1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef _UAPI__LINUX_BPF_H__ 9 #define _UAPI__LINUX_BPF_H__ 10 11 #include <linux/types.h> 12 #include <linux/bpf_common.h> 13 14 /* Extended instruction set based on top of classic BPF */ 15 16 /* instruction classes */ 17 #define BPF_JMP32 0x06 /* jmp mode in word width */ 18 #define BPF_ALU64 0x07 /* alu mode in double word width */ 19 20 /* ld/ldx fields */ 21 #define BPF_DW 0x18 /* double word (64-bit) */ 22 #define BPF_XADD 0xc0 /* exclusive add */ 23 24 /* alu/jmp fields */ 25 #define BPF_MOV 0xb0 /* mov reg to reg */ 26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 27 28 /* change endianness of a register */ 29 #define BPF_END 0xd0 /* flags for endianness conversion: */ 30 #define BPF_TO_LE 0x00 /* convert to little-endian */ 31 #define BPF_TO_BE 0x08 /* convert to big-endian */ 32 #define BPF_FROM_LE BPF_TO_LE 33 #define BPF_FROM_BE BPF_TO_BE 34 35 /* jmp encodings */ 36 #define BPF_JNE 0x50 /* jump != */ 37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 43 #define BPF_CALL 0x80 /* function call */ 44 #define BPF_EXIT 0x90 /* function return */ 45 46 /* Register numbers */ 47 enum { 48 BPF_REG_0 = 0, 49 BPF_REG_1, 50 BPF_REG_2, 51 BPF_REG_3, 52 BPF_REG_4, 53 BPF_REG_5, 54 BPF_REG_6, 55 BPF_REG_7, 56 BPF_REG_8, 57 BPF_REG_9, 58 BPF_REG_10, 59 __MAX_BPF_REG, 60 }; 61 62 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 63 #define MAX_BPF_REG __MAX_BPF_REG 64 65 struct bpf_insn { 66 __u8 code; /* opcode */ 67 __u8 dst_reg:4; /* dest register */ 68 __u8 src_reg:4; /* source register */ 69 __s16 off; /* signed offset */ 70 __s32 imm; /* signed immediate constant */ 71 }; 72 73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 74 struct bpf_lpm_trie_key { 75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 76 __u8 data[0]; /* Arbitrary size */ 77 }; 78 79 struct bpf_cgroup_storage_key { 80 __u64 cgroup_inode_id; /* cgroup inode id */ 81 __u32 attach_type; /* program attach type */ 82 }; 83 84 /* BPF syscall commands, see bpf(2) man-page for details. */ 85 enum bpf_cmd { 86 BPF_MAP_CREATE, 87 BPF_MAP_LOOKUP_ELEM, 88 BPF_MAP_UPDATE_ELEM, 89 BPF_MAP_DELETE_ELEM, 90 BPF_MAP_GET_NEXT_KEY, 91 BPF_PROG_LOAD, 92 BPF_OBJ_PIN, 93 BPF_OBJ_GET, 94 BPF_PROG_ATTACH, 95 BPF_PROG_DETACH, 96 BPF_PROG_TEST_RUN, 97 BPF_PROG_GET_NEXT_ID, 98 BPF_MAP_GET_NEXT_ID, 99 BPF_PROG_GET_FD_BY_ID, 100 BPF_MAP_GET_FD_BY_ID, 101 BPF_OBJ_GET_INFO_BY_FD, 102 BPF_PROG_QUERY, 103 BPF_RAW_TRACEPOINT_OPEN, 104 BPF_BTF_LOAD, 105 BPF_BTF_GET_FD_BY_ID, 106 BPF_TASK_FD_QUERY, 107 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 108 BPF_MAP_FREEZE, 109 }; 110 111 enum bpf_map_type { 112 BPF_MAP_TYPE_UNSPEC, 113 BPF_MAP_TYPE_HASH, 114 BPF_MAP_TYPE_ARRAY, 115 BPF_MAP_TYPE_PROG_ARRAY, 116 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 117 BPF_MAP_TYPE_PERCPU_HASH, 118 BPF_MAP_TYPE_PERCPU_ARRAY, 119 BPF_MAP_TYPE_STACK_TRACE, 120 BPF_MAP_TYPE_CGROUP_ARRAY, 121 BPF_MAP_TYPE_LRU_HASH, 122 BPF_MAP_TYPE_LRU_PERCPU_HASH, 123 BPF_MAP_TYPE_LPM_TRIE, 124 BPF_MAP_TYPE_ARRAY_OF_MAPS, 125 BPF_MAP_TYPE_HASH_OF_MAPS, 126 BPF_MAP_TYPE_DEVMAP, 127 BPF_MAP_TYPE_SOCKMAP, 128 BPF_MAP_TYPE_CPUMAP, 129 BPF_MAP_TYPE_XSKMAP, 130 BPF_MAP_TYPE_SOCKHASH, 131 BPF_MAP_TYPE_CGROUP_STORAGE, 132 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 133 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 134 BPF_MAP_TYPE_QUEUE, 135 BPF_MAP_TYPE_STACK, 136 BPF_MAP_TYPE_SK_STORAGE, 137 }; 138 139 /* Note that tracing related programs such as 140 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 141 * are not subject to a stable API since kernel internal data 142 * structures can change from release to release and may 143 * therefore break existing tracing BPF programs. Tracing BPF 144 * programs correspond to /a/ specific kernel which is to be 145 * analyzed, and not /a/ specific kernel /and/ all future ones. 146 */ 147 enum bpf_prog_type { 148 BPF_PROG_TYPE_UNSPEC, 149 BPF_PROG_TYPE_SOCKET_FILTER, 150 BPF_PROG_TYPE_KPROBE, 151 BPF_PROG_TYPE_SCHED_CLS, 152 BPF_PROG_TYPE_SCHED_ACT, 153 BPF_PROG_TYPE_TRACEPOINT, 154 BPF_PROG_TYPE_XDP, 155 BPF_PROG_TYPE_PERF_EVENT, 156 BPF_PROG_TYPE_CGROUP_SKB, 157 BPF_PROG_TYPE_CGROUP_SOCK, 158 BPF_PROG_TYPE_LWT_IN, 159 BPF_PROG_TYPE_LWT_OUT, 160 BPF_PROG_TYPE_LWT_XMIT, 161 BPF_PROG_TYPE_SOCK_OPS, 162 BPF_PROG_TYPE_SK_SKB, 163 BPF_PROG_TYPE_CGROUP_DEVICE, 164 BPF_PROG_TYPE_SK_MSG, 165 BPF_PROG_TYPE_RAW_TRACEPOINT, 166 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 167 BPF_PROG_TYPE_LWT_SEG6LOCAL, 168 BPF_PROG_TYPE_LIRC_MODE2, 169 BPF_PROG_TYPE_SK_REUSEPORT, 170 BPF_PROG_TYPE_FLOW_DISSECTOR, 171 BPF_PROG_TYPE_CGROUP_SYSCTL, 172 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, 173 }; 174 175 enum bpf_attach_type { 176 BPF_CGROUP_INET_INGRESS, 177 BPF_CGROUP_INET_EGRESS, 178 BPF_CGROUP_INET_SOCK_CREATE, 179 BPF_CGROUP_SOCK_OPS, 180 BPF_SK_SKB_STREAM_PARSER, 181 BPF_SK_SKB_STREAM_VERDICT, 182 BPF_CGROUP_DEVICE, 183 BPF_SK_MSG_VERDICT, 184 BPF_CGROUP_INET4_BIND, 185 BPF_CGROUP_INET6_BIND, 186 BPF_CGROUP_INET4_CONNECT, 187 BPF_CGROUP_INET6_CONNECT, 188 BPF_CGROUP_INET4_POST_BIND, 189 BPF_CGROUP_INET6_POST_BIND, 190 BPF_CGROUP_UDP4_SENDMSG, 191 BPF_CGROUP_UDP6_SENDMSG, 192 BPF_LIRC_MODE2, 193 BPF_FLOW_DISSECTOR, 194 BPF_CGROUP_SYSCTL, 195 BPF_CGROUP_UDP4_RECVMSG, 196 BPF_CGROUP_UDP6_RECVMSG, 197 __MAX_BPF_ATTACH_TYPE 198 }; 199 200 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 201 202 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 203 * 204 * NONE(default): No further bpf programs allowed in the subtree. 205 * 206 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 207 * the program in this cgroup yields to sub-cgroup program. 208 * 209 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 210 * that cgroup program gets run in addition to the program in this cgroup. 211 * 212 * Only one program is allowed to be attached to a cgroup with 213 * NONE or BPF_F_ALLOW_OVERRIDE flag. 214 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 215 * release old program and attach the new one. Attach flags has to match. 216 * 217 * Multiple programs are allowed to be attached to a cgroup with 218 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 219 * (those that were attached first, run first) 220 * The programs of sub-cgroup are executed first, then programs of 221 * this cgroup and then programs of parent cgroup. 222 * When children program makes decision (like picking TCP CA or sock bind) 223 * parent program has a chance to override it. 224 * 225 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 226 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 227 * Ex1: 228 * cgrp1 (MULTI progs A, B) -> 229 * cgrp2 (OVERRIDE prog C) -> 230 * cgrp3 (MULTI prog D) -> 231 * cgrp4 (OVERRIDE prog E) -> 232 * cgrp5 (NONE prog F) 233 * the event in cgrp5 triggers execution of F,D,A,B in that order. 234 * if prog F is detached, the execution is E,D,A,B 235 * if prog F and D are detached, the execution is E,A,B 236 * if prog F, E and D are detached, the execution is C,A,B 237 * 238 * All eligible programs are executed regardless of return code from 239 * earlier programs. 240 */ 241 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 242 #define BPF_F_ALLOW_MULTI (1U << 1) 243 244 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 245 * verifier will perform strict alignment checking as if the kernel 246 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 247 * and NET_IP_ALIGN defined to 2. 248 */ 249 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 250 251 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 252 * verifier will allow any alignment whatsoever. On platforms 253 * with strict alignment requirements for loads ands stores (such 254 * as sparc and mips) the verifier validates that all loads and 255 * stores provably follow this requirement. This flag turns that 256 * checking and enforcement off. 257 * 258 * It is mostly used for testing when we want to validate the 259 * context and memory access aspects of the verifier, but because 260 * of an unaligned access the alignment check would trigger before 261 * the one we are interested in. 262 */ 263 #define BPF_F_ANY_ALIGNMENT (1U << 1) 264 265 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose. 266 * Verifier does sub-register def/use analysis and identifies instructions whose 267 * def only matters for low 32-bit, high 32-bit is never referenced later 268 * through implicit zero extension. Therefore verifier notifies JIT back-ends 269 * that it is safe to ignore clearing high 32-bit for these instructions. This 270 * saves some back-ends a lot of code-gen. However such optimization is not 271 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends 272 * hence hasn't used verifier's analysis result. But, we really want to have a 273 * way to be able to verify the correctness of the described optimization on 274 * x86_64 on which testsuites are frequently exercised. 275 * 276 * So, this flag is introduced. Once it is set, verifier will randomize high 277 * 32-bit for those instructions who has been identified as safe to ignore them. 278 * Then, if verifier is not doing correct analysis, such randomization will 279 * regress tests to expose bugs. 280 */ 281 #define BPF_F_TEST_RND_HI32 (1U << 2) 282 283 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have 284 * two extensions: 285 * 286 * insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE 287 * insn[0].imm: map fd map fd 288 * insn[1].imm: 0 offset into value 289 * insn[0].off: 0 0 290 * insn[1].off: 0 0 291 * ldimm64 rewrite: address of map address of map[0]+offset 292 * verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE 293 */ 294 #define BPF_PSEUDO_MAP_FD 1 295 #define BPF_PSEUDO_MAP_VALUE 2 296 297 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 298 * offset to another bpf function 299 */ 300 #define BPF_PSEUDO_CALL 1 301 302 /* flags for BPF_MAP_UPDATE_ELEM command */ 303 #define BPF_ANY 0 /* create new element or update existing */ 304 #define BPF_NOEXIST 1 /* create new element if it didn't exist */ 305 #define BPF_EXIST 2 /* update existing element */ 306 #define BPF_F_LOCK 4 /* spin_lock-ed map_lookup/map_update */ 307 308 /* flags for BPF_MAP_CREATE command */ 309 #define BPF_F_NO_PREALLOC (1U << 0) 310 /* Instead of having one common LRU list in the 311 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 312 * which can scale and perform better. 313 * Note, the LRU nodes (including free nodes) cannot be moved 314 * across different LRU lists. 315 */ 316 #define BPF_F_NO_COMMON_LRU (1U << 1) 317 /* Specify numa node during map creation */ 318 #define BPF_F_NUMA_NODE (1U << 2) 319 320 #define BPF_OBJ_NAME_LEN 16U 321 322 /* Flags for accessing BPF object from syscall side. */ 323 #define BPF_F_RDONLY (1U << 3) 324 #define BPF_F_WRONLY (1U << 4) 325 326 /* Flag for stack_map, store build_id+offset instead of pointer */ 327 #define BPF_F_STACK_BUILD_ID (1U << 5) 328 329 /* Zero-initialize hash function seed. This should only be used for testing. */ 330 #define BPF_F_ZERO_SEED (1U << 6) 331 332 /* Flags for accessing BPF object from program side. */ 333 #define BPF_F_RDONLY_PROG (1U << 7) 334 #define BPF_F_WRONLY_PROG (1U << 8) 335 336 /* flags for BPF_PROG_QUERY */ 337 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 338 339 enum bpf_stack_build_id_status { 340 /* user space need an empty entry to identify end of a trace */ 341 BPF_STACK_BUILD_ID_EMPTY = 0, 342 /* with valid build_id and offset */ 343 BPF_STACK_BUILD_ID_VALID = 1, 344 /* couldn't get build_id, fallback to ip */ 345 BPF_STACK_BUILD_ID_IP = 2, 346 }; 347 348 #define BPF_BUILD_ID_SIZE 20 349 struct bpf_stack_build_id { 350 __s32 status; 351 unsigned char build_id[BPF_BUILD_ID_SIZE]; 352 union { 353 __u64 offset; 354 __u64 ip; 355 }; 356 }; 357 358 union bpf_attr { 359 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 360 __u32 map_type; /* one of enum bpf_map_type */ 361 __u32 key_size; /* size of key in bytes */ 362 __u32 value_size; /* size of value in bytes */ 363 __u32 max_entries; /* max number of entries in a map */ 364 __u32 map_flags; /* BPF_MAP_CREATE related 365 * flags defined above. 366 */ 367 __u32 inner_map_fd; /* fd pointing to the inner map */ 368 __u32 numa_node; /* numa node (effective only if 369 * BPF_F_NUMA_NODE is set). 370 */ 371 char map_name[BPF_OBJ_NAME_LEN]; 372 __u32 map_ifindex; /* ifindex of netdev to create on */ 373 __u32 btf_fd; /* fd pointing to a BTF type data */ 374 __u32 btf_key_type_id; /* BTF type_id of the key */ 375 __u32 btf_value_type_id; /* BTF type_id of the value */ 376 }; 377 378 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 379 __u32 map_fd; 380 __aligned_u64 key; 381 union { 382 __aligned_u64 value; 383 __aligned_u64 next_key; 384 }; 385 __u64 flags; 386 }; 387 388 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 389 __u32 prog_type; /* one of enum bpf_prog_type */ 390 __u32 insn_cnt; 391 __aligned_u64 insns; 392 __aligned_u64 license; 393 __u32 log_level; /* verbosity level of verifier */ 394 __u32 log_size; /* size of user buffer */ 395 __aligned_u64 log_buf; /* user supplied buffer */ 396 __u32 kern_version; /* not used */ 397 __u32 prog_flags; 398 char prog_name[BPF_OBJ_NAME_LEN]; 399 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 400 /* For some prog types expected attach type must be known at 401 * load time to verify attach type specific parts of prog 402 * (context accesses, allowed helpers, etc). 403 */ 404 __u32 expected_attach_type; 405 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 406 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 407 __aligned_u64 func_info; /* func info */ 408 __u32 func_info_cnt; /* number of bpf_func_info records */ 409 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 410 __aligned_u64 line_info; /* line info */ 411 __u32 line_info_cnt; /* number of bpf_line_info records */ 412 }; 413 414 struct { /* anonymous struct used by BPF_OBJ_* commands */ 415 __aligned_u64 pathname; 416 __u32 bpf_fd; 417 __u32 file_flags; 418 }; 419 420 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 421 __u32 target_fd; /* container object to attach to */ 422 __u32 attach_bpf_fd; /* eBPF program to attach */ 423 __u32 attach_type; 424 __u32 attach_flags; 425 }; 426 427 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 428 __u32 prog_fd; 429 __u32 retval; 430 __u32 data_size_in; /* input: len of data_in */ 431 __u32 data_size_out; /* input/output: len of data_out 432 * returns ENOSPC if data_out 433 * is too small. 434 */ 435 __aligned_u64 data_in; 436 __aligned_u64 data_out; 437 __u32 repeat; 438 __u32 duration; 439 __u32 ctx_size_in; /* input: len of ctx_in */ 440 __u32 ctx_size_out; /* input/output: len of ctx_out 441 * returns ENOSPC if ctx_out 442 * is too small. 443 */ 444 __aligned_u64 ctx_in; 445 __aligned_u64 ctx_out; 446 } test; 447 448 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 449 union { 450 __u32 start_id; 451 __u32 prog_id; 452 __u32 map_id; 453 __u32 btf_id; 454 }; 455 __u32 next_id; 456 __u32 open_flags; 457 }; 458 459 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 460 __u32 bpf_fd; 461 __u32 info_len; 462 __aligned_u64 info; 463 } info; 464 465 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 466 __u32 target_fd; /* container object to query */ 467 __u32 attach_type; 468 __u32 query_flags; 469 __u32 attach_flags; 470 __aligned_u64 prog_ids; 471 __u32 prog_cnt; 472 } query; 473 474 struct { 475 __u64 name; 476 __u32 prog_fd; 477 } raw_tracepoint; 478 479 struct { /* anonymous struct for BPF_BTF_LOAD */ 480 __aligned_u64 btf; 481 __aligned_u64 btf_log_buf; 482 __u32 btf_size; 483 __u32 btf_log_size; 484 __u32 btf_log_level; 485 }; 486 487 struct { 488 __u32 pid; /* input: pid */ 489 __u32 fd; /* input: fd */ 490 __u32 flags; /* input: flags */ 491 __u32 buf_len; /* input/output: buf len */ 492 __aligned_u64 buf; /* input/output: 493 * tp_name for tracepoint 494 * symbol for kprobe 495 * filename for uprobe 496 */ 497 __u32 prog_id; /* output: prod_id */ 498 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 499 __u64 probe_offset; /* output: probe_offset */ 500 __u64 probe_addr; /* output: probe_addr */ 501 } task_fd_query; 502 } __attribute__((aligned(8))); 503 504 /* The description below is an attempt at providing documentation to eBPF 505 * developers about the multiple available eBPF helper functions. It can be 506 * parsed and used to produce a manual page. The workflow is the following, 507 * and requires the rst2man utility: 508 * 509 * $ ./scripts/bpf_helpers_doc.py \ 510 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 511 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 512 * $ man /tmp/bpf-helpers.7 513 * 514 * Note that in order to produce this external documentation, some RST 515 * formatting is used in the descriptions to get "bold" and "italics" in 516 * manual pages. Also note that the few trailing white spaces are 517 * intentional, removing them would break paragraphs for rst2man. 518 * 519 * Start of BPF helper function descriptions: 520 * 521 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 522 * Description 523 * Perform a lookup in *map* for an entry associated to *key*. 524 * Return 525 * Map value associated to *key*, or **NULL** if no entry was 526 * found. 527 * 528 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 529 * Description 530 * Add or update the value of the entry associated to *key* in 531 * *map* with *value*. *flags* is one of: 532 * 533 * **BPF_NOEXIST** 534 * The entry for *key* must not exist in the map. 535 * **BPF_EXIST** 536 * The entry for *key* must already exist in the map. 537 * **BPF_ANY** 538 * No condition on the existence of the entry for *key*. 539 * 540 * Flag value **BPF_NOEXIST** cannot be used for maps of types 541 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 542 * elements always exist), the helper would return an error. 543 * Return 544 * 0 on success, or a negative error in case of failure. 545 * 546 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 547 * Description 548 * Delete entry with *key* from *map*. 549 * Return 550 * 0 on success, or a negative error in case of failure. 551 * 552 * int bpf_probe_read(void *dst, u32 size, const void *src) 553 * Description 554 * For tracing programs, safely attempt to read *size* bytes from 555 * address *src* and store the data in *dst*. 556 * Return 557 * 0 on success, or a negative error in case of failure. 558 * 559 * u64 bpf_ktime_get_ns(void) 560 * Description 561 * Return the time elapsed since system boot, in nanoseconds. 562 * Return 563 * Current *ktime*. 564 * 565 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 566 * Description 567 * This helper is a "printk()-like" facility for debugging. It 568 * prints a message defined by format *fmt* (of size *fmt_size*) 569 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 570 * available. It can take up to three additional **u64** 571 * arguments (as an eBPF helpers, the total number of arguments is 572 * limited to five). 573 * 574 * Each time the helper is called, it appends a line to the trace. 575 * The format of the trace is customizable, and the exact output 576 * one will get depends on the options set in 577 * *\/sys/kernel/debug/tracing/trace_options* (see also the 578 * *README* file under the same directory). However, it usually 579 * defaults to something like: 580 * 581 * :: 582 * 583 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 584 * 585 * In the above: 586 * 587 * * ``telnet`` is the name of the current task. 588 * * ``470`` is the PID of the current task. 589 * * ``001`` is the CPU number on which the task is 590 * running. 591 * * In ``.N..``, each character refers to a set of 592 * options (whether irqs are enabled, scheduling 593 * options, whether hard/softirqs are running, level of 594 * preempt_disabled respectively). **N** means that 595 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 596 * are set. 597 * * ``419421.045894`` is a timestamp. 598 * * ``0x00000001`` is a fake value used by BPF for the 599 * instruction pointer register. 600 * * ``<formatted msg>`` is the message formatted with 601 * *fmt*. 602 * 603 * The conversion specifiers supported by *fmt* are similar, but 604 * more limited than for printk(). They are **%d**, **%i**, 605 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 606 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 607 * of field, padding with zeroes, etc.) is available, and the 608 * helper will return **-EINVAL** (but print nothing) if it 609 * encounters an unknown specifier. 610 * 611 * Also, note that **bpf_trace_printk**\ () is slow, and should 612 * only be used for debugging purposes. For this reason, a notice 613 * bloc (spanning several lines) is printed to kernel logs and 614 * states that the helper should not be used "for production use" 615 * the first time this helper is used (or more precisely, when 616 * **trace_printk**\ () buffers are allocated). For passing values 617 * to user space, perf events should be preferred. 618 * Return 619 * The number of bytes written to the buffer, or a negative error 620 * in case of failure. 621 * 622 * u32 bpf_get_prandom_u32(void) 623 * Description 624 * Get a pseudo-random number. 625 * 626 * From a security point of view, this helper uses its own 627 * pseudo-random internal state, and cannot be used to infer the 628 * seed of other random functions in the kernel. However, it is 629 * essential to note that the generator used by the helper is not 630 * cryptographically secure. 631 * Return 632 * A random 32-bit unsigned value. 633 * 634 * u32 bpf_get_smp_processor_id(void) 635 * Description 636 * Get the SMP (symmetric multiprocessing) processor id. Note that 637 * all programs run with preemption disabled, which means that the 638 * SMP processor id is stable during all the execution of the 639 * program. 640 * Return 641 * The SMP id of the processor running the program. 642 * 643 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 644 * Description 645 * Store *len* bytes from address *from* into the packet 646 * associated to *skb*, at *offset*. *flags* are a combination of 647 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 648 * checksum for the packet after storing the bytes) and 649 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 650 * **->swhash** and *skb*\ **->l4hash** to 0). 651 * 652 * A call to this helper is susceptible to change the underlying 653 * packet buffer. Therefore, at load time, all checks on pointers 654 * previously done by the verifier are invalidated and must be 655 * performed again, if the helper is used in combination with 656 * direct packet access. 657 * Return 658 * 0 on success, or a negative error in case of failure. 659 * 660 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 661 * Description 662 * Recompute the layer 3 (e.g. IP) checksum for the packet 663 * associated to *skb*. Computation is incremental, so the helper 664 * must know the former value of the header field that was 665 * modified (*from*), the new value of this field (*to*), and the 666 * number of bytes (2 or 4) for this field, stored in *size*. 667 * Alternatively, it is possible to store the difference between 668 * the previous and the new values of the header field in *to*, by 669 * setting *from* and *size* to 0. For both methods, *offset* 670 * indicates the location of the IP checksum within the packet. 671 * 672 * This helper works in combination with **bpf_csum_diff**\ (), 673 * which does not update the checksum in-place, but offers more 674 * flexibility and can handle sizes larger than 2 or 4 for the 675 * checksum to update. 676 * 677 * A call to this helper is susceptible to change the underlying 678 * packet buffer. Therefore, at load time, all checks on pointers 679 * previously done by the verifier are invalidated and must be 680 * performed again, if the helper is used in combination with 681 * direct packet access. 682 * Return 683 * 0 on success, or a negative error in case of failure. 684 * 685 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 686 * Description 687 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 688 * packet associated to *skb*. Computation is incremental, so the 689 * helper must know the former value of the header field that was 690 * modified (*from*), the new value of this field (*to*), and the 691 * number of bytes (2 or 4) for this field, stored on the lowest 692 * four bits of *flags*. Alternatively, it is possible to store 693 * the difference between the previous and the new values of the 694 * header field in *to*, by setting *from* and the four lowest 695 * bits of *flags* to 0. For both methods, *offset* indicates the 696 * location of the IP checksum within the packet. In addition to 697 * the size of the field, *flags* can be added (bitwise OR) actual 698 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 699 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 700 * for updates resulting in a null checksum the value is set to 701 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 702 * the checksum is to be computed against a pseudo-header. 703 * 704 * This helper works in combination with **bpf_csum_diff**\ (), 705 * which does not update the checksum in-place, but offers more 706 * flexibility and can handle sizes larger than 2 or 4 for the 707 * checksum to update. 708 * 709 * A call to this helper is susceptible to change the underlying 710 * packet buffer. Therefore, at load time, all checks on pointers 711 * previously done by the verifier are invalidated and must be 712 * performed again, if the helper is used in combination with 713 * direct packet access. 714 * Return 715 * 0 on success, or a negative error in case of failure. 716 * 717 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 718 * Description 719 * This special helper is used to trigger a "tail call", or in 720 * other words, to jump into another eBPF program. The same stack 721 * frame is used (but values on stack and in registers for the 722 * caller are not accessible to the callee). This mechanism allows 723 * for program chaining, either for raising the maximum number of 724 * available eBPF instructions, or to execute given programs in 725 * conditional blocks. For security reasons, there is an upper 726 * limit to the number of successive tail calls that can be 727 * performed. 728 * 729 * Upon call of this helper, the program attempts to jump into a 730 * program referenced at index *index* in *prog_array_map*, a 731 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 732 * *ctx*, a pointer to the context. 733 * 734 * If the call succeeds, the kernel immediately runs the first 735 * instruction of the new program. This is not a function call, 736 * and it never returns to the previous program. If the call 737 * fails, then the helper has no effect, and the caller continues 738 * to run its subsequent instructions. A call can fail if the 739 * destination program for the jump does not exist (i.e. *index* 740 * is superior to the number of entries in *prog_array_map*), or 741 * if the maximum number of tail calls has been reached for this 742 * chain of programs. This limit is defined in the kernel by the 743 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 744 * which is currently set to 32. 745 * Return 746 * 0 on success, or a negative error in case of failure. 747 * 748 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 749 * Description 750 * Clone and redirect the packet associated to *skb* to another 751 * net device of index *ifindex*. Both ingress and egress 752 * interfaces can be used for redirection. The **BPF_F_INGRESS** 753 * value in *flags* is used to make the distinction (ingress path 754 * is selected if the flag is present, egress path otherwise). 755 * This is the only flag supported for now. 756 * 757 * In comparison with **bpf_redirect**\ () helper, 758 * **bpf_clone_redirect**\ () has the associated cost of 759 * duplicating the packet buffer, but this can be executed out of 760 * the eBPF program. Conversely, **bpf_redirect**\ () is more 761 * efficient, but it is handled through an action code where the 762 * redirection happens only after the eBPF program has returned. 763 * 764 * A call to this helper is susceptible to change the underlying 765 * packet buffer. Therefore, at load time, all checks on pointers 766 * previously done by the verifier are invalidated and must be 767 * performed again, if the helper is used in combination with 768 * direct packet access. 769 * Return 770 * 0 on success, or a negative error in case of failure. 771 * 772 * u64 bpf_get_current_pid_tgid(void) 773 * Return 774 * A 64-bit integer containing the current tgid and pid, and 775 * created as such: 776 * *current_task*\ **->tgid << 32 \|** 777 * *current_task*\ **->pid**. 778 * 779 * u64 bpf_get_current_uid_gid(void) 780 * Return 781 * A 64-bit integer containing the current GID and UID, and 782 * created as such: *current_gid* **<< 32 \|** *current_uid*. 783 * 784 * int bpf_get_current_comm(char *buf, u32 size_of_buf) 785 * Description 786 * Copy the **comm** attribute of the current task into *buf* of 787 * *size_of_buf*. The **comm** attribute contains the name of 788 * the executable (excluding the path) for the current task. The 789 * *size_of_buf* must be strictly positive. On success, the 790 * helper makes sure that the *buf* is NUL-terminated. On failure, 791 * it is filled with zeroes. 792 * Return 793 * 0 on success, or a negative error in case of failure. 794 * 795 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 796 * Description 797 * Retrieve the classid for the current task, i.e. for the net_cls 798 * cgroup to which *skb* belongs. 799 * 800 * This helper can be used on TC egress path, but not on ingress. 801 * 802 * The net_cls cgroup provides an interface to tag network packets 803 * based on a user-provided identifier for all traffic coming from 804 * the tasks belonging to the related cgroup. See also the related 805 * kernel documentation, available from the Linux sources in file 806 * *Documentation/cgroup-v1/net_cls.txt*. 807 * 808 * The Linux kernel has two versions for cgroups: there are 809 * cgroups v1 and cgroups v2. Both are available to users, who can 810 * use a mixture of them, but note that the net_cls cgroup is for 811 * cgroup v1 only. This makes it incompatible with BPF programs 812 * run on cgroups, which is a cgroup-v2-only feature (a socket can 813 * only hold data for one version of cgroups at a time). 814 * 815 * This helper is only available is the kernel was compiled with 816 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 817 * "**y**" or to "**m**". 818 * Return 819 * The classid, or 0 for the default unconfigured classid. 820 * 821 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 822 * Description 823 * Push a *vlan_tci* (VLAN tag control information) of protocol 824 * *vlan_proto* to the packet associated to *skb*, then update 825 * the checksum. Note that if *vlan_proto* is different from 826 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 827 * be **ETH_P_8021Q**. 828 * 829 * A call to this helper is susceptible to change the underlying 830 * packet buffer. Therefore, at load time, all checks on pointers 831 * previously done by the verifier are invalidated and must be 832 * performed again, if the helper is used in combination with 833 * direct packet access. 834 * Return 835 * 0 on success, or a negative error in case of failure. 836 * 837 * int bpf_skb_vlan_pop(struct sk_buff *skb) 838 * Description 839 * Pop a VLAN header from the packet associated to *skb*. 840 * 841 * A call to this helper is susceptible to change the underlying 842 * packet buffer. Therefore, at load time, all checks on pointers 843 * previously done by the verifier are invalidated and must be 844 * performed again, if the helper is used in combination with 845 * direct packet access. 846 * Return 847 * 0 on success, or a negative error in case of failure. 848 * 849 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 850 * Description 851 * Get tunnel metadata. This helper takes a pointer *key* to an 852 * empty **struct bpf_tunnel_key** of **size**, that will be 853 * filled with tunnel metadata for the packet associated to *skb*. 854 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 855 * indicates that the tunnel is based on IPv6 protocol instead of 856 * IPv4. 857 * 858 * The **struct bpf_tunnel_key** is an object that generalizes the 859 * principal parameters used by various tunneling protocols into a 860 * single struct. This way, it can be used to easily make a 861 * decision based on the contents of the encapsulation header, 862 * "summarized" in this struct. In particular, it holds the IP 863 * address of the remote end (IPv4 or IPv6, depending on the case) 864 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 865 * this struct exposes the *key*\ **->tunnel_id**, which is 866 * generally mapped to a VNI (Virtual Network Identifier), making 867 * it programmable together with the **bpf_skb_set_tunnel_key**\ 868 * () helper. 869 * 870 * Let's imagine that the following code is part of a program 871 * attached to the TC ingress interface, on one end of a GRE 872 * tunnel, and is supposed to filter out all messages coming from 873 * remote ends with IPv4 address other than 10.0.0.1: 874 * 875 * :: 876 * 877 * int ret; 878 * struct bpf_tunnel_key key = {}; 879 * 880 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 881 * if (ret < 0) 882 * return TC_ACT_SHOT; // drop packet 883 * 884 * if (key.remote_ipv4 != 0x0a000001) 885 * return TC_ACT_SHOT; // drop packet 886 * 887 * return TC_ACT_OK; // accept packet 888 * 889 * This interface can also be used with all encapsulation devices 890 * that can operate in "collect metadata" mode: instead of having 891 * one network device per specific configuration, the "collect 892 * metadata" mode only requires a single device where the 893 * configuration can be extracted from this helper. 894 * 895 * This can be used together with various tunnels such as VXLan, 896 * Geneve, GRE or IP in IP (IPIP). 897 * Return 898 * 0 on success, or a negative error in case of failure. 899 * 900 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 901 * Description 902 * Populate tunnel metadata for packet associated to *skb.* The 903 * tunnel metadata is set to the contents of *key*, of *size*. The 904 * *flags* can be set to a combination of the following values: 905 * 906 * **BPF_F_TUNINFO_IPV6** 907 * Indicate that the tunnel is based on IPv6 protocol 908 * instead of IPv4. 909 * **BPF_F_ZERO_CSUM_TX** 910 * For IPv4 packets, add a flag to tunnel metadata 911 * indicating that checksum computation should be skipped 912 * and checksum set to zeroes. 913 * **BPF_F_DONT_FRAGMENT** 914 * Add a flag to tunnel metadata indicating that the 915 * packet should not be fragmented. 916 * **BPF_F_SEQ_NUMBER** 917 * Add a flag to tunnel metadata indicating that a 918 * sequence number should be added to tunnel header before 919 * sending the packet. This flag was added for GRE 920 * encapsulation, but might be used with other protocols 921 * as well in the future. 922 * 923 * Here is a typical usage on the transmit path: 924 * 925 * :: 926 * 927 * struct bpf_tunnel_key key; 928 * populate key ... 929 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 930 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 931 * 932 * See also the description of the **bpf_skb_get_tunnel_key**\ () 933 * helper for additional information. 934 * Return 935 * 0 on success, or a negative error in case of failure. 936 * 937 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 938 * Description 939 * Read the value of a perf event counter. This helper relies on a 940 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 941 * the perf event counter is selected when *map* is updated with 942 * perf event file descriptors. The *map* is an array whose size 943 * is the number of available CPUs, and each cell contains a value 944 * relative to one CPU. The value to retrieve is indicated by 945 * *flags*, that contains the index of the CPU to look up, masked 946 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 947 * **BPF_F_CURRENT_CPU** to indicate that the value for the 948 * current CPU should be retrieved. 949 * 950 * Note that before Linux 4.13, only hardware perf event can be 951 * retrieved. 952 * 953 * Also, be aware that the newer helper 954 * **bpf_perf_event_read_value**\ () is recommended over 955 * **bpf_perf_event_read**\ () in general. The latter has some ABI 956 * quirks where error and counter value are used as a return code 957 * (which is wrong to do since ranges may overlap). This issue is 958 * fixed with **bpf_perf_event_read_value**\ (), which at the same 959 * time provides more features over the **bpf_perf_event_read**\ 960 * () interface. Please refer to the description of 961 * **bpf_perf_event_read_value**\ () for details. 962 * Return 963 * The value of the perf event counter read from the map, or a 964 * negative error code in case of failure. 965 * 966 * int bpf_redirect(u32 ifindex, u64 flags) 967 * Description 968 * Redirect the packet to another net device of index *ifindex*. 969 * This helper is somewhat similar to **bpf_clone_redirect**\ 970 * (), except that the packet is not cloned, which provides 971 * increased performance. 972 * 973 * Except for XDP, both ingress and egress interfaces can be used 974 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 975 * to make the distinction (ingress path is selected if the flag 976 * is present, egress path otherwise). Currently, XDP only 977 * supports redirection to the egress interface, and accepts no 978 * flag at all. 979 * 980 * The same effect can be attained with the more generic 981 * **bpf_redirect_map**\ (), which requires specific maps to be 982 * used but offers better performance. 983 * Return 984 * For XDP, the helper returns **XDP_REDIRECT** on success or 985 * **XDP_ABORTED** on error. For other program types, the values 986 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 987 * error. 988 * 989 * u32 bpf_get_route_realm(struct sk_buff *skb) 990 * Description 991 * Retrieve the realm or the route, that is to say the 992 * **tclassid** field of the destination for the *skb*. The 993 * indentifier retrieved is a user-provided tag, similar to the 994 * one used with the net_cls cgroup (see description for 995 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 996 * held by a route (a destination entry), not by a task. 997 * 998 * Retrieving this identifier works with the clsact TC egress hook 999 * (see also **tc-bpf(8)**), or alternatively on conventional 1000 * classful egress qdiscs, but not on TC ingress path. In case of 1001 * clsact TC egress hook, this has the advantage that, internally, 1002 * the destination entry has not been dropped yet in the transmit 1003 * path. Therefore, the destination entry does not need to be 1004 * artificially held via **netif_keep_dst**\ () for a classful 1005 * qdisc until the *skb* is freed. 1006 * 1007 * This helper is available only if the kernel was compiled with 1008 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 1009 * Return 1010 * The realm of the route for the packet associated to *skb*, or 0 1011 * if none was found. 1012 * 1013 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 1014 * Description 1015 * Write raw *data* blob into a special BPF perf event held by 1016 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 1017 * event must have the following attributes: **PERF_SAMPLE_RAW** 1018 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 1019 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 1020 * 1021 * The *flags* are used to indicate the index in *map* for which 1022 * the value must be put, masked with **BPF_F_INDEX_MASK**. 1023 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 1024 * to indicate that the index of the current CPU core should be 1025 * used. 1026 * 1027 * The value to write, of *size*, is passed through eBPF stack and 1028 * pointed by *data*. 1029 * 1030 * The context of the program *ctx* needs also be passed to the 1031 * helper. 1032 * 1033 * On user space, a program willing to read the values needs to 1034 * call **perf_event_open**\ () on the perf event (either for 1035 * one or for all CPUs) and to store the file descriptor into the 1036 * *map*. This must be done before the eBPF program can send data 1037 * into it. An example is available in file 1038 * *samples/bpf/trace_output_user.c* in the Linux kernel source 1039 * tree (the eBPF program counterpart is in 1040 * *samples/bpf/trace_output_kern.c*). 1041 * 1042 * **bpf_perf_event_output**\ () achieves better performance 1043 * than **bpf_trace_printk**\ () for sharing data with user 1044 * space, and is much better suitable for streaming data from eBPF 1045 * programs. 1046 * 1047 * Note that this helper is not restricted to tracing use cases 1048 * and can be used with programs attached to TC or XDP as well, 1049 * where it allows for passing data to user space listeners. Data 1050 * can be: 1051 * 1052 * * Only custom structs, 1053 * * Only the packet payload, or 1054 * * A combination of both. 1055 * Return 1056 * 0 on success, or a negative error in case of failure. 1057 * 1058 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 1059 * Description 1060 * This helper was provided as an easy way to load data from a 1061 * packet. It can be used to load *len* bytes from *offset* from 1062 * the packet associated to *skb*, into the buffer pointed by 1063 * *to*. 1064 * 1065 * Since Linux 4.7, usage of this helper has mostly been replaced 1066 * by "direct packet access", enabling packet data to be 1067 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1068 * pointing respectively to the first byte of packet data and to 1069 * the byte after the last byte of packet data. However, it 1070 * remains useful if one wishes to read large quantities of data 1071 * at once from a packet into the eBPF stack. 1072 * Return 1073 * 0 on success, or a negative error in case of failure. 1074 * 1075 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags) 1076 * Description 1077 * Walk a user or a kernel stack and return its id. To achieve 1078 * this, the helper needs *ctx*, which is a pointer to the context 1079 * on which the tracing program is executed, and a pointer to a 1080 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1081 * 1082 * The last argument, *flags*, holds the number of stack frames to 1083 * skip (from 0 to 255), masked with 1084 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1085 * a combination of the following flags: 1086 * 1087 * **BPF_F_USER_STACK** 1088 * Collect a user space stack instead of a kernel stack. 1089 * **BPF_F_FAST_STACK_CMP** 1090 * Compare stacks by hash only. 1091 * **BPF_F_REUSE_STACKID** 1092 * If two different stacks hash into the same *stackid*, 1093 * discard the old one. 1094 * 1095 * The stack id retrieved is a 32 bit long integer handle which 1096 * can be further combined with other data (including other stack 1097 * ids) and used as a key into maps. This can be useful for 1098 * generating a variety of graphs (such as flame graphs or off-cpu 1099 * graphs). 1100 * 1101 * For walking a stack, this helper is an improvement over 1102 * **bpf_probe_read**\ (), which can be used with unrolled loops 1103 * but is not efficient and consumes a lot of eBPF instructions. 1104 * Instead, **bpf_get_stackid**\ () can collect up to 1105 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1106 * this limit can be controlled with the **sysctl** program, and 1107 * that it should be manually increased in order to profile long 1108 * user stacks (such as stacks for Java programs). To do so, use: 1109 * 1110 * :: 1111 * 1112 * # sysctl kernel.perf_event_max_stack=<new value> 1113 * Return 1114 * The positive or null stack id on success, or a negative error 1115 * in case of failure. 1116 * 1117 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1118 * Description 1119 * Compute a checksum difference, from the raw buffer pointed by 1120 * *from*, of length *from_size* (that must be a multiple of 4), 1121 * towards the raw buffer pointed by *to*, of size *to_size* 1122 * (same remark). An optional *seed* can be added to the value 1123 * (this can be cascaded, the seed may come from a previous call 1124 * to the helper). 1125 * 1126 * This is flexible enough to be used in several ways: 1127 * 1128 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1129 * checksum, it can be used when pushing new data. 1130 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1131 * checksum, it can be used when removing data from a packet. 1132 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1133 * can be used to compute a diff. Note that *from_size* and 1134 * *to_size* do not need to be equal. 1135 * 1136 * This helper can be used in combination with 1137 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1138 * which one can feed in the difference computed with 1139 * **bpf_csum_diff**\ (). 1140 * Return 1141 * The checksum result, or a negative error code in case of 1142 * failure. 1143 * 1144 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1145 * Description 1146 * Retrieve tunnel options metadata for the packet associated to 1147 * *skb*, and store the raw tunnel option data to the buffer *opt* 1148 * of *size*. 1149 * 1150 * This helper can be used with encapsulation devices that can 1151 * operate in "collect metadata" mode (please refer to the related 1152 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1153 * more details). A particular example where this can be used is 1154 * in combination with the Geneve encapsulation protocol, where it 1155 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1156 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1157 * the eBPF program. This allows for full customization of these 1158 * headers. 1159 * Return 1160 * The size of the option data retrieved. 1161 * 1162 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1163 * Description 1164 * Set tunnel options metadata for the packet associated to *skb* 1165 * to the option data contained in the raw buffer *opt* of *size*. 1166 * 1167 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1168 * helper for additional information. 1169 * Return 1170 * 0 on success, or a negative error in case of failure. 1171 * 1172 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1173 * Description 1174 * Change the protocol of the *skb* to *proto*. Currently 1175 * supported are transition from IPv4 to IPv6, and from IPv6 to 1176 * IPv4. The helper takes care of the groundwork for the 1177 * transition, including resizing the socket buffer. The eBPF 1178 * program is expected to fill the new headers, if any, via 1179 * **skb_store_bytes**\ () and to recompute the checksums with 1180 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1181 * (). The main case for this helper is to perform NAT64 1182 * operations out of an eBPF program. 1183 * 1184 * Internally, the GSO type is marked as dodgy so that headers are 1185 * checked and segments are recalculated by the GSO/GRO engine. 1186 * The size for GSO target is adapted as well. 1187 * 1188 * All values for *flags* are reserved for future usage, and must 1189 * be left at zero. 1190 * 1191 * A call to this helper is susceptible to change the underlying 1192 * packet buffer. Therefore, at load time, all checks on pointers 1193 * previously done by the verifier are invalidated and must be 1194 * performed again, if the helper is used in combination with 1195 * direct packet access. 1196 * Return 1197 * 0 on success, or a negative error in case of failure. 1198 * 1199 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1200 * Description 1201 * Change the packet type for the packet associated to *skb*. This 1202 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1203 * the eBPF program does not have a write access to *skb*\ 1204 * **->pkt_type** beside this helper. Using a helper here allows 1205 * for graceful handling of errors. 1206 * 1207 * The major use case is to change incoming *skb*s to 1208 * **PACKET_HOST** in a programmatic way instead of having to 1209 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1210 * example. 1211 * 1212 * Note that *type* only allows certain values. At this time, they 1213 * are: 1214 * 1215 * **PACKET_HOST** 1216 * Packet is for us. 1217 * **PACKET_BROADCAST** 1218 * Send packet to all. 1219 * **PACKET_MULTICAST** 1220 * Send packet to group. 1221 * **PACKET_OTHERHOST** 1222 * Send packet to someone else. 1223 * Return 1224 * 0 on success, or a negative error in case of failure. 1225 * 1226 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1227 * Description 1228 * Check whether *skb* is a descendant of the cgroup2 held by 1229 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1230 * Return 1231 * The return value depends on the result of the test, and can be: 1232 * 1233 * * 0, if the *skb* failed the cgroup2 descendant test. 1234 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1235 * * A negative error code, if an error occurred. 1236 * 1237 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1238 * Description 1239 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1240 * not set, in particular if the hash was cleared due to mangling, 1241 * recompute this hash. Later accesses to the hash can be done 1242 * directly with *skb*\ **->hash**. 1243 * 1244 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1245 * prototype with **bpf_skb_change_proto**\ (), or calling 1246 * **bpf_skb_store_bytes**\ () with the 1247 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1248 * the hash and to trigger a new computation for the next call to 1249 * **bpf_get_hash_recalc**\ (). 1250 * Return 1251 * The 32-bit hash. 1252 * 1253 * u64 bpf_get_current_task(void) 1254 * Return 1255 * A pointer to the current task struct. 1256 * 1257 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1258 * Description 1259 * Attempt in a safe way to write *len* bytes from the buffer 1260 * *src* to *dst* in memory. It only works for threads that are in 1261 * user context, and *dst* must be a valid user space address. 1262 * 1263 * This helper should not be used to implement any kind of 1264 * security mechanism because of TOC-TOU attacks, but rather to 1265 * debug, divert, and manipulate execution of semi-cooperative 1266 * processes. 1267 * 1268 * Keep in mind that this feature is meant for experiments, and it 1269 * has a risk of crashing the system and running programs. 1270 * Therefore, when an eBPF program using this helper is attached, 1271 * a warning including PID and process name is printed to kernel 1272 * logs. 1273 * Return 1274 * 0 on success, or a negative error in case of failure. 1275 * 1276 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1277 * Description 1278 * Check whether the probe is being run is the context of a given 1279 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1280 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1281 * Return 1282 * The return value depends on the result of the test, and can be: 1283 * 1284 * * 0, if the *skb* task belongs to the cgroup2. 1285 * * 1, if the *skb* task does not belong to the cgroup2. 1286 * * A negative error code, if an error occurred. 1287 * 1288 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1289 * Description 1290 * Resize (trim or grow) the packet associated to *skb* to the 1291 * new *len*. The *flags* are reserved for future usage, and must 1292 * be left at zero. 1293 * 1294 * The basic idea is that the helper performs the needed work to 1295 * change the size of the packet, then the eBPF program rewrites 1296 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1297 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1298 * and others. This helper is a slow path utility intended for 1299 * replies with control messages. And because it is targeted for 1300 * slow path, the helper itself can afford to be slow: it 1301 * implicitly linearizes, unclones and drops offloads from the 1302 * *skb*. 1303 * 1304 * A call to this helper is susceptible to change the underlying 1305 * packet buffer. Therefore, at load time, all checks on pointers 1306 * previously done by the verifier are invalidated and must be 1307 * performed again, if the helper is used in combination with 1308 * direct packet access. 1309 * Return 1310 * 0 on success, or a negative error in case of failure. 1311 * 1312 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1313 * Description 1314 * Pull in non-linear data in case the *skb* is non-linear and not 1315 * all of *len* are part of the linear section. Make *len* bytes 1316 * from *skb* readable and writable. If a zero value is passed for 1317 * *len*, then the whole length of the *skb* is pulled. 1318 * 1319 * This helper is only needed for reading and writing with direct 1320 * packet access. 1321 * 1322 * For direct packet access, testing that offsets to access 1323 * are within packet boundaries (test on *skb*\ **->data_end**) is 1324 * susceptible to fail if offsets are invalid, or if the requested 1325 * data is in non-linear parts of the *skb*. On failure the 1326 * program can just bail out, or in the case of a non-linear 1327 * buffer, use a helper to make the data available. The 1328 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1329 * the data. Another one consists in using **bpf_skb_pull_data** 1330 * to pull in once the non-linear parts, then retesting and 1331 * eventually access the data. 1332 * 1333 * At the same time, this also makes sure the *skb* is uncloned, 1334 * which is a necessary condition for direct write. As this needs 1335 * to be an invariant for the write part only, the verifier 1336 * detects writes and adds a prologue that is calling 1337 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1338 * the very beginning in case it is indeed cloned. 1339 * 1340 * A call to this helper is susceptible to change the underlying 1341 * packet buffer. Therefore, at load time, all checks on pointers 1342 * previously done by the verifier are invalidated and must be 1343 * performed again, if the helper is used in combination with 1344 * direct packet access. 1345 * Return 1346 * 0 on success, or a negative error in case of failure. 1347 * 1348 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1349 * Description 1350 * Add the checksum *csum* into *skb*\ **->csum** in case the 1351 * driver has supplied a checksum for the entire packet into that 1352 * field. Return an error otherwise. This helper is intended to be 1353 * used in combination with **bpf_csum_diff**\ (), in particular 1354 * when the checksum needs to be updated after data has been 1355 * written into the packet through direct packet access. 1356 * Return 1357 * The checksum on success, or a negative error code in case of 1358 * failure. 1359 * 1360 * void bpf_set_hash_invalid(struct sk_buff *skb) 1361 * Description 1362 * Invalidate the current *skb*\ **->hash**. It can be used after 1363 * mangling on headers through direct packet access, in order to 1364 * indicate that the hash is outdated and to trigger a 1365 * recalculation the next time the kernel tries to access this 1366 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1367 * 1368 * int bpf_get_numa_node_id(void) 1369 * Description 1370 * Return the id of the current NUMA node. The primary use case 1371 * for this helper is the selection of sockets for the local NUMA 1372 * node, when the program is attached to sockets using the 1373 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1374 * but the helper is also available to other eBPF program types, 1375 * similarly to **bpf_get_smp_processor_id**\ (). 1376 * Return 1377 * The id of current NUMA node. 1378 * 1379 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1380 * Description 1381 * Grows headroom of packet associated to *skb* and adjusts the 1382 * offset of the MAC header accordingly, adding *len* bytes of 1383 * space. It automatically extends and reallocates memory as 1384 * required. 1385 * 1386 * This helper can be used on a layer 3 *skb* to push a MAC header 1387 * for redirection into a layer 2 device. 1388 * 1389 * All values for *flags* are reserved for future usage, and must 1390 * be left at zero. 1391 * 1392 * A call to this helper is susceptible to change the underlying 1393 * packet buffer. Therefore, at load time, all checks on pointers 1394 * previously done by the verifier are invalidated and must be 1395 * performed again, if the helper is used in combination with 1396 * direct packet access. 1397 * Return 1398 * 0 on success, or a negative error in case of failure. 1399 * 1400 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1401 * Description 1402 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1403 * it is possible to use a negative value for *delta*. This helper 1404 * can be used to prepare the packet for pushing or popping 1405 * headers. 1406 * 1407 * A call to this helper is susceptible to change the underlying 1408 * packet buffer. Therefore, at load time, all checks on pointers 1409 * previously done by the verifier are invalidated and must be 1410 * performed again, if the helper is used in combination with 1411 * direct packet access. 1412 * Return 1413 * 0 on success, or a negative error in case of failure. 1414 * 1415 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) 1416 * Description 1417 * Copy a NUL terminated string from an unsafe address 1418 * *unsafe_ptr* to *dst*. The *size* should include the 1419 * terminating NUL byte. In case the string length is smaller than 1420 * *size*, the target is not padded with further NUL bytes. If the 1421 * string length is larger than *size*, just *size*-1 bytes are 1422 * copied and the last byte is set to NUL. 1423 * 1424 * On success, the length of the copied string is returned. This 1425 * makes this helper useful in tracing programs for reading 1426 * strings, and more importantly to get its length at runtime. See 1427 * the following snippet: 1428 * 1429 * :: 1430 * 1431 * SEC("kprobe/sys_open") 1432 * void bpf_sys_open(struct pt_regs *ctx) 1433 * { 1434 * char buf[PATHLEN]; // PATHLEN is defined to 256 1435 * int res = bpf_probe_read_str(buf, sizeof(buf), 1436 * ctx->di); 1437 * 1438 * // Consume buf, for example push it to 1439 * // userspace via bpf_perf_event_output(); we 1440 * // can use res (the string length) as event 1441 * // size, after checking its boundaries. 1442 * } 1443 * 1444 * In comparison, using **bpf_probe_read()** helper here instead 1445 * to read the string would require to estimate the length at 1446 * compile time, and would often result in copying more memory 1447 * than necessary. 1448 * 1449 * Another useful use case is when parsing individual process 1450 * arguments or individual environment variables navigating 1451 * *current*\ **->mm->arg_start** and *current*\ 1452 * **->mm->env_start**: using this helper and the return value, 1453 * one can quickly iterate at the right offset of the memory area. 1454 * Return 1455 * On success, the strictly positive length of the string, 1456 * including the trailing NUL character. On error, a negative 1457 * value. 1458 * 1459 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1460 * Description 1461 * If the **struct sk_buff** pointed by *skb* has a known socket, 1462 * retrieve the cookie (generated by the kernel) of this socket. 1463 * If no cookie has been set yet, generate a new cookie. Once 1464 * generated, the socket cookie remains stable for the life of the 1465 * socket. This helper can be useful for monitoring per socket 1466 * networking traffic statistics as it provides a unique socket 1467 * identifier per namespace. 1468 * Return 1469 * A 8-byte long non-decreasing number on success, or 0 if the 1470 * socket field is missing inside *skb*. 1471 * 1472 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1473 * Description 1474 * Equivalent to bpf_get_socket_cookie() helper that accepts 1475 * *skb*, but gets socket from **struct bpf_sock_addr** context. 1476 * Return 1477 * A 8-byte long non-decreasing number. 1478 * 1479 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1480 * Description 1481 * Equivalent to bpf_get_socket_cookie() helper that accepts 1482 * *skb*, but gets socket from **struct bpf_sock_ops** context. 1483 * Return 1484 * A 8-byte long non-decreasing number. 1485 * 1486 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1487 * Return 1488 * The owner UID of the socket associated to *skb*. If the socket 1489 * is **NULL**, or if it is not a full socket (i.e. if it is a 1490 * time-wait or a request socket instead), **overflowuid** value 1491 * is returned (note that **overflowuid** might also be the actual 1492 * UID value for the socket). 1493 * 1494 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1495 * Description 1496 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1497 * to value *hash*. 1498 * Return 1499 * 0 1500 * 1501 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1502 * Description 1503 * Emulate a call to **setsockopt()** on the socket associated to 1504 * *bpf_socket*, which must be a full socket. The *level* at 1505 * which the option resides and the name *optname* of the option 1506 * must be specified, see **setsockopt(2)** for more information. 1507 * The option value of length *optlen* is pointed by *optval*. 1508 * 1509 * This helper actually implements a subset of **setsockopt()**. 1510 * It supports the following *level*\ s: 1511 * 1512 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1513 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1514 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1515 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1516 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1517 * **TCP_BPF_SNDCWND_CLAMP**. 1518 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1519 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1520 * Return 1521 * 0 on success, or a negative error in case of failure. 1522 * 1523 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1524 * Description 1525 * Grow or shrink the room for data in the packet associated to 1526 * *skb* by *len_diff*, and according to the selected *mode*. 1527 * 1528 * There are two supported modes at this time: 1529 * 1530 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer 1531 * (room space is added or removed below the layer 2 header). 1532 * 1533 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1534 * (room space is added or removed below the layer 3 header). 1535 * 1536 * The following flags are supported at this time: 1537 * 1538 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size. 1539 * Adjusting mss in this way is not allowed for datagrams. 1540 * 1541 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**, 1542 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**: 1543 * Any new space is reserved to hold a tunnel header. 1544 * Configure skb offsets and other fields accordingly. 1545 * 1546 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**, 1547 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**: 1548 * Use with ENCAP_L3 flags to further specify the tunnel type. 1549 * 1550 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*): 1551 * Use with ENCAP_L3/L4 flags to further specify the tunnel 1552 * type; *len* is the length of the inner MAC header. 1553 * 1554 * A call to this helper is susceptible to change the underlying 1555 * packet buffer. Therefore, at load time, all checks on pointers 1556 * previously done by the verifier are invalidated and must be 1557 * performed again, if the helper is used in combination with 1558 * direct packet access. 1559 * Return 1560 * 0 on success, or a negative error in case of failure. 1561 * 1562 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1563 * Description 1564 * Redirect the packet to the endpoint referenced by *map* at 1565 * index *key*. Depending on its type, this *map* can contain 1566 * references to net devices (for forwarding packets through other 1567 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1568 * but this is only implemented for native XDP (with driver 1569 * support) as of this writing). 1570 * 1571 * All values for *flags* are reserved for future usage, and must 1572 * be left at zero. 1573 * 1574 * When used to redirect packets to net devices, this helper 1575 * provides a high performance increase over **bpf_redirect**\ (). 1576 * This is due to various implementation details of the underlying 1577 * mechanisms, one of which is the fact that **bpf_redirect_map**\ 1578 * () tries to send packet as a "bulk" to the device. 1579 * Return 1580 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. 1581 * 1582 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1583 * Description 1584 * Redirect the packet to the socket referenced by *map* (of type 1585 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1586 * egress interfaces can be used for redirection. The 1587 * **BPF_F_INGRESS** value in *flags* is used to make the 1588 * distinction (ingress path is selected if the flag is present, 1589 * egress path otherwise). This is the only flag supported for now. 1590 * Return 1591 * **SK_PASS** on success, or **SK_DROP** on error. 1592 * 1593 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1594 * Description 1595 * Add an entry to, or update a *map* referencing sockets. The 1596 * *skops* is used as a new value for the entry associated to 1597 * *key*. *flags* is one of: 1598 * 1599 * **BPF_NOEXIST** 1600 * The entry for *key* must not exist in the map. 1601 * **BPF_EXIST** 1602 * The entry for *key* must already exist in the map. 1603 * **BPF_ANY** 1604 * No condition on the existence of the entry for *key*. 1605 * 1606 * If the *map* has eBPF programs (parser and verdict), those will 1607 * be inherited by the socket being added. If the socket is 1608 * already attached to eBPF programs, this results in an error. 1609 * Return 1610 * 0 on success, or a negative error in case of failure. 1611 * 1612 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1613 * Description 1614 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1615 * *delta* (which can be positive or negative). Note that this 1616 * operation modifies the address stored in *xdp_md*\ **->data**, 1617 * so the latter must be loaded only after the helper has been 1618 * called. 1619 * 1620 * The use of *xdp_md*\ **->data_meta** is optional and programs 1621 * are not required to use it. The rationale is that when the 1622 * packet is processed with XDP (e.g. as DoS filter), it is 1623 * possible to push further meta data along with it before passing 1624 * to the stack, and to give the guarantee that an ingress eBPF 1625 * program attached as a TC classifier on the same device can pick 1626 * this up for further post-processing. Since TC works with socket 1627 * buffers, it remains possible to set from XDP the **mark** or 1628 * **priority** pointers, or other pointers for the socket buffer. 1629 * Having this scratch space generic and programmable allows for 1630 * more flexibility as the user is free to store whatever meta 1631 * data they need. 1632 * 1633 * A call to this helper is susceptible to change the underlying 1634 * packet buffer. Therefore, at load time, all checks on pointers 1635 * previously done by the verifier are invalidated and must be 1636 * performed again, if the helper is used in combination with 1637 * direct packet access. 1638 * Return 1639 * 0 on success, or a negative error in case of failure. 1640 * 1641 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1642 * Description 1643 * Read the value of a perf event counter, and store it into *buf* 1644 * of size *buf_size*. This helper relies on a *map* of type 1645 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1646 * counter is selected when *map* is updated with perf event file 1647 * descriptors. The *map* is an array whose size is the number of 1648 * available CPUs, and each cell contains a value relative to one 1649 * CPU. The value to retrieve is indicated by *flags*, that 1650 * contains the index of the CPU to look up, masked with 1651 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1652 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1653 * current CPU should be retrieved. 1654 * 1655 * This helper behaves in a way close to 1656 * **bpf_perf_event_read**\ () helper, save that instead of 1657 * just returning the value observed, it fills the *buf* 1658 * structure. This allows for additional data to be retrieved: in 1659 * particular, the enabled and running times (in *buf*\ 1660 * **->enabled** and *buf*\ **->running**, respectively) are 1661 * copied. In general, **bpf_perf_event_read_value**\ () is 1662 * recommended over **bpf_perf_event_read**\ (), which has some 1663 * ABI issues and provides fewer functionalities. 1664 * 1665 * These values are interesting, because hardware PMU (Performance 1666 * Monitoring Unit) counters are limited resources. When there are 1667 * more PMU based perf events opened than available counters, 1668 * kernel will multiplex these events so each event gets certain 1669 * percentage (but not all) of the PMU time. In case that 1670 * multiplexing happens, the number of samples or counter value 1671 * will not reflect the case compared to when no multiplexing 1672 * occurs. This makes comparison between different runs difficult. 1673 * Typically, the counter value should be normalized before 1674 * comparing to other experiments. The usual normalization is done 1675 * as follows. 1676 * 1677 * :: 1678 * 1679 * normalized_counter = counter * t_enabled / t_running 1680 * 1681 * Where t_enabled is the time enabled for event and t_running is 1682 * the time running for event since last normalization. The 1683 * enabled and running times are accumulated since the perf event 1684 * open. To achieve scaling factor between two invocations of an 1685 * eBPF program, users can can use CPU id as the key (which is 1686 * typical for perf array usage model) to remember the previous 1687 * value and do the calculation inside the eBPF program. 1688 * Return 1689 * 0 on success, or a negative error in case of failure. 1690 * 1691 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1692 * Description 1693 * For en eBPF program attached to a perf event, retrieve the 1694 * value of the event counter associated to *ctx* and store it in 1695 * the structure pointed by *buf* and of size *buf_size*. Enabled 1696 * and running times are also stored in the structure (see 1697 * description of helper **bpf_perf_event_read_value**\ () for 1698 * more details). 1699 * Return 1700 * 0 on success, or a negative error in case of failure. 1701 * 1702 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1703 * Description 1704 * Emulate a call to **getsockopt()** on the socket associated to 1705 * *bpf_socket*, which must be a full socket. The *level* at 1706 * which the option resides and the name *optname* of the option 1707 * must be specified, see **getsockopt(2)** for more information. 1708 * The retrieved value is stored in the structure pointed by 1709 * *opval* and of length *optlen*. 1710 * 1711 * This helper actually implements a subset of **getsockopt()**. 1712 * It supports the following *level*\ s: 1713 * 1714 * * **IPPROTO_TCP**, which supports *optname* 1715 * **TCP_CONGESTION**. 1716 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1717 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1718 * Return 1719 * 0 on success, or a negative error in case of failure. 1720 * 1721 * int bpf_override_return(struct pt_reg *regs, u64 rc) 1722 * Description 1723 * Used for error injection, this helper uses kprobes to override 1724 * the return value of the probed function, and to set it to *rc*. 1725 * The first argument is the context *regs* on which the kprobe 1726 * works. 1727 * 1728 * This helper works by setting setting the PC (program counter) 1729 * to an override function which is run in place of the original 1730 * probed function. This means the probed function is not run at 1731 * all. The replacement function just returns with the required 1732 * value. 1733 * 1734 * This helper has security implications, and thus is subject to 1735 * restrictions. It is only available if the kernel was compiled 1736 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1737 * option, and in this case it only works on functions tagged with 1738 * **ALLOW_ERROR_INJECTION** in the kernel code. 1739 * 1740 * Also, the helper is only available for the architectures having 1741 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1742 * x86 architecture is the only one to support this feature. 1743 * Return 1744 * 0 1745 * 1746 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1747 * Description 1748 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1749 * for the full TCP socket associated to *bpf_sock_ops* to 1750 * *argval*. 1751 * 1752 * The primary use of this field is to determine if there should 1753 * be calls to eBPF programs of type 1754 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1755 * code. A program of the same type can change its value, per 1756 * connection and as necessary, when the connection is 1757 * established. This field is directly accessible for reading, but 1758 * this helper must be used for updates in order to return an 1759 * error if an eBPF program tries to set a callback that is not 1760 * supported in the current kernel. 1761 * 1762 * *argval* is a flag array which can combine these flags: 1763 * 1764 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1765 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1766 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1767 * 1768 * Therefore, this function can be used to clear a callback flag by 1769 * setting the appropriate bit to zero. e.g. to disable the RTO 1770 * callback: 1771 * 1772 * **bpf_sock_ops_cb_flags_set(bpf_sock,** 1773 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)** 1774 * 1775 * Here are some examples of where one could call such eBPF 1776 * program: 1777 * 1778 * * When RTO fires. 1779 * * When a packet is retransmitted. 1780 * * When the connection terminates. 1781 * * When a packet is sent. 1782 * * When a packet is received. 1783 * Return 1784 * Code **-EINVAL** if the socket is not a full TCP socket; 1785 * otherwise, a positive number containing the bits that could not 1786 * be set is returned (which comes down to 0 if all bits were set 1787 * as required). 1788 * 1789 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1790 * Description 1791 * This helper is used in programs implementing policies at the 1792 * socket level. If the message *msg* is allowed to pass (i.e. if 1793 * the verdict eBPF program returns **SK_PASS**), redirect it to 1794 * the socket referenced by *map* (of type 1795 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1796 * egress interfaces can be used for redirection. The 1797 * **BPF_F_INGRESS** value in *flags* is used to make the 1798 * distinction (ingress path is selected if the flag is present, 1799 * egress path otherwise). This is the only flag supported for now. 1800 * Return 1801 * **SK_PASS** on success, or **SK_DROP** on error. 1802 * 1803 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1804 * Description 1805 * For socket policies, apply the verdict of the eBPF program to 1806 * the next *bytes* (number of bytes) of message *msg*. 1807 * 1808 * For example, this helper can be used in the following cases: 1809 * 1810 * * A single **sendmsg**\ () or **sendfile**\ () system call 1811 * contains multiple logical messages that the eBPF program is 1812 * supposed to read and for which it should apply a verdict. 1813 * * An eBPF program only cares to read the first *bytes* of a 1814 * *msg*. If the message has a large payload, then setting up 1815 * and calling the eBPF program repeatedly for all bytes, even 1816 * though the verdict is already known, would create unnecessary 1817 * overhead. 1818 * 1819 * When called from within an eBPF program, the helper sets a 1820 * counter internal to the BPF infrastructure, that is used to 1821 * apply the last verdict to the next *bytes*. If *bytes* is 1822 * smaller than the current data being processed from a 1823 * **sendmsg**\ () or **sendfile**\ () system call, the first 1824 * *bytes* will be sent and the eBPF program will be re-run with 1825 * the pointer for start of data pointing to byte number *bytes* 1826 * **+ 1**. If *bytes* is larger than the current data being 1827 * processed, then the eBPF verdict will be applied to multiple 1828 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1829 * consumed. 1830 * 1831 * Note that if a socket closes with the internal counter holding 1832 * a non-zero value, this is not a problem because data is not 1833 * being buffered for *bytes* and is sent as it is received. 1834 * Return 1835 * 0 1836 * 1837 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1838 * Description 1839 * For socket policies, prevent the execution of the verdict eBPF 1840 * program for message *msg* until *bytes* (byte number) have been 1841 * accumulated. 1842 * 1843 * This can be used when one needs a specific number of bytes 1844 * before a verdict can be assigned, even if the data spans 1845 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1846 * case would be a user calling **sendmsg**\ () repeatedly with 1847 * 1-byte long message segments. Obviously, this is bad for 1848 * performance, but it is still valid. If the eBPF program needs 1849 * *bytes* bytes to validate a header, this helper can be used to 1850 * prevent the eBPF program to be called again until *bytes* have 1851 * been accumulated. 1852 * Return 1853 * 0 1854 * 1855 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1856 * Description 1857 * For socket policies, pull in non-linear data from user space 1858 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1859 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1860 * respectively. 1861 * 1862 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1863 * *msg* it can only parse data that the (**data**, **data_end**) 1864 * pointers have already consumed. For **sendmsg**\ () hooks this 1865 * is likely the first scatterlist element. But for calls relying 1866 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1867 * be the range (**0**, **0**) because the data is shared with 1868 * user space and by default the objective is to avoid allowing 1869 * user space to modify data while (or after) eBPF verdict is 1870 * being decided. This helper can be used to pull in data and to 1871 * set the start and end pointer to given values. Data will be 1872 * copied if necessary (i.e. if data was not linear and if start 1873 * and end pointers do not point to the same chunk). 1874 * 1875 * A call to this helper is susceptible to change the underlying 1876 * packet buffer. Therefore, at load time, all checks on pointers 1877 * previously done by the verifier are invalidated and must be 1878 * performed again, if the helper is used in combination with 1879 * direct packet access. 1880 * 1881 * All values for *flags* are reserved for future usage, and must 1882 * be left at zero. 1883 * Return 1884 * 0 on success, or a negative error in case of failure. 1885 * 1886 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1887 * Description 1888 * Bind the socket associated to *ctx* to the address pointed by 1889 * *addr*, of length *addr_len*. This allows for making outgoing 1890 * connection from the desired IP address, which can be useful for 1891 * example when all processes inside a cgroup should use one 1892 * single IP address on a host that has multiple IP configured. 1893 * 1894 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1895 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1896 * **AF_INET6**). Looking for a free port to bind to can be 1897 * expensive, therefore binding to port is not permitted by the 1898 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1899 * must be set to zero. 1900 * Return 1901 * 0 on success, or a negative error in case of failure. 1902 * 1903 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1904 * Description 1905 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1906 * only possible to shrink the packet as of this writing, 1907 * therefore *delta* must be a negative integer. 1908 * 1909 * A call to this helper is susceptible to change the underlying 1910 * packet buffer. Therefore, at load time, all checks on pointers 1911 * previously done by the verifier are invalidated and must be 1912 * performed again, if the helper is used in combination with 1913 * direct packet access. 1914 * Return 1915 * 0 on success, or a negative error in case of failure. 1916 * 1917 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1918 * Description 1919 * Retrieve the XFRM state (IP transform framework, see also 1920 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1921 * 1922 * The retrieved value is stored in the **struct bpf_xfrm_state** 1923 * pointed by *xfrm_state* and of length *size*. 1924 * 1925 * All values for *flags* are reserved for future usage, and must 1926 * be left at zero. 1927 * 1928 * This helper is available only if the kernel was compiled with 1929 * **CONFIG_XFRM** configuration option. 1930 * Return 1931 * 0 on success, or a negative error in case of failure. 1932 * 1933 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags) 1934 * Description 1935 * Return a user or a kernel stack in bpf program provided buffer. 1936 * To achieve this, the helper needs *ctx*, which is a pointer 1937 * to the context on which the tracing program is executed. 1938 * To store the stacktrace, the bpf program provides *buf* with 1939 * a nonnegative *size*. 1940 * 1941 * The last argument, *flags*, holds the number of stack frames to 1942 * skip (from 0 to 255), masked with 1943 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1944 * the following flags: 1945 * 1946 * **BPF_F_USER_STACK** 1947 * Collect a user space stack instead of a kernel stack. 1948 * **BPF_F_USER_BUILD_ID** 1949 * Collect buildid+offset instead of ips for user stack, 1950 * only valid if **BPF_F_USER_STACK** is also specified. 1951 * 1952 * **bpf_get_stack**\ () can collect up to 1953 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 1954 * to sufficient large buffer size. Note that 1955 * this limit can be controlled with the **sysctl** program, and 1956 * that it should be manually increased in order to profile long 1957 * user stacks (such as stacks for Java programs). To do so, use: 1958 * 1959 * :: 1960 * 1961 * # sysctl kernel.perf_event_max_stack=<new value> 1962 * Return 1963 * A non-negative value equal to or less than *size* on success, 1964 * or a negative error in case of failure. 1965 * 1966 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header) 1967 * Description 1968 * This helper is similar to **bpf_skb_load_bytes**\ () in that 1969 * it provides an easy way to load *len* bytes from *offset* 1970 * from the packet associated to *skb*, into the buffer pointed 1971 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 1972 * a fifth argument *start_header* exists in order to select a 1973 * base offset to start from. *start_header* can be one of: 1974 * 1975 * **BPF_HDR_START_MAC** 1976 * Base offset to load data from is *skb*'s mac header. 1977 * **BPF_HDR_START_NET** 1978 * Base offset to load data from is *skb*'s network header. 1979 * 1980 * In general, "direct packet access" is the preferred method to 1981 * access packet data, however, this helper is in particular useful 1982 * in socket filters where *skb*\ **->data** does not always point 1983 * to the start of the mac header and where "direct packet access" 1984 * is not available. 1985 * Return 1986 * 0 on success, or a negative error in case of failure. 1987 * 1988 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 1989 * Description 1990 * Do FIB lookup in kernel tables using parameters in *params*. 1991 * If lookup is successful and result shows packet is to be 1992 * forwarded, the neighbor tables are searched for the nexthop. 1993 * If successful (ie., FIB lookup shows forwarding and nexthop 1994 * is resolved), the nexthop address is returned in ipv4_dst 1995 * or ipv6_dst based on family, smac is set to mac address of 1996 * egress device, dmac is set to nexthop mac address, rt_metric 1997 * is set to metric from route (IPv4/IPv6 only), and ifindex 1998 * is set to the device index of the nexthop from the FIB lookup. 1999 * 2000 * *plen* argument is the size of the passed in struct. 2001 * *flags* argument can be a combination of one or more of the 2002 * following values: 2003 * 2004 * **BPF_FIB_LOOKUP_DIRECT** 2005 * Do a direct table lookup vs full lookup using FIB 2006 * rules. 2007 * **BPF_FIB_LOOKUP_OUTPUT** 2008 * Perform lookup from an egress perspective (default is 2009 * ingress). 2010 * 2011 * *ctx* is either **struct xdp_md** for XDP programs or 2012 * **struct sk_buff** tc cls_act programs. 2013 * Return 2014 * * < 0 if any input argument is invalid 2015 * * 0 on success (packet is forwarded, nexthop neighbor exists) 2016 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 2017 * packet is not forwarded or needs assist from full stack 2018 * 2019 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) 2020 * Description 2021 * Add an entry to, or update a sockhash *map* referencing sockets. 2022 * The *skops* is used as a new value for the entry associated to 2023 * *key*. *flags* is one of: 2024 * 2025 * **BPF_NOEXIST** 2026 * The entry for *key* must not exist in the map. 2027 * **BPF_EXIST** 2028 * The entry for *key* must already exist in the map. 2029 * **BPF_ANY** 2030 * No condition on the existence of the entry for *key*. 2031 * 2032 * If the *map* has eBPF programs (parser and verdict), those will 2033 * be inherited by the socket being added. If the socket is 2034 * already attached to eBPF programs, this results in an error. 2035 * Return 2036 * 0 on success, or a negative error in case of failure. 2037 * 2038 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 2039 * Description 2040 * This helper is used in programs implementing policies at the 2041 * socket level. If the message *msg* is allowed to pass (i.e. if 2042 * the verdict eBPF program returns **SK_PASS**), redirect it to 2043 * the socket referenced by *map* (of type 2044 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2045 * egress interfaces can be used for redirection. The 2046 * **BPF_F_INGRESS** value in *flags* is used to make the 2047 * distinction (ingress path is selected if the flag is present, 2048 * egress path otherwise). This is the only flag supported for now. 2049 * Return 2050 * **SK_PASS** on success, or **SK_DROP** on error. 2051 * 2052 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 2053 * Description 2054 * This helper is used in programs implementing policies at the 2055 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 2056 * if the verdeict eBPF program returns **SK_PASS**), redirect it 2057 * to the socket referenced by *map* (of type 2058 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2059 * egress interfaces can be used for redirection. The 2060 * **BPF_F_INGRESS** value in *flags* is used to make the 2061 * distinction (ingress path is selected if the flag is present, 2062 * egress otherwise). This is the only flag supported for now. 2063 * Return 2064 * **SK_PASS** on success, or **SK_DROP** on error. 2065 * 2066 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 2067 * Description 2068 * Encapsulate the packet associated to *skb* within a Layer 3 2069 * protocol header. This header is provided in the buffer at 2070 * address *hdr*, with *len* its size in bytes. *type* indicates 2071 * the protocol of the header and can be one of: 2072 * 2073 * **BPF_LWT_ENCAP_SEG6** 2074 * IPv6 encapsulation with Segment Routing Header 2075 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2076 * the IPv6 header is computed by the kernel. 2077 * **BPF_LWT_ENCAP_SEG6_INLINE** 2078 * Only works if *skb* contains an IPv6 packet. Insert a 2079 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2080 * the IPv6 header. 2081 * **BPF_LWT_ENCAP_IP** 2082 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header 2083 * must be IPv4 or IPv6, followed by zero or more 2084 * additional headers, up to **LWT_BPF_MAX_HEADROOM** 2085 * total bytes in all prepended headers. Please note that 2086 * if **skb_is_gso**\ (*skb*) is true, no more than two 2087 * headers can be prepended, and the inner header, if 2088 * present, should be either GRE or UDP/GUE. 2089 * 2090 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs 2091 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can 2092 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and 2093 * **BPF_PROG_TYPE_LWT_XMIT**. 2094 * 2095 * A call to this helper is susceptible to change the underlying 2096 * packet buffer. Therefore, at load time, all checks on pointers 2097 * previously done by the verifier are invalidated and must be 2098 * performed again, if the helper is used in combination with 2099 * direct packet access. 2100 * Return 2101 * 0 on success, or a negative error in case of failure. 2102 * 2103 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2104 * Description 2105 * Store *len* bytes from address *from* into the packet 2106 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2107 * inside the outermost IPv6 Segment Routing Header can be 2108 * modified through this helper. 2109 * 2110 * A call to this helper is susceptible to change the underlying 2111 * packet buffer. Therefore, at load time, all checks on pointers 2112 * previously done by the verifier are invalidated and must be 2113 * performed again, if the helper is used in combination with 2114 * direct packet access. 2115 * Return 2116 * 0 on success, or a negative error in case of failure. 2117 * 2118 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2119 * Description 2120 * Adjust the size allocated to TLVs in the outermost IPv6 2121 * Segment Routing Header contained in the packet associated to 2122 * *skb*, at position *offset* by *delta* bytes. Only offsets 2123 * after the segments are accepted. *delta* can be as well 2124 * positive (growing) as negative (shrinking). 2125 * 2126 * A call to this helper is susceptible to change the underlying 2127 * packet buffer. Therefore, at load time, all checks on pointers 2128 * previously done by the verifier are invalidated and must be 2129 * performed again, if the helper is used in combination with 2130 * direct packet access. 2131 * Return 2132 * 0 on success, or a negative error in case of failure. 2133 * 2134 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2135 * Description 2136 * Apply an IPv6 Segment Routing action of type *action* to the 2137 * packet associated to *skb*. Each action takes a parameter 2138 * contained at address *param*, and of length *param_len* bytes. 2139 * *action* can be one of: 2140 * 2141 * **SEG6_LOCAL_ACTION_END_X** 2142 * End.X action: Endpoint with Layer-3 cross-connect. 2143 * Type of *param*: **struct in6_addr**. 2144 * **SEG6_LOCAL_ACTION_END_T** 2145 * End.T action: Endpoint with specific IPv6 table lookup. 2146 * Type of *param*: **int**. 2147 * **SEG6_LOCAL_ACTION_END_B6** 2148 * End.B6 action: Endpoint bound to an SRv6 policy. 2149 * Type of *param*: **struct ipv6_sr_hdr**. 2150 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2151 * End.B6.Encap action: Endpoint bound to an SRv6 2152 * encapsulation policy. 2153 * Type of *param*: **struct ipv6_sr_hdr**. 2154 * 2155 * A call to this helper is susceptible to change the underlying 2156 * packet buffer. Therefore, at load time, all checks on pointers 2157 * previously done by the verifier are invalidated and must be 2158 * performed again, if the helper is used in combination with 2159 * direct packet access. 2160 * Return 2161 * 0 on success, or a negative error in case of failure. 2162 * 2163 * int bpf_rc_repeat(void *ctx) 2164 * Description 2165 * This helper is used in programs implementing IR decoding, to 2166 * report a successfully decoded repeat key message. This delays 2167 * the generation of a key up event for previously generated 2168 * key down event. 2169 * 2170 * Some IR protocols like NEC have a special IR message for 2171 * repeating last button, for when a button is held down. 2172 * 2173 * The *ctx* should point to the lirc sample as passed into 2174 * the program. 2175 * 2176 * This helper is only available is the kernel was compiled with 2177 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2178 * "**y**". 2179 * Return 2180 * 0 2181 * 2182 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2183 * Description 2184 * This helper is used in programs implementing IR decoding, to 2185 * report a successfully decoded key press with *scancode*, 2186 * *toggle* value in the given *protocol*. The scancode will be 2187 * translated to a keycode using the rc keymap, and reported as 2188 * an input key down event. After a period a key up event is 2189 * generated. This period can be extended by calling either 2190 * **bpf_rc_keydown**\ () again with the same values, or calling 2191 * **bpf_rc_repeat**\ (). 2192 * 2193 * Some protocols include a toggle bit, in case the button was 2194 * released and pressed again between consecutive scancodes. 2195 * 2196 * The *ctx* should point to the lirc sample as passed into 2197 * the program. 2198 * 2199 * The *protocol* is the decoded protocol number (see 2200 * **enum rc_proto** for some predefined values). 2201 * 2202 * This helper is only available is the kernel was compiled with 2203 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2204 * "**y**". 2205 * Return 2206 * 0 2207 * 2208 * u64 bpf_skb_cgroup_id(struct sk_buff *skb) 2209 * Description 2210 * Return the cgroup v2 id of the socket associated with the *skb*. 2211 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2212 * helper for cgroup v1 by providing a tag resp. identifier that 2213 * can be matched on or used for map lookups e.g. to implement 2214 * policy. The cgroup v2 id of a given path in the hierarchy is 2215 * exposed in user space through the f_handle API in order to get 2216 * to the same 64-bit id. 2217 * 2218 * This helper can be used on TC egress path, but not on ingress, 2219 * and is available only if the kernel was compiled with the 2220 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2221 * Return 2222 * The id is returned or 0 in case the id could not be retrieved. 2223 * 2224 * u64 bpf_get_current_cgroup_id(void) 2225 * Return 2226 * A 64-bit integer containing the current cgroup id based 2227 * on the cgroup within which the current task is running. 2228 * 2229 * void *bpf_get_local_storage(void *map, u64 flags) 2230 * Description 2231 * Get the pointer to the local storage area. 2232 * The type and the size of the local storage is defined 2233 * by the *map* argument. 2234 * The *flags* meaning is specific for each map type, 2235 * and has to be 0 for cgroup local storage. 2236 * 2237 * Depending on the BPF program type, a local storage area 2238 * can be shared between multiple instances of the BPF program, 2239 * running simultaneously. 2240 * 2241 * A user should care about the synchronization by himself. 2242 * For example, by using the **BPF_STX_XADD** instruction to alter 2243 * the shared data. 2244 * Return 2245 * A pointer to the local storage area. 2246 * 2247 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2248 * Description 2249 * Select a **SO_REUSEPORT** socket from a 2250 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2251 * It checks the selected socket is matching the incoming 2252 * request in the socket buffer. 2253 * Return 2254 * 0 on success, or a negative error in case of failure. 2255 * 2256 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2257 * Description 2258 * Return id of cgroup v2 that is ancestor of cgroup associated 2259 * with the *skb* at the *ancestor_level*. The root cgroup is at 2260 * *ancestor_level* zero and each step down the hierarchy 2261 * increments the level. If *ancestor_level* == level of cgroup 2262 * associated with *skb*, then return value will be same as that 2263 * of **bpf_skb_cgroup_id**\ (). 2264 * 2265 * The helper is useful to implement policies based on cgroups 2266 * that are upper in hierarchy than immediate cgroup associated 2267 * with *skb*. 2268 * 2269 * The format of returned id and helper limitations are same as in 2270 * **bpf_skb_cgroup_id**\ (). 2271 * Return 2272 * The id is returned or 0 in case the id could not be retrieved. 2273 * 2274 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2275 * Description 2276 * Look for TCP socket matching *tuple*, optionally in a child 2277 * network namespace *netns*. The return value must be checked, 2278 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2279 * 2280 * The *ctx* should point to the context of the program, such as 2281 * the skb or socket (depending on the hook in use). This is used 2282 * to determine the base network namespace for the lookup. 2283 * 2284 * *tuple_size* must be one of: 2285 * 2286 * **sizeof**\ (*tuple*\ **->ipv4**) 2287 * Look for an IPv4 socket. 2288 * **sizeof**\ (*tuple*\ **->ipv6**) 2289 * Look for an IPv6 socket. 2290 * 2291 * If the *netns* is a negative signed 32-bit integer, then the 2292 * socket lookup table in the netns associated with the *ctx* will 2293 * will be used. For the TC hooks, this is the netns of the device 2294 * in the skb. For socket hooks, this is the netns of the socket. 2295 * If *netns* is any other signed 32-bit value greater than or 2296 * equal to zero then it specifies the ID of the netns relative to 2297 * the netns associated with the *ctx*. *netns* values beyond the 2298 * range of 32-bit integers are reserved for future use. 2299 * 2300 * All values for *flags* are reserved for future usage, and must 2301 * be left at zero. 2302 * 2303 * This helper is available only if the kernel was compiled with 2304 * **CONFIG_NET** configuration option. 2305 * Return 2306 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2307 * For sockets with reuseport option, the **struct bpf_sock** 2308 * result is from *reuse*\ **->socks**\ [] using the hash of the 2309 * tuple. 2310 * 2311 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2312 * Description 2313 * Look for UDP socket matching *tuple*, optionally in a child 2314 * network namespace *netns*. The return value must be checked, 2315 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2316 * 2317 * The *ctx* should point to the context of the program, such as 2318 * the skb or socket (depending on the hook in use). This is used 2319 * to determine the base network namespace for the lookup. 2320 * 2321 * *tuple_size* must be one of: 2322 * 2323 * **sizeof**\ (*tuple*\ **->ipv4**) 2324 * Look for an IPv4 socket. 2325 * **sizeof**\ (*tuple*\ **->ipv6**) 2326 * Look for an IPv6 socket. 2327 * 2328 * If the *netns* is a negative signed 32-bit integer, then the 2329 * socket lookup table in the netns associated with the *ctx* will 2330 * will be used. For the TC hooks, this is the netns of the device 2331 * in the skb. For socket hooks, this is the netns of the socket. 2332 * If *netns* is any other signed 32-bit value greater than or 2333 * equal to zero then it specifies the ID of the netns relative to 2334 * the netns associated with the *ctx*. *netns* values beyond the 2335 * range of 32-bit integers are reserved for future use. 2336 * 2337 * All values for *flags* are reserved for future usage, and must 2338 * be left at zero. 2339 * 2340 * This helper is available only if the kernel was compiled with 2341 * **CONFIG_NET** configuration option. 2342 * Return 2343 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2344 * For sockets with reuseport option, the **struct bpf_sock** 2345 * result is from *reuse*\ **->socks**\ [] using the hash of the 2346 * tuple. 2347 * 2348 * int bpf_sk_release(struct bpf_sock *sock) 2349 * Description 2350 * Release the reference held by *sock*. *sock* must be a 2351 * non-**NULL** pointer that was returned from 2352 * **bpf_sk_lookup_xxx**\ (). 2353 * Return 2354 * 0 on success, or a negative error in case of failure. 2355 * 2356 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 2357 * Description 2358 * Push an element *value* in *map*. *flags* is one of: 2359 * 2360 * **BPF_EXIST** 2361 * If the queue/stack is full, the oldest element is 2362 * removed to make room for this. 2363 * Return 2364 * 0 on success, or a negative error in case of failure. 2365 * 2366 * int bpf_map_pop_elem(struct bpf_map *map, void *value) 2367 * Description 2368 * Pop an element from *map*. 2369 * Return 2370 * 0 on success, or a negative error in case of failure. 2371 * 2372 * int bpf_map_peek_elem(struct bpf_map *map, void *value) 2373 * Description 2374 * Get an element from *map* without removing it. 2375 * Return 2376 * 0 on success, or a negative error in case of failure. 2377 * 2378 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags) 2379 * Description 2380 * For socket policies, insert *len* bytes into *msg* at offset 2381 * *start*. 2382 * 2383 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2384 * *msg* it may want to insert metadata or options into the *msg*. 2385 * This can later be read and used by any of the lower layer BPF 2386 * hooks. 2387 * 2388 * This helper may fail if under memory pressure (a malloc 2389 * fails) in these cases BPF programs will get an appropriate 2390 * error and BPF programs will need to handle them. 2391 * Return 2392 * 0 on success, or a negative error in case of failure. 2393 * 2394 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags) 2395 * Description 2396 * Will remove *pop* bytes from a *msg* starting at byte *start*. 2397 * This may result in **ENOMEM** errors under certain situations if 2398 * an allocation and copy are required due to a full ring buffer. 2399 * However, the helper will try to avoid doing the allocation 2400 * if possible. Other errors can occur if input parameters are 2401 * invalid either due to *start* byte not being valid part of *msg* 2402 * payload and/or *pop* value being to large. 2403 * Return 2404 * 0 on success, or a negative error in case of failure. 2405 * 2406 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2407 * Description 2408 * This helper is used in programs implementing IR decoding, to 2409 * report a successfully decoded pointer movement. 2410 * 2411 * The *ctx* should point to the lirc sample as passed into 2412 * the program. 2413 * 2414 * This helper is only available is the kernel was compiled with 2415 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2416 * "**y**". 2417 * Return 2418 * 0 2419 * 2420 * int bpf_spin_lock(struct bpf_spin_lock *lock) 2421 * Description 2422 * Acquire a spinlock represented by the pointer *lock*, which is 2423 * stored as part of a value of a map. Taking the lock allows to 2424 * safely update the rest of the fields in that value. The 2425 * spinlock can (and must) later be released with a call to 2426 * **bpf_spin_unlock**\ (\ *lock*\ ). 2427 * 2428 * Spinlocks in BPF programs come with a number of restrictions 2429 * and constraints: 2430 * 2431 * * **bpf_spin_lock** objects are only allowed inside maps of 2432 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this 2433 * list could be extended in the future). 2434 * * BTF description of the map is mandatory. 2435 * * The BPF program can take ONE lock at a time, since taking two 2436 * or more could cause dead locks. 2437 * * Only one **struct bpf_spin_lock** is allowed per map element. 2438 * * When the lock is taken, calls (either BPF to BPF or helpers) 2439 * are not allowed. 2440 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not 2441 * allowed inside a spinlock-ed region. 2442 * * The BPF program MUST call **bpf_spin_unlock**\ () to release 2443 * the lock, on all execution paths, before it returns. 2444 * * The BPF program can access **struct bpf_spin_lock** only via 2445 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ () 2446 * helpers. Loading or storing data into the **struct 2447 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed. 2448 * * To use the **bpf_spin_lock**\ () helper, the BTF description 2449 * of the map value must be a struct and have **struct 2450 * bpf_spin_lock** *anyname*\ **;** field at the top level. 2451 * Nested lock inside another struct is not allowed. 2452 * * The **struct bpf_spin_lock** *lock* field in a map value must 2453 * be aligned on a multiple of 4 bytes in that value. 2454 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy 2455 * the **bpf_spin_lock** field to user space. 2456 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from 2457 * a BPF program, do not update the **bpf_spin_lock** field. 2458 * * **bpf_spin_lock** cannot be on the stack or inside a 2459 * networking packet (it can only be inside of a map values). 2460 * * **bpf_spin_lock** is available to root only. 2461 * * Tracing programs and socket filter programs cannot use 2462 * **bpf_spin_lock**\ () due to insufficient preemption checks 2463 * (but this may change in the future). 2464 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map. 2465 * Return 2466 * 0 2467 * 2468 * int bpf_spin_unlock(struct bpf_spin_lock *lock) 2469 * Description 2470 * Release the *lock* previously locked by a call to 2471 * **bpf_spin_lock**\ (\ *lock*\ ). 2472 * Return 2473 * 0 2474 * 2475 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk) 2476 * Description 2477 * This helper gets a **struct bpf_sock** pointer such 2478 * that all the fields in this **bpf_sock** can be accessed. 2479 * Return 2480 * A **struct bpf_sock** pointer on success, or **NULL** in 2481 * case of failure. 2482 * 2483 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk) 2484 * Description 2485 * This helper gets a **struct bpf_tcp_sock** pointer from a 2486 * **struct bpf_sock** pointer. 2487 * Return 2488 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in 2489 * case of failure. 2490 * 2491 * int bpf_skb_ecn_set_ce(struct sk_buf *skb) 2492 * Description 2493 * Set ECN (Explicit Congestion Notification) field of IP header 2494 * to **CE** (Congestion Encountered) if current value is **ECT** 2495 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6 2496 * and IPv4. 2497 * Return 2498 * 1 if the **CE** flag is set (either by the current helper call 2499 * or because it was already present), 0 if it is not set. 2500 * 2501 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk) 2502 * Description 2503 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state. 2504 * **bpf_sk_release**\ () is unnecessary and not allowed. 2505 * Return 2506 * A **struct bpf_sock** pointer on success, or **NULL** in 2507 * case of failure. 2508 * 2509 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2510 * Description 2511 * Look for TCP socket matching *tuple*, optionally in a child 2512 * network namespace *netns*. The return value must be checked, 2513 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2514 * 2515 * This function is identical to **bpf_sk_lookup_tcp**\ (), except 2516 * that it also returns timewait or request sockets. Use 2517 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the 2518 * full structure. 2519 * 2520 * This helper is available only if the kernel was compiled with 2521 * **CONFIG_NET** configuration option. 2522 * Return 2523 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2524 * For sockets with reuseport option, the **struct bpf_sock** 2525 * result is from *reuse*\ **->socks**\ [] using the hash of the 2526 * tuple. 2527 * 2528 * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2529 * Description 2530 * Check whether *iph* and *th* contain a valid SYN cookie ACK for 2531 * the listening socket in *sk*. 2532 * 2533 * *iph* points to the start of the IPv4 or IPv6 header, while 2534 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2535 * **sizeof**\ (**struct ip6hdr**). 2536 * 2537 * *th* points to the start of the TCP header, while *th_len* 2538 * contains **sizeof**\ (**struct tcphdr**). 2539 * 2540 * Return 2541 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative 2542 * error otherwise. 2543 * 2544 * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags) 2545 * Description 2546 * Get name of sysctl in /proc/sys/ and copy it into provided by 2547 * program buffer *buf* of size *buf_len*. 2548 * 2549 * The buffer is always NUL terminated, unless it's zero-sized. 2550 * 2551 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is 2552 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name 2553 * only (e.g. "tcp_mem"). 2554 * Return 2555 * Number of character copied (not including the trailing NUL). 2556 * 2557 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2558 * truncated name in this case). 2559 * 2560 * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2561 * Description 2562 * Get current value of sysctl as it is presented in /proc/sys 2563 * (incl. newline, etc), and copy it as a string into provided 2564 * by program buffer *buf* of size *buf_len*. 2565 * 2566 * The whole value is copied, no matter what file position user 2567 * space issued e.g. sys_read at. 2568 * 2569 * The buffer is always NUL terminated, unless it's zero-sized. 2570 * Return 2571 * Number of character copied (not including the trailing NUL). 2572 * 2573 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2574 * truncated name in this case). 2575 * 2576 * **-EINVAL** if current value was unavailable, e.g. because 2577 * sysctl is uninitialized and read returns -EIO for it. 2578 * 2579 * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2580 * Description 2581 * Get new value being written by user space to sysctl (before 2582 * the actual write happens) and copy it as a string into 2583 * provided by program buffer *buf* of size *buf_len*. 2584 * 2585 * User space may write new value at file position > 0. 2586 * 2587 * The buffer is always NUL terminated, unless it's zero-sized. 2588 * Return 2589 * Number of character copied (not including the trailing NUL). 2590 * 2591 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2592 * truncated name in this case). 2593 * 2594 * **-EINVAL** if sysctl is being read. 2595 * 2596 * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len) 2597 * Description 2598 * Override new value being written by user space to sysctl with 2599 * value provided by program in buffer *buf* of size *buf_len*. 2600 * 2601 * *buf* should contain a string in same form as provided by user 2602 * space on sysctl write. 2603 * 2604 * User space may write new value at file position > 0. To override 2605 * the whole sysctl value file position should be set to zero. 2606 * Return 2607 * 0 on success. 2608 * 2609 * **-E2BIG** if the *buf_len* is too big. 2610 * 2611 * **-EINVAL** if sysctl is being read. 2612 * 2613 * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res) 2614 * Description 2615 * Convert the initial part of the string from buffer *buf* of 2616 * size *buf_len* to a long integer according to the given base 2617 * and save the result in *res*. 2618 * 2619 * The string may begin with an arbitrary amount of white space 2620 * (as determined by **isspace**\ (3)) followed by a single 2621 * optional '**-**' sign. 2622 * 2623 * Five least significant bits of *flags* encode base, other bits 2624 * are currently unused. 2625 * 2626 * Base must be either 8, 10, 16 or 0 to detect it automatically 2627 * similar to user space **strtol**\ (3). 2628 * Return 2629 * Number of characters consumed on success. Must be positive but 2630 * no more than *buf_len*. 2631 * 2632 * **-EINVAL** if no valid digits were found or unsupported base 2633 * was provided. 2634 * 2635 * **-ERANGE** if resulting value was out of range. 2636 * 2637 * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res) 2638 * Description 2639 * Convert the initial part of the string from buffer *buf* of 2640 * size *buf_len* to an unsigned long integer according to the 2641 * given base and save the result in *res*. 2642 * 2643 * The string may begin with an arbitrary amount of white space 2644 * (as determined by **isspace**\ (3)). 2645 * 2646 * Five least significant bits of *flags* encode base, other bits 2647 * are currently unused. 2648 * 2649 * Base must be either 8, 10, 16 or 0 to detect it automatically 2650 * similar to user space **strtoul**\ (3). 2651 * Return 2652 * Number of characters consumed on success. Must be positive but 2653 * no more than *buf_len*. 2654 * 2655 * **-EINVAL** if no valid digits were found or unsupported base 2656 * was provided. 2657 * 2658 * **-ERANGE** if resulting value was out of range. 2659 * 2660 * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags) 2661 * Description 2662 * Get a bpf-local-storage from a *sk*. 2663 * 2664 * Logically, it could be thought of getting the value from 2665 * a *map* with *sk* as the **key**. From this 2666 * perspective, the usage is not much different from 2667 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this 2668 * helper enforces the key must be a full socket and the map must 2669 * be a **BPF_MAP_TYPE_SK_STORAGE** also. 2670 * 2671 * Underneath, the value is stored locally at *sk* instead of 2672 * the *map*. The *map* is used as the bpf-local-storage 2673 * "type". The bpf-local-storage "type" (i.e. the *map*) is 2674 * searched against all bpf-local-storages residing at *sk*. 2675 * 2676 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be 2677 * used such that a new bpf-local-storage will be 2678 * created if one does not exist. *value* can be used 2679 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify 2680 * the initial value of a bpf-local-storage. If *value* is 2681 * **NULL**, the new bpf-local-storage will be zero initialized. 2682 * Return 2683 * A bpf-local-storage pointer is returned on success. 2684 * 2685 * **NULL** if not found or there was an error in adding 2686 * a new bpf-local-storage. 2687 * 2688 * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk) 2689 * Description 2690 * Delete a bpf-local-storage from a *sk*. 2691 * Return 2692 * 0 on success. 2693 * 2694 * **-ENOENT** if the bpf-local-storage cannot be found. 2695 * 2696 * int bpf_send_signal(u32 sig) 2697 * Description 2698 * Send signal *sig* to the current task. 2699 * Return 2700 * 0 on success or successfully queued. 2701 * 2702 * **-EBUSY** if work queue under nmi is full. 2703 * 2704 * **-EINVAL** if *sig* is invalid. 2705 * 2706 * **-EPERM** if no permission to send the *sig*. 2707 * 2708 * **-EAGAIN** if bpf program can try again. 2709 */ 2710 #define __BPF_FUNC_MAPPER(FN) \ 2711 FN(unspec), \ 2712 FN(map_lookup_elem), \ 2713 FN(map_update_elem), \ 2714 FN(map_delete_elem), \ 2715 FN(probe_read), \ 2716 FN(ktime_get_ns), \ 2717 FN(trace_printk), \ 2718 FN(get_prandom_u32), \ 2719 FN(get_smp_processor_id), \ 2720 FN(skb_store_bytes), \ 2721 FN(l3_csum_replace), \ 2722 FN(l4_csum_replace), \ 2723 FN(tail_call), \ 2724 FN(clone_redirect), \ 2725 FN(get_current_pid_tgid), \ 2726 FN(get_current_uid_gid), \ 2727 FN(get_current_comm), \ 2728 FN(get_cgroup_classid), \ 2729 FN(skb_vlan_push), \ 2730 FN(skb_vlan_pop), \ 2731 FN(skb_get_tunnel_key), \ 2732 FN(skb_set_tunnel_key), \ 2733 FN(perf_event_read), \ 2734 FN(redirect), \ 2735 FN(get_route_realm), \ 2736 FN(perf_event_output), \ 2737 FN(skb_load_bytes), \ 2738 FN(get_stackid), \ 2739 FN(csum_diff), \ 2740 FN(skb_get_tunnel_opt), \ 2741 FN(skb_set_tunnel_opt), \ 2742 FN(skb_change_proto), \ 2743 FN(skb_change_type), \ 2744 FN(skb_under_cgroup), \ 2745 FN(get_hash_recalc), \ 2746 FN(get_current_task), \ 2747 FN(probe_write_user), \ 2748 FN(current_task_under_cgroup), \ 2749 FN(skb_change_tail), \ 2750 FN(skb_pull_data), \ 2751 FN(csum_update), \ 2752 FN(set_hash_invalid), \ 2753 FN(get_numa_node_id), \ 2754 FN(skb_change_head), \ 2755 FN(xdp_adjust_head), \ 2756 FN(probe_read_str), \ 2757 FN(get_socket_cookie), \ 2758 FN(get_socket_uid), \ 2759 FN(set_hash), \ 2760 FN(setsockopt), \ 2761 FN(skb_adjust_room), \ 2762 FN(redirect_map), \ 2763 FN(sk_redirect_map), \ 2764 FN(sock_map_update), \ 2765 FN(xdp_adjust_meta), \ 2766 FN(perf_event_read_value), \ 2767 FN(perf_prog_read_value), \ 2768 FN(getsockopt), \ 2769 FN(override_return), \ 2770 FN(sock_ops_cb_flags_set), \ 2771 FN(msg_redirect_map), \ 2772 FN(msg_apply_bytes), \ 2773 FN(msg_cork_bytes), \ 2774 FN(msg_pull_data), \ 2775 FN(bind), \ 2776 FN(xdp_adjust_tail), \ 2777 FN(skb_get_xfrm_state), \ 2778 FN(get_stack), \ 2779 FN(skb_load_bytes_relative), \ 2780 FN(fib_lookup), \ 2781 FN(sock_hash_update), \ 2782 FN(msg_redirect_hash), \ 2783 FN(sk_redirect_hash), \ 2784 FN(lwt_push_encap), \ 2785 FN(lwt_seg6_store_bytes), \ 2786 FN(lwt_seg6_adjust_srh), \ 2787 FN(lwt_seg6_action), \ 2788 FN(rc_repeat), \ 2789 FN(rc_keydown), \ 2790 FN(skb_cgroup_id), \ 2791 FN(get_current_cgroup_id), \ 2792 FN(get_local_storage), \ 2793 FN(sk_select_reuseport), \ 2794 FN(skb_ancestor_cgroup_id), \ 2795 FN(sk_lookup_tcp), \ 2796 FN(sk_lookup_udp), \ 2797 FN(sk_release), \ 2798 FN(map_push_elem), \ 2799 FN(map_pop_elem), \ 2800 FN(map_peek_elem), \ 2801 FN(msg_push_data), \ 2802 FN(msg_pop_data), \ 2803 FN(rc_pointer_rel), \ 2804 FN(spin_lock), \ 2805 FN(spin_unlock), \ 2806 FN(sk_fullsock), \ 2807 FN(tcp_sock), \ 2808 FN(skb_ecn_set_ce), \ 2809 FN(get_listener_sock), \ 2810 FN(skc_lookup_tcp), \ 2811 FN(tcp_check_syncookie), \ 2812 FN(sysctl_get_name), \ 2813 FN(sysctl_get_current_value), \ 2814 FN(sysctl_get_new_value), \ 2815 FN(sysctl_set_new_value), \ 2816 FN(strtol), \ 2817 FN(strtoul), \ 2818 FN(sk_storage_get), \ 2819 FN(sk_storage_delete), \ 2820 FN(send_signal), 2821 2822 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 2823 * function eBPF program intends to call 2824 */ 2825 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 2826 enum bpf_func_id { 2827 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 2828 __BPF_FUNC_MAX_ID, 2829 }; 2830 #undef __BPF_ENUM_FN 2831 2832 /* All flags used by eBPF helper functions, placed here. */ 2833 2834 /* BPF_FUNC_skb_store_bytes flags. */ 2835 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0) 2836 #define BPF_F_INVALIDATE_HASH (1ULL << 1) 2837 2838 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 2839 * First 4 bits are for passing the header field size. 2840 */ 2841 #define BPF_F_HDR_FIELD_MASK 0xfULL 2842 2843 /* BPF_FUNC_l4_csum_replace flags. */ 2844 #define BPF_F_PSEUDO_HDR (1ULL << 4) 2845 #define BPF_F_MARK_MANGLED_0 (1ULL << 5) 2846 #define BPF_F_MARK_ENFORCE (1ULL << 6) 2847 2848 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 2849 #define BPF_F_INGRESS (1ULL << 0) 2850 2851 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 2852 #define BPF_F_TUNINFO_IPV6 (1ULL << 0) 2853 2854 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 2855 #define BPF_F_SKIP_FIELD_MASK 0xffULL 2856 #define BPF_F_USER_STACK (1ULL << 8) 2857 /* flags used by BPF_FUNC_get_stackid only. */ 2858 #define BPF_F_FAST_STACK_CMP (1ULL << 9) 2859 #define BPF_F_REUSE_STACKID (1ULL << 10) 2860 /* flags used by BPF_FUNC_get_stack only. */ 2861 #define BPF_F_USER_BUILD_ID (1ULL << 11) 2862 2863 /* BPF_FUNC_skb_set_tunnel_key flags. */ 2864 #define BPF_F_ZERO_CSUM_TX (1ULL << 1) 2865 #define BPF_F_DONT_FRAGMENT (1ULL << 2) 2866 #define BPF_F_SEQ_NUMBER (1ULL << 3) 2867 2868 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 2869 * BPF_FUNC_perf_event_read_value flags. 2870 */ 2871 #define BPF_F_INDEX_MASK 0xffffffffULL 2872 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK 2873 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 2874 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32) 2875 2876 /* Current network namespace */ 2877 #define BPF_F_CURRENT_NETNS (-1L) 2878 2879 /* BPF_FUNC_skb_adjust_room flags. */ 2880 #define BPF_F_ADJ_ROOM_FIXED_GSO (1ULL << 0) 2881 2882 #define BPF_ADJ_ROOM_ENCAP_L2_MASK 0xff 2883 #define BPF_ADJ_ROOM_ENCAP_L2_SHIFT 56 2884 2885 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 (1ULL << 1) 2886 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 (1ULL << 2) 2887 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE (1ULL << 3) 2888 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP (1ULL << 4) 2889 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \ 2890 BPF_ADJ_ROOM_ENCAP_L2_MASK) \ 2891 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT) 2892 2893 /* BPF_FUNC_sysctl_get_name flags. */ 2894 #define BPF_F_SYSCTL_BASE_NAME (1ULL << 0) 2895 2896 /* BPF_FUNC_sk_storage_get flags */ 2897 #define BPF_SK_STORAGE_GET_F_CREATE (1ULL << 0) 2898 2899 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 2900 enum bpf_adj_room_mode { 2901 BPF_ADJ_ROOM_NET, 2902 BPF_ADJ_ROOM_MAC, 2903 }; 2904 2905 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 2906 enum bpf_hdr_start_off { 2907 BPF_HDR_START_MAC, 2908 BPF_HDR_START_NET, 2909 }; 2910 2911 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 2912 enum bpf_lwt_encap_mode { 2913 BPF_LWT_ENCAP_SEG6, 2914 BPF_LWT_ENCAP_SEG6_INLINE, 2915 BPF_LWT_ENCAP_IP, 2916 }; 2917 2918 #define __bpf_md_ptr(type, name) \ 2919 union { \ 2920 type name; \ 2921 __u64 :64; \ 2922 } __attribute__((aligned(8))) 2923 2924 /* user accessible mirror of in-kernel sk_buff. 2925 * new fields can only be added to the end of this structure 2926 */ 2927 struct __sk_buff { 2928 __u32 len; 2929 __u32 pkt_type; 2930 __u32 mark; 2931 __u32 queue_mapping; 2932 __u32 protocol; 2933 __u32 vlan_present; 2934 __u32 vlan_tci; 2935 __u32 vlan_proto; 2936 __u32 priority; 2937 __u32 ingress_ifindex; 2938 __u32 ifindex; 2939 __u32 tc_index; 2940 __u32 cb[5]; 2941 __u32 hash; 2942 __u32 tc_classid; 2943 __u32 data; 2944 __u32 data_end; 2945 __u32 napi_id; 2946 2947 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 2948 __u32 family; 2949 __u32 remote_ip4; /* Stored in network byte order */ 2950 __u32 local_ip4; /* Stored in network byte order */ 2951 __u32 remote_ip6[4]; /* Stored in network byte order */ 2952 __u32 local_ip6[4]; /* Stored in network byte order */ 2953 __u32 remote_port; /* Stored in network byte order */ 2954 __u32 local_port; /* stored in host byte order */ 2955 /* ... here. */ 2956 2957 __u32 data_meta; 2958 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 2959 __u64 tstamp; 2960 __u32 wire_len; 2961 __u32 gso_segs; 2962 __bpf_md_ptr(struct bpf_sock *, sk); 2963 }; 2964 2965 struct bpf_tunnel_key { 2966 __u32 tunnel_id; 2967 union { 2968 __u32 remote_ipv4; 2969 __u32 remote_ipv6[4]; 2970 }; 2971 __u8 tunnel_tos; 2972 __u8 tunnel_ttl; 2973 __u16 tunnel_ext; /* Padding, future use. */ 2974 __u32 tunnel_label; 2975 }; 2976 2977 /* user accessible mirror of in-kernel xfrm_state. 2978 * new fields can only be added to the end of this structure 2979 */ 2980 struct bpf_xfrm_state { 2981 __u32 reqid; 2982 __u32 spi; /* Stored in network byte order */ 2983 __u16 family; 2984 __u16 ext; /* Padding, future use. */ 2985 union { 2986 __u32 remote_ipv4; /* Stored in network byte order */ 2987 __u32 remote_ipv6[4]; /* Stored in network byte order */ 2988 }; 2989 }; 2990 2991 /* Generic BPF return codes which all BPF program types may support. 2992 * The values are binary compatible with their TC_ACT_* counter-part to 2993 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 2994 * programs. 2995 * 2996 * XDP is handled seprately, see XDP_*. 2997 */ 2998 enum bpf_ret_code { 2999 BPF_OK = 0, 3000 /* 1 reserved */ 3001 BPF_DROP = 2, 3002 /* 3-6 reserved */ 3003 BPF_REDIRECT = 7, 3004 /* >127 are reserved for prog type specific return codes. 3005 * 3006 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and 3007 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been 3008 * changed and should be routed based on its new L3 header. 3009 * (This is an L3 redirect, as opposed to L2 redirect 3010 * represented by BPF_REDIRECT above). 3011 */ 3012 BPF_LWT_REROUTE = 128, 3013 }; 3014 3015 struct bpf_sock { 3016 __u32 bound_dev_if; 3017 __u32 family; 3018 __u32 type; 3019 __u32 protocol; 3020 __u32 mark; 3021 __u32 priority; 3022 /* IP address also allows 1 and 2 bytes access */ 3023 __u32 src_ip4; 3024 __u32 src_ip6[4]; 3025 __u32 src_port; /* host byte order */ 3026 __u32 dst_port; /* network byte order */ 3027 __u32 dst_ip4; 3028 __u32 dst_ip6[4]; 3029 __u32 state; 3030 }; 3031 3032 struct bpf_tcp_sock { 3033 __u32 snd_cwnd; /* Sending congestion window */ 3034 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */ 3035 __u32 rtt_min; 3036 __u32 snd_ssthresh; /* Slow start size threshold */ 3037 __u32 rcv_nxt; /* What we want to receive next */ 3038 __u32 snd_nxt; /* Next sequence we send */ 3039 __u32 snd_una; /* First byte we want an ack for */ 3040 __u32 mss_cache; /* Cached effective mss, not including SACKS */ 3041 __u32 ecn_flags; /* ECN status bits. */ 3042 __u32 rate_delivered; /* saved rate sample: packets delivered */ 3043 __u32 rate_interval_us; /* saved rate sample: time elapsed */ 3044 __u32 packets_out; /* Packets which are "in flight" */ 3045 __u32 retrans_out; /* Retransmitted packets out */ 3046 __u32 total_retrans; /* Total retransmits for entire connection */ 3047 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn 3048 * total number of segments in. 3049 */ 3050 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn 3051 * total number of data segments in. 3052 */ 3053 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut 3054 * The total number of segments sent. 3055 */ 3056 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut 3057 * total number of data segments sent. 3058 */ 3059 __u32 lost_out; /* Lost packets */ 3060 __u32 sacked_out; /* SACK'd packets */ 3061 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived 3062 * sum(delta(rcv_nxt)), or how many bytes 3063 * were acked. 3064 */ 3065 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked 3066 * sum(delta(snd_una)), or how many bytes 3067 * were acked. 3068 */ 3069 }; 3070 3071 struct bpf_sock_tuple { 3072 union { 3073 struct { 3074 __be32 saddr; 3075 __be32 daddr; 3076 __be16 sport; 3077 __be16 dport; 3078 } ipv4; 3079 struct { 3080 __be32 saddr[4]; 3081 __be32 daddr[4]; 3082 __be16 sport; 3083 __be16 dport; 3084 } ipv6; 3085 }; 3086 }; 3087 3088 struct bpf_xdp_sock { 3089 __u32 queue_id; 3090 }; 3091 3092 #define XDP_PACKET_HEADROOM 256 3093 3094 /* User return codes for XDP prog type. 3095 * A valid XDP program must return one of these defined values. All other 3096 * return codes are reserved for future use. Unknown return codes will 3097 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 3098 */ 3099 enum xdp_action { 3100 XDP_ABORTED = 0, 3101 XDP_DROP, 3102 XDP_PASS, 3103 XDP_TX, 3104 XDP_REDIRECT, 3105 }; 3106 3107 /* user accessible metadata for XDP packet hook 3108 * new fields must be added to the end of this structure 3109 */ 3110 struct xdp_md { 3111 __u32 data; 3112 __u32 data_end; 3113 __u32 data_meta; 3114 /* Below access go through struct xdp_rxq_info */ 3115 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 3116 __u32 rx_queue_index; /* rxq->queue_index */ 3117 }; 3118 3119 enum sk_action { 3120 SK_DROP = 0, 3121 SK_PASS, 3122 }; 3123 3124 /* user accessible metadata for SK_MSG packet hook, new fields must 3125 * be added to the end of this structure 3126 */ 3127 struct sk_msg_md { 3128 __bpf_md_ptr(void *, data); 3129 __bpf_md_ptr(void *, data_end); 3130 3131 __u32 family; 3132 __u32 remote_ip4; /* Stored in network byte order */ 3133 __u32 local_ip4; /* Stored in network byte order */ 3134 __u32 remote_ip6[4]; /* Stored in network byte order */ 3135 __u32 local_ip6[4]; /* Stored in network byte order */ 3136 __u32 remote_port; /* Stored in network byte order */ 3137 __u32 local_port; /* stored in host byte order */ 3138 __u32 size; /* Total size of sk_msg */ 3139 }; 3140 3141 struct sk_reuseport_md { 3142 /* 3143 * Start of directly accessible data. It begins from 3144 * the tcp/udp header. 3145 */ 3146 __bpf_md_ptr(void *, data); 3147 /* End of directly accessible data */ 3148 __bpf_md_ptr(void *, data_end); 3149 /* 3150 * Total length of packet (starting from the tcp/udp header). 3151 * Note that the directly accessible bytes (data_end - data) 3152 * could be less than this "len". Those bytes could be 3153 * indirectly read by a helper "bpf_skb_load_bytes()". 3154 */ 3155 __u32 len; 3156 /* 3157 * Eth protocol in the mac header (network byte order). e.g. 3158 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 3159 */ 3160 __u32 eth_protocol; 3161 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 3162 __u32 bind_inany; /* Is sock bound to an INANY address? */ 3163 __u32 hash; /* A hash of the packet 4 tuples */ 3164 }; 3165 3166 #define BPF_TAG_SIZE 8 3167 3168 struct bpf_prog_info { 3169 __u32 type; 3170 __u32 id; 3171 __u8 tag[BPF_TAG_SIZE]; 3172 __u32 jited_prog_len; 3173 __u32 xlated_prog_len; 3174 __aligned_u64 jited_prog_insns; 3175 __aligned_u64 xlated_prog_insns; 3176 __u64 load_time; /* ns since boottime */ 3177 __u32 created_by_uid; 3178 __u32 nr_map_ids; 3179 __aligned_u64 map_ids; 3180 char name[BPF_OBJ_NAME_LEN]; 3181 __u32 ifindex; 3182 __u32 gpl_compatible:1; 3183 __u64 netns_dev; 3184 __u64 netns_ino; 3185 __u32 nr_jited_ksyms; 3186 __u32 nr_jited_func_lens; 3187 __aligned_u64 jited_ksyms; 3188 __aligned_u64 jited_func_lens; 3189 __u32 btf_id; 3190 __u32 func_info_rec_size; 3191 __aligned_u64 func_info; 3192 __u32 nr_func_info; 3193 __u32 nr_line_info; 3194 __aligned_u64 line_info; 3195 __aligned_u64 jited_line_info; 3196 __u32 nr_jited_line_info; 3197 __u32 line_info_rec_size; 3198 __u32 jited_line_info_rec_size; 3199 __u32 nr_prog_tags; 3200 __aligned_u64 prog_tags; 3201 __u64 run_time_ns; 3202 __u64 run_cnt; 3203 } __attribute__((aligned(8))); 3204 3205 struct bpf_map_info { 3206 __u32 type; 3207 __u32 id; 3208 __u32 key_size; 3209 __u32 value_size; 3210 __u32 max_entries; 3211 __u32 map_flags; 3212 char name[BPF_OBJ_NAME_LEN]; 3213 __u32 ifindex; 3214 __u32 :32; 3215 __u64 netns_dev; 3216 __u64 netns_ino; 3217 __u32 btf_id; 3218 __u32 btf_key_type_id; 3219 __u32 btf_value_type_id; 3220 } __attribute__((aligned(8))); 3221 3222 struct bpf_btf_info { 3223 __aligned_u64 btf; 3224 __u32 btf_size; 3225 __u32 id; 3226 } __attribute__((aligned(8))); 3227 3228 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 3229 * by user and intended to be used by socket (e.g. to bind to, depends on 3230 * attach attach type). 3231 */ 3232 struct bpf_sock_addr { 3233 __u32 user_family; /* Allows 4-byte read, but no write. */ 3234 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 3235 * Stored in network byte order. 3236 */ 3237 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 3238 * Stored in network byte order. 3239 */ 3240 __u32 user_port; /* Allows 4-byte read and write. 3241 * Stored in network byte order 3242 */ 3243 __u32 family; /* Allows 4-byte read, but no write */ 3244 __u32 type; /* Allows 4-byte read, but no write */ 3245 __u32 protocol; /* Allows 4-byte read, but no write */ 3246 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write. 3247 * Stored in network byte order. 3248 */ 3249 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 3250 * Stored in network byte order. 3251 */ 3252 __bpf_md_ptr(struct bpf_sock *, sk); 3253 }; 3254 3255 /* User bpf_sock_ops struct to access socket values and specify request ops 3256 * and their replies. 3257 * Some of this fields are in network (bigendian) byte order and may need 3258 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 3259 * New fields can only be added at the end of this structure 3260 */ 3261 struct bpf_sock_ops { 3262 __u32 op; 3263 union { 3264 __u32 args[4]; /* Optionally passed to bpf program */ 3265 __u32 reply; /* Returned by bpf program */ 3266 __u32 replylong[4]; /* Optionally returned by bpf prog */ 3267 }; 3268 __u32 family; 3269 __u32 remote_ip4; /* Stored in network byte order */ 3270 __u32 local_ip4; /* Stored in network byte order */ 3271 __u32 remote_ip6[4]; /* Stored in network byte order */ 3272 __u32 local_ip6[4]; /* Stored in network byte order */ 3273 __u32 remote_port; /* Stored in network byte order */ 3274 __u32 local_port; /* stored in host byte order */ 3275 __u32 is_fullsock; /* Some TCP fields are only valid if 3276 * there is a full socket. If not, the 3277 * fields read as zero. 3278 */ 3279 __u32 snd_cwnd; 3280 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 3281 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 3282 __u32 state; 3283 __u32 rtt_min; 3284 __u32 snd_ssthresh; 3285 __u32 rcv_nxt; 3286 __u32 snd_nxt; 3287 __u32 snd_una; 3288 __u32 mss_cache; 3289 __u32 ecn_flags; 3290 __u32 rate_delivered; 3291 __u32 rate_interval_us; 3292 __u32 packets_out; 3293 __u32 retrans_out; 3294 __u32 total_retrans; 3295 __u32 segs_in; 3296 __u32 data_segs_in; 3297 __u32 segs_out; 3298 __u32 data_segs_out; 3299 __u32 lost_out; 3300 __u32 sacked_out; 3301 __u32 sk_txhash; 3302 __u64 bytes_received; 3303 __u64 bytes_acked; 3304 __bpf_md_ptr(struct bpf_sock *, sk); 3305 }; 3306 3307 /* Definitions for bpf_sock_ops_cb_flags */ 3308 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0) 3309 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1) 3310 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2) 3311 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently 3312 * supported cb flags 3313 */ 3314 3315 /* List of known BPF sock_ops operators. 3316 * New entries can only be added at the end 3317 */ 3318 enum { 3319 BPF_SOCK_OPS_VOID, 3320 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 3321 * -1 if default value should be used 3322 */ 3323 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 3324 * window (in packets) or -1 if default 3325 * value should be used 3326 */ 3327 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 3328 * active connection is initialized 3329 */ 3330 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 3331 * active connection is 3332 * established 3333 */ 3334 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 3335 * passive connection is 3336 * established 3337 */ 3338 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 3339 * needs ECN 3340 */ 3341 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 3342 * based on the path and may be 3343 * dependent on the congestion control 3344 * algorithm. In general it indicates 3345 * a congestion threshold. RTTs above 3346 * this indicate congestion 3347 */ 3348 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 3349 * Arg1: value of icsk_retransmits 3350 * Arg2: value of icsk_rto 3351 * Arg3: whether RTO has expired 3352 */ 3353 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 3354 * Arg1: sequence number of 1st byte 3355 * Arg2: # segments 3356 * Arg3: return value of 3357 * tcp_transmit_skb (0 => success) 3358 */ 3359 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 3360 * Arg1: old_state 3361 * Arg2: new_state 3362 */ 3363 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 3364 * socket transition to LISTEN state. 3365 */ 3366 }; 3367 3368 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 3369 * changes between the TCP and BPF versions. Ideally this should never happen. 3370 * If it does, we need to add code to convert them before calling 3371 * the BPF sock_ops function. 3372 */ 3373 enum { 3374 BPF_TCP_ESTABLISHED = 1, 3375 BPF_TCP_SYN_SENT, 3376 BPF_TCP_SYN_RECV, 3377 BPF_TCP_FIN_WAIT1, 3378 BPF_TCP_FIN_WAIT2, 3379 BPF_TCP_TIME_WAIT, 3380 BPF_TCP_CLOSE, 3381 BPF_TCP_CLOSE_WAIT, 3382 BPF_TCP_LAST_ACK, 3383 BPF_TCP_LISTEN, 3384 BPF_TCP_CLOSING, /* Now a valid state */ 3385 BPF_TCP_NEW_SYN_RECV, 3386 3387 BPF_TCP_MAX_STATES /* Leave at the end! */ 3388 }; 3389 3390 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */ 3391 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */ 3392 3393 struct bpf_perf_event_value { 3394 __u64 counter; 3395 __u64 enabled; 3396 __u64 running; 3397 }; 3398 3399 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0) 3400 #define BPF_DEVCG_ACC_READ (1ULL << 1) 3401 #define BPF_DEVCG_ACC_WRITE (1ULL << 2) 3402 3403 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0) 3404 #define BPF_DEVCG_DEV_CHAR (1ULL << 1) 3405 3406 struct bpf_cgroup_dev_ctx { 3407 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 3408 __u32 access_type; 3409 __u32 major; 3410 __u32 minor; 3411 }; 3412 3413 struct bpf_raw_tracepoint_args { 3414 __u64 args[0]; 3415 }; 3416 3417 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 3418 * OUTPUT: Do lookup from egress perspective; default is ingress 3419 */ 3420 #define BPF_FIB_LOOKUP_DIRECT (1U << 0) 3421 #define BPF_FIB_LOOKUP_OUTPUT (1U << 1) 3422 3423 enum { 3424 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 3425 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 3426 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 3427 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 3428 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 3429 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 3430 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 3431 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 3432 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 3433 }; 3434 3435 struct bpf_fib_lookup { 3436 /* input: network family for lookup (AF_INET, AF_INET6) 3437 * output: network family of egress nexthop 3438 */ 3439 __u8 family; 3440 3441 /* set if lookup is to consider L4 data - e.g., FIB rules */ 3442 __u8 l4_protocol; 3443 __be16 sport; 3444 __be16 dport; 3445 3446 /* total length of packet from network header - used for MTU check */ 3447 __u16 tot_len; 3448 3449 /* input: L3 device index for lookup 3450 * output: device index from FIB lookup 3451 */ 3452 __u32 ifindex; 3453 3454 union { 3455 /* inputs to lookup */ 3456 __u8 tos; /* AF_INET */ 3457 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 3458 3459 /* output: metric of fib result (IPv4/IPv6 only) */ 3460 __u32 rt_metric; 3461 }; 3462 3463 union { 3464 __be32 ipv4_src; 3465 __u32 ipv6_src[4]; /* in6_addr; network order */ 3466 }; 3467 3468 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 3469 * network header. output: bpf_fib_lookup sets to gateway address 3470 * if FIB lookup returns gateway route 3471 */ 3472 union { 3473 __be32 ipv4_dst; 3474 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3475 }; 3476 3477 /* output */ 3478 __be16 h_vlan_proto; 3479 __be16 h_vlan_TCI; 3480 __u8 smac[6]; /* ETH_ALEN */ 3481 __u8 dmac[6]; /* ETH_ALEN */ 3482 }; 3483 3484 enum bpf_task_fd_type { 3485 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 3486 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 3487 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 3488 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 3489 BPF_FD_TYPE_UPROBE, /* filename + offset */ 3490 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 3491 }; 3492 3493 struct bpf_flow_keys { 3494 __u16 nhoff; 3495 __u16 thoff; 3496 __u16 addr_proto; /* ETH_P_* of valid addrs */ 3497 __u8 is_frag; 3498 __u8 is_first_frag; 3499 __u8 is_encap; 3500 __u8 ip_proto; 3501 __be16 n_proto; 3502 __be16 sport; 3503 __be16 dport; 3504 union { 3505 struct { 3506 __be32 ipv4_src; 3507 __be32 ipv4_dst; 3508 }; 3509 struct { 3510 __u32 ipv6_src[4]; /* in6_addr; network order */ 3511 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3512 }; 3513 }; 3514 }; 3515 3516 struct bpf_func_info { 3517 __u32 insn_off; 3518 __u32 type_id; 3519 }; 3520 3521 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 3522 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 3523 3524 struct bpf_line_info { 3525 __u32 insn_off; 3526 __u32 file_name_off; 3527 __u32 line_off; 3528 __u32 line_col; 3529 }; 3530 3531 struct bpf_spin_lock { 3532 __u32 val; 3533 }; 3534 3535 struct bpf_sysctl { 3536 __u32 write; /* Sysctl is being read (= 0) or written (= 1). 3537 * Allows 1,2,4-byte read, but no write. 3538 */ 3539 __u32 file_pos; /* Sysctl file position to read from, write to. 3540 * Allows 1,2,4-byte read an 4-byte write. 3541 */ 3542 }; 3543 3544 #endif /* _UAPI__LINUX_BPF_H__ */ 3545