing sockets.
1909  *		The *skops* is used as a new value for the entry associated to
1910  *		*key*. *flags* is one of:
1911  *
1912  *		**BPF_NOEXIST**
1913  *			The entry for *key* must not exist in the map.
1914  *		**BPF_EXIST**
1915  *			The entry for *key* must already exist in the map.
1916  *		**BPF_ANY**
1917  *			No condition on the existence of the entry for *key*.
1918  *
1919  *		If the *map* has eBPF programs (parser and verdict), those will
1920  *		be inherited by the socket being added. If the socket is
1921  *		already attached to eBPF programs, this results in an error.
1922  *	Return
1923  *		0 on success, or a negative error in case of failure.
1924  *
1925  * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
1926  *	Description
1927  *		This helper is used in programs implementing policies at the
1928  *		socket level. If the message *msg* is allowed to pass (i.e. if
1929  *		the verdict eBPF program returns **SK_PASS**), redirect it to
1930  *		the socket referenced by *map* (of type
1931  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1932  *		egress interfaces can be used for redirection. The
1933  *		**BPF_F_INGRESS** value in *flags* is used to make the
1934  *		distinction (ingress path is selected if the flag is present,
1935  *		egress path otherwise). This is the only flag supported for now.
1936  *	Return
1937  *		**SK_PASS** on success, or **SK_DROP** on error.
1938  *
1939  * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
1940  *	Description
1941  *		This helper is used in programs implementing policies at the
1942  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
1943  *		if the verdeict eBPF program returns **SK_PASS**), redirect it
1944  *		to the socket referenced by *map* (of type
1945  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1946  *		egress interfaces can be used for redirection. The
1947  *		**BPF_F_INGRESS** value in *flags* is used to make the
1948  *		distinction (ingress path is selected if the flag is present,
1949  *		egress otherwise). This is the only flag supported for now.
1950  *	Return
1951  *		**SK_PASS** on success, or **SK_DROP** on error.
1952  *
1953  * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
1954  *	Description
1955  *		Encapsulate the packet associated to *skb* within a Layer 3
1956  *		protocol header. This header is provided in the buffer at
1957  *		address *hdr*, with *len* its size in bytes. *type* indicates
1958  *		the protocol of the header and can be one of:
1959  *
1960  *		**BPF_LWT_ENCAP_SEG6**
1961  *			IPv6 encapsulation with Segment Routing Header
1962  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
1963  *			the IPv6 header is computed by the kernel.
1964  *		**BPF_LWT_ENCAP_SEG6_INLINE**
1965  *			Only works if *skb* contains an IPv6 packet. Insert a
1966  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
1967  *			the IPv6 header.
1968  *
1969  * 		A call to this helper is susceptible to change the underlaying
1970  * 		packet buffer. Therefore, at load time, all checks on pointers
1971  * 		previously done by the verifier are invalidated and must be
1972  * 		performed again, if the helper is used in combination with
1973  * 		direct packet access.
1974  *	Return
1975  * 		0 on success, or a negative error in case of failure.
1976  *
1977  * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
1978  *	Description
1979  *		Store *len* bytes from address *from* into the packet
1980  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
1981  *		inside the outermost IPv6 Segment Routing Header can be
1982  *		modified through this helper.
1983  *
1984  * 		A call to this helper is susceptible to change the underlaying
1985  * 		packet buffer. Therefore, at load time, all checks on pointers
1986  * 		previously done by the verifier are invalidated and must be
1987  * 		performed again, if the helper is used in combination with
1988  * 		direct packet access.
1989  *	Return
1990  * 		0 on success, or a negative error in case of failure.
1991  *
1992  * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
1993  *	Description
1994  *		Adjust the size allocated to TLVs in the outermost IPv6
1995  *		Segment Routing Header contained in the packet associated to
1996  *		*skb*, at position *offset* by *delta* bytes. Only offsets
1997  *		after the segments are accepted. *delta* can be as well
1998  *		positive (growing) as negative (shrinking).
1999  *
2000  * 		A call to this helper is susceptible to change the underlaying
2001  * 		packet buffer. Therefore, at load time, all checks on pointers
2002  * 		previously done by the verifier are invalidated and must be
2003  * 		performed again, if the helper is used in combination with
2004  * 		direct packet access.
2005  *	Return
2006  * 		0 on success, or a negative error in case of failure.
2007  *
2008  * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2009  *	Description
2010  *		Apply an IPv6 Segment Routing action of type *action* to the
2011  *		packet associated to *skb*. Each action takes a parameter
2012  *		contained at address *param*, and of length *param_len* bytes.
2013  *		*action* can be one of:
2014  *
2015  *		**SEG6_LOCAL_ACTION_END_X**
2016  *			End.X action: Endpoint with Layer-3 cross-connect.
2017  *			Type of *param*: **struct in6_addr**.
2018  *		**SEG6_LOCAL_ACTION_END_T**
2019  *			End.T action: Endpoint with specific IPv6 table lookup.
2020  *			Type of *param*: **int**.
2021  *		**SEG6_LOCAL_ACTION_END_B6**
2022  *			End.B6 action: Endpoint bound to an SRv6 policy.
2023  *			Type of param: **struct ipv6_sr_hdr**.
2024  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2025  *			End.B6.Encap action: Endpoint bound to an SRv6
2026  *			encapsulation policy.
2027  *			Type of param: **struct ipv6_sr_hdr**.
2028  *
2029  * 		A call to this helper is susceptible to change the underlaying
2030  * 		packet buffer. Therefore, at load time, all checks on pointers
2031  * 		previously done by the verifier are invalidated and must be
2032  * 		performed again, if the helper is used in combination with
2033  * 		direct packet access.
2034  *	Return
2035  * 		0 on success, or a negative error in case of failure.
2036  *
2037  * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2038  *	Description
2039  *		This helper is used in programs implementing IR decoding, to
2040  *		report a successfully decoded key press with *scancode*,
2041  *		*toggle* value in the given *protocol*. The scancode will be
2042  *		translated to a keycode using the rc keymap, and reported as
2043  *		an input key down event. After a period a key up event is
2044  *		generated. This period can be extended by calling either
2045  *		**bpf_rc_keydown** () again with the same values, or calling
2046  *		**bpf_rc_repeat** ().
2047  *
2048  *		Some protocols include a toggle bit, in case the button	was
2049  *		released and pressed again between consecutive scancodes.
2050  *
2051  *		The *ctx* should point to the lirc sample as passed into
2052  *		the program.
2053  *
2054  *		The *protocol* is the decoded protocol number (see
2055  *		**enum rc_proto** for some predefined values).
2056  *
2057  *		This helper is only available is the kernel was compiled with
2058  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2059  *		"**y**".
2060  *	Return
2061  *		0
2062  *
2063  * int bpf_rc_repeat(void *ctx)
2064  *	Description
2065  *		This helper is used in programs implementing IR decoding, to
2066  *		report a successfully decoded repeat key message. This delays
2067  *		the generation of a key up event for previously generated
2068  *		key down event.
2069  *
2070  *		Some IR protocols like NEC have a special IR message for
2071  *		repeating last button, for when a button is held down.
2072  *
2073  *		The *ctx* should point to the lirc sample as passed into
2074  *		the program.
2075  *
2076  *		This helper is only available is the kernel was compiled with
2077  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2078  *		"**y**".
2079  *	Return
2080  *		0
2081  *
2082  * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb)
2083  * 	Description
2084  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2085  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2086  * 		helper for cgroup v1 by providing a tag resp. identifier that
2087  * 		can be matched on or used for map lookups e.g. to implement
2088  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2089  * 		exposed in user space through the f_handle API in order to get
2090  * 		to the same 64-bit id.
2091  *
2092  * 		This helper can be used on TC egress path, but not on ingress,
2093  * 		and is available only if the kernel was compiled with the
2094  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2095  * 	Return
2096  * 		The id is returned or 0 in case the id could not be retrieved.
2097  *
2098  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2099  *	Description
2100  *		Return id of cgroup v2 that is ancestor of cgroup associated
2101  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2102  *		*ancestor_level* zero and each step down the hierarchy
2103  *		increments the level. If *ancestor_level* == level of cgroup
2104  *		associated with *skb*, then return value will be same as that
2105  *		of **bpf_skb_cgroup_id**\ ().
2106  *
2107  *		The helper is useful to implement policies based on cgroups
2108  *		that are upper in hierarchy than immediate cgroup associated
2109  *		with *skb*.
2110  *
2111  *		The format of returned id and helper limitations are same as in
2112  *		**bpf_skb_cgroup_id**\ ().
2113  *	Return
2114  *		The id is returned or 0 in case the id could not be retrieved.
2115  *
2116  * u64 bpf_get_current_cgroup_id(void)
2117  * 	Return
2118  * 		A 64-bit integer containing the current cgroup id based
2119  * 		on the cgroup within which the current task is running.
2120  *
2121  * void* get_local_storage(void *map, u64 flags)
2122  *	Description
2123  *		Get the pointer to the local storage area.
2124  *		The type and the size of the local storage is defined
2125  *		by the *map* argument.
2126  *		The *flags* meaning is specific for each map type,
2127  *		and has to be 0 for cgroup local storage.
2128  *
2129  *		Depending on the bpf program type, a local storage area
2130  *		can be shared between multiple instances of the bpf program,
2131  *		running simultaneously.
2132  *
2133  *		A user should care about the synchronization by himself.
2134  *		For example, by using the BPF_STX_XADD instruction to alter
2135  *		the shared data.
2136  *	Return
2137  *		Pointer to the local storage area.
2138  *
2139  * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2140  *	Description
2141  *		Select a SO_REUSEPORT sk from a	BPF_MAP_TYPE_REUSEPORT_ARRAY map
2142  *		It checks the selected sk is matching the incoming
2143  *		request in the skb.
2144  *	Return
2145  *		0 on success, or a negative error in case of failure.
2146  */
2147 #define __BPF_FUNC_MAPPER(FN)		\
2148 	FN(unspec),			\
2149 	FN(map_lookup_elem),		\
2150 	FN(map_update_elem),		\
2151 	FN(map_delete_elem),		\
2152 	FN(probe_read),			\
2153 	FN(ktime_get_ns),		\
2154 	FN(trace_printk),		\
2155 	FN(get_prandom_u32),		\
2156 	FN(get_smp_processor_id),	\
2157 	FN(skb_store_bytes),		\
2158 	FN(l3_csum_replace),		\
2159 	FN(l4_csum_replace),		\
2160 	FN(tail_call),			\
2161 	FN(clone_redirect),		\
2162 	FN(get_current_pid_tgid),	\
2163 	FN(get_current_uid_gid),	\
2164 	FN(get_current_comm),		\
2165 	FN(get_cgroup_classid),		\
2166 	FN(skb_vlan_push),		\
2167 	FN(skb_vlan_pop),		\
2168 	FN(skb_get_tunnel_key),		\
2169 	FN(skb_set_tunnel_key),		\
2170 	FN(perf_event_read),		\
2171 	FN(redirect),			\
2172 	FN(get_route_realm),		\
2173 	FN(perf_event_output),		\
2174 	FN(skb_load_bytes),		\
2175 	FN(get_stackid),		\
2176 	FN(csum_diff),			\
2177 	FN(skb_get_tunnel_opt),		\
2178 	FN(skb_set_tunnel_opt),		\
2179 	FN(skb_change_proto),		\
2180 	FN(skb_change_type),		\
2181 	FN(skb_under_cgroup),		\
2182 	FN(get_hash_recalc),		\
2183 	FN(get_current_task),		\
2184 	FN(probe_write_user),		\
2185 	FN(current_task_under_cgroup),	\
2186 	FN(skb_change_tail),		\
2187 	FN(skb_pull_data),		\
2188 	FN(csum_update),		\
2189 	FN(set_hash_invalid),		\
2190 	FN(get_numa_node_id),		\
2191 	FN(skb_change_head),		\
2192 	FN(xdp_adjust_head),		\
2193 	FN(probe_read_str),		\
2194 	FN(get_socket_cookie),		\
2195 	FN(get_socket_uid),		\
2196 	FN(set_hash),			\
2197 	FN(setsockopt),			\
2198 	FN(skb_adjust_room),		\
2199 	FN(redirect_map),		\
2200 	FN(sk_redirect_map),		\
2201 	FN(sock_map_update),		\
2202 	FN(xdp_adjust_meta),		\
2203 	FN(perf_event_read_value),	\
2204 	FN(perf_prog_read_value),	\
2205 	FN(getsockopt),			\
2206 	FN(override_return),		\
2207 	FN(sock_ops_cb_flags_set),	\
2208 	FN(msg_redirect_map),		\
2209 	FN(msg_apply_bytes),		\
2210 	FN(msg_cork_bytes),		\
2211 	FN(msg_pull_data),		\
2212 	FN(bind),			\
2213 	FN(xdp_adjust_tail),		\
2214 	FN(skb_get_xfrm_state),		\
2215 	FN(get_stack),			\
2216 	FN(skb_load_bytes_relative),	\
2217 	FN(fib_lookup),			\
2218 	FN(sock_hash_update),		\
2219 	FN(msg_redirect_hash),		\
2220 	FN(sk_redirect_hash),		\
2221 	FN(lwt_push_encap),		\
2222 	FN(lwt_seg6_store_bytes),	\
2223 	FN(lwt_seg6_adjust_srh),	\
2224 	FN(lwt_seg6_action),		\
2225 	FN(rc_repeat),			\
2226 	FN(rc_keydown),			\
2227 	FN(skb_cgroup_id),		\
2228 	FN(get_current_cgroup_id),	\
2229 	FN(get_local_storage),		\
2230 	FN(sk_select_reuseport),	\
2231 	FN(skb_ancestor_cgroup_id),
2232 
2233 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
2234  * function eBPF program intends to call
2235  */
2236 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
2237 enum bpf_func_id {
2238 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
2239 	__BPF_FUNC_MAX_ID,
2240 };
2241 #undef __BPF_ENUM_FN
2242 
2243 /* All flags used by eBPF helper functions, placed here. */
2244 
2245 /* BPF_FUNC_skb_store_bytes flags. */
2246 #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
2247 #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
2248 
2249 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2250  * First 4 bits are for passing the header field size.
2251  */
2252 #define BPF_F_HDR_FIELD_MASK		0xfULL
2253 
2254 /* BPF_FUNC_l4_csum_replace flags. */
2255 #define BPF_F_PSEUDO_HDR		(1ULL << 4)
2256 #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
2257 #define BPF_F_MARK_ENFORCE		(1ULL << 6)
2258 
2259 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2260 #define BPF_F_INGRESS			(1ULL << 0)
2261 
2262 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2263 #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
2264 
2265 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
2266 #define BPF_F_SKIP_FIELD_MASK		0xffULL
2267 #define BPF_F_USER_STACK		(1ULL << 8)
2268 /* flags used by BPF_FUNC_get_stackid only. */
2269 #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
2270 #define BPF_F_REUSE_STACKID		(1ULL << 10)
2271 /* flags used by BPF_FUNC_get_stack only. */
2272 #define BPF_F_USER_BUILD_ID		(1ULL << 11)
2273 
2274 /* BPF_FUNC_skb_set_tunnel_key flags. */
2275 #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
2276 #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
2277 #define BPF_F_SEQ_NUMBER		(1ULL << 3)
2278 
2279 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
2280  * BPF_FUNC_perf_event_read_value flags.
2281  */
2282 #define BPF_F_INDEX_MASK		0xffffffffULL
2283 #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
2284 /* BPF_FUNC_perf_event_output for sk_buff input context. */
2285 #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
2286 
2287 /* Mode for BPF_FUNC_skb_adjust_room helper. */
2288 enum bpf_adj_room_mode {
2289 	BPF_ADJ_ROOM_NET,
2290 };
2291 
2292 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
2293 enum bpf_hdr_start_off {
2294 	BPF_HDR_START_MAC,
2295 	BPF_HDR_START_NET,
2296 };
2297 
2298 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
2299 enum bpf_lwt_encap_mode {
2300 	BPF_LWT_ENCAP_SEG6,
2301 	BPF_LWT_ENCAP_SEG6_INLINE
2302 };
2303 
2304 /* user accessible mirror of in-kernel sk_buff.
2305  * new fields can only be added to the end of this structure
2306  */
2307 struct __sk_buff {
2308 	__u32 len;
2309 	__u32 pkt_type;
2310 	__u32 mark;
2311 	__u32 queue_mapping;
2312 	__u32 protocol;
2313 	__u32 vlan_present;
2314 	__u32 vlan_tci;
2315 	__u32 vlan_proto;
2316 	__u32 priority;
2317 	__u32 ingress_ifindex;
2318 	__u32 ifindex;
2319 	__u32 tc_index;
2320 	__u32 cb[5];
2321 	__u32 hash;
2322 	__u32 tc_classid;
2323 	__u32 data;
2324 	__u32 data_end;
2325 	__u32 napi_id;
2326 
2327 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
2328 	__u32 family;
2329 	__u32 remote_ip4;	/* Stored in network byte order */
2330 	__u32 local_ip4;	/* Stored in network byte order */
2331 	__u32 remote_ip6[4];	/* Stored in network byte order */
2332 	__u32 local_ip6[4];	/* Stored in network byte order */
2333 	__u32 remote_port;	/* Stored in network byte order */
2334 	__u32 local_port;	/* stored in host byte order */
2335 	/* ... here. */
2336 
2337 	__u32 data_meta;
2338 	struct bpf_flow_keys *flow_keys;
2339 };
2340 
2341 struct bpf_tunnel_key {
2342 	__u32 tunnel_id;
2343 	union {
2344 		__u32 remote_ipv4;
2345 		__u32 remote_ipv6[4];
2346 	};
2347 	__u8 tunnel_tos;
2348 	__u8 tunnel_ttl;
2349 	__u16 tunnel_ext;	/* Padding, future use. */
2350 	__u32 tunnel_label;
2351 };
2352 
2353 /* user accessible mirror of in-kernel xfrm_state.
2354  * new fields can only be added to the end of this structure
2355  */
2356 struct bpf_xfrm_state {
2357 	__u32 reqid;
2358 	__u32 spi;	/* Stored in network byte order */
2359 	__u16 family;
2360 	__u16 ext;	/* Padding, future use. */
2361 	union {
2362 		__u32 remote_ipv4;	/* Stored in network byte order */
2363 		__u32 remote_ipv6[4];	/* Stored in network byte order */
2364 	};
2365 };
2366 
2367 /* Generic BPF return codes which all BPF program types may support.
2368  * The values are binary compatible with their TC_ACT_* counter-part to
2369  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
2370  * programs.
2371  *
2372  * XDP is handled seprately, see XDP_*.
2373  */
2374 enum bpf_ret_code {
2375 	BPF_OK = 0,
2376 	/* 1 reserved */
2377 	BPF_DROP = 2,
2378 	/* 3-6 reserved */
2379 	BPF_REDIRECT = 7,
2380 	/* >127 are reserved for prog type specific return codes */
2381 };
2382 
2383 struct bpf_sock {
2384 	__u32 bound_dev_if;
2385 	__u32 family;
2386 	__u32 type;
2387 	__u32 protocol;
2388 	__u32 mark;
2389 	__u32 priority;
2390 	__u32 src_ip4;		/* Allows 1,2,4-byte read.
2391 				 * Stored in network byte order.
2392 				 */
2393 	__u32 src_ip6[4];	/* Allows 1,2,4-byte read.
2394 				 * Stored in network byte order.
2395 				 */
2396 	__u32 src_port;		/* Allows 4-byte read.
2397 				 * Stored in host byte order
2398 				 */
2399 };
2400 
2401 #define XDP_PACKET_HEADROOM 256
2402 
2403 /* User return codes for XDP prog type.
2404  * A valid XDP program must return one of these defined values. All other
2405  * return codes are reserved for future use. Unknown return codes will
2406  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
2407  */
2408 enum xdp_action {
2409 	XDP_ABORTED = 0,
2410 	XDP_DROP,
2411 	XDP_PASS,
2412 	XDP_TX,
2413 	XDP_REDIRECT,
2414 };
2415 
2416 /* user accessible metadata for XDP packet hook
2417  * new fields must be added to the end of this structure
2418  */
2419 struct xdp_md {
2420 	__u32 data;
2421 	__u32 data_end;
2422 	__u32 data_meta;
2423 	/* Below access go through struct xdp_rxq_info */
2424 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
2425 	__u32 rx_queue_index;  /* rxq->queue_index  */
2426 };
2427 
2428 enum sk_action {
2429 	SK_DROP = 0,
2430 	SK_PASS,
2431 };
2432 
2433 /* user accessible metadata for SK_MSG packet hook, new fields must
2434  * be added to the end of this structure
2435  */
2436 struct sk_msg_md {
2437 	void *data;
2438 	void *data_end;
2439 
2440 	__u32 family;
2441 	__u32 remote_ip4;	/* Stored in network byte order */
2442 	__u32 local_ip4;	/* Stored in network byte order */
2443 	__u32 remote_ip6[4];	/* Stored in network byte order */
2444 	__u32 local_ip6[4];	/* Stored in network byte order */
2445 	__u32 remote_port;	/* Stored in network byte order */
2446 	__u32 local_port;	/* stored in host byte order */
2447 };
2448 
2449 struct sk_reuseport_md {
2450 	/*
2451 	 * Start of directly accessible data. It begins from
2452 	 * the tcp/udp header.
2453 	 */
2454 	void *data;
2455 	void *data_end;		/* End of directly accessible data */
2456 	/*
2457 	 * Total length of packet (starting from the tcp/udp header).
2458 	 * Note that the directly accessible bytes (data_end - data)
2459 	 * could be less than this "len".  Those bytes could be
2460 	 * indirectly read by a helper "bpf_skb_load_bytes()".
2461 	 */
2462 	__u32 len;
2463 	/*
2464 	 * Eth protocol in the mac header (network byte order). e.g.
2465 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
2466 	 */
2467 	__u32 eth_protocol;
2468 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
2469 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
2470 	__u32 hash;		/* A hash of the packet 4 tuples */
2471 };
2472 
2473 #define BPF_TAG_SIZE	8
2474 
2475 struct bpf_prog_info {
2476 	__u32 type;
2477 	__u32 id;
2478 	__u8  tag[BPF_TAG_SIZE];
2479 	__u32 jited_prog_len;
2480 	__u32 xlated_prog_len;
2481 	__aligned_u64 jited_prog_insns;
2482 	__aligned_u64 xlated_prog_insns;
2483 	__u64 load_time;	/* ns since boottime */
2484 	__u32 created_by_uid;
2485 	__u32 nr_map_ids;
2486 	__aligned_u64 map_ids;
2487 	char name[BPF_OBJ_NAME_LEN];
2488 	__u32 ifindex;
2489 	__u32 gpl_compatible:1;
2490 	__u64 netns_dev;
2491 	__u64 netns_ino;
2492 	__u32 nr_jited_ksyms;
2493 	__u32 nr_jited_func_lens;
2494 	__aligned_u64 jited_ksyms;
2495 	__aligned_u64 jited_func_lens;
2496 } __attribute__((aligned(8)));
2497 
2498 struct bpf_map_info {
2499 	__u32 type;
2500 	__u32 id;
2501 	__u32 key_size;
2502 	__u32 value_size;
2503 	__u32 max_entries;
2504 	__u32 map_flags;
2505 	char  name[BPF_OBJ_NAME_LEN];
2506 	__u32 ifindex;
2507 	__u32 :32;
2508 	__u64 netns_dev;
2509 	__u64 netns_ino;
2510 	__u32 btf_id;
2511 	__u32 btf_key_type_id;
2512 	__u32 btf_value_type_id;
2513 } __attribute__((aligned(8)));
2514 
2515 struct bpf_btf_info {
2516 	__aligned_u64 btf;
2517 	__u32 btf_size;
2518 	__u32 id;
2519 } __attribute__((aligned(8)));
2520 
2521 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
2522  * by user and intended to be used by socket (e.g. to bind to, depends on
2523  * attach attach type).
2524  */
2525 struct bpf_sock_addr {
2526 	__u32 user_family;	/* Allows 4-byte read, but no write. */
2527 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
2528 				 * Stored in network byte order.
2529 				 */
2530 	__u32 user_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
2531 				 * Stored in network byte order.
2532 				 */
2533 	__u32 user_port;	/* Allows 4-byte read and write.
2534 				 * Stored in network byte order
2535 				 */
2536 	__u32 family;		/* Allows 4-byte read, but no write */
2537 	__u32 type;		/* Allows 4-byte read, but no write */
2538 	__u32 protocol;		/* Allows 4-byte read, but no write */
2539 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read an 4-byte write.
2540 				 * Stored in network byte order.
2541 				 */
2542 	__u32 msg_src_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
2543 				 * Stored in network byte order.
2544 				 */
2545 };
2546 
2547 /* User bpf_sock_ops struct to access socket values and specify request ops
2548  * and their replies.
2549  * Some of this fields are in network (bigendian) byte order and may need
2550  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
2551  * New fields can only be added at the end of this structure
2552  */
2553 struct bpf_sock_ops {
2554 	__u32 op;
2555 	union {
2556 		__u32 args[4];		/* Optionally passed to bpf program */
2557 		__u32 reply;		/* Returned by bpf program	    */
2558 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
2559 	};
2560 	__u32 family;
2561 	__u32 remote_ip4;	/* Stored in network byte order */
2562 	__u32 local_ip4;	/* Stored in network byte order */
2563 	__u32 remote_ip6[4];	/* Stored in network byte order */
2564 	__u32 local_ip6[4];	/* Stored in network byte order */
2565 	__u32 remote_port;	/* Stored in network byte order */
2566 	__u32 local_port;	/* stored in host byte order */
2567 	__u32 is_fullsock;	/* Some TCP fields are only valid if
2568 				 * there is a full socket. If not, the
2569 				 * fields read as zero.
2570 				 */
2571 	__u32 snd_cwnd;
2572 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
2573 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
2574 	__u32 state;
2575 	__u32 rtt_min;
2576 	__u32 snd_ssthresh;
2577 	__u32 rcv_nxt;
2578 	__u32 snd_nxt;
2579 	__u32 snd_una;
2580 	__u32 mss_cache;
2581 	__u32 ecn_flags;
2582 	__u32 rate_delivered;
2583 	__u32 rate_interval_us;
2584 	__u32 packets_out;
2585 	__u32 retrans_out;
2586 	__u32 total_retrans;
2587 	__u32 segs_in;
2588 	__u32 data_segs_in;
2589 	__u32 segs_out;
2590 	__u32 data_segs_out;
2591 	__u32 lost_out;
2592 	__u32 sacked_out;
2593 	__u32 sk_txhash;
2594 	__u64 bytes_received;
2595 	__u64 bytes_acked;
2596 };
2597 
2598 /* Definitions for bpf_sock_ops_cb_flags */
2599 #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
2600 #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
2601 #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
2602 #define BPF_SOCK_OPS_ALL_CB_FLAGS       0x7		/* Mask of all currently
2603 							 * supported cb flags
2604 							 */
2605 
2606 /* List of known BPF sock_ops operators.
2607  * New entries can only be added at the end
2608  */
2609 enum {
2610 	BPF_SOCK_OPS_VOID,
2611 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
2612 					 * -1 if default value should be used
2613 					 */
2614 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
2615 					 * window (in packets) or -1 if default
2616 					 * value should be used
2617 					 */
2618 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
2619 					 * active connection is initialized
2620 					 */
2621 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
2622 						 * active connection is
2623 						 * established
2624 						 */
2625 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
2626 						 * passive connection is
2627 						 * established
2628 						 */
2629 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
2630 					 * needs ECN
2631 					 */
2632 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
2633 					 * based on the path and may be
2634 					 * dependent on the congestion control
2635 					 * algorithm. In general it indicates
2636 					 * a congestion threshold. RTTs above
2637 					 * this indicate congestion
2638 					 */
2639 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
2640 					 * Arg1: value of icsk_retransmits
2641 					 * Arg2: value of icsk_rto
2642 					 * Arg3: whether RTO has expired
2643 					 */
2644 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
2645 					 * Arg1: sequence number of 1st byte
2646 					 * Arg2: # segments
2647 					 * Arg3: return value of
2648 					 *       tcp_transmit_skb (0 => success)
2649 					 */
2650 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
2651 					 * Arg1: old_state
2652 					 * Arg2: new_state
2653 					 */
2654 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
2655 					 * socket transition to LISTEN state.
2656 					 */
2657 };
2658 
2659 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
2660  * changes between the TCP and BPF versions. Ideally this should never happen.
2661  * If it does, we need to add code to convert them before calling
2662  * the BPF sock_ops function.
2663  */
2664 enum {
2665 	BPF_TCP_ESTABLISHED = 1,
2666 	BPF_TCP_SYN_SENT,
2667 	BPF_TCP_SYN_RECV,
2668 	BPF_TCP_FIN_WAIT1,
2669 	BPF_TCP_FIN_WAIT2,
2670 	BPF_TCP_TIME_WAIT,
2671 	BPF_TCP_CLOSE,
2672 	BPF_TCP_CLOSE_WAIT,
2673 	BPF_TCP_LAST_ACK,
2674 	BPF_TCP_LISTEN,
2675 	BPF_TCP_CLOSING,	/* Now a valid state */
2676 	BPF_TCP_NEW_SYN_RECV,
2677 
2678 	BPF_TCP_MAX_STATES	/* Leave at the end! */
2679 };
2680 
2681 #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
2682 #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
2683 
2684 struct bpf_perf_event_value {
2685 	__u64 counter;
2686 	__u64 enabled;
2687 	__u64 running;
2688 };
2689 
2690 #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
2691 #define BPF_DEVCG_ACC_READ	(1ULL << 1)
2692 #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
2693 
2694 #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
2695 #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
2696 
2697 struct bpf_cgroup_dev_ctx {
2698 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
2699 	__u32 access_type;
2700 	__u32 major;
2701 	__u32 minor;
2702 };
2703 
2704 struct bpf_raw_tracepoint_args {
2705 	__u64 args[0];
2706 };
2707 
2708 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
2709  * OUTPUT:  Do lookup from egress perspective; default is ingress
2710  */
2711 #define BPF_FIB_LOOKUP_DIRECT  BIT(0)
2712 #define BPF_FIB_LOOKUP_OUTPUT  BIT(1)
2713 
2714 enum {
2715 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
2716 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
2717 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
2718 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
2719 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
2720 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
2721 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
2722 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
2723 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
2724 };
2725 
2726 struct bpf_fib_lookup {
2727 	/* input:  network family for lookup (AF_INET, AF_INET6)
2728 	 * output: network family of egress nexthop
2729 	 */
2730 	__u8	family;
2731 
2732 	/* set if lookup is to consider L4 data - e.g., FIB rules */
2733 	__u8	l4_protocol;
2734 	__be16	sport;
2735 	__be16	dport;
2736 
2737 	/* total length of packet from network header - used for MTU check */
2738 	__u16	tot_len;
2739 
2740 	/* input: L3 device index for lookup
2741 	 * output: device index from FIB lookup
2742 	 */
2743 	__u32	ifindex;
2744 
2745 	union {
2746 		/* inputs to lookup */
2747 		__u8	tos;		/* AF_INET  */
2748 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
2749 
2750 		/* output: metric of fib result (IPv4/IPv6 only) */
2751 		__u32	rt_metric;
2752 	};
2753 
2754 	union {
2755 		__be32		ipv4_src;
2756 		__u32		ipv6_src[4];  /* in6_addr; network order */
2757 	};
2758 
2759 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
2760 	 * network header. output: bpf_fib_lookup sets to gateway address
2761 	 * if FIB lookup returns gateway route
2762 	 */
2763 	union {
2764 		__be32		ipv4_dst;
2765 		__u32		ipv6_dst[4];  /* in6_addr; network order */
2766 	};
2767 
2768 	/* output */
2769 	__be16	h_vlan_proto;
2770 	__be16	h_vlan_TCI;
2771 	__u8	smac[6];     /* ETH_ALEN */
2772 	__u8	dmac[6];     /* ETH_ALEN */
2773 };
2774 
2775 enum bpf_task_fd_type {
2776 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
2777 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
2778 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
2779 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
2780 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
2781 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
2782 };
2783 
2784 struct bpf_flow_keys {
2785 	__u16	nhoff;
2786 	__u16	thoff;
2787 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
2788 	__u8	is_frag;
2789 	__u8	is_first_frag;
2790 	__u8	is_encap;
2791 	__u8	ip_proto;
2792 	__be16	n_proto;
2793 	__be16	sport;
2794 	__be16	dport;
2795 	union {
2796 		struct {
2797 			__be32	ipv4_src;
2798 			__be32	ipv4_dst;
2799 		};
2800 		struct {
2801 			__u32	ipv6_src[4];	/* in6_addr; network order */
2802 			__u32	ipv6_dst[4];	/* in6_addr; network order */
2803 		};
2804 	};
2805 };
2806 
2807 #endif /* _UAPI__LINUX_BPF_H__ */
2808