1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef _UAPI__LINUX_BPF_H__ 9 #define _UAPI__LINUX_BPF_H__ 10 11 #include <linux/types.h> 12 #include <linux/bpf_common.h> 13 14 /* Extended instruction set based on top of classic BPF */ 15 16 /* instruction classes */ 17 #define BPF_JMP32 0x06 /* jmp mode in word width */ 18 #define BPF_ALU64 0x07 /* alu mode in double word width */ 19 20 /* ld/ldx fields */ 21 #define BPF_DW 0x18 /* double word (64-bit) */ 22 #define BPF_XADD 0xc0 /* exclusive add */ 23 24 /* alu/jmp fields */ 25 #define BPF_MOV 0xb0 /* mov reg to reg */ 26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 27 28 /* change endianness of a register */ 29 #define BPF_END 0xd0 /* flags for endianness conversion: */ 30 #define BPF_TO_LE 0x00 /* convert to little-endian */ 31 #define BPF_TO_BE 0x08 /* convert to big-endian */ 32 #define BPF_FROM_LE BPF_TO_LE 33 #define BPF_FROM_BE BPF_TO_BE 34 35 /* jmp encodings */ 36 #define BPF_JNE 0x50 /* jump != */ 37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 43 #define BPF_CALL 0x80 /* function call */ 44 #define BPF_EXIT 0x90 /* function return */ 45 46 /* Register numbers */ 47 enum { 48 BPF_REG_0 = 0, 49 BPF_REG_1, 50 BPF_REG_2, 51 BPF_REG_3, 52 BPF_REG_4, 53 BPF_REG_5, 54 BPF_REG_6, 55 BPF_REG_7, 56 BPF_REG_8, 57 BPF_REG_9, 58 BPF_REG_10, 59 __MAX_BPF_REG, 60 }; 61 62 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 63 #define MAX_BPF_REG __MAX_BPF_REG 64 65 struct bpf_insn { 66 __u8 code; /* opcode */ 67 __u8 dst_reg:4; /* dest register */ 68 __u8 src_reg:4; /* source register */ 69 __s16 off; /* signed offset */ 70 __s32 imm; /* signed immediate constant */ 71 }; 72 73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 74 struct bpf_lpm_trie_key { 75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 76 __u8 data[0]; /* Arbitrary size */ 77 }; 78 79 struct bpf_cgroup_storage_key { 80 __u64 cgroup_inode_id; /* cgroup inode id */ 81 __u32 attach_type; /* program attach type */ 82 }; 83 84 /* BPF syscall commands, see bpf(2) man-page for details. */ 85 enum bpf_cmd { 86 BPF_MAP_CREATE, 87 BPF_MAP_LOOKUP_ELEM, 88 BPF_MAP_UPDATE_ELEM, 89 BPF_MAP_DELETE_ELEM, 90 BPF_MAP_GET_NEXT_KEY, 91 BPF_PROG_LOAD, 92 BPF_OBJ_PIN, 93 BPF_OBJ_GET, 94 BPF_PROG_ATTACH, 95 BPF_PROG_DETACH, 96 BPF_PROG_TEST_RUN, 97 BPF_PROG_GET_NEXT_ID, 98 BPF_MAP_GET_NEXT_ID, 99 BPF_PROG_GET_FD_BY_ID, 100 BPF_MAP_GET_FD_BY_ID, 101 BPF_OBJ_GET_INFO_BY_FD, 102 BPF_PROG_QUERY, 103 BPF_RAW_TRACEPOINT_OPEN, 104 BPF_BTF_LOAD, 105 BPF_BTF_GET_FD_BY_ID, 106 BPF_TASK_FD_QUERY, 107 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 108 BPF_MAP_FREEZE, 109 }; 110 111 enum bpf_map_type { 112 BPF_MAP_TYPE_UNSPEC, 113 BPF_MAP_TYPE_HASH, 114 BPF_MAP_TYPE_ARRAY, 115 BPF_MAP_TYPE_PROG_ARRAY, 116 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 117 BPF_MAP_TYPE_PERCPU_HASH, 118 BPF_MAP_TYPE_PERCPU_ARRAY, 119 BPF_MAP_TYPE_STACK_TRACE, 120 BPF_MAP_TYPE_CGROUP_ARRAY, 121 BPF_MAP_TYPE_LRU_HASH, 122 BPF_MAP_TYPE_LRU_PERCPU_HASH, 123 BPF_MAP_TYPE_LPM_TRIE, 124 BPF_MAP_TYPE_ARRAY_OF_MAPS, 125 BPF_MAP_TYPE_HASH_OF_MAPS, 126 BPF_MAP_TYPE_DEVMAP, 127 BPF_MAP_TYPE_SOCKMAP, 128 BPF_MAP_TYPE_CPUMAP, 129 BPF_MAP_TYPE_XSKMAP, 130 BPF_MAP_TYPE_SOCKHASH, 131 BPF_MAP_TYPE_CGROUP_STORAGE, 132 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 133 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 134 BPF_MAP_TYPE_QUEUE, 135 BPF_MAP_TYPE_STACK, 136 BPF_MAP_TYPE_SK_STORAGE, 137 }; 138 139 /* Note that tracing related programs such as 140 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 141 * are not subject to a stable API since kernel internal data 142 * structures can change from release to release and may 143 * therefore break existing tracing BPF programs. Tracing BPF 144 * programs correspond to /a/ specific kernel which is to be 145 * analyzed, and not /a/ specific kernel /and/ all future ones. 146 */ 147 enum bpf_prog_type { 148 BPF_PROG_TYPE_UNSPEC, 149 BPF_PROG_TYPE_SOCKET_FILTER, 150 BPF_PROG_TYPE_KPROBE, 151 BPF_PROG_TYPE_SCHED_CLS, 152 BPF_PROG_TYPE_SCHED_ACT, 153 BPF_PROG_TYPE_TRACEPOINT, 154 BPF_PROG_TYPE_XDP, 155 BPF_PROG_TYPE_PERF_EVENT, 156 BPF_PROG_TYPE_CGROUP_SKB, 157 BPF_PROG_TYPE_CGROUP_SOCK, 158 BPF_PROG_TYPE_LWT_IN, 159 BPF_PROG_TYPE_LWT_OUT, 160 BPF_PROG_TYPE_LWT_XMIT, 161 BPF_PROG_TYPE_SOCK_OPS, 162 BPF_PROG_TYPE_SK_SKB, 163 BPF_PROG_TYPE_CGROUP_DEVICE, 164 BPF_PROG_TYPE_SK_MSG, 165 BPF_PROG_TYPE_RAW_TRACEPOINT, 166 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 167 BPF_PROG_TYPE_LWT_SEG6LOCAL, 168 BPF_PROG_TYPE_LIRC_MODE2, 169 BPF_PROG_TYPE_SK_REUSEPORT, 170 BPF_PROG_TYPE_FLOW_DISSECTOR, 171 BPF_PROG_TYPE_CGROUP_SYSCTL, 172 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, 173 }; 174 175 enum bpf_attach_type { 176 BPF_CGROUP_INET_INGRESS, 177 BPF_CGROUP_INET_EGRESS, 178 BPF_CGROUP_INET_SOCK_CREATE, 179 BPF_CGROUP_SOCK_OPS, 180 BPF_SK_SKB_STREAM_PARSER, 181 BPF_SK_SKB_STREAM_VERDICT, 182 BPF_CGROUP_DEVICE, 183 BPF_SK_MSG_VERDICT, 184 BPF_CGROUP_INET4_BIND, 185 BPF_CGROUP_INET6_BIND, 186 BPF_CGROUP_INET4_CONNECT, 187 BPF_CGROUP_INET6_CONNECT, 188 BPF_CGROUP_INET4_POST_BIND, 189 BPF_CGROUP_INET6_POST_BIND, 190 BPF_CGROUP_UDP4_SENDMSG, 191 BPF_CGROUP_UDP6_SENDMSG, 192 BPF_LIRC_MODE2, 193 BPF_FLOW_DISSECTOR, 194 BPF_CGROUP_SYSCTL, 195 __MAX_BPF_ATTACH_TYPE 196 }; 197 198 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 199 200 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 201 * 202 * NONE(default): No further bpf programs allowed in the subtree. 203 * 204 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 205 * the program in this cgroup yields to sub-cgroup program. 206 * 207 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 208 * that cgroup program gets run in addition to the program in this cgroup. 209 * 210 * Only one program is allowed to be attached to a cgroup with 211 * NONE or BPF_F_ALLOW_OVERRIDE flag. 212 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 213 * release old program and attach the new one. Attach flags has to match. 214 * 215 * Multiple programs are allowed to be attached to a cgroup with 216 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 217 * (those that were attached first, run first) 218 * The programs of sub-cgroup are executed first, then programs of 219 * this cgroup and then programs of parent cgroup. 220 * When children program makes decision (like picking TCP CA or sock bind) 221 * parent program has a chance to override it. 222 * 223 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 224 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 225 * Ex1: 226 * cgrp1 (MULTI progs A, B) -> 227 * cgrp2 (OVERRIDE prog C) -> 228 * cgrp3 (MULTI prog D) -> 229 * cgrp4 (OVERRIDE prog E) -> 230 * cgrp5 (NONE prog F) 231 * the event in cgrp5 triggers execution of F,D,A,B in that order. 232 * if prog F is detached, the execution is E,D,A,B 233 * if prog F and D are detached, the execution is E,A,B 234 * if prog F, E and D are detached, the execution is C,A,B 235 * 236 * All eligible programs are executed regardless of return code from 237 * earlier programs. 238 */ 239 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 240 #define BPF_F_ALLOW_MULTI (1U << 1) 241 242 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 243 * verifier will perform strict alignment checking as if the kernel 244 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 245 * and NET_IP_ALIGN defined to 2. 246 */ 247 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 248 249 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 250 * verifier will allow any alignment whatsoever. On platforms 251 * with strict alignment requirements for loads ands stores (such 252 * as sparc and mips) the verifier validates that all loads and 253 * stores provably follow this requirement. This flag turns that 254 * checking and enforcement off. 255 * 256 * It is mostly used for testing when we want to validate the 257 * context and memory access aspects of the verifier, but because 258 * of an unaligned access the alignment check would trigger before 259 * the one we are interested in. 260 */ 261 #define BPF_F_ANY_ALIGNMENT (1U << 1) 262 263 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have 264 * two extensions: 265 * 266 * insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE 267 * insn[0].imm: map fd map fd 268 * insn[1].imm: 0 offset into value 269 * insn[0].off: 0 0 270 * insn[1].off: 0 0 271 * ldimm64 rewrite: address of map address of map[0]+offset 272 * verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE 273 */ 274 #define BPF_PSEUDO_MAP_FD 1 275 #define BPF_PSEUDO_MAP_VALUE 2 276 277 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 278 * offset to another bpf function 279 */ 280 #define BPF_PSEUDO_CALL 1 281 282 /* flags for BPF_MAP_UPDATE_ELEM command */ 283 #define BPF_ANY 0 /* create new element or update existing */ 284 #define BPF_NOEXIST 1 /* create new element if it didn't exist */ 285 #define BPF_EXIST 2 /* update existing element */ 286 #define BPF_F_LOCK 4 /* spin_lock-ed map_lookup/map_update */ 287 288 /* flags for BPF_MAP_CREATE command */ 289 #define BPF_F_NO_PREALLOC (1U << 0) 290 /* Instead of having one common LRU list in the 291 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 292 * which can scale and perform better. 293 * Note, the LRU nodes (including free nodes) cannot be moved 294 * across different LRU lists. 295 */ 296 #define BPF_F_NO_COMMON_LRU (1U << 1) 297 /* Specify numa node during map creation */ 298 #define BPF_F_NUMA_NODE (1U << 2) 299 300 #define BPF_OBJ_NAME_LEN 16U 301 302 /* Flags for accessing BPF object from syscall side. */ 303 #define BPF_F_RDONLY (1U << 3) 304 #define BPF_F_WRONLY (1U << 4) 305 306 /* Flag for stack_map, store build_id+offset instead of pointer */ 307 #define BPF_F_STACK_BUILD_ID (1U << 5) 308 309 /* Zero-initialize hash function seed. This should only be used for testing. */ 310 #define BPF_F_ZERO_SEED (1U << 6) 311 312 /* Flags for accessing BPF object from program side. */ 313 #define BPF_F_RDONLY_PROG (1U << 7) 314 #define BPF_F_WRONLY_PROG (1U << 8) 315 316 /* flags for BPF_PROG_QUERY */ 317 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 318 319 enum bpf_stack_build_id_status { 320 /* user space need an empty entry to identify end of a trace */ 321 BPF_STACK_BUILD_ID_EMPTY = 0, 322 /* with valid build_id and offset */ 323 BPF_STACK_BUILD_ID_VALID = 1, 324 /* couldn't get build_id, fallback to ip */ 325 BPF_STACK_BUILD_ID_IP = 2, 326 }; 327 328 #define BPF_BUILD_ID_SIZE 20 329 struct bpf_stack_build_id { 330 __s32 status; 331 unsigned char build_id[BPF_BUILD_ID_SIZE]; 332 union { 333 __u64 offset; 334 __u64 ip; 335 }; 336 }; 337 338 union bpf_attr { 339 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 340 __u32 map_type; /* one of enum bpf_map_type */ 341 __u32 key_size; /* size of key in bytes */ 342 __u32 value_size; /* size of value in bytes */ 343 __u32 max_entries; /* max number of entries in a map */ 344 __u32 map_flags; /* BPF_MAP_CREATE related 345 * flags defined above. 346 */ 347 __u32 inner_map_fd; /* fd pointing to the inner map */ 348 __u32 numa_node; /* numa node (effective only if 349 * BPF_F_NUMA_NODE is set). 350 */ 351 char map_name[BPF_OBJ_NAME_LEN]; 352 __u32 map_ifindex; /* ifindex of netdev to create on */ 353 __u32 btf_fd; /* fd pointing to a BTF type data */ 354 __u32 btf_key_type_id; /* BTF type_id of the key */ 355 __u32 btf_value_type_id; /* BTF type_id of the value */ 356 }; 357 358 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 359 __u32 map_fd; 360 __aligned_u64 key; 361 union { 362 __aligned_u64 value; 363 __aligned_u64 next_key; 364 }; 365 __u64 flags; 366 }; 367 368 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 369 __u32 prog_type; /* one of enum bpf_prog_type */ 370 __u32 insn_cnt; 371 __aligned_u64 insns; 372 __aligned_u64 license; 373 __u32 log_level; /* verbosity level of verifier */ 374 __u32 log_size; /* size of user buffer */ 375 __aligned_u64 log_buf; /* user supplied buffer */ 376 __u32 kern_version; /* not used */ 377 __u32 prog_flags; 378 char prog_name[BPF_OBJ_NAME_LEN]; 379 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 380 /* For some prog types expected attach type must be known at 381 * load time to verify attach type specific parts of prog 382 * (context accesses, allowed helpers, etc). 383 */ 384 __u32 expected_attach_type; 385 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 386 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 387 __aligned_u64 func_info; /* func info */ 388 __u32 func_info_cnt; /* number of bpf_func_info records */ 389 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 390 __aligned_u64 line_info; /* line info */ 391 __u32 line_info_cnt; /* number of bpf_line_info records */ 392 }; 393 394 struct { /* anonymous struct used by BPF_OBJ_* commands */ 395 __aligned_u64 pathname; 396 __u32 bpf_fd; 397 __u32 file_flags; 398 }; 399 400 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 401 __u32 target_fd; /* container object to attach to */ 402 __u32 attach_bpf_fd; /* eBPF program to attach */ 403 __u32 attach_type; 404 __u32 attach_flags; 405 }; 406 407 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 408 __u32 prog_fd; 409 __u32 retval; 410 __u32 data_size_in; /* input: len of data_in */ 411 __u32 data_size_out; /* input/output: len of data_out 412 * returns ENOSPC if data_out 413 * is too small. 414 */ 415 __aligned_u64 data_in; 416 __aligned_u64 data_out; 417 __u32 repeat; 418 __u32 duration; 419 __u32 ctx_size_in; /* input: len of ctx_in */ 420 __u32 ctx_size_out; /* input/output: len of ctx_out 421 * returns ENOSPC if ctx_out 422 * is too small. 423 */ 424 __aligned_u64 ctx_in; 425 __aligned_u64 ctx_out; 426 } test; 427 428 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 429 union { 430 __u32 start_id; 431 __u32 prog_id; 432 __u32 map_id; 433 __u32 btf_id; 434 }; 435 __u32 next_id; 436 __u32 open_flags; 437 }; 438 439 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 440 __u32 bpf_fd; 441 __u32 info_len; 442 __aligned_u64 info; 443 } info; 444 445 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 446 __u32 target_fd; /* container object to query */ 447 __u32 attach_type; 448 __u32 query_flags; 449 __u32 attach_flags; 450 __aligned_u64 prog_ids; 451 __u32 prog_cnt; 452 } query; 453 454 struct { 455 __u64 name; 456 __u32 prog_fd; 457 } raw_tracepoint; 458 459 struct { /* anonymous struct for BPF_BTF_LOAD */ 460 __aligned_u64 btf; 461 __aligned_u64 btf_log_buf; 462 __u32 btf_size; 463 __u32 btf_log_size; 464 __u32 btf_log_level; 465 }; 466 467 struct { 468 __u32 pid; /* input: pid */ 469 __u32 fd; /* input: fd */ 470 __u32 flags; /* input: flags */ 471 __u32 buf_len; /* input/output: buf len */ 472 __aligned_u64 buf; /* input/output: 473 * tp_name for tracepoint 474 * symbol for kprobe 475 * filename for uprobe 476 */ 477 __u32 prog_id; /* output: prod_id */ 478 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 479 __u64 probe_offset; /* output: probe_offset */ 480 __u64 probe_addr; /* output: probe_addr */ 481 } task_fd_query; 482 } __attribute__((aligned(8))); 483 484 /* The description below is an attempt at providing documentation to eBPF 485 * developers about the multiple available eBPF helper functions. It can be 486 * parsed and used to produce a manual page. The workflow is the following, 487 * and requires the rst2man utility: 488 * 489 * $ ./scripts/bpf_helpers_doc.py \ 490 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 491 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 492 * $ man /tmp/bpf-helpers.7 493 * 494 * Note that in order to produce this external documentation, some RST 495 * formatting is used in the descriptions to get "bold" and "italics" in 496 * manual pages. Also note that the few trailing white spaces are 497 * intentional, removing them would break paragraphs for rst2man. 498 * 499 * Start of BPF helper function descriptions: 500 * 501 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 502 * Description 503 * Perform a lookup in *map* for an entry associated to *key*. 504 * Return 505 * Map value associated to *key*, or **NULL** if no entry was 506 * found. 507 * 508 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 509 * Description 510 * Add or update the value of the entry associated to *key* in 511 * *map* with *value*. *flags* is one of: 512 * 513 * **BPF_NOEXIST** 514 * The entry for *key* must not exist in the map. 515 * **BPF_EXIST** 516 * The entry for *key* must already exist in the map. 517 * **BPF_ANY** 518 * No condition on the existence of the entry for *key*. 519 * 520 * Flag value **BPF_NOEXIST** cannot be used for maps of types 521 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 522 * elements always exist), the helper would return an error. 523 * Return 524 * 0 on success, or a negative error in case of failure. 525 * 526 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 527 * Description 528 * Delete entry with *key* from *map*. 529 * Return 530 * 0 on success, or a negative error in case of failure. 531 * 532 * int bpf_probe_read(void *dst, u32 size, const void *src) 533 * Description 534 * For tracing programs, safely attempt to read *size* bytes from 535 * address *src* and store the data in *dst*. 536 * Return 537 * 0 on success, or a negative error in case of failure. 538 * 539 * u64 bpf_ktime_get_ns(void) 540 * Description 541 * Return the time elapsed since system boot, in nanoseconds. 542 * Return 543 * Current *ktime*. 544 * 545 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 546 * Description 547 * This helper is a "printk()-like" facility for debugging. It 548 * prints a message defined by format *fmt* (of size *fmt_size*) 549 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 550 * available. It can take up to three additional **u64** 551 * arguments (as an eBPF helpers, the total number of arguments is 552 * limited to five). 553 * 554 * Each time the helper is called, it appends a line to the trace. 555 * The format of the trace is customizable, and the exact output 556 * one will get depends on the options set in 557 * *\/sys/kernel/debug/tracing/trace_options* (see also the 558 * *README* file under the same directory). However, it usually 559 * defaults to something like: 560 * 561 * :: 562 * 563 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 564 * 565 * In the above: 566 * 567 * * ``telnet`` is the name of the current task. 568 * * ``470`` is the PID of the current task. 569 * * ``001`` is the CPU number on which the task is 570 * running. 571 * * In ``.N..``, each character refers to a set of 572 * options (whether irqs are enabled, scheduling 573 * options, whether hard/softirqs are running, level of 574 * preempt_disabled respectively). **N** means that 575 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 576 * are set. 577 * * ``419421.045894`` is a timestamp. 578 * * ``0x00000001`` is a fake value used by BPF for the 579 * instruction pointer register. 580 * * ``<formatted msg>`` is the message formatted with 581 * *fmt*. 582 * 583 * The conversion specifiers supported by *fmt* are similar, but 584 * more limited than for printk(). They are **%d**, **%i**, 585 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 586 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 587 * of field, padding with zeroes, etc.) is available, and the 588 * helper will return **-EINVAL** (but print nothing) if it 589 * encounters an unknown specifier. 590 * 591 * Also, note that **bpf_trace_printk**\ () is slow, and should 592 * only be used for debugging purposes. For this reason, a notice 593 * bloc (spanning several lines) is printed to kernel logs and 594 * states that the helper should not be used "for production use" 595 * the first time this helper is used (or more precisely, when 596 * **trace_printk**\ () buffers are allocated). For passing values 597 * to user space, perf events should be preferred. 598 * Return 599 * The number of bytes written to the buffer, or a negative error 600 * in case of failure. 601 * 602 * u32 bpf_get_prandom_u32(void) 603 * Description 604 * Get a pseudo-random number. 605 * 606 * From a security point of view, this helper uses its own 607 * pseudo-random internal state, and cannot be used to infer the 608 * seed of other random functions in the kernel. However, it is 609 * essential to note that the generator used by the helper is not 610 * cryptographically secure. 611 * Return 612 * A random 32-bit unsigned value. 613 * 614 * u32 bpf_get_smp_processor_id(void) 615 * Description 616 * Get the SMP (symmetric multiprocessing) processor id. Note that 617 * all programs run with preemption disabled, which means that the 618 * SMP processor id is stable during all the execution of the 619 * program. 620 * Return 621 * The SMP id of the processor running the program. 622 * 623 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 624 * Description 625 * Store *len* bytes from address *from* into the packet 626 * associated to *skb*, at *offset*. *flags* are a combination of 627 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 628 * checksum for the packet after storing the bytes) and 629 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 630 * **->swhash** and *skb*\ **->l4hash** to 0). 631 * 632 * A call to this helper is susceptible to change the underlying 633 * packet buffer. Therefore, at load time, all checks on pointers 634 * previously done by the verifier are invalidated and must be 635 * performed again, if the helper is used in combination with 636 * direct packet access. 637 * Return 638 * 0 on success, or a negative error in case of failure. 639 * 640 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 641 * Description 642 * Recompute the layer 3 (e.g. IP) checksum for the packet 643 * associated to *skb*. Computation is incremental, so the helper 644 * must know the former value of the header field that was 645 * modified (*from*), the new value of this field (*to*), and the 646 * number of bytes (2 or 4) for this field, stored in *size*. 647 * Alternatively, it is possible to store the difference between 648 * the previous and the new values of the header field in *to*, by 649 * setting *from* and *size* to 0. For both methods, *offset* 650 * indicates the location of the IP checksum within the packet. 651 * 652 * This helper works in combination with **bpf_csum_diff**\ (), 653 * which does not update the checksum in-place, but offers more 654 * flexibility and can handle sizes larger than 2 or 4 for the 655 * checksum to update. 656 * 657 * A call to this helper is susceptible to change the underlying 658 * packet buffer. Therefore, at load time, all checks on pointers 659 * previously done by the verifier are invalidated and must be 660 * performed again, if the helper is used in combination with 661 * direct packet access. 662 * Return 663 * 0 on success, or a negative error in case of failure. 664 * 665 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 666 * Description 667 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 668 * packet associated to *skb*. Computation is incremental, so the 669 * helper must know the former value of the header field that was 670 * modified (*from*), the new value of this field (*to*), and the 671 * number of bytes (2 or 4) for this field, stored on the lowest 672 * four bits of *flags*. Alternatively, it is possible to store 673 * the difference between the previous and the new values of the 674 * header field in *to*, by setting *from* and the four lowest 675 * bits of *flags* to 0. For both methods, *offset* indicates the 676 * location of the IP checksum within the packet. In addition to 677 * the size of the field, *flags* can be added (bitwise OR) actual 678 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 679 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 680 * for updates resulting in a null checksum the value is set to 681 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 682 * the checksum is to be computed against a pseudo-header. 683 * 684 * This helper works in combination with **bpf_csum_diff**\ (), 685 * which does not update the checksum in-place, but offers more 686 * flexibility and can handle sizes larger than 2 or 4 for the 687 * checksum to update. 688 * 689 * A call to this helper is susceptible to change the underlying 690 * packet buffer. Therefore, at load time, all checks on pointers 691 * previously done by the verifier are invalidated and must be 692 * performed again, if the helper is used in combination with 693 * direct packet access. 694 * Return 695 * 0 on success, or a negative error in case of failure. 696 * 697 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 698 * Description 699 * This special helper is used to trigger a "tail call", or in 700 * other words, to jump into another eBPF program. The same stack 701 * frame is used (but values on stack and in registers for the 702 * caller are not accessible to the callee). This mechanism allows 703 * for program chaining, either for raising the maximum number of 704 * available eBPF instructions, or to execute given programs in 705 * conditional blocks. For security reasons, there is an upper 706 * limit to the number of successive tail calls that can be 707 * performed. 708 * 709 * Upon call of this helper, the program attempts to jump into a 710 * program referenced at index *index* in *prog_array_map*, a 711 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 712 * *ctx*, a pointer to the context. 713 * 714 * If the call succeeds, the kernel immediately runs the first 715 * instruction of the new program. This is not a function call, 716 * and it never returns to the previous program. If the call 717 * fails, then the helper has no effect, and the caller continues 718 * to run its subsequent instructions. A call can fail if the 719 * destination program for the jump does not exist (i.e. *index* 720 * is superior to the number of entries in *prog_array_map*), or 721 * if the maximum number of tail calls has been reached for this 722 * chain of programs. This limit is defined in the kernel by the 723 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 724 * which is currently set to 32. 725 * Return 726 * 0 on success, or a negative error in case of failure. 727 * 728 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 729 * Description 730 * Clone and redirect the packet associated to *skb* to another 731 * net device of index *ifindex*. Both ingress and egress 732 * interfaces can be used for redirection. The **BPF_F_INGRESS** 733 * value in *flags* is used to make the distinction (ingress path 734 * is selected if the flag is present, egress path otherwise). 735 * This is the only flag supported for now. 736 * 737 * In comparison with **bpf_redirect**\ () helper, 738 * **bpf_clone_redirect**\ () has the associated cost of 739 * duplicating the packet buffer, but this can be executed out of 740 * the eBPF program. Conversely, **bpf_redirect**\ () is more 741 * efficient, but it is handled through an action code where the 742 * redirection happens only after the eBPF program has returned. 743 * 744 * A call to this helper is susceptible to change the underlying 745 * packet buffer. Therefore, at load time, all checks on pointers 746 * previously done by the verifier are invalidated and must be 747 * performed again, if the helper is used in combination with 748 * direct packet access. 749 * Return 750 * 0 on success, or a negative error in case of failure. 751 * 752 * u64 bpf_get_current_pid_tgid(void) 753 * Return 754 * A 64-bit integer containing the current tgid and pid, and 755 * created as such: 756 * *current_task*\ **->tgid << 32 \|** 757 * *current_task*\ **->pid**. 758 * 759 * u64 bpf_get_current_uid_gid(void) 760 * Return 761 * A 64-bit integer containing the current GID and UID, and 762 * created as such: *current_gid* **<< 32 \|** *current_uid*. 763 * 764 * int bpf_get_current_comm(char *buf, u32 size_of_buf) 765 * Description 766 * Copy the **comm** attribute of the current task into *buf* of 767 * *size_of_buf*. The **comm** attribute contains the name of 768 * the executable (excluding the path) for the current task. The 769 * *size_of_buf* must be strictly positive. On success, the 770 * helper makes sure that the *buf* is NUL-terminated. On failure, 771 * it is filled with zeroes. 772 * Return 773 * 0 on success, or a negative error in case of failure. 774 * 775 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 776 * Description 777 * Retrieve the classid for the current task, i.e. for the net_cls 778 * cgroup to which *skb* belongs. 779 * 780 * This helper can be used on TC egress path, but not on ingress. 781 * 782 * The net_cls cgroup provides an interface to tag network packets 783 * based on a user-provided identifier for all traffic coming from 784 * the tasks belonging to the related cgroup. See also the related 785 * kernel documentation, available from the Linux sources in file 786 * *Documentation/cgroup-v1/net_cls.txt*. 787 * 788 * The Linux kernel has two versions for cgroups: there are 789 * cgroups v1 and cgroups v2. Both are available to users, who can 790 * use a mixture of them, but note that the net_cls cgroup is for 791 * cgroup v1 only. This makes it incompatible with BPF programs 792 * run on cgroups, which is a cgroup-v2-only feature (a socket can 793 * only hold data for one version of cgroups at a time). 794 * 795 * This helper is only available is the kernel was compiled with 796 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 797 * "**y**" or to "**m**". 798 * Return 799 * The classid, or 0 for the default unconfigured classid. 800 * 801 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 802 * Description 803 * Push a *vlan_tci* (VLAN tag control information) of protocol 804 * *vlan_proto* to the packet associated to *skb*, then update 805 * the checksum. Note that if *vlan_proto* is different from 806 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 807 * be **ETH_P_8021Q**. 808 * 809 * A call to this helper is susceptible to change the underlying 810 * packet buffer. Therefore, at load time, all checks on pointers 811 * previously done by the verifier are invalidated and must be 812 * performed again, if the helper is used in combination with 813 * direct packet access. 814 * Return 815 * 0 on success, or a negative error in case of failure. 816 * 817 * int bpf_skb_vlan_pop(struct sk_buff *skb) 818 * Description 819 * Pop a VLAN header from the packet associated to *skb*. 820 * 821 * A call to this helper is susceptible to change the underlying 822 * packet buffer. Therefore, at load time, all checks on pointers 823 * previously done by the verifier are invalidated and must be 824 * performed again, if the helper is used in combination with 825 * direct packet access. 826 * Return 827 * 0 on success, or a negative error in case of failure. 828 * 829 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 830 * Description 831 * Get tunnel metadata. This helper takes a pointer *key* to an 832 * empty **struct bpf_tunnel_key** of **size**, that will be 833 * filled with tunnel metadata for the packet associated to *skb*. 834 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 835 * indicates that the tunnel is based on IPv6 protocol instead of 836 * IPv4. 837 * 838 * The **struct bpf_tunnel_key** is an object that generalizes the 839 * principal parameters used by various tunneling protocols into a 840 * single struct. This way, it can be used to easily make a 841 * decision based on the contents of the encapsulation header, 842 * "summarized" in this struct. In particular, it holds the IP 843 * address of the remote end (IPv4 or IPv6, depending on the case) 844 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 845 * this struct exposes the *key*\ **->tunnel_id**, which is 846 * generally mapped to a VNI (Virtual Network Identifier), making 847 * it programmable together with the **bpf_skb_set_tunnel_key**\ 848 * () helper. 849 * 850 * Let's imagine that the following code is part of a program 851 * attached to the TC ingress interface, on one end of a GRE 852 * tunnel, and is supposed to filter out all messages coming from 853 * remote ends with IPv4 address other than 10.0.0.1: 854 * 855 * :: 856 * 857 * int ret; 858 * struct bpf_tunnel_key key = {}; 859 * 860 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 861 * if (ret < 0) 862 * return TC_ACT_SHOT; // drop packet 863 * 864 * if (key.remote_ipv4 != 0x0a000001) 865 * return TC_ACT_SHOT; // drop packet 866 * 867 * return TC_ACT_OK; // accept packet 868 * 869 * This interface can also be used with all encapsulation devices 870 * that can operate in "collect metadata" mode: instead of having 871 * one network device per specific configuration, the "collect 872 * metadata" mode only requires a single device where the 873 * configuration can be extracted from this helper. 874 * 875 * This can be used together with various tunnels such as VXLan, 876 * Geneve, GRE or IP in IP (IPIP). 877 * Return 878 * 0 on success, or a negative error in case of failure. 879 * 880 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 881 * Description 882 * Populate tunnel metadata for packet associated to *skb.* The 883 * tunnel metadata is set to the contents of *key*, of *size*. The 884 * *flags* can be set to a combination of the following values: 885 * 886 * **BPF_F_TUNINFO_IPV6** 887 * Indicate that the tunnel is based on IPv6 protocol 888 * instead of IPv4. 889 * **BPF_F_ZERO_CSUM_TX** 890 * For IPv4 packets, add a flag to tunnel metadata 891 * indicating that checksum computation should be skipped 892 * and checksum set to zeroes. 893 * **BPF_F_DONT_FRAGMENT** 894 * Add a flag to tunnel metadata indicating that the 895 * packet should not be fragmented. 896 * **BPF_F_SEQ_NUMBER** 897 * Add a flag to tunnel metadata indicating that a 898 * sequence number should be added to tunnel header before 899 * sending the packet. This flag was added for GRE 900 * encapsulation, but might be used with other protocols 901 * as well in the future. 902 * 903 * Here is a typical usage on the transmit path: 904 * 905 * :: 906 * 907 * struct bpf_tunnel_key key; 908 * populate key ... 909 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 910 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 911 * 912 * See also the description of the **bpf_skb_get_tunnel_key**\ () 913 * helper for additional information. 914 * Return 915 * 0 on success, or a negative error in case of failure. 916 * 917 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 918 * Description 919 * Read the value of a perf event counter. This helper relies on a 920 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 921 * the perf event counter is selected when *map* is updated with 922 * perf event file descriptors. The *map* is an array whose size 923 * is the number of available CPUs, and each cell contains a value 924 * relative to one CPU. The value to retrieve is indicated by 925 * *flags*, that contains the index of the CPU to look up, masked 926 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 927 * **BPF_F_CURRENT_CPU** to indicate that the value for the 928 * current CPU should be retrieved. 929 * 930 * Note that before Linux 4.13, only hardware perf event can be 931 * retrieved. 932 * 933 * Also, be aware that the newer helper 934 * **bpf_perf_event_read_value**\ () is recommended over 935 * **bpf_perf_event_read**\ () in general. The latter has some ABI 936 * quirks where error and counter value are used as a return code 937 * (which is wrong to do since ranges may overlap). This issue is 938 * fixed with **bpf_perf_event_read_value**\ (), which at the same 939 * time provides more features over the **bpf_perf_event_read**\ 940 * () interface. Please refer to the description of 941 * **bpf_perf_event_read_value**\ () for details. 942 * Return 943 * The value of the perf event counter read from the map, or a 944 * negative error code in case of failure. 945 * 946 * int bpf_redirect(u32 ifindex, u64 flags) 947 * Description 948 * Redirect the packet to another net device of index *ifindex*. 949 * This helper is somewhat similar to **bpf_clone_redirect**\ 950 * (), except that the packet is not cloned, which provides 951 * increased performance. 952 * 953 * Except for XDP, both ingress and egress interfaces can be used 954 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 955 * to make the distinction (ingress path is selected if the flag 956 * is present, egress path otherwise). Currently, XDP only 957 * supports redirection to the egress interface, and accepts no 958 * flag at all. 959 * 960 * The same effect can be attained with the more generic 961 * **bpf_redirect_map**\ (), which requires specific maps to be 962 * used but offers better performance. 963 * Return 964 * For XDP, the helper returns **XDP_REDIRECT** on success or 965 * **XDP_ABORTED** on error. For other program types, the values 966 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 967 * error. 968 * 969 * u32 bpf_get_route_realm(struct sk_buff *skb) 970 * Description 971 * Retrieve the realm or the route, that is to say the 972 * **tclassid** field of the destination for the *skb*. The 973 * indentifier retrieved is a user-provided tag, similar to the 974 * one used with the net_cls cgroup (see description for 975 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 976 * held by a route (a destination entry), not by a task. 977 * 978 * Retrieving this identifier works with the clsact TC egress hook 979 * (see also **tc-bpf(8)**), or alternatively on conventional 980 * classful egress qdiscs, but not on TC ingress path. In case of 981 * clsact TC egress hook, this has the advantage that, internally, 982 * the destination entry has not been dropped yet in the transmit 983 * path. Therefore, the destination entry does not need to be 984 * artificially held via **netif_keep_dst**\ () for a classful 985 * qdisc until the *skb* is freed. 986 * 987 * This helper is available only if the kernel was compiled with 988 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 989 * Return 990 * The realm of the route for the packet associated to *skb*, or 0 991 * if none was found. 992 * 993 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 994 * Description 995 * Write raw *data* blob into a special BPF perf event held by 996 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 997 * event must have the following attributes: **PERF_SAMPLE_RAW** 998 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 999 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 1000 * 1001 * The *flags* are used to indicate the index in *map* for which 1002 * the value must be put, masked with **BPF_F_INDEX_MASK**. 1003 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 1004 * to indicate that the index of the current CPU core should be 1005 * used. 1006 * 1007 * The value to write, of *size*, is passed through eBPF stack and 1008 * pointed by *data*. 1009 * 1010 * The context of the program *ctx* needs also be passed to the 1011 * helper. 1012 * 1013 * On user space, a program willing to read the values needs to 1014 * call **perf_event_open**\ () on the perf event (either for 1015 * one or for all CPUs) and to store the file descriptor into the 1016 * *map*. This must be done before the eBPF program can send data 1017 * into it. An example is available in file 1018 * *samples/bpf/trace_output_user.c* in the Linux kernel source 1019 * tree (the eBPF program counterpart is in 1020 * *samples/bpf/trace_output_kern.c*). 1021 * 1022 * **bpf_perf_event_output**\ () achieves better performance 1023 * than **bpf_trace_printk**\ () for sharing data with user 1024 * space, and is much better suitable for streaming data from eBPF 1025 * programs. 1026 * 1027 * Note that this helper is not restricted to tracing use cases 1028 * and can be used with programs attached to TC or XDP as well, 1029 * where it allows for passing data to user space listeners. Data 1030 * can be: 1031 * 1032 * * Only custom structs, 1033 * * Only the packet payload, or 1034 * * A combination of both. 1035 * Return 1036 * 0 on success, or a negative error in case of failure. 1037 * 1038 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 1039 * Description 1040 * This helper was provided as an easy way to load data from a 1041 * packet. It can be used to load *len* bytes from *offset* from 1042 * the packet associated to *skb*, into the buffer pointed by 1043 * *to*. 1044 * 1045 * Since Linux 4.7, usage of this helper has mostly been replaced 1046 * by "direct packet access", enabling packet data to be 1047 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1048 * pointing respectively to the first byte of packet data and to 1049 * the byte after the last byte of packet data. However, it 1050 * remains useful if one wishes to read large quantities of data 1051 * at once from a packet into the eBPF stack. 1052 * Return 1053 * 0 on success, or a negative error in case of failure. 1054 * 1055 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags) 1056 * Description 1057 * Walk a user or a kernel stack and return its id. To achieve 1058 * this, the helper needs *ctx*, which is a pointer to the context 1059 * on which the tracing program is executed, and a pointer to a 1060 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1061 * 1062 * The last argument, *flags*, holds the number of stack frames to 1063 * skip (from 0 to 255), masked with 1064 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1065 * a combination of the following flags: 1066 * 1067 * **BPF_F_USER_STACK** 1068 * Collect a user space stack instead of a kernel stack. 1069 * **BPF_F_FAST_STACK_CMP** 1070 * Compare stacks by hash only. 1071 * **BPF_F_REUSE_STACKID** 1072 * If two different stacks hash into the same *stackid*, 1073 * discard the old one. 1074 * 1075 * The stack id retrieved is a 32 bit long integer handle which 1076 * can be further combined with other data (including other stack 1077 * ids) and used as a key into maps. This can be useful for 1078 * generating a variety of graphs (such as flame graphs or off-cpu 1079 * graphs). 1080 * 1081 * For walking a stack, this helper is an improvement over 1082 * **bpf_probe_read**\ (), which can be used with unrolled loops 1083 * but is not efficient and consumes a lot of eBPF instructions. 1084 * Instead, **bpf_get_stackid**\ () can collect up to 1085 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1086 * this limit can be controlled with the **sysctl** program, and 1087 * that it should be manually increased in order to profile long 1088 * user stacks (such as stacks for Java programs). To do so, use: 1089 * 1090 * :: 1091 * 1092 * # sysctl kernel.perf_event_max_stack=<new value> 1093 * Return 1094 * The positive or null stack id on success, or a negative error 1095 * in case of failure. 1096 * 1097 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1098 * Description 1099 * Compute a checksum difference, from the raw buffer pointed by 1100 * *from*, of length *from_size* (that must be a multiple of 4), 1101 * towards the raw buffer pointed by *to*, of size *to_size* 1102 * (same remark). An optional *seed* can be added to the value 1103 * (this can be cascaded, the seed may come from a previous call 1104 * to the helper). 1105 * 1106 * This is flexible enough to be used in several ways: 1107 * 1108 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1109 * checksum, it can be used when pushing new data. 1110 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1111 * checksum, it can be used when removing data from a packet. 1112 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1113 * can be used to compute a diff. Note that *from_size* and 1114 * *to_size* do not need to be equal. 1115 * 1116 * This helper can be used in combination with 1117 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1118 * which one can feed in the difference computed with 1119 * **bpf_csum_diff**\ (). 1120 * Return 1121 * The checksum result, or a negative error code in case of 1122 * failure. 1123 * 1124 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1125 * Description 1126 * Retrieve tunnel options metadata for the packet associated to 1127 * *skb*, and store the raw tunnel option data to the buffer *opt* 1128 * of *size*. 1129 * 1130 * This helper can be used with encapsulation devices that can 1131 * operate in "collect metadata" mode (please refer to the related 1132 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1133 * more details). A particular example where this can be used is 1134 * in combination with the Geneve encapsulation protocol, where it 1135 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1136 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1137 * the eBPF program. This allows for full customization of these 1138 * headers. 1139 * Return 1140 * The size of the option data retrieved. 1141 * 1142 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1143 * Description 1144 * Set tunnel options metadata for the packet associated to *skb* 1145 * to the option data contained in the raw buffer *opt* of *size*. 1146 * 1147 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1148 * helper for additional information. 1149 * Return 1150 * 0 on success, or a negative error in case of failure. 1151 * 1152 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1153 * Description 1154 * Change the protocol of the *skb* to *proto*. Currently 1155 * supported are transition from IPv4 to IPv6, and from IPv6 to 1156 * IPv4. The helper takes care of the groundwork for the 1157 * transition, including resizing the socket buffer. The eBPF 1158 * program is expected to fill the new headers, if any, via 1159 * **skb_store_bytes**\ () and to recompute the checksums with 1160 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1161 * (). The main case for this helper is to perform NAT64 1162 * operations out of an eBPF program. 1163 * 1164 * Internally, the GSO type is marked as dodgy so that headers are 1165 * checked and segments are recalculated by the GSO/GRO engine. 1166 * The size for GSO target is adapted as well. 1167 * 1168 * All values for *flags* are reserved for future usage, and must 1169 * be left at zero. 1170 * 1171 * A call to this helper is susceptible to change the underlying 1172 * packet buffer. Therefore, at load time, all checks on pointers 1173 * previously done by the verifier are invalidated and must be 1174 * performed again, if the helper is used in combination with 1175 * direct packet access. 1176 * Return 1177 * 0 on success, or a negative error in case of failure. 1178 * 1179 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1180 * Description 1181 * Change the packet type for the packet associated to *skb*. This 1182 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1183 * the eBPF program does not have a write access to *skb*\ 1184 * **->pkt_type** beside this helper. Using a helper here allows 1185 * for graceful handling of errors. 1186 * 1187 * The major use case is to change incoming *skb*s to 1188 * **PACKET_HOST** in a programmatic way instead of having to 1189 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1190 * example. 1191 * 1192 * Note that *type* only allows certain values. At this time, they 1193 * are: 1194 * 1195 * **PACKET_HOST** 1196 * Packet is for us. 1197 * **PACKET_BROADCAST** 1198 * Send packet to all. 1199 * **PACKET_MULTICAST** 1200 * Send packet to group. 1201 * **PACKET_OTHERHOST** 1202 * Send packet to someone else. 1203 * Return 1204 * 0 on success, or a negative error in case of failure. 1205 * 1206 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1207 * Description 1208 * Check whether *skb* is a descendant of the cgroup2 held by 1209 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1210 * Return 1211 * The return value depends on the result of the test, and can be: 1212 * 1213 * * 0, if the *skb* failed the cgroup2 descendant test. 1214 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1215 * * A negative error code, if an error occurred. 1216 * 1217 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1218 * Description 1219 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1220 * not set, in particular if the hash was cleared due to mangling, 1221 * recompute this hash. Later accesses to the hash can be done 1222 * directly with *skb*\ **->hash**. 1223 * 1224 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1225 * prototype with **bpf_skb_change_proto**\ (), or calling 1226 * **bpf_skb_store_bytes**\ () with the 1227 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1228 * the hash and to trigger a new computation for the next call to 1229 * **bpf_get_hash_recalc**\ (). 1230 * Return 1231 * The 32-bit hash. 1232 * 1233 * u64 bpf_get_current_task(void) 1234 * Return 1235 * A pointer to the current task struct. 1236 * 1237 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1238 * Description 1239 * Attempt in a safe way to write *len* bytes from the buffer 1240 * *src* to *dst* in memory. It only works for threads that are in 1241 * user context, and *dst* must be a valid user space address. 1242 * 1243 * This helper should not be used to implement any kind of 1244 * security mechanism because of TOC-TOU attacks, but rather to 1245 * debug, divert, and manipulate execution of semi-cooperative 1246 * processes. 1247 * 1248 * Keep in mind that this feature is meant for experiments, and it 1249 * has a risk of crashing the system and running programs. 1250 * Therefore, when an eBPF program using this helper is attached, 1251 * a warning including PID and process name is printed to kernel 1252 * logs. 1253 * Return 1254 * 0 on success, or a negative error in case of failure. 1255 * 1256 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1257 * Description 1258 * Check whether the probe is being run is the context of a given 1259 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1260 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1261 * Return 1262 * The return value depends on the result of the test, and can be: 1263 * 1264 * * 0, if the *skb* task belongs to the cgroup2. 1265 * * 1, if the *skb* task does not belong to the cgroup2. 1266 * * A negative error code, if an error occurred. 1267 * 1268 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1269 * Description 1270 * Resize (trim or grow) the packet associated to *skb* to the 1271 * new *len*. The *flags* are reserved for future usage, and must 1272 * be left at zero. 1273 * 1274 * The basic idea is that the helper performs the needed work to 1275 * change the size of the packet, then the eBPF program rewrites 1276 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1277 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1278 * and others. This helper is a slow path utility intended for 1279 * replies with control messages. And because it is targeted for 1280 * slow path, the helper itself can afford to be slow: it 1281 * implicitly linearizes, unclones and drops offloads from the 1282 * *skb*. 1283 * 1284 * A call to this helper is susceptible to change the underlying 1285 * packet buffer. Therefore, at load time, all checks on pointers 1286 * previously done by the verifier are invalidated and must be 1287 * performed again, if the helper is used in combination with 1288 * direct packet access. 1289 * Return 1290 * 0 on success, or a negative error in case of failure. 1291 * 1292 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1293 * Description 1294 * Pull in non-linear data in case the *skb* is non-linear and not 1295 * all of *len* are part of the linear section. Make *len* bytes 1296 * from *skb* readable and writable. If a zero value is passed for 1297 * *len*, then the whole length of the *skb* is pulled. 1298 * 1299 * This helper is only needed for reading and writing with direct 1300 * packet access. 1301 * 1302 * For direct packet access, testing that offsets to access 1303 * are within packet boundaries (test on *skb*\ **->data_end**) is 1304 * susceptible to fail if offsets are invalid, or if the requested 1305 * data is in non-linear parts of the *skb*. On failure the 1306 * program can just bail out, or in the case of a non-linear 1307 * buffer, use a helper to make the data available. The 1308 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1309 * the data. Another one consists in using **bpf_skb_pull_data** 1310 * to pull in once the non-linear parts, then retesting and 1311 * eventually access the data. 1312 * 1313 * At the same time, this also makes sure the *skb* is uncloned, 1314 * which is a necessary condition for direct write. As this needs 1315 * to be an invariant for the write part only, the verifier 1316 * detects writes and adds a prologue that is calling 1317 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1318 * the very beginning in case it is indeed cloned. 1319 * 1320 * A call to this helper is susceptible to change the underlying 1321 * packet buffer. Therefore, at load time, all checks on pointers 1322 * previously done by the verifier are invalidated and must be 1323 * performed again, if the helper is used in combination with 1324 * direct packet access. 1325 * Return 1326 * 0 on success, or a negative error in case of failure. 1327 * 1328 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1329 * Description 1330 * Add the checksum *csum* into *skb*\ **->csum** in case the 1331 * driver has supplied a checksum for the entire packet into that 1332 * field. Return an error otherwise. This helper is intended to be 1333 * used in combination with **bpf_csum_diff**\ (), in particular 1334 * when the checksum needs to be updated after data has been 1335 * written into the packet through direct packet access. 1336 * Return 1337 * The checksum on success, or a negative error code in case of 1338 * failure. 1339 * 1340 * void bpf_set_hash_invalid(struct sk_buff *skb) 1341 * Description 1342 * Invalidate the current *skb*\ **->hash**. It can be used after 1343 * mangling on headers through direct packet access, in order to 1344 * indicate that the hash is outdated and to trigger a 1345 * recalculation the next time the kernel tries to access this 1346 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1347 * 1348 * int bpf_get_numa_node_id(void) 1349 * Description 1350 * Return the id of the current NUMA node. The primary use case 1351 * for this helper is the selection of sockets for the local NUMA 1352 * node, when the program is attached to sockets using the 1353 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1354 * but the helper is also available to other eBPF program types, 1355 * similarly to **bpf_get_smp_processor_id**\ (). 1356 * Return 1357 * The id of current NUMA node. 1358 * 1359 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1360 * Description 1361 * Grows headroom of packet associated to *skb* and adjusts the 1362 * offset of the MAC header accordingly, adding *len* bytes of 1363 * space. It automatically extends and reallocates memory as 1364 * required. 1365 * 1366 * This helper can be used on a layer 3 *skb* to push a MAC header 1367 * for redirection into a layer 2 device. 1368 * 1369 * All values for *flags* are reserved for future usage, and must 1370 * be left at zero. 1371 * 1372 * A call to this helper is susceptible to change the underlying 1373 * packet buffer. Therefore, at load time, all checks on pointers 1374 * previously done by the verifier are invalidated and must be 1375 * performed again, if the helper is used in combination with 1376 * direct packet access. 1377 * Return 1378 * 0 on success, or a negative error in case of failure. 1379 * 1380 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1381 * Description 1382 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1383 * it is possible to use a negative value for *delta*. This helper 1384 * can be used to prepare the packet for pushing or popping 1385 * headers. 1386 * 1387 * A call to this helper is susceptible to change the underlying 1388 * packet buffer. Therefore, at load time, all checks on pointers 1389 * previously done by the verifier are invalidated and must be 1390 * performed again, if the helper is used in combination with 1391 * direct packet access. 1392 * Return 1393 * 0 on success, or a negative error in case of failure. 1394 * 1395 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) 1396 * Description 1397 * Copy a NUL terminated string from an unsafe address 1398 * *unsafe_ptr* to *dst*. The *size* should include the 1399 * terminating NUL byte. In case the string length is smaller than 1400 * *size*, the target is not padded with further NUL bytes. If the 1401 * string length is larger than *size*, just *size*-1 bytes are 1402 * copied and the last byte is set to NUL. 1403 * 1404 * On success, the length of the copied string is returned. This 1405 * makes this helper useful in tracing programs for reading 1406 * strings, and more importantly to get its length at runtime. See 1407 * the following snippet: 1408 * 1409 * :: 1410 * 1411 * SEC("kprobe/sys_open") 1412 * void bpf_sys_open(struct pt_regs *ctx) 1413 * { 1414 * char buf[PATHLEN]; // PATHLEN is defined to 256 1415 * int res = bpf_probe_read_str(buf, sizeof(buf), 1416 * ctx->di); 1417 * 1418 * // Consume buf, for example push it to 1419 * // userspace via bpf_perf_event_output(); we 1420 * // can use res (the string length) as event 1421 * // size, after checking its boundaries. 1422 * } 1423 * 1424 * In comparison, using **bpf_probe_read()** helper here instead 1425 * to read the string would require to estimate the length at 1426 * compile time, and would often result in copying more memory 1427 * than necessary. 1428 * 1429 * Another useful use case is when parsing individual process 1430 * arguments or individual environment variables navigating 1431 * *current*\ **->mm->arg_start** and *current*\ 1432 * **->mm->env_start**: using this helper and the return value, 1433 * one can quickly iterate at the right offset of the memory area. 1434 * Return 1435 * On success, the strictly positive length of the string, 1436 * including the trailing NUL character. On error, a negative 1437 * value. 1438 * 1439 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1440 * Description 1441 * If the **struct sk_buff** pointed by *skb* has a known socket, 1442 * retrieve the cookie (generated by the kernel) of this socket. 1443 * If no cookie has been set yet, generate a new cookie. Once 1444 * generated, the socket cookie remains stable for the life of the 1445 * socket. This helper can be useful for monitoring per socket 1446 * networking traffic statistics as it provides a unique socket 1447 * identifier per namespace. 1448 * Return 1449 * A 8-byte long non-decreasing number on success, or 0 if the 1450 * socket field is missing inside *skb*. 1451 * 1452 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1453 * Description 1454 * Equivalent to bpf_get_socket_cookie() helper that accepts 1455 * *skb*, but gets socket from **struct bpf_sock_addr** context. 1456 * Return 1457 * A 8-byte long non-decreasing number. 1458 * 1459 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1460 * Description 1461 * Equivalent to bpf_get_socket_cookie() helper that accepts 1462 * *skb*, but gets socket from **struct bpf_sock_ops** context. 1463 * Return 1464 * A 8-byte long non-decreasing number. 1465 * 1466 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1467 * Return 1468 * The owner UID of the socket associated to *skb*. If the socket 1469 * is **NULL**, or if it is not a full socket (i.e. if it is a 1470 * time-wait or a request socket instead), **overflowuid** value 1471 * is returned (note that **overflowuid** might also be the actual 1472 * UID value for the socket). 1473 * 1474 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1475 * Description 1476 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1477 * to value *hash*. 1478 * Return 1479 * 0 1480 * 1481 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1482 * Description 1483 * Emulate a call to **setsockopt()** on the socket associated to 1484 * *bpf_socket*, which must be a full socket. The *level* at 1485 * which the option resides and the name *optname* of the option 1486 * must be specified, see **setsockopt(2)** for more information. 1487 * The option value of length *optlen* is pointed by *optval*. 1488 * 1489 * This helper actually implements a subset of **setsockopt()**. 1490 * It supports the following *level*\ s: 1491 * 1492 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1493 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1494 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1495 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1496 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1497 * **TCP_BPF_SNDCWND_CLAMP**. 1498 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1499 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1500 * Return 1501 * 0 on success, or a negative error in case of failure. 1502 * 1503 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1504 * Description 1505 * Grow or shrink the room for data in the packet associated to 1506 * *skb* by *len_diff*, and according to the selected *mode*. 1507 * 1508 * There are two supported modes at this time: 1509 * 1510 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer 1511 * (room space is added or removed below the layer 2 header). 1512 * 1513 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1514 * (room space is added or removed below the layer 3 header). 1515 * 1516 * The following flags are supported at this time: 1517 * 1518 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size. 1519 * Adjusting mss in this way is not allowed for datagrams. 1520 * 1521 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**, 1522 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**: 1523 * Any new space is reserved to hold a tunnel header. 1524 * Configure skb offsets and other fields accordingly. 1525 * 1526 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**, 1527 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**: 1528 * Use with ENCAP_L3 flags to further specify the tunnel type. 1529 * 1530 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*): 1531 * Use with ENCAP_L3/L4 flags to further specify the tunnel 1532 * type; *len* is the length of the inner MAC header. 1533 * 1534 * A call to this helper is susceptible to change the underlying 1535 * packet buffer. Therefore, at load time, all checks on pointers 1536 * previously done by the verifier are invalidated and must be 1537 * performed again, if the helper is used in combination with 1538 * direct packet access. 1539 * Return 1540 * 0 on success, or a negative error in case of failure. 1541 * 1542 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1543 * Description 1544 * Redirect the packet to the endpoint referenced by *map* at 1545 * index *key*. Depending on its type, this *map* can contain 1546 * references to net devices (for forwarding packets through other 1547 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1548 * but this is only implemented for native XDP (with driver 1549 * support) as of this writing). 1550 * 1551 * All values for *flags* are reserved for future usage, and must 1552 * be left at zero. 1553 * 1554 * When used to redirect packets to net devices, this helper 1555 * provides a high performance increase over **bpf_redirect**\ (). 1556 * This is due to various implementation details of the underlying 1557 * mechanisms, one of which is the fact that **bpf_redirect_map**\ 1558 * () tries to send packet as a "bulk" to the device. 1559 * Return 1560 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. 1561 * 1562 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1563 * Description 1564 * Redirect the packet to the socket referenced by *map* (of type 1565 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1566 * egress interfaces can be used for redirection. The 1567 * **BPF_F_INGRESS** value in *flags* is used to make the 1568 * distinction (ingress path is selected if the flag is present, 1569 * egress path otherwise). This is the only flag supported for now. 1570 * Return 1571 * **SK_PASS** on success, or **SK_DROP** on error. 1572 * 1573 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1574 * Description 1575 * Add an entry to, or update a *map* referencing sockets. The 1576 * *skops* is used as a new value for the entry associated to 1577 * *key*. *flags* is one of: 1578 * 1579 * **BPF_NOEXIST** 1580 * The entry for *key* must not exist in the map. 1581 * **BPF_EXIST** 1582 * The entry for *key* must already exist in the map. 1583 * **BPF_ANY** 1584 * No condition on the existence of the entry for *key*. 1585 * 1586 * If the *map* has eBPF programs (parser and verdict), those will 1587 * be inherited by the socket being added. If the socket is 1588 * already attached to eBPF programs, this results in an error. 1589 * Return 1590 * 0 on success, or a negative error in case of failure. 1591 * 1592 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1593 * Description 1594 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1595 * *delta* (which can be positive or negative). Note that this 1596 * operation modifies the address stored in *xdp_md*\ **->data**, 1597 * so the latter must be loaded only after the helper has been 1598 * called. 1599 * 1600 * The use of *xdp_md*\ **->data_meta** is optional and programs 1601 * are not required to use it. The rationale is that when the 1602 * packet is processed with XDP (e.g. as DoS filter), it is 1603 * possible to push further meta data along with it before passing 1604 * to the stack, and to give the guarantee that an ingress eBPF 1605 * program attached as a TC classifier on the same device can pick 1606 * this up for further post-processing. Since TC works with socket 1607 * buffers, it remains possible to set from XDP the **mark** or 1608 * **priority** pointers, or other pointers for the socket buffer. 1609 * Having this scratch space generic and programmable allows for 1610 * more flexibility as the user is free to store whatever meta 1611 * data they need. 1612 * 1613 * A call to this helper is susceptible to change the underlying 1614 * packet buffer. Therefore, at load time, all checks on pointers 1615 * previously done by the verifier are invalidated and must be 1616 * performed again, if the helper is used in combination with 1617 * direct packet access. 1618 * Return 1619 * 0 on success, or a negative error in case of failure. 1620 * 1621 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1622 * Description 1623 * Read the value of a perf event counter, and store it into *buf* 1624 * of size *buf_size*. This helper relies on a *map* of type 1625 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1626 * counter is selected when *map* is updated with perf event file 1627 * descriptors. The *map* is an array whose size is the number of 1628 * available CPUs, and each cell contains a value relative to one 1629 * CPU. The value to retrieve is indicated by *flags*, that 1630 * contains the index of the CPU to look up, masked with 1631 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1632 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1633 * current CPU should be retrieved. 1634 * 1635 * This helper behaves in a way close to 1636 * **bpf_perf_event_read**\ () helper, save that instead of 1637 * just returning the value observed, it fills the *buf* 1638 * structure. This allows for additional data to be retrieved: in 1639 * particular, the enabled and running times (in *buf*\ 1640 * **->enabled** and *buf*\ **->running**, respectively) are 1641 * copied. In general, **bpf_perf_event_read_value**\ () is 1642 * recommended over **bpf_perf_event_read**\ (), which has some 1643 * ABI issues and provides fewer functionalities. 1644 * 1645 * These values are interesting, because hardware PMU (Performance 1646 * Monitoring Unit) counters are limited resources. When there are 1647 * more PMU based perf events opened than available counters, 1648 * kernel will multiplex these events so each event gets certain 1649 * percentage (but not all) of the PMU time. In case that 1650 * multiplexing happens, the number of samples or counter value 1651 * will not reflect the case compared to when no multiplexing 1652 * occurs. This makes comparison between different runs difficult. 1653 * Typically, the counter value should be normalized before 1654 * comparing to other experiments. The usual normalization is done 1655 * as follows. 1656 * 1657 * :: 1658 * 1659 * normalized_counter = counter * t_enabled / t_running 1660 * 1661 * Where t_enabled is the time enabled for event and t_running is 1662 * the time running for event since last normalization. The 1663 * enabled and running times are accumulated since the perf event 1664 * open. To achieve scaling factor between two invocations of an 1665 * eBPF program, users can can use CPU id as the key (which is 1666 * typical for perf array usage model) to remember the previous 1667 * value and do the calculation inside the eBPF program. 1668 * Return 1669 * 0 on success, or a negative error in case of failure. 1670 * 1671 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1672 * Description 1673 * For en eBPF program attached to a perf event, retrieve the 1674 * value of the event counter associated to *ctx* and store it in 1675 * the structure pointed by *buf* and of size *buf_size*. Enabled 1676 * and running times are also stored in the structure (see 1677 * description of helper **bpf_perf_event_read_value**\ () for 1678 * more details). 1679 * Return 1680 * 0 on success, or a negative error in case of failure. 1681 * 1682 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1683 * Description 1684 * Emulate a call to **getsockopt()** on the socket associated to 1685 * *bpf_socket*, which must be a full socket. The *level* at 1686 * which the option resides and the name *optname* of the option 1687 * must be specified, see **getsockopt(2)** for more information. 1688 * The retrieved value is stored in the structure pointed by 1689 * *opval* and of length *optlen*. 1690 * 1691 * This helper actually implements a subset of **getsockopt()**. 1692 * It supports the following *level*\ s: 1693 * 1694 * * **IPPROTO_TCP**, which supports *optname* 1695 * **TCP_CONGESTION**. 1696 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1697 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1698 * Return 1699 * 0 on success, or a negative error in case of failure. 1700 * 1701 * int bpf_override_return(struct pt_reg *regs, u64 rc) 1702 * Description 1703 * Used for error injection, this helper uses kprobes to override 1704 * the return value of the probed function, and to set it to *rc*. 1705 * The first argument is the context *regs* on which the kprobe 1706 * works. 1707 * 1708 * This helper works by setting setting the PC (program counter) 1709 * to an override function which is run in place of the original 1710 * probed function. This means the probed function is not run at 1711 * all. The replacement function just returns with the required 1712 * value. 1713 * 1714 * This helper has security implications, and thus is subject to 1715 * restrictions. It is only available if the kernel was compiled 1716 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1717 * option, and in this case it only works on functions tagged with 1718 * **ALLOW_ERROR_INJECTION** in the kernel code. 1719 * 1720 * Also, the helper is only available for the architectures having 1721 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1722 * x86 architecture is the only one to support this feature. 1723 * Return 1724 * 0 1725 * 1726 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1727 * Description 1728 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1729 * for the full TCP socket associated to *bpf_sock_ops* to 1730 * *argval*. 1731 * 1732 * The primary use of this field is to determine if there should 1733 * be calls to eBPF programs of type 1734 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1735 * code. A program of the same type can change its value, per 1736 * connection and as necessary, when the connection is 1737 * established. This field is directly accessible for reading, but 1738 * this helper must be used for updates in order to return an 1739 * error if an eBPF program tries to set a callback that is not 1740 * supported in the current kernel. 1741 * 1742 * *argval* is a flag array which can combine these flags: 1743 * 1744 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1745 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1746 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1747 * 1748 * Therefore, this function can be used to clear a callback flag by 1749 * setting the appropriate bit to zero. e.g. to disable the RTO 1750 * callback: 1751 * 1752 * **bpf_sock_ops_cb_flags_set(bpf_sock,** 1753 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)** 1754 * 1755 * Here are some examples of where one could call such eBPF 1756 * program: 1757 * 1758 * * When RTO fires. 1759 * * When a packet is retransmitted. 1760 * * When the connection terminates. 1761 * * When a packet is sent. 1762 * * When a packet is received. 1763 * Return 1764 * Code **-EINVAL** if the socket is not a full TCP socket; 1765 * otherwise, a positive number containing the bits that could not 1766 * be set is returned (which comes down to 0 if all bits were set 1767 * as required). 1768 * 1769 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1770 * Description 1771 * This helper is used in programs implementing policies at the 1772 * socket level. If the message *msg* is allowed to pass (i.e. if 1773 * the verdict eBPF program returns **SK_PASS**), redirect it to 1774 * the socket referenced by *map* (of type 1775 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1776 * egress interfaces can be used for redirection. The 1777 * **BPF_F_INGRESS** value in *flags* is used to make the 1778 * distinction (ingress path is selected if the flag is present, 1779 * egress path otherwise). This is the only flag supported for now. 1780 * Return 1781 * **SK_PASS** on success, or **SK_DROP** on error. 1782 * 1783 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1784 * Description 1785 * For socket policies, apply the verdict of the eBPF program to 1786 * the next *bytes* (number of bytes) of message *msg*. 1787 * 1788 * For example, this helper can be used in the following cases: 1789 * 1790 * * A single **sendmsg**\ () or **sendfile**\ () system call 1791 * contains multiple logical messages that the eBPF program is 1792 * supposed to read and for which it should apply a verdict. 1793 * * An eBPF program only cares to read the first *bytes* of a 1794 * *msg*. If the message has a large payload, then setting up 1795 * and calling the eBPF program repeatedly for all bytes, even 1796 * though the verdict is already known, would create unnecessary 1797 * overhead. 1798 * 1799 * When called from within an eBPF program, the helper sets a 1800 * counter internal to the BPF infrastructure, that is used to 1801 * apply the last verdict to the next *bytes*. If *bytes* is 1802 * smaller than the current data being processed from a 1803 * **sendmsg**\ () or **sendfile**\ () system call, the first 1804 * *bytes* will be sent and the eBPF program will be re-run with 1805 * the pointer for start of data pointing to byte number *bytes* 1806 * **+ 1**. If *bytes* is larger than the current data being 1807 * processed, then the eBPF verdict will be applied to multiple 1808 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1809 * consumed. 1810 * 1811 * Note that if a socket closes with the internal counter holding 1812 * a non-zero value, this is not a problem because data is not 1813 * being buffered for *bytes* and is sent as it is received. 1814 * Return 1815 * 0 1816 * 1817 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1818 * Description 1819 * For socket policies, prevent the execution of the verdict eBPF 1820 * program for message *msg* until *bytes* (byte number) have been 1821 * accumulated. 1822 * 1823 * This can be used when one needs a specific number of bytes 1824 * before a verdict can be assigned, even if the data spans 1825 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1826 * case would be a user calling **sendmsg**\ () repeatedly with 1827 * 1-byte long message segments. Obviously, this is bad for 1828 * performance, but it is still valid. If the eBPF program needs 1829 * *bytes* bytes to validate a header, this helper can be used to 1830 * prevent the eBPF program to be called again until *bytes* have 1831 * been accumulated. 1832 * Return 1833 * 0 1834 * 1835 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1836 * Description 1837 * For socket policies, pull in non-linear data from user space 1838 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1839 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1840 * respectively. 1841 * 1842 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1843 * *msg* it can only parse data that the (**data**, **data_end**) 1844 * pointers have already consumed. For **sendmsg**\ () hooks this 1845 * is likely the first scatterlist element. But for calls relying 1846 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1847 * be the range (**0**, **0**) because the data is shared with 1848 * user space and by default the objective is to avoid allowing 1849 * user space to modify data while (or after) eBPF verdict is 1850 * being decided. This helper can be used to pull in data and to 1851 * set the start and end pointer to given values. Data will be 1852 * copied if necessary (i.e. if data was not linear and if start 1853 * and end pointers do not point to the same chunk). 1854 * 1855 * A call to this helper is susceptible to change the underlying 1856 * packet buffer. Therefore, at load time, all checks on pointers 1857 * previously done by the verifier are invalidated and must be 1858 * performed again, if the helper is used in combination with 1859 * direct packet access. 1860 * 1861 * All values for *flags* are reserved for future usage, and must 1862 * be left at zero. 1863 * Return 1864 * 0 on success, or a negative error in case of failure. 1865 * 1866 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1867 * Description 1868 * Bind the socket associated to *ctx* to the address pointed by 1869 * *addr*, of length *addr_len*. This allows for making outgoing 1870 * connection from the desired IP address, which can be useful for 1871 * example when all processes inside a cgroup should use one 1872 * single IP address on a host that has multiple IP configured. 1873 * 1874 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1875 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1876 * **AF_INET6**). Looking for a free port to bind to can be 1877 * expensive, therefore binding to port is not permitted by the 1878 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1879 * must be set to zero. 1880 * Return 1881 * 0 on success, or a negative error in case of failure. 1882 * 1883 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1884 * Description 1885 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1886 * only possible to shrink the packet as of this writing, 1887 * therefore *delta* must be a negative integer. 1888 * 1889 * A call to this helper is susceptible to change the underlying 1890 * packet buffer. Therefore, at load time, all checks on pointers 1891 * previously done by the verifier are invalidated and must be 1892 * performed again, if the helper is used in combination with 1893 * direct packet access. 1894 * Return 1895 * 0 on success, or a negative error in case of failure. 1896 * 1897 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1898 * Description 1899 * Retrieve the XFRM state (IP transform framework, see also 1900 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1901 * 1902 * The retrieved value is stored in the **struct bpf_xfrm_state** 1903 * pointed by *xfrm_state* and of length *size*. 1904 * 1905 * All values for *flags* are reserved for future usage, and must 1906 * be left at zero. 1907 * 1908 * This helper is available only if the kernel was compiled with 1909 * **CONFIG_XFRM** configuration option. 1910 * Return 1911 * 0 on success, or a negative error in case of failure. 1912 * 1913 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags) 1914 * Description 1915 * Return a user or a kernel stack in bpf program provided buffer. 1916 * To achieve this, the helper needs *ctx*, which is a pointer 1917 * to the context on which the tracing program is executed. 1918 * To store the stacktrace, the bpf program provides *buf* with 1919 * a nonnegative *size*. 1920 * 1921 * The last argument, *flags*, holds the number of stack frames to 1922 * skip (from 0 to 255), masked with 1923 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1924 * the following flags: 1925 * 1926 * **BPF_F_USER_STACK** 1927 * Collect a user space stack instead of a kernel stack. 1928 * **BPF_F_USER_BUILD_ID** 1929 * Collect buildid+offset instead of ips for user stack, 1930 * only valid if **BPF_F_USER_STACK** is also specified. 1931 * 1932 * **bpf_get_stack**\ () can collect up to 1933 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 1934 * to sufficient large buffer size. Note that 1935 * this limit can be controlled with the **sysctl** program, and 1936 * that it should be manually increased in order to profile long 1937 * user stacks (such as stacks for Java programs). To do so, use: 1938 * 1939 * :: 1940 * 1941 * # sysctl kernel.perf_event_max_stack=<new value> 1942 * Return 1943 * A non-negative value equal to or less than *size* on success, 1944 * or a negative error in case of failure. 1945 * 1946 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header) 1947 * Description 1948 * This helper is similar to **bpf_skb_load_bytes**\ () in that 1949 * it provides an easy way to load *len* bytes from *offset* 1950 * from the packet associated to *skb*, into the buffer pointed 1951 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 1952 * a fifth argument *start_header* exists in order to select a 1953 * base offset to start from. *start_header* can be one of: 1954 * 1955 * **BPF_HDR_START_MAC** 1956 * Base offset to load data from is *skb*'s mac header. 1957 * **BPF_HDR_START_NET** 1958 * Base offset to load data from is *skb*'s network header. 1959 * 1960 * In general, "direct packet access" is the preferred method to 1961 * access packet data, however, this helper is in particular useful 1962 * in socket filters where *skb*\ **->data** does not always point 1963 * to the start of the mac header and where "direct packet access" 1964 * is not available. 1965 * Return 1966 * 0 on success, or a negative error in case of failure. 1967 * 1968 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 1969 * Description 1970 * Do FIB lookup in kernel tables using parameters in *params*. 1971 * If lookup is successful and result shows packet is to be 1972 * forwarded, the neighbor tables are searched for the nexthop. 1973 * If successful (ie., FIB lookup shows forwarding and nexthop 1974 * is resolved), the nexthop address is returned in ipv4_dst 1975 * or ipv6_dst based on family, smac is set to mac address of 1976 * egress device, dmac is set to nexthop mac address, rt_metric 1977 * is set to metric from route (IPv4/IPv6 only), and ifindex 1978 * is set to the device index of the nexthop from the FIB lookup. 1979 * 1980 * *plen* argument is the size of the passed in struct. 1981 * *flags* argument can be a combination of one or more of the 1982 * following values: 1983 * 1984 * **BPF_FIB_LOOKUP_DIRECT** 1985 * Do a direct table lookup vs full lookup using FIB 1986 * rules. 1987 * **BPF_FIB_LOOKUP_OUTPUT** 1988 * Perform lookup from an egress perspective (default is 1989 * ingress). 1990 * 1991 * *ctx* is either **struct xdp_md** for XDP programs or 1992 * **struct sk_buff** tc cls_act programs. 1993 * Return 1994 * * < 0 if any input argument is invalid 1995 * * 0 on success (packet is forwarded, nexthop neighbor exists) 1996 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 1997 * packet is not forwarded or needs assist from full stack 1998 * 1999 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) 2000 * Description 2001 * Add an entry to, or update a sockhash *map* referencing sockets. 2002 * The *skops* is used as a new value for the entry associated to 2003 * *key*. *flags* is one of: 2004 * 2005 * **BPF_NOEXIST** 2006 * The entry for *key* must not exist in the map. 2007 * **BPF_EXIST** 2008 * The entry for *key* must already exist in the map. 2009 * **BPF_ANY** 2010 * No condition on the existence of the entry for *key*. 2011 * 2012 * If the *map* has eBPF programs (parser and verdict), those will 2013 * be inherited by the socket being added. If the socket is 2014 * already attached to eBPF programs, this results in an error. 2015 * Return 2016 * 0 on success, or a negative error in case of failure. 2017 * 2018 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 2019 * Description 2020 * This helper is used in programs implementing policies at the 2021 * socket level. If the message *msg* is allowed to pass (i.e. if 2022 * the verdict eBPF program returns **SK_PASS**), redirect it to 2023 * the socket referenced by *map* (of type 2024 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2025 * egress interfaces can be used for redirection. The 2026 * **BPF_F_INGRESS** value in *flags* is used to make the 2027 * distinction (ingress path is selected if the flag is present, 2028 * egress path otherwise). This is the only flag supported for now. 2029 * Return 2030 * **SK_PASS** on success, or **SK_DROP** on error. 2031 * 2032 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 2033 * Description 2034 * This helper is used in programs implementing policies at the 2035 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 2036 * if the verdeict eBPF program returns **SK_PASS**), redirect it 2037 * to the socket referenced by *map* (of type 2038 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2039 * egress interfaces can be used for redirection. The 2040 * **BPF_F_INGRESS** value in *flags* is used to make the 2041 * distinction (ingress path is selected if the flag is present, 2042 * egress otherwise). This is the only flag supported for now. 2043 * Return 2044 * **SK_PASS** on success, or **SK_DROP** on error. 2045 * 2046 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 2047 * Description 2048 * Encapsulate the packet associated to *skb* within a Layer 3 2049 * protocol header. This header is provided in the buffer at 2050 * address *hdr*, with *len* its size in bytes. *type* indicates 2051 * the protocol of the header and can be one of: 2052 * 2053 * **BPF_LWT_ENCAP_SEG6** 2054 * IPv6 encapsulation with Segment Routing Header 2055 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2056 * the IPv6 header is computed by the kernel. 2057 * **BPF_LWT_ENCAP_SEG6_INLINE** 2058 * Only works if *skb* contains an IPv6 packet. Insert a 2059 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2060 * the IPv6 header. 2061 * **BPF_LWT_ENCAP_IP** 2062 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header 2063 * must be IPv4 or IPv6, followed by zero or more 2064 * additional headers, up to **LWT_BPF_MAX_HEADROOM** 2065 * total bytes in all prepended headers. Please note that 2066 * if **skb_is_gso**\ (*skb*) is true, no more than two 2067 * headers can be prepended, and the inner header, if 2068 * present, should be either GRE or UDP/GUE. 2069 * 2070 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs 2071 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can 2072 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and 2073 * **BPF_PROG_TYPE_LWT_XMIT**. 2074 * 2075 * A call to this helper is susceptible to change the underlying 2076 * packet buffer. Therefore, at load time, all checks on pointers 2077 * previously done by the verifier are invalidated and must be 2078 * performed again, if the helper is used in combination with 2079 * direct packet access. 2080 * Return 2081 * 0 on success, or a negative error in case of failure. 2082 * 2083 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2084 * Description 2085 * Store *len* bytes from address *from* into the packet 2086 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2087 * inside the outermost IPv6 Segment Routing Header can be 2088 * modified through this helper. 2089 * 2090 * A call to this helper is susceptible to change the underlying 2091 * packet buffer. Therefore, at load time, all checks on pointers 2092 * previously done by the verifier are invalidated and must be 2093 * performed again, if the helper is used in combination with 2094 * direct packet access. 2095 * Return 2096 * 0 on success, or a negative error in case of failure. 2097 * 2098 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2099 * Description 2100 * Adjust the size allocated to TLVs in the outermost IPv6 2101 * Segment Routing Header contained in the packet associated to 2102 * *skb*, at position *offset* by *delta* bytes. Only offsets 2103 * after the segments are accepted. *delta* can be as well 2104 * positive (growing) as negative (shrinking). 2105 * 2106 * A call to this helper is susceptible to change the underlying 2107 * packet buffer. Therefore, at load time, all checks on pointers 2108 * previously done by the verifier are invalidated and must be 2109 * performed again, if the helper is used in combination with 2110 * direct packet access. 2111 * Return 2112 * 0 on success, or a negative error in case of failure. 2113 * 2114 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2115 * Description 2116 * Apply an IPv6 Segment Routing action of type *action* to the 2117 * packet associated to *skb*. Each action takes a parameter 2118 * contained at address *param*, and of length *param_len* bytes. 2119 * *action* can be one of: 2120 * 2121 * **SEG6_LOCAL_ACTION_END_X** 2122 * End.X action: Endpoint with Layer-3 cross-connect. 2123 * Type of *param*: **struct in6_addr**. 2124 * **SEG6_LOCAL_ACTION_END_T** 2125 * End.T action: Endpoint with specific IPv6 table lookup. 2126 * Type of *param*: **int**. 2127 * **SEG6_LOCAL_ACTION_END_B6** 2128 * End.B6 action: Endpoint bound to an SRv6 policy. 2129 * Type of *param*: **struct ipv6_sr_hdr**. 2130 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2131 * End.B6.Encap action: Endpoint bound to an SRv6 2132 * encapsulation policy. 2133 * Type of *param*: **struct ipv6_sr_hdr**. 2134 * 2135 * A call to this helper is susceptible to change the underlying 2136 * packet buffer. Therefore, at load time, all checks on pointers 2137 * previously done by the verifier are invalidated and must be 2138 * performed again, if the helper is used in combination with 2139 * direct packet access. 2140 * Return 2141 * 0 on success, or a negative error in case of failure. 2142 * 2143 * int bpf_rc_repeat(void *ctx) 2144 * Description 2145 * This helper is used in programs implementing IR decoding, to 2146 * report a successfully decoded repeat key message. This delays 2147 * the generation of a key up event for previously generated 2148 * key down event. 2149 * 2150 * Some IR protocols like NEC have a special IR message for 2151 * repeating last button, for when a button is held down. 2152 * 2153 * The *ctx* should point to the lirc sample as passed into 2154 * the program. 2155 * 2156 * This helper is only available is the kernel was compiled with 2157 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2158 * "**y**". 2159 * Return 2160 * 0 2161 * 2162 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2163 * Description 2164 * This helper is used in programs implementing IR decoding, to 2165 * report a successfully decoded key press with *scancode*, 2166 * *toggle* value in the given *protocol*. The scancode will be 2167 * translated to a keycode using the rc keymap, and reported as 2168 * an input key down event. After a period a key up event is 2169 * generated. This period can be extended by calling either 2170 * **bpf_rc_keydown**\ () again with the same values, or calling 2171 * **bpf_rc_repeat**\ (). 2172 * 2173 * Some protocols include a toggle bit, in case the button was 2174 * released and pressed again between consecutive scancodes. 2175 * 2176 * The *ctx* should point to the lirc sample as passed into 2177 * the program. 2178 * 2179 * The *protocol* is the decoded protocol number (see 2180 * **enum rc_proto** for some predefined values). 2181 * 2182 * This helper is only available is the kernel was compiled with 2183 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2184 * "**y**". 2185 * Return 2186 * 0 2187 * 2188 * u64 bpf_skb_cgroup_id(struct sk_buff *skb) 2189 * Description 2190 * Return the cgroup v2 id of the socket associated with the *skb*. 2191 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2192 * helper for cgroup v1 by providing a tag resp. identifier that 2193 * can be matched on or used for map lookups e.g. to implement 2194 * policy. The cgroup v2 id of a given path in the hierarchy is 2195 * exposed in user space through the f_handle API in order to get 2196 * to the same 64-bit id. 2197 * 2198 * This helper can be used on TC egress path, but not on ingress, 2199 * and is available only if the kernel was compiled with the 2200 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2201 * Return 2202 * The id is returned or 0 in case the id could not be retrieved. 2203 * 2204 * u64 bpf_get_current_cgroup_id(void) 2205 * Return 2206 * A 64-bit integer containing the current cgroup id based 2207 * on the cgroup within which the current task is running. 2208 * 2209 * void *bpf_get_local_storage(void *map, u64 flags) 2210 * Description 2211 * Get the pointer to the local storage area. 2212 * The type and the size of the local storage is defined 2213 * by the *map* argument. 2214 * The *flags* meaning is specific for each map type, 2215 * and has to be 0 for cgroup local storage. 2216 * 2217 * Depending on the BPF program type, a local storage area 2218 * can be shared between multiple instances of the BPF program, 2219 * running simultaneously. 2220 * 2221 * A user should care about the synchronization by himself. 2222 * For example, by using the **BPF_STX_XADD** instruction to alter 2223 * the shared data. 2224 * Return 2225 * A pointer to the local storage area. 2226 * 2227 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2228 * Description 2229 * Select a **SO_REUSEPORT** socket from a 2230 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2231 * It checks the selected socket is matching the incoming 2232 * request in the socket buffer. 2233 * Return 2234 * 0 on success, or a negative error in case of failure. 2235 * 2236 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2237 * Description 2238 * Return id of cgroup v2 that is ancestor of cgroup associated 2239 * with the *skb* at the *ancestor_level*. The root cgroup is at 2240 * *ancestor_level* zero and each step down the hierarchy 2241 * increments the level. If *ancestor_level* == level of cgroup 2242 * associated with *skb*, then return value will be same as that 2243 * of **bpf_skb_cgroup_id**\ (). 2244 * 2245 * The helper is useful to implement policies based on cgroups 2246 * that are upper in hierarchy than immediate cgroup associated 2247 * with *skb*. 2248 * 2249 * The format of returned id and helper limitations are same as in 2250 * **bpf_skb_cgroup_id**\ (). 2251 * Return 2252 * The id is returned or 0 in case the id could not be retrieved. 2253 * 2254 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2255 * Description 2256 * Look for TCP socket matching *tuple*, optionally in a child 2257 * network namespace *netns*. The return value must be checked, 2258 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2259 * 2260 * The *ctx* should point to the context of the program, such as 2261 * the skb or socket (depending on the hook in use). This is used 2262 * to determine the base network namespace for the lookup. 2263 * 2264 * *tuple_size* must be one of: 2265 * 2266 * **sizeof**\ (*tuple*\ **->ipv4**) 2267 * Look for an IPv4 socket. 2268 * **sizeof**\ (*tuple*\ **->ipv6**) 2269 * Look for an IPv6 socket. 2270 * 2271 * If the *netns* is a negative signed 32-bit integer, then the 2272 * socket lookup table in the netns associated with the *ctx* will 2273 * will be used. For the TC hooks, this is the netns of the device 2274 * in the skb. For socket hooks, this is the netns of the socket. 2275 * If *netns* is any other signed 32-bit value greater than or 2276 * equal to zero then it specifies the ID of the netns relative to 2277 * the netns associated with the *ctx*. *netns* values beyond the 2278 * range of 32-bit integers are reserved for future use. 2279 * 2280 * All values for *flags* are reserved for future usage, and must 2281 * be left at zero. 2282 * 2283 * This helper is available only if the kernel was compiled with 2284 * **CONFIG_NET** configuration option. 2285 * Return 2286 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2287 * For sockets with reuseport option, the **struct bpf_sock** 2288 * result is from *reuse*\ **->socks**\ [] using the hash of the 2289 * tuple. 2290 * 2291 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2292 * Description 2293 * Look for UDP socket matching *tuple*, optionally in a child 2294 * network namespace *netns*. The return value must be checked, 2295 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2296 * 2297 * The *ctx* should point to the context of the program, such as 2298 * the skb or socket (depending on the hook in use). This is used 2299 * to determine the base network namespace for the lookup. 2300 * 2301 * *tuple_size* must be one of: 2302 * 2303 * **sizeof**\ (*tuple*\ **->ipv4**) 2304 * Look for an IPv4 socket. 2305 * **sizeof**\ (*tuple*\ **->ipv6**) 2306 * Look for an IPv6 socket. 2307 * 2308 * If the *netns* is a negative signed 32-bit integer, then the 2309 * socket lookup table in the netns associated with the *ctx* will 2310 * will be used. For the TC hooks, this is the netns of the device 2311 * in the skb. For socket hooks, this is the netns of the socket. 2312 * If *netns* is any other signed 32-bit value greater than or 2313 * equal to zero then it specifies the ID of the netns relative to 2314 * the netns associated with the *ctx*. *netns* values beyond the 2315 * range of 32-bit integers are reserved for future use. 2316 * 2317 * All values for *flags* are reserved for future usage, and must 2318 * be left at zero. 2319 * 2320 * This helper is available only if the kernel was compiled with 2321 * **CONFIG_NET** configuration option. 2322 * Return 2323 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2324 * For sockets with reuseport option, the **struct bpf_sock** 2325 * result is from *reuse*\ **->socks**\ [] using the hash of the 2326 * tuple. 2327 * 2328 * int bpf_sk_release(struct bpf_sock *sock) 2329 * Description 2330 * Release the reference held by *sock*. *sock* must be a 2331 * non-**NULL** pointer that was returned from 2332 * **bpf_sk_lookup_xxx**\ (). 2333 * Return 2334 * 0 on success, or a negative error in case of failure. 2335 * 2336 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 2337 * Description 2338 * Push an element *value* in *map*. *flags* is one of: 2339 * 2340 * **BPF_EXIST** 2341 * If the queue/stack is full, the oldest element is 2342 * removed to make room for this. 2343 * Return 2344 * 0 on success, or a negative error in case of failure. 2345 * 2346 * int bpf_map_pop_elem(struct bpf_map *map, void *value) 2347 * Description 2348 * Pop an element from *map*. 2349 * Return 2350 * 0 on success, or a negative error in case of failure. 2351 * 2352 * int bpf_map_peek_elem(struct bpf_map *map, void *value) 2353 * Description 2354 * Get an element from *map* without removing it. 2355 * Return 2356 * 0 on success, or a negative error in case of failure. 2357 * 2358 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags) 2359 * Description 2360 * For socket policies, insert *len* bytes into *msg* at offset 2361 * *start*. 2362 * 2363 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2364 * *msg* it may want to insert metadata or options into the *msg*. 2365 * This can later be read and used by any of the lower layer BPF 2366 * hooks. 2367 * 2368 * This helper may fail if under memory pressure (a malloc 2369 * fails) in these cases BPF programs will get an appropriate 2370 * error and BPF programs will need to handle them. 2371 * Return 2372 * 0 on success, or a negative error in case of failure. 2373 * 2374 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags) 2375 * Description 2376 * Will remove *pop* bytes from a *msg* starting at byte *start*. 2377 * This may result in **ENOMEM** errors under certain situations if 2378 * an allocation and copy are required due to a full ring buffer. 2379 * However, the helper will try to avoid doing the allocation 2380 * if possible. Other errors can occur if input parameters are 2381 * invalid either due to *start* byte not being valid part of *msg* 2382 * payload and/or *pop* value being to large. 2383 * Return 2384 * 0 on success, or a negative error in case of failure. 2385 * 2386 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2387 * Description 2388 * This helper is used in programs implementing IR decoding, to 2389 * report a successfully decoded pointer movement. 2390 * 2391 * The *ctx* should point to the lirc sample as passed into 2392 * the program. 2393 * 2394 * This helper is only available is the kernel was compiled with 2395 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2396 * "**y**". 2397 * Return 2398 * 0 2399 * 2400 * int bpf_spin_lock(struct bpf_spin_lock *lock) 2401 * Description 2402 * Acquire a spinlock represented by the pointer *lock*, which is 2403 * stored as part of a value of a map. Taking the lock allows to 2404 * safely update the rest of the fields in that value. The 2405 * spinlock can (and must) later be released with a call to 2406 * **bpf_spin_unlock**\ (\ *lock*\ ). 2407 * 2408 * Spinlocks in BPF programs come with a number of restrictions 2409 * and constraints: 2410 * 2411 * * **bpf_spin_lock** objects are only allowed inside maps of 2412 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this 2413 * list could be extended in the future). 2414 * * BTF description of the map is mandatory. 2415 * * The BPF program can take ONE lock at a time, since taking two 2416 * or more could cause dead locks. 2417 * * Only one **struct bpf_spin_lock** is allowed per map element. 2418 * * When the lock is taken, calls (either BPF to BPF or helpers) 2419 * are not allowed. 2420 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not 2421 * allowed inside a spinlock-ed region. 2422 * * The BPF program MUST call **bpf_spin_unlock**\ () to release 2423 * the lock, on all execution paths, before it returns. 2424 * * The BPF program can access **struct bpf_spin_lock** only via 2425 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ () 2426 * helpers. Loading or storing data into the **struct 2427 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed. 2428 * * To use the **bpf_spin_lock**\ () helper, the BTF description 2429 * of the map value must be a struct and have **struct 2430 * bpf_spin_lock** *anyname*\ **;** field at the top level. 2431 * Nested lock inside another struct is not allowed. 2432 * * The **struct bpf_spin_lock** *lock* field in a map value must 2433 * be aligned on a multiple of 4 bytes in that value. 2434 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy 2435 * the **bpf_spin_lock** field to user space. 2436 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from 2437 * a BPF program, do not update the **bpf_spin_lock** field. 2438 * * **bpf_spin_lock** cannot be on the stack or inside a 2439 * networking packet (it can only be inside of a map values). 2440 * * **bpf_spin_lock** is available to root only. 2441 * * Tracing programs and socket filter programs cannot use 2442 * **bpf_spin_lock**\ () due to insufficient preemption checks 2443 * (but this may change in the future). 2444 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map. 2445 * Return 2446 * 0 2447 * 2448 * int bpf_spin_unlock(struct bpf_spin_lock *lock) 2449 * Description 2450 * Release the *lock* previously locked by a call to 2451 * **bpf_spin_lock**\ (\ *lock*\ ). 2452 * Return 2453 * 0 2454 * 2455 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk) 2456 * Description 2457 * This helper gets a **struct bpf_sock** pointer such 2458 * that all the fields in this **bpf_sock** can be accessed. 2459 * Return 2460 * A **struct bpf_sock** pointer on success, or **NULL** in 2461 * case of failure. 2462 * 2463 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk) 2464 * Description 2465 * This helper gets a **struct bpf_tcp_sock** pointer from a 2466 * **struct bpf_sock** pointer. 2467 * Return 2468 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in 2469 * case of failure. 2470 * 2471 * int bpf_skb_ecn_set_ce(struct sk_buf *skb) 2472 * Description 2473 * Set ECN (Explicit Congestion Notification) field of IP header 2474 * to **CE** (Congestion Encountered) if current value is **ECT** 2475 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6 2476 * and IPv4. 2477 * Return 2478 * 1 if the **CE** flag is set (either by the current helper call 2479 * or because it was already present), 0 if it is not set. 2480 * 2481 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk) 2482 * Description 2483 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state. 2484 * **bpf_sk_release**\ () is unnecessary and not allowed. 2485 * Return 2486 * A **struct bpf_sock** pointer on success, or **NULL** in 2487 * case of failure. 2488 * 2489 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2490 * Description 2491 * Look for TCP socket matching *tuple*, optionally in a child 2492 * network namespace *netns*. The return value must be checked, 2493 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2494 * 2495 * This function is identical to **bpf_sk_lookup_tcp**\ (), except 2496 * that it also returns timewait or request sockets. Use 2497 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the 2498 * full structure. 2499 * 2500 * This helper is available only if the kernel was compiled with 2501 * **CONFIG_NET** configuration option. 2502 * Return 2503 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2504 * For sockets with reuseport option, the **struct bpf_sock** 2505 * result is from *reuse*\ **->socks**\ [] using the hash of the 2506 * tuple. 2507 * 2508 * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2509 * Description 2510 * Check whether *iph* and *th* contain a valid SYN cookie ACK for 2511 * the listening socket in *sk*. 2512 * 2513 * *iph* points to the start of the IPv4 or IPv6 header, while 2514 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2515 * **sizeof**\ (**struct ip6hdr**). 2516 * 2517 * *th* points to the start of the TCP header, while *th_len* 2518 * contains **sizeof**\ (**struct tcphdr**). 2519 * 2520 * Return 2521 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative 2522 * error otherwise. 2523 * 2524 * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags) 2525 * Description 2526 * Get name of sysctl in /proc/sys/ and copy it into provided by 2527 * program buffer *buf* of size *buf_len*. 2528 * 2529 * The buffer is always NUL terminated, unless it's zero-sized. 2530 * 2531 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is 2532 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name 2533 * only (e.g. "tcp_mem"). 2534 * Return 2535 * Number of character copied (not including the trailing NUL). 2536 * 2537 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2538 * truncated name in this case). 2539 * 2540 * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2541 * Description 2542 * Get current value of sysctl as it is presented in /proc/sys 2543 * (incl. newline, etc), and copy it as a string into provided 2544 * by program buffer *buf* of size *buf_len*. 2545 * 2546 * The whole value is copied, no matter what file position user 2547 * space issued e.g. sys_read at. 2548 * 2549 * The buffer is always NUL terminated, unless it's zero-sized. 2550 * Return 2551 * Number of character copied (not including the trailing NUL). 2552 * 2553 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2554 * truncated name in this case). 2555 * 2556 * **-EINVAL** if current value was unavailable, e.g. because 2557 * sysctl is uninitialized and read returns -EIO for it. 2558 * 2559 * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2560 * Description 2561 * Get new value being written by user space to sysctl (before 2562 * the actual write happens) and copy it as a string into 2563 * provided by program buffer *buf* of size *buf_len*. 2564 * 2565 * User space may write new value at file position > 0. 2566 * 2567 * The buffer is always NUL terminated, unless it's zero-sized. 2568 * Return 2569 * Number of character copied (not including the trailing NUL). 2570 * 2571 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2572 * truncated name in this case). 2573 * 2574 * **-EINVAL** if sysctl is being read. 2575 * 2576 * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len) 2577 * Description 2578 * Override new value being written by user space to sysctl with 2579 * value provided by program in buffer *buf* of size *buf_len*. 2580 * 2581 * *buf* should contain a string in same form as provided by user 2582 * space on sysctl write. 2583 * 2584 * User space may write new value at file position > 0. To override 2585 * the whole sysctl value file position should be set to zero. 2586 * Return 2587 * 0 on success. 2588 * 2589 * **-E2BIG** if the *buf_len* is too big. 2590 * 2591 * **-EINVAL** if sysctl is being read. 2592 * 2593 * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res) 2594 * Description 2595 * Convert the initial part of the string from buffer *buf* of 2596 * size *buf_len* to a long integer according to the given base 2597 * and save the result in *res*. 2598 * 2599 * The string may begin with an arbitrary amount of white space 2600 * (as determined by **isspace**\ (3)) followed by a single 2601 * optional '**-**' sign. 2602 * 2603 * Five least significant bits of *flags* encode base, other bits 2604 * are currently unused. 2605 * 2606 * Base must be either 8, 10, 16 or 0 to detect it automatically 2607 * similar to user space **strtol**\ (3). 2608 * Return 2609 * Number of characters consumed on success. Must be positive but 2610 * no more than *buf_len*. 2611 * 2612 * **-EINVAL** if no valid digits were found or unsupported base 2613 * was provided. 2614 * 2615 * **-ERANGE** if resulting value was out of range. 2616 * 2617 * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res) 2618 * Description 2619 * Convert the initial part of the string from buffer *buf* of 2620 * size *buf_len* to an unsigned long integer according to the 2621 * given base and save the result in *res*. 2622 * 2623 * The string may begin with an arbitrary amount of white space 2624 * (as determined by **isspace**\ (3)). 2625 * 2626 * Five least significant bits of *flags* encode base, other bits 2627 * are currently unused. 2628 * 2629 * Base must be either 8, 10, 16 or 0 to detect it automatically 2630 * similar to user space **strtoul**\ (3). 2631 * Return 2632 * Number of characters consumed on success. Must be positive but 2633 * no more than *buf_len*. 2634 * 2635 * **-EINVAL** if no valid digits were found or unsupported base 2636 * was provided. 2637 * 2638 * **-ERANGE** if resulting value was out of range. 2639 * 2640 * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags) 2641 * Description 2642 * Get a bpf-local-storage from a *sk*. 2643 * 2644 * Logically, it could be thought of getting the value from 2645 * a *map* with *sk* as the **key**. From this 2646 * perspective, the usage is not much different from 2647 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this 2648 * helper enforces the key must be a full socket and the map must 2649 * be a **BPF_MAP_TYPE_SK_STORAGE** also. 2650 * 2651 * Underneath, the value is stored locally at *sk* instead of 2652 * the *map*. The *map* is used as the bpf-local-storage 2653 * "type". The bpf-local-storage "type" (i.e. the *map*) is 2654 * searched against all bpf-local-storages residing at *sk*. 2655 * 2656 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be 2657 * used such that a new bpf-local-storage will be 2658 * created if one does not exist. *value* can be used 2659 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify 2660 * the initial value of a bpf-local-storage. If *value* is 2661 * **NULL**, the new bpf-local-storage will be zero initialized. 2662 * Return 2663 * A bpf-local-storage pointer is returned on success. 2664 * 2665 * **NULL** if not found or there was an error in adding 2666 * a new bpf-local-storage. 2667 * 2668 * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk) 2669 * Description 2670 * Delete a bpf-local-storage from a *sk*. 2671 * Return 2672 * 0 on success. 2673 * 2674 * **-ENOENT** if the bpf-local-storage cannot be found. 2675 */ 2676 #define __BPF_FUNC_MAPPER(FN) \ 2677 FN(unspec), \ 2678 FN(map_lookup_elem), \ 2679 FN(map_update_elem), \ 2680 FN(map_delete_elem), \ 2681 FN(probe_read), \ 2682 FN(ktime_get_ns), \ 2683 FN(trace_printk), \ 2684 FN(get_prandom_u32), \ 2685 FN(get_smp_processor_id), \ 2686 FN(skb_store_bytes), \ 2687 FN(l3_csum_replace), \ 2688 FN(l4_csum_replace), \ 2689 FN(tail_call), \ 2690 FN(clone_redirect), \ 2691 FN(get_current_pid_tgid), \ 2692 FN(get_current_uid_gid), \ 2693 FN(get_current_comm), \ 2694 FN(get_cgroup_classid), \ 2695 FN(skb_vlan_push), \ 2696 FN(skb_vlan_pop), \ 2697 FN(skb_get_tunnel_key), \ 2698 FN(skb_set_tunnel_key), \ 2699 FN(perf_event_read), \ 2700 FN(redirect), \ 2701 FN(get_route_realm), \ 2702 FN(perf_event_output), \ 2703 FN(skb_load_bytes), \ 2704 FN(get_stackid), \ 2705 FN(csum_diff), \ 2706 FN(skb_get_tunnel_opt), \ 2707 FN(skb_set_tunnel_opt), \ 2708 FN(skb_change_proto), \ 2709 FN(skb_change_type), \ 2710 FN(skb_under_cgroup), \ 2711 FN(get_hash_recalc), \ 2712 FN(get_current_task), \ 2713 FN(probe_write_user), \ 2714 FN(current_task_under_cgroup), \ 2715 FN(skb_change_tail), \ 2716 FN(skb_pull_data), \ 2717 FN(csum_update), \ 2718 FN(set_hash_invalid), \ 2719 FN(get_numa_node_id), \ 2720 FN(skb_change_head), \ 2721 FN(xdp_adjust_head), \ 2722 FN(probe_read_str), \ 2723 FN(get_socket_cookie), \ 2724 FN(get_socket_uid), \ 2725 FN(set_hash), \ 2726 FN(setsockopt), \ 2727 FN(skb_adjust_room), \ 2728 FN(redirect_map), \ 2729 FN(sk_redirect_map), \ 2730 FN(sock_map_update), \ 2731 FN(xdp_adjust_meta), \ 2732 FN(perf_event_read_value), \ 2733 FN(perf_prog_read_value), \ 2734 FN(getsockopt), \ 2735 FN(override_return), \ 2736 FN(sock_ops_cb_flags_set), \ 2737 FN(msg_redirect_map), \ 2738 FN(msg_apply_bytes), \ 2739 FN(msg_cork_bytes), \ 2740 FN(msg_pull_data), \ 2741 FN(bind), \ 2742 FN(xdp_adjust_tail), \ 2743 FN(skb_get_xfrm_state), \ 2744 FN(get_stack), \ 2745 FN(skb_load_bytes_relative), \ 2746 FN(fib_lookup), \ 2747 FN(sock_hash_update), \ 2748 FN(msg_redirect_hash), \ 2749 FN(sk_redirect_hash), \ 2750 FN(lwt_push_encap), \ 2751 FN(lwt_seg6_store_bytes), \ 2752 FN(lwt_seg6_adjust_srh), \ 2753 FN(lwt_seg6_action), \ 2754 FN(rc_repeat), \ 2755 FN(rc_keydown), \ 2756 FN(skb_cgroup_id), \ 2757 FN(get_current_cgroup_id), \ 2758 FN(get_local_storage), \ 2759 FN(sk_select_reuseport), \ 2760 FN(skb_ancestor_cgroup_id), \ 2761 FN(sk_lookup_tcp), \ 2762 FN(sk_lookup_udp), \ 2763 FN(sk_release), \ 2764 FN(map_push_elem), \ 2765 FN(map_pop_elem), \ 2766 FN(map_peek_elem), \ 2767 FN(msg_push_data), \ 2768 FN(msg_pop_data), \ 2769 FN(rc_pointer_rel), \ 2770 FN(spin_lock), \ 2771 FN(spin_unlock), \ 2772 FN(sk_fullsock), \ 2773 FN(tcp_sock), \ 2774 FN(skb_ecn_set_ce), \ 2775 FN(get_listener_sock), \ 2776 FN(skc_lookup_tcp), \ 2777 FN(tcp_check_syncookie), \ 2778 FN(sysctl_get_name), \ 2779 FN(sysctl_get_current_value), \ 2780 FN(sysctl_get_new_value), \ 2781 FN(sysctl_set_new_value), \ 2782 FN(strtol), \ 2783 FN(strtoul), \ 2784 FN(sk_storage_get), \ 2785 FN(sk_storage_delete), 2786 2787 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 2788 * function eBPF program intends to call 2789 */ 2790 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 2791 enum bpf_func_id { 2792 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 2793 __BPF_FUNC_MAX_ID, 2794 }; 2795 #undef __BPF_ENUM_FN 2796 2797 /* All flags used by eBPF helper functions, placed here. */ 2798 2799 /* BPF_FUNC_skb_store_bytes flags. */ 2800 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0) 2801 #define BPF_F_INVALIDATE_HASH (1ULL << 1) 2802 2803 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 2804 * First 4 bits are for passing the header field size. 2805 */ 2806 #define BPF_F_HDR_FIELD_MASK 0xfULL 2807 2808 /* BPF_FUNC_l4_csum_replace flags. */ 2809 #define BPF_F_PSEUDO_HDR (1ULL << 4) 2810 #define BPF_F_MARK_MANGLED_0 (1ULL << 5) 2811 #define BPF_F_MARK_ENFORCE (1ULL << 6) 2812 2813 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 2814 #define BPF_F_INGRESS (1ULL << 0) 2815 2816 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 2817 #define BPF_F_TUNINFO_IPV6 (1ULL << 0) 2818 2819 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 2820 #define BPF_F_SKIP_FIELD_MASK 0xffULL 2821 #define BPF_F_USER_STACK (1ULL << 8) 2822 /* flags used by BPF_FUNC_get_stackid only. */ 2823 #define BPF_F_FAST_STACK_CMP (1ULL << 9) 2824 #define BPF_F_REUSE_STACKID (1ULL << 10) 2825 /* flags used by BPF_FUNC_get_stack only. */ 2826 #define BPF_F_USER_BUILD_ID (1ULL << 11) 2827 2828 /* BPF_FUNC_skb_set_tunnel_key flags. */ 2829 #define BPF_F_ZERO_CSUM_TX (1ULL << 1) 2830 #define BPF_F_DONT_FRAGMENT (1ULL << 2) 2831 #define BPF_F_SEQ_NUMBER (1ULL << 3) 2832 2833 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 2834 * BPF_FUNC_perf_event_read_value flags. 2835 */ 2836 #define BPF_F_INDEX_MASK 0xffffffffULL 2837 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK 2838 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 2839 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32) 2840 2841 /* Current network namespace */ 2842 #define BPF_F_CURRENT_NETNS (-1L) 2843 2844 /* BPF_FUNC_skb_adjust_room flags. */ 2845 #define BPF_F_ADJ_ROOM_FIXED_GSO (1ULL << 0) 2846 2847 #define BPF_ADJ_ROOM_ENCAP_L2_MASK 0xff 2848 #define BPF_ADJ_ROOM_ENCAP_L2_SHIFT 56 2849 2850 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 (1ULL << 1) 2851 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 (1ULL << 2) 2852 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE (1ULL << 3) 2853 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP (1ULL << 4) 2854 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \ 2855 BPF_ADJ_ROOM_ENCAP_L2_MASK) \ 2856 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT) 2857 2858 /* BPF_FUNC_sysctl_get_name flags. */ 2859 #define BPF_F_SYSCTL_BASE_NAME (1ULL << 0) 2860 2861 /* BPF_FUNC_sk_storage_get flags */ 2862 #define BPF_SK_STORAGE_GET_F_CREATE (1ULL << 0) 2863 2864 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 2865 enum bpf_adj_room_mode { 2866 BPF_ADJ_ROOM_NET, 2867 BPF_ADJ_ROOM_MAC, 2868 }; 2869 2870 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 2871 enum bpf_hdr_start_off { 2872 BPF_HDR_START_MAC, 2873 BPF_HDR_START_NET, 2874 }; 2875 2876 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 2877 enum bpf_lwt_encap_mode { 2878 BPF_LWT_ENCAP_SEG6, 2879 BPF_LWT_ENCAP_SEG6_INLINE, 2880 BPF_LWT_ENCAP_IP, 2881 }; 2882 2883 #define __bpf_md_ptr(type, name) \ 2884 union { \ 2885 type name; \ 2886 __u64 :64; \ 2887 } __attribute__((aligned(8))) 2888 2889 /* user accessible mirror of in-kernel sk_buff. 2890 * new fields can only be added to the end of this structure 2891 */ 2892 struct __sk_buff { 2893 __u32 len; 2894 __u32 pkt_type; 2895 __u32 mark; 2896 __u32 queue_mapping; 2897 __u32 protocol; 2898 __u32 vlan_present; 2899 __u32 vlan_tci; 2900 __u32 vlan_proto; 2901 __u32 priority; 2902 __u32 ingress_ifindex; 2903 __u32 ifindex; 2904 __u32 tc_index; 2905 __u32 cb[5]; 2906 __u32 hash; 2907 __u32 tc_classid; 2908 __u32 data; 2909 __u32 data_end; 2910 __u32 napi_id; 2911 2912 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 2913 __u32 family; 2914 __u32 remote_ip4; /* Stored in network byte order */ 2915 __u32 local_ip4; /* Stored in network byte order */ 2916 __u32 remote_ip6[4]; /* Stored in network byte order */ 2917 __u32 local_ip6[4]; /* Stored in network byte order */ 2918 __u32 remote_port; /* Stored in network byte order */ 2919 __u32 local_port; /* stored in host byte order */ 2920 /* ... here. */ 2921 2922 __u32 data_meta; 2923 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 2924 __u64 tstamp; 2925 __u32 wire_len; 2926 __u32 gso_segs; 2927 __bpf_md_ptr(struct bpf_sock *, sk); 2928 }; 2929 2930 struct bpf_tunnel_key { 2931 __u32 tunnel_id; 2932 union { 2933 __u32 remote_ipv4; 2934 __u32 remote_ipv6[4]; 2935 }; 2936 __u8 tunnel_tos; 2937 __u8 tunnel_ttl; 2938 __u16 tunnel_ext; /* Padding, future use. */ 2939 __u32 tunnel_label; 2940 }; 2941 2942 /* user accessible mirror of in-kernel xfrm_state. 2943 * new fields can only be added to the end of this structure 2944 */ 2945 struct bpf_xfrm_state { 2946 __u32 reqid; 2947 __u32 spi; /* Stored in network byte order */ 2948 __u16 family; 2949 __u16 ext; /* Padding, future use. */ 2950 union { 2951 __u32 remote_ipv4; /* Stored in network byte order */ 2952 __u32 remote_ipv6[4]; /* Stored in network byte order */ 2953 }; 2954 }; 2955 2956 /* Generic BPF return codes which all BPF program types may support. 2957 * The values are binary compatible with their TC_ACT_* counter-part to 2958 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 2959 * programs. 2960 * 2961 * XDP is handled seprately, see XDP_*. 2962 */ 2963 enum bpf_ret_code { 2964 BPF_OK = 0, 2965 /* 1 reserved */ 2966 BPF_DROP = 2, 2967 /* 3-6 reserved */ 2968 BPF_REDIRECT = 7, 2969 /* >127 are reserved for prog type specific return codes. 2970 * 2971 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and 2972 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been 2973 * changed and should be routed based on its new L3 header. 2974 * (This is an L3 redirect, as opposed to L2 redirect 2975 * represented by BPF_REDIRECT above). 2976 */ 2977 BPF_LWT_REROUTE = 128, 2978 }; 2979 2980 struct bpf_sock { 2981 __u32 bound_dev_if; 2982 __u32 family; 2983 __u32 type; 2984 __u32 protocol; 2985 __u32 mark; 2986 __u32 priority; 2987 /* IP address also allows 1 and 2 bytes access */ 2988 __u32 src_ip4; 2989 __u32 src_ip6[4]; 2990 __u32 src_port; /* host byte order */ 2991 __u32 dst_port; /* network byte order */ 2992 __u32 dst_ip4; 2993 __u32 dst_ip6[4]; 2994 __u32 state; 2995 }; 2996 2997 struct bpf_tcp_sock { 2998 __u32 snd_cwnd; /* Sending congestion window */ 2999 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */ 3000 __u32 rtt_min; 3001 __u32 snd_ssthresh; /* Slow start size threshold */ 3002 __u32 rcv_nxt; /* What we want to receive next */ 3003 __u32 snd_nxt; /* Next sequence we send */ 3004 __u32 snd_una; /* First byte we want an ack for */ 3005 __u32 mss_cache; /* Cached effective mss, not including SACKS */ 3006 __u32 ecn_flags; /* ECN status bits. */ 3007 __u32 rate_delivered; /* saved rate sample: packets delivered */ 3008 __u32 rate_interval_us; /* saved rate sample: time elapsed */ 3009 __u32 packets_out; /* Packets which are "in flight" */ 3010 __u32 retrans_out; /* Retransmitted packets out */ 3011 __u32 total_retrans; /* Total retransmits for entire connection */ 3012 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn 3013 * total number of segments in. 3014 */ 3015 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn 3016 * total number of data segments in. 3017 */ 3018 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut 3019 * The total number of segments sent. 3020 */ 3021 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut 3022 * total number of data segments sent. 3023 */ 3024 __u32 lost_out; /* Lost packets */ 3025 __u32 sacked_out; /* SACK'd packets */ 3026 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived 3027 * sum(delta(rcv_nxt)), or how many bytes 3028 * were acked. 3029 */ 3030 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked 3031 * sum(delta(snd_una)), or how many bytes 3032 * were acked. 3033 */ 3034 }; 3035 3036 struct bpf_sock_tuple { 3037 union { 3038 struct { 3039 __be32 saddr; 3040 __be32 daddr; 3041 __be16 sport; 3042 __be16 dport; 3043 } ipv4; 3044 struct { 3045 __be32 saddr[4]; 3046 __be32 daddr[4]; 3047 __be16 sport; 3048 __be16 dport; 3049 } ipv6; 3050 }; 3051 }; 3052 3053 #define XDP_PACKET_HEADROOM 256 3054 3055 /* User return codes for XDP prog type. 3056 * A valid XDP program must return one of these defined values. All other 3057 * return codes are reserved for future use. Unknown return codes will 3058 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 3059 */ 3060 enum xdp_action { 3061 XDP_ABORTED = 0, 3062 XDP_DROP, 3063 XDP_PASS, 3064 XDP_TX, 3065 XDP_REDIRECT, 3066 }; 3067 3068 /* user accessible metadata for XDP packet hook 3069 * new fields must be added to the end of this structure 3070 */ 3071 struct xdp_md { 3072 __u32 data; 3073 __u32 data_end; 3074 __u32 data_meta; 3075 /* Below access go through struct xdp_rxq_info */ 3076 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 3077 __u32 rx_queue_index; /* rxq->queue_index */ 3078 }; 3079 3080 enum sk_action { 3081 SK_DROP = 0, 3082 SK_PASS, 3083 }; 3084 3085 /* user accessible metadata for SK_MSG packet hook, new fields must 3086 * be added to the end of this structure 3087 */ 3088 struct sk_msg_md { 3089 __bpf_md_ptr(void *, data); 3090 __bpf_md_ptr(void *, data_end); 3091 3092 __u32 family; 3093 __u32 remote_ip4; /* Stored in network byte order */ 3094 __u32 local_ip4; /* Stored in network byte order */ 3095 __u32 remote_ip6[4]; /* Stored in network byte order */ 3096 __u32 local_ip6[4]; /* Stored in network byte order */ 3097 __u32 remote_port; /* Stored in network byte order */ 3098 __u32 local_port; /* stored in host byte order */ 3099 __u32 size; /* Total size of sk_msg */ 3100 }; 3101 3102 struct sk_reuseport_md { 3103 /* 3104 * Start of directly accessible data. It begins from 3105 * the tcp/udp header. 3106 */ 3107 __bpf_md_ptr(void *, data); 3108 /* End of directly accessible data */ 3109 __bpf_md_ptr(void *, data_end); 3110 /* 3111 * Total length of packet (starting from the tcp/udp header). 3112 * Note that the directly accessible bytes (data_end - data) 3113 * could be less than this "len". Those bytes could be 3114 * indirectly read by a helper "bpf_skb_load_bytes()". 3115 */ 3116 __u32 len; 3117 /* 3118 * Eth protocol in the mac header (network byte order). e.g. 3119 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 3120 */ 3121 __u32 eth_protocol; 3122 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 3123 __u32 bind_inany; /* Is sock bound to an INANY address? */ 3124 __u32 hash; /* A hash of the packet 4 tuples */ 3125 }; 3126 3127 #define BPF_TAG_SIZE 8 3128 3129 struct bpf_prog_info { 3130 __u32 type; 3131 __u32 id; 3132 __u8 tag[BPF_TAG_SIZE]; 3133 __u32 jited_prog_len; 3134 __u32 xlated_prog_len; 3135 __aligned_u64 jited_prog_insns; 3136 __aligned_u64 xlated_prog_insns; 3137 __u64 load_time; /* ns since boottime */ 3138 __u32 created_by_uid; 3139 __u32 nr_map_ids; 3140 __aligned_u64 map_ids; 3141 char name[BPF_OBJ_NAME_LEN]; 3142 __u32 ifindex; 3143 __u32 gpl_compatible:1; 3144 __u64 netns_dev; 3145 __u64 netns_ino; 3146 __u32 nr_jited_ksyms; 3147 __u32 nr_jited_func_lens; 3148 __aligned_u64 jited_ksyms; 3149 __aligned_u64 jited_func_lens; 3150 __u32 btf_id; 3151 __u32 func_info_rec_size; 3152 __aligned_u64 func_info; 3153 __u32 nr_func_info; 3154 __u32 nr_line_info; 3155 __aligned_u64 line_info; 3156 __aligned_u64 jited_line_info; 3157 __u32 nr_jited_line_info; 3158 __u32 line_info_rec_size; 3159 __u32 jited_line_info_rec_size; 3160 __u32 nr_prog_tags; 3161 __aligned_u64 prog_tags; 3162 __u64 run_time_ns; 3163 __u64 run_cnt; 3164 } __attribute__((aligned(8))); 3165 3166 struct bpf_map_info { 3167 __u32 type; 3168 __u32 id; 3169 __u32 key_size; 3170 __u32 value_size; 3171 __u32 max_entries; 3172 __u32 map_flags; 3173 char name[BPF_OBJ_NAME_LEN]; 3174 __u32 ifindex; 3175 __u32 :32; 3176 __u64 netns_dev; 3177 __u64 netns_ino; 3178 __u32 btf_id; 3179 __u32 btf_key_type_id; 3180 __u32 btf_value_type_id; 3181 } __attribute__((aligned(8))); 3182 3183 struct bpf_btf_info { 3184 __aligned_u64 btf; 3185 __u32 btf_size; 3186 __u32 id; 3187 } __attribute__((aligned(8))); 3188 3189 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 3190 * by user and intended to be used by socket (e.g. to bind to, depends on 3191 * attach attach type). 3192 */ 3193 struct bpf_sock_addr { 3194 __u32 user_family; /* Allows 4-byte read, but no write. */ 3195 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 3196 * Stored in network byte order. 3197 */ 3198 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 3199 * Stored in network byte order. 3200 */ 3201 __u32 user_port; /* Allows 4-byte read and write. 3202 * Stored in network byte order 3203 */ 3204 __u32 family; /* Allows 4-byte read, but no write */ 3205 __u32 type; /* Allows 4-byte read, but no write */ 3206 __u32 protocol; /* Allows 4-byte read, but no write */ 3207 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write. 3208 * Stored in network byte order. 3209 */ 3210 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 3211 * Stored in network byte order. 3212 */ 3213 }; 3214 3215 /* User bpf_sock_ops struct to access socket values and specify request ops 3216 * and their replies. 3217 * Some of this fields are in network (bigendian) byte order and may need 3218 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 3219 * New fields can only be added at the end of this structure 3220 */ 3221 struct bpf_sock_ops { 3222 __u32 op; 3223 union { 3224 __u32 args[4]; /* Optionally passed to bpf program */ 3225 __u32 reply; /* Returned by bpf program */ 3226 __u32 replylong[4]; /* Optionally returned by bpf prog */ 3227 }; 3228 __u32 family; 3229 __u32 remote_ip4; /* Stored in network byte order */ 3230 __u32 local_ip4; /* Stored in network byte order */ 3231 __u32 remote_ip6[4]; /* Stored in network byte order */ 3232 __u32 local_ip6[4]; /* Stored in network byte order */ 3233 __u32 remote_port; /* Stored in network byte order */ 3234 __u32 local_port; /* stored in host byte order */ 3235 __u32 is_fullsock; /* Some TCP fields are only valid if 3236 * there is a full socket. If not, the 3237 * fields read as zero. 3238 */ 3239 __u32 snd_cwnd; 3240 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 3241 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 3242 __u32 state; 3243 __u32 rtt_min; 3244 __u32 snd_ssthresh; 3245 __u32 rcv_nxt; 3246 __u32 snd_nxt; 3247 __u32 snd_una; 3248 __u32 mss_cache; 3249 __u32 ecn_flags; 3250 __u32 rate_delivered; 3251 __u32 rate_interval_us; 3252 __u32 packets_out; 3253 __u32 retrans_out; 3254 __u32 total_retrans; 3255 __u32 segs_in; 3256 __u32 data_segs_in; 3257 __u32 segs_out; 3258 __u32 data_segs_out; 3259 __u32 lost_out; 3260 __u32 sacked_out; 3261 __u32 sk_txhash; 3262 __u64 bytes_received; 3263 __u64 bytes_acked; 3264 }; 3265 3266 /* Definitions for bpf_sock_ops_cb_flags */ 3267 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0) 3268 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1) 3269 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2) 3270 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently 3271 * supported cb flags 3272 */ 3273 3274 /* List of known BPF sock_ops operators. 3275 * New entries can only be added at the end 3276 */ 3277 enum { 3278 BPF_SOCK_OPS_VOID, 3279 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 3280 * -1 if default value should be used 3281 */ 3282 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 3283 * window (in packets) or -1 if default 3284 * value should be used 3285 */ 3286 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 3287 * active connection is initialized 3288 */ 3289 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 3290 * active connection is 3291 * established 3292 */ 3293 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 3294 * passive connection is 3295 * established 3296 */ 3297 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 3298 * needs ECN 3299 */ 3300 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 3301 * based on the path and may be 3302 * dependent on the congestion control 3303 * algorithm. In general it indicates 3304 * a congestion threshold. RTTs above 3305 * this indicate congestion 3306 */ 3307 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 3308 * Arg1: value of icsk_retransmits 3309 * Arg2: value of icsk_rto 3310 * Arg3: whether RTO has expired 3311 */ 3312 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 3313 * Arg1: sequence number of 1st byte 3314 * Arg2: # segments 3315 * Arg3: return value of 3316 * tcp_transmit_skb (0 => success) 3317 */ 3318 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 3319 * Arg1: old_state 3320 * Arg2: new_state 3321 */ 3322 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 3323 * socket transition to LISTEN state. 3324 */ 3325 }; 3326 3327 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 3328 * changes between the TCP and BPF versions. Ideally this should never happen. 3329 * If it does, we need to add code to convert them before calling 3330 * the BPF sock_ops function. 3331 */ 3332 enum { 3333 BPF_TCP_ESTABLISHED = 1, 3334 BPF_TCP_SYN_SENT, 3335 BPF_TCP_SYN_RECV, 3336 BPF_TCP_FIN_WAIT1, 3337 BPF_TCP_FIN_WAIT2, 3338 BPF_TCP_TIME_WAIT, 3339 BPF_TCP_CLOSE, 3340 BPF_TCP_CLOSE_WAIT, 3341 BPF_TCP_LAST_ACK, 3342 BPF_TCP_LISTEN, 3343 BPF_TCP_CLOSING, /* Now a valid state */ 3344 BPF_TCP_NEW_SYN_RECV, 3345 3346 BPF_TCP_MAX_STATES /* Leave at the end! */ 3347 }; 3348 3349 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */ 3350 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */ 3351 3352 struct bpf_perf_event_value { 3353 __u64 counter; 3354 __u64 enabled; 3355 __u64 running; 3356 }; 3357 3358 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0) 3359 #define BPF_DEVCG_ACC_READ (1ULL << 1) 3360 #define BPF_DEVCG_ACC_WRITE (1ULL << 2) 3361 3362 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0) 3363 #define BPF_DEVCG_DEV_CHAR (1ULL << 1) 3364 3365 struct bpf_cgroup_dev_ctx { 3366 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 3367 __u32 access_type; 3368 __u32 major; 3369 __u32 minor; 3370 }; 3371 3372 struct bpf_raw_tracepoint_args { 3373 __u64 args[0]; 3374 }; 3375 3376 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 3377 * OUTPUT: Do lookup from egress perspective; default is ingress 3378 */ 3379 #define BPF_FIB_LOOKUP_DIRECT BIT(0) 3380 #define BPF_FIB_LOOKUP_OUTPUT BIT(1) 3381 3382 enum { 3383 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 3384 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 3385 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 3386 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 3387 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 3388 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 3389 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 3390 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 3391 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 3392 }; 3393 3394 struct bpf_fib_lookup { 3395 /* input: network family for lookup (AF_INET, AF_INET6) 3396 * output: network family of egress nexthop 3397 */ 3398 __u8 family; 3399 3400 /* set if lookup is to consider L4 data - e.g., FIB rules */ 3401 __u8 l4_protocol; 3402 __be16 sport; 3403 __be16 dport; 3404 3405 /* total length of packet from network header - used for MTU check */ 3406 __u16 tot_len; 3407 3408 /* input: L3 device index for lookup 3409 * output: device index from FIB lookup 3410 */ 3411 __u32 ifindex; 3412 3413 union { 3414 /* inputs to lookup */ 3415 __u8 tos; /* AF_INET */ 3416 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 3417 3418 /* output: metric of fib result (IPv4/IPv6 only) */ 3419 __u32 rt_metric; 3420 }; 3421 3422 union { 3423 __be32 ipv4_src; 3424 __u32 ipv6_src[4]; /* in6_addr; network order */ 3425 }; 3426 3427 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 3428 * network header. output: bpf_fib_lookup sets to gateway address 3429 * if FIB lookup returns gateway route 3430 */ 3431 union { 3432 __be32 ipv4_dst; 3433 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3434 }; 3435 3436 /* output */ 3437 __be16 h_vlan_proto; 3438 __be16 h_vlan_TCI; 3439 __u8 smac[6]; /* ETH_ALEN */ 3440 __u8 dmac[6]; /* ETH_ALEN */ 3441 }; 3442 3443 enum bpf_task_fd_type { 3444 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 3445 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 3446 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 3447 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 3448 BPF_FD_TYPE_UPROBE, /* filename + offset */ 3449 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 3450 }; 3451 3452 struct bpf_flow_keys { 3453 __u16 nhoff; 3454 __u16 thoff; 3455 __u16 addr_proto; /* ETH_P_* of valid addrs */ 3456 __u8 is_frag; 3457 __u8 is_first_frag; 3458 __u8 is_encap; 3459 __u8 ip_proto; 3460 __be16 n_proto; 3461 __be16 sport; 3462 __be16 dport; 3463 union { 3464 struct { 3465 __be32 ipv4_src; 3466 __be32 ipv4_dst; 3467 }; 3468 struct { 3469 __u32 ipv6_src[4]; /* in6_addr; network order */ 3470 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3471 }; 3472 }; 3473 }; 3474 3475 struct bpf_func_info { 3476 __u32 insn_off; 3477 __u32 type_id; 3478 }; 3479 3480 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 3481 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 3482 3483 struct bpf_line_info { 3484 __u32 insn_off; 3485 __u32 file_name_off; 3486 __u32 line_off; 3487 __u32 line_col; 3488 }; 3489 3490 struct bpf_spin_lock { 3491 __u32 val; 3492 }; 3493 3494 struct bpf_sysctl { 3495 __u32 write; /* Sysctl is being read (= 0) or written (= 1). 3496 * Allows 1,2,4-byte read, but no write. 3497 */ 3498 __u32 file_pos; /* Sysctl file position to read from, write to. 3499 * Allows 1,2,4-byte read an 4-byte write. 3500 */ 3501 }; 3502 3503 #endif /* _UAPI__LINUX_BPF_H__ */ 3504