1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_XARRAY_H 3 #define _LINUX_XARRAY_H 4 /* 5 * eXtensible Arrays 6 * Copyright (c) 2017 Microsoft Corporation 7 * Author: Matthew Wilcox <[email protected]> 8 * 9 * See Documentation/core-api/xarray.rst for how to use the XArray. 10 */ 11 12 #include <linux/bug.h> 13 #include <linux/compiler.h> 14 #include <linux/gfp.h> 15 #include <linux/kconfig.h> 16 #include <linux/kernel.h> 17 #include <linux/rcupdate.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 21 /* 22 * The bottom two bits of the entry determine how the XArray interprets 23 * the contents: 24 * 25 * 00: Pointer entry 26 * 10: Internal entry 27 * x1: Value entry or tagged pointer 28 * 29 * Attempting to store internal entries in the XArray is a bug. 30 * 31 * Most internal entries are pointers to the next node in the tree. 32 * The following internal entries have a special meaning: 33 * 34 * 0-62: Sibling entries 35 * 256: Zero entry 36 * 257: Retry entry 37 * 38 * Errors are also represented as internal entries, but use the negative 39 * space (-4094 to -2). They're never stored in the slots array; only 40 * returned by the normal API. 41 */ 42 43 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) 44 45 /** 46 * xa_mk_value() - Create an XArray entry from an integer. 47 * @v: Value to store in XArray. 48 * 49 * Context: Any context. 50 * Return: An entry suitable for storing in the XArray. 51 */ 52 static inline void *xa_mk_value(unsigned long v) 53 { 54 WARN_ON((long)v < 0); 55 return (void *)((v << 1) | 1); 56 } 57 58 /** 59 * xa_to_value() - Get value stored in an XArray entry. 60 * @entry: XArray entry. 61 * 62 * Context: Any context. 63 * Return: The value stored in the XArray entry. 64 */ 65 static inline unsigned long xa_to_value(const void *entry) 66 { 67 return (unsigned long)entry >> 1; 68 } 69 70 /** 71 * xa_is_value() - Determine if an entry is a value. 72 * @entry: XArray entry. 73 * 74 * Context: Any context. 75 * Return: True if the entry is a value, false if it is a pointer. 76 */ 77 static inline bool xa_is_value(const void *entry) 78 { 79 return (unsigned long)entry & 1; 80 } 81 82 /** 83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer. 84 * @p: Plain pointer. 85 * @tag: Tag value (0, 1 or 3). 86 * 87 * If the user of the XArray prefers, they can tag their pointers instead 88 * of storing value entries. Three tags are available (0, 1 and 3). 89 * These are distinct from the xa_mark_t as they are not replicated up 90 * through the array and cannot be searched for. 91 * 92 * Context: Any context. 93 * Return: An XArray entry. 94 */ 95 static inline void *xa_tag_pointer(void *p, unsigned long tag) 96 { 97 return (void *)((unsigned long)p | tag); 98 } 99 100 /** 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer. 102 * @entry: XArray entry. 103 * 104 * If you have stored a tagged pointer in the XArray, call this function 105 * to get the untagged version of the pointer. 106 * 107 * Context: Any context. 108 * Return: A pointer. 109 */ 110 static inline void *xa_untag_pointer(void *entry) 111 { 112 return (void *)((unsigned long)entry & ~3UL); 113 } 114 115 /** 116 * xa_pointer_tag() - Get the tag stored in an XArray entry. 117 * @entry: XArray entry. 118 * 119 * If you have stored a tagged pointer in the XArray, call this function 120 * to get the tag of that pointer. 121 * 122 * Context: Any context. 123 * Return: A tag. 124 */ 125 static inline unsigned int xa_pointer_tag(void *entry) 126 { 127 return (unsigned long)entry & 3UL; 128 } 129 130 /* 131 * xa_mk_internal() - Create an internal entry. 132 * @v: Value to turn into an internal entry. 133 * 134 * Internal entries are used for a number of purposes. Entries 0-255 are 135 * used for sibling entries (only 0-62 are used by the current code). 256 136 * is used for the retry entry. 257 is used for the reserved / zero entry. 137 * Negative internal entries are used to represent errnos. Node pointers 138 * are also tagged as internal entries in some situations. 139 * 140 * Context: Any context. 141 * Return: An XArray internal entry corresponding to this value. 142 */ 143 static inline void *xa_mk_internal(unsigned long v) 144 { 145 return (void *)((v << 2) | 2); 146 } 147 148 /* 149 * xa_to_internal() - Extract the value from an internal entry. 150 * @entry: XArray entry. 151 * 152 * Context: Any context. 153 * Return: The value which was stored in the internal entry. 154 */ 155 static inline unsigned long xa_to_internal(const void *entry) 156 { 157 return (unsigned long)entry >> 2; 158 } 159 160 /* 161 * xa_is_internal() - Is the entry an internal entry? 162 * @entry: XArray entry. 163 * 164 * Context: Any context. 165 * Return: %true if the entry is an internal entry. 166 */ 167 static inline bool xa_is_internal(const void *entry) 168 { 169 return ((unsigned long)entry & 3) == 2; 170 } 171 172 #define XA_ZERO_ENTRY xa_mk_internal(257) 173 174 /** 175 * xa_is_zero() - Is the entry a zero entry? 176 * @entry: Entry retrieved from the XArray 177 * 178 * The normal API will return NULL as the contents of a slot containing 179 * a zero entry. You can only see zero entries by using the advanced API. 180 * 181 * Return: %true if the entry is a zero entry. 182 */ 183 static inline bool xa_is_zero(const void *entry) 184 { 185 return unlikely(entry == XA_ZERO_ENTRY); 186 } 187 188 /** 189 * xa_is_err() - Report whether an XArray operation returned an error 190 * @entry: Result from calling an XArray function 191 * 192 * If an XArray operation cannot complete an operation, it will return 193 * a special value indicating an error. This function tells you 194 * whether an error occurred; xa_err() tells you which error occurred. 195 * 196 * Context: Any context. 197 * Return: %true if the entry indicates an error. 198 */ 199 static inline bool xa_is_err(const void *entry) 200 { 201 return unlikely(xa_is_internal(entry) && 202 entry >= xa_mk_internal(-MAX_ERRNO)); 203 } 204 205 /** 206 * xa_err() - Turn an XArray result into an errno. 207 * @entry: Result from calling an XArray function. 208 * 209 * If an XArray operation cannot complete an operation, it will return 210 * a special pointer value which encodes an errno. This function extracts 211 * the errno from the pointer value, or returns 0 if the pointer does not 212 * represent an errno. 213 * 214 * Context: Any context. 215 * Return: A negative errno or 0. 216 */ 217 static inline int xa_err(void *entry) 218 { 219 /* xa_to_internal() would not do sign extension. */ 220 if (xa_is_err(entry)) 221 return (long)entry >> 2; 222 return 0; 223 } 224 225 /** 226 * struct xa_limit - Represents a range of IDs. 227 * @min: The lowest ID to allocate (inclusive). 228 * @max: The maximum ID to allocate (inclusive). 229 * 230 * This structure is used either directly or via the XA_LIMIT() macro 231 * to communicate the range of IDs that are valid for allocation. 232 * Two common ranges are predefined for you: 233 * * xa_limit_32b - [0 - UINT_MAX] 234 * * xa_limit_31b - [0 - INT_MAX] 235 */ 236 struct xa_limit { 237 u32 max; 238 u32 min; 239 }; 240 241 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max } 242 243 #define xa_limit_32b XA_LIMIT(0, UINT_MAX) 244 #define xa_limit_31b XA_LIMIT(0, INT_MAX) 245 246 typedef unsigned __bitwise xa_mark_t; 247 #define XA_MARK_0 ((__force xa_mark_t)0U) 248 #define XA_MARK_1 ((__force xa_mark_t)1U) 249 #define XA_MARK_2 ((__force xa_mark_t)2U) 250 #define XA_PRESENT ((__force xa_mark_t)8U) 251 #define XA_MARK_MAX XA_MARK_2 252 #define XA_FREE_MARK XA_MARK_0 253 254 enum xa_lock_type { 255 XA_LOCK_IRQ = 1, 256 XA_LOCK_BH = 2, 257 }; 258 259 /* 260 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, 261 * and we remain compatible with that. 262 */ 263 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) 264 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) 265 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) 266 #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U) 267 #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U) 268 #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U) 269 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ 270 (__force unsigned)(mark))) 271 272 /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */ 273 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) 274 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY) 275 276 /** 277 * struct xarray - The anchor of the XArray. 278 * @xa_lock: Lock that protects the contents of the XArray. 279 * 280 * To use the xarray, define it statically or embed it in your data structure. 281 * It is a very small data structure, so it does not usually make sense to 282 * allocate it separately and keep a pointer to it in your data structure. 283 * 284 * You may use the xa_lock to protect your own data structures as well. 285 */ 286 /* 287 * If all of the entries in the array are NULL, @xa_head is a NULL pointer. 288 * If the only non-NULL entry in the array is at index 0, @xa_head is that 289 * entry. If any other entry in the array is non-NULL, @xa_head points 290 * to an @xa_node. 291 */ 292 struct xarray { 293 spinlock_t xa_lock; 294 /* private: The rest of the data structure is not to be used directly. */ 295 gfp_t xa_flags; 296 void __rcu * xa_head; 297 }; 298 299 #define XARRAY_INIT(name, flags) { \ 300 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 301 .xa_flags = flags, \ 302 .xa_head = NULL, \ 303 } 304 305 /** 306 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. 307 * @name: A string that names your XArray. 308 * @flags: XA_FLAG values. 309 * 310 * This is intended for file scope definitions of XArrays. It declares 311 * and initialises an empty XArray with the chosen name and flags. It is 312 * equivalent to calling xa_init_flags() on the array, but it does the 313 * initialisation at compiletime instead of runtime. 314 */ 315 #define DEFINE_XARRAY_FLAGS(name, flags) \ 316 struct xarray name = XARRAY_INIT(name, flags) 317 318 /** 319 * DEFINE_XARRAY() - Define an XArray. 320 * @name: A string that names your XArray. 321 * 322 * This is intended for file scope definitions of XArrays. It declares 323 * and initialises an empty XArray with the chosen name. It is equivalent 324 * to calling xa_init() on the array, but it does the initialisation at 325 * compiletime instead of runtime. 326 */ 327 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) 328 329 /** 330 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0. 331 * @name: A string that names your XArray. 332 * 333 * This is intended for file scope definitions of allocating XArrays. 334 * See also DEFINE_XARRAY(). 335 */ 336 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) 337 338 /** 339 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1. 340 * @name: A string that names your XArray. 341 * 342 * This is intended for file scope definitions of allocating XArrays. 343 * See also DEFINE_XARRAY(). 344 */ 345 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1) 346 347 void *xa_load(struct xarray *, unsigned long index); 348 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 349 void *xa_erase(struct xarray *, unsigned long index); 350 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, 351 void *entry, gfp_t); 352 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); 353 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 354 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 355 void *xa_find(struct xarray *xa, unsigned long *index, 356 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 357 void *xa_find_after(struct xarray *xa, unsigned long *index, 358 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 359 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, 360 unsigned long max, unsigned int n, xa_mark_t); 361 void xa_destroy(struct xarray *); 362 363 /** 364 * xa_init_flags() - Initialise an empty XArray with flags. 365 * @xa: XArray. 366 * @flags: XA_FLAG values. 367 * 368 * If you need to initialise an XArray with special flags (eg you need 369 * to take the lock from interrupt context), use this function instead 370 * of xa_init(). 371 * 372 * Context: Any context. 373 */ 374 static inline void xa_init_flags(struct xarray *xa, gfp_t flags) 375 { 376 spin_lock_init(&xa->xa_lock); 377 xa->xa_flags = flags; 378 xa->xa_head = NULL; 379 } 380 381 /** 382 * xa_init() - Initialise an empty XArray. 383 * @xa: XArray. 384 * 385 * An empty XArray is full of NULL entries. 386 * 387 * Context: Any context. 388 */ 389 static inline void xa_init(struct xarray *xa) 390 { 391 xa_init_flags(xa, 0); 392 } 393 394 /** 395 * xa_empty() - Determine if an array has any present entries. 396 * @xa: XArray. 397 * 398 * Context: Any context. 399 * Return: %true if the array contains only NULL pointers. 400 */ 401 static inline bool xa_empty(const struct xarray *xa) 402 { 403 return xa->xa_head == NULL; 404 } 405 406 /** 407 * xa_marked() - Inquire whether any entry in this array has a mark set 408 * @xa: Array 409 * @mark: Mark value 410 * 411 * Context: Any context. 412 * Return: %true if any entry has this mark set. 413 */ 414 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) 415 { 416 return xa->xa_flags & XA_FLAGS_MARK(mark); 417 } 418 419 /** 420 * xa_for_each_start() - Iterate over a portion of an XArray. 421 * @xa: XArray. 422 * @index: Index of @entry. 423 * @entry: Entry retrieved from array. 424 * @start: First index to retrieve from array. 425 * 426 * During the iteration, @entry will have the value of the entry stored 427 * in @xa at @index. You may modify @index during the iteration if you 428 * want to skip or reprocess indices. It is safe to modify the array 429 * during the iteration. At the end of the iteration, @entry will be set 430 * to NULL and @index will have a value less than or equal to max. 431 * 432 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have 433 * to handle your own locking with xas_for_each(), and if you have to unlock 434 * after each iteration, it will also end up being O(n.log(n)). 435 * xa_for_each_start() will spin if it hits a retry entry; if you intend to 436 * see retry entries, you should use the xas_for_each() iterator instead. 437 * The xas_for_each() iterator will expand into more inline code than 438 * xa_for_each_start(). 439 * 440 * Context: Any context. Takes and releases the RCU lock. 441 */ 442 #define xa_for_each_start(xa, index, entry, start) \ 443 for (index = start, \ 444 entry = xa_find(xa, &index, ULONG_MAX, XA_PRESENT); \ 445 entry; \ 446 entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT)) 447 448 /** 449 * xa_for_each() - Iterate over present entries in an XArray. 450 * @xa: XArray. 451 * @index: Index of @entry. 452 * @entry: Entry retrieved from array. 453 * 454 * During the iteration, @entry will have the value of the entry stored 455 * in @xa at @index. You may modify @index during the iteration if you want 456 * to skip or reprocess indices. It is safe to modify the array during the 457 * iteration. At the end of the iteration, @entry will be set to NULL and 458 * @index will have a value less than or equal to max. 459 * 460 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have 461 * to handle your own locking with xas_for_each(), and if you have to unlock 462 * after each iteration, it will also end up being O(n.log(n)). xa_for_each() 463 * will spin if it hits a retry entry; if you intend to see retry entries, 464 * you should use the xas_for_each() iterator instead. The xas_for_each() 465 * iterator will expand into more inline code than xa_for_each(). 466 * 467 * Context: Any context. Takes and releases the RCU lock. 468 */ 469 #define xa_for_each(xa, index, entry) \ 470 xa_for_each_start(xa, index, entry, 0) 471 472 /** 473 * xa_for_each_marked() - Iterate over marked entries in an XArray. 474 * @xa: XArray. 475 * @index: Index of @entry. 476 * @entry: Entry retrieved from array. 477 * @filter: Selection criterion. 478 * 479 * During the iteration, @entry will have the value of the entry stored 480 * in @xa at @index. The iteration will skip all entries in the array 481 * which do not match @filter. You may modify @index during the iteration 482 * if you want to skip or reprocess indices. It is safe to modify the array 483 * during the iteration. At the end of the iteration, @entry will be set to 484 * NULL and @index will have a value less than or equal to max. 485 * 486 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). 487 * You have to handle your own locking with xas_for_each(), and if you have 488 * to unlock after each iteration, it will also end up being O(n.log(n)). 489 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to 490 * see retry entries, you should use the xas_for_each_marked() iterator 491 * instead. The xas_for_each_marked() iterator will expand into more inline 492 * code than xa_for_each_marked(). 493 * 494 * Context: Any context. Takes and releases the RCU lock. 495 */ 496 #define xa_for_each_marked(xa, index, entry, filter) \ 497 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \ 498 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter)) 499 500 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) 501 #define xa_lock(xa) spin_lock(&(xa)->xa_lock) 502 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) 503 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) 504 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) 505 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) 506 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) 507 #define xa_lock_irqsave(xa, flags) \ 508 spin_lock_irqsave(&(xa)->xa_lock, flags) 509 #define xa_unlock_irqrestore(xa, flags) \ 510 spin_unlock_irqrestore(&(xa)->xa_lock, flags) 511 #define xa_lock_nested(xa, subclass) \ 512 spin_lock_nested(&(xa)->xa_lock, subclass) 513 #define xa_lock_bh_nested(xa, subclass) \ 514 spin_lock_bh_nested(&(xa)->xa_lock, subclass) 515 #define xa_lock_irq_nested(xa, subclass) \ 516 spin_lock_irq_nested(&(xa)->xa_lock, subclass) 517 #define xa_lock_irqsave_nested(xa, flags, subclass) \ 518 spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass) 519 520 /* 521 * Versions of the normal API which require the caller to hold the 522 * xa_lock. If the GFP flags allow it, they will drop the lock to 523 * allocate memory, then reacquire it afterwards. These functions 524 * may also re-enable interrupts if the XArray flags indicate the 525 * locking should be interrupt safe. 526 */ 527 void *__xa_erase(struct xarray *, unsigned long index); 528 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 529 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, 530 void *entry, gfp_t); 531 int __must_check __xa_insert(struct xarray *, unsigned long index, 532 void *entry, gfp_t); 533 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry, 534 struct xa_limit, gfp_t); 535 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry, 536 struct xa_limit, u32 *next, gfp_t); 537 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 538 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 539 540 /** 541 * xa_store_bh() - Store this entry in the XArray. 542 * @xa: XArray. 543 * @index: Index into array. 544 * @entry: New entry. 545 * @gfp: Memory allocation flags. 546 * 547 * This function is like calling xa_store() except it disables softirqs 548 * while holding the array lock. 549 * 550 * Context: Any context. Takes and releases the xa_lock while 551 * disabling softirqs. 552 * Return: The entry which used to be at this index. 553 */ 554 static inline void *xa_store_bh(struct xarray *xa, unsigned long index, 555 void *entry, gfp_t gfp) 556 { 557 void *curr; 558 559 xa_lock_bh(xa); 560 curr = __xa_store(xa, index, entry, gfp); 561 xa_unlock_bh(xa); 562 563 return curr; 564 } 565 566 /** 567 * xa_store_irq() - Store this entry in the XArray. 568 * @xa: XArray. 569 * @index: Index into array. 570 * @entry: New entry. 571 * @gfp: Memory allocation flags. 572 * 573 * This function is like calling xa_store() except it disables interrupts 574 * while holding the array lock. 575 * 576 * Context: Process context. Takes and releases the xa_lock while 577 * disabling interrupts. 578 * Return: The entry which used to be at this index. 579 */ 580 static inline void *xa_store_irq(struct xarray *xa, unsigned long index, 581 void *entry, gfp_t gfp) 582 { 583 void *curr; 584 585 xa_lock_irq(xa); 586 curr = __xa_store(xa, index, entry, gfp); 587 xa_unlock_irq(xa); 588 589 return curr; 590 } 591 592 /** 593 * xa_erase_bh() - Erase this entry from the XArray. 594 * @xa: XArray. 595 * @index: Index of entry. 596 * 597 * After this function returns, loading from @index will return %NULL. 598 * If the index is part of a multi-index entry, all indices will be erased 599 * and none of the entries will be part of a multi-index entry. 600 * 601 * Context: Any context. Takes and releases the xa_lock while 602 * disabling softirqs. 603 * Return: The entry which used to be at this index. 604 */ 605 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) 606 { 607 void *entry; 608 609 xa_lock_bh(xa); 610 entry = __xa_erase(xa, index); 611 xa_unlock_bh(xa); 612 613 return entry; 614 } 615 616 /** 617 * xa_erase_irq() - Erase this entry from the XArray. 618 * @xa: XArray. 619 * @index: Index of entry. 620 * 621 * After this function returns, loading from @index will return %NULL. 622 * If the index is part of a multi-index entry, all indices will be erased 623 * and none of the entries will be part of a multi-index entry. 624 * 625 * Context: Process context. Takes and releases the xa_lock while 626 * disabling interrupts. 627 * Return: The entry which used to be at this index. 628 */ 629 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) 630 { 631 void *entry; 632 633 xa_lock_irq(xa); 634 entry = __xa_erase(xa, index); 635 xa_unlock_irq(xa); 636 637 return entry; 638 } 639 640 /** 641 * xa_cmpxchg() - Conditionally replace an entry in the XArray. 642 * @xa: XArray. 643 * @index: Index into array. 644 * @old: Old value to test against. 645 * @entry: New value to place in array. 646 * @gfp: Memory allocation flags. 647 * 648 * If the entry at @index is the same as @old, replace it with @entry. 649 * If the return value is equal to @old, then the exchange was successful. 650 * 651 * Context: Any context. Takes and releases the xa_lock. May sleep 652 * if the @gfp flags permit. 653 * Return: The old value at this index or xa_err() if an error happened. 654 */ 655 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, 656 void *old, void *entry, gfp_t gfp) 657 { 658 void *curr; 659 660 xa_lock(xa); 661 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 662 xa_unlock(xa); 663 664 return curr; 665 } 666 667 /** 668 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. 669 * @xa: XArray. 670 * @index: Index into array. 671 * @old: Old value to test against. 672 * @entry: New value to place in array. 673 * @gfp: Memory allocation flags. 674 * 675 * This function is like calling xa_cmpxchg() except it disables softirqs 676 * while holding the array lock. 677 * 678 * Context: Any context. Takes and releases the xa_lock while 679 * disabling softirqs. May sleep if the @gfp flags permit. 680 * Return: The old value at this index or xa_err() if an error happened. 681 */ 682 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, 683 void *old, void *entry, gfp_t gfp) 684 { 685 void *curr; 686 687 xa_lock_bh(xa); 688 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 689 xa_unlock_bh(xa); 690 691 return curr; 692 } 693 694 /** 695 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. 696 * @xa: XArray. 697 * @index: Index into array. 698 * @old: Old value to test against. 699 * @entry: New value to place in array. 700 * @gfp: Memory allocation flags. 701 * 702 * This function is like calling xa_cmpxchg() except it disables interrupts 703 * while holding the array lock. 704 * 705 * Context: Process context. Takes and releases the xa_lock while 706 * disabling interrupts. May sleep if the @gfp flags permit. 707 * Return: The old value at this index or xa_err() if an error happened. 708 */ 709 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, 710 void *old, void *entry, gfp_t gfp) 711 { 712 void *curr; 713 714 xa_lock_irq(xa); 715 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 716 xa_unlock_irq(xa); 717 718 return curr; 719 } 720 721 /** 722 * xa_insert() - Store this entry in the XArray unless another entry is 723 * already present. 724 * @xa: XArray. 725 * @index: Index into array. 726 * @entry: New entry. 727 * @gfp: Memory allocation flags. 728 * 729 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 730 * if no entry is present. Inserting will fail if a reserved entry is 731 * present, even though loading from this index will return NULL. 732 * 733 * Context: Any context. Takes and releases the xa_lock. May sleep if 734 * the @gfp flags permit. 735 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 736 * -ENOMEM if memory could not be allocated. 737 */ 738 static inline int __must_check xa_insert(struct xarray *xa, 739 unsigned long index, void *entry, gfp_t gfp) 740 { 741 int err; 742 743 xa_lock(xa); 744 err = __xa_insert(xa, index, entry, gfp); 745 xa_unlock(xa); 746 747 return err; 748 } 749 750 /** 751 * xa_insert_bh() - Store this entry in the XArray unless another entry is 752 * already present. 753 * @xa: XArray. 754 * @index: Index into array. 755 * @entry: New entry. 756 * @gfp: Memory allocation flags. 757 * 758 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 759 * if no entry is present. Inserting will fail if a reserved entry is 760 * present, even though loading from this index will return NULL. 761 * 762 * Context: Any context. Takes and releases the xa_lock while 763 * disabling softirqs. May sleep if the @gfp flags permit. 764 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 765 * -ENOMEM if memory could not be allocated. 766 */ 767 static inline int __must_check xa_insert_bh(struct xarray *xa, 768 unsigned long index, void *entry, gfp_t gfp) 769 { 770 int err; 771 772 xa_lock_bh(xa); 773 err = __xa_insert(xa, index, entry, gfp); 774 xa_unlock_bh(xa); 775 776 return err; 777 } 778 779 /** 780 * xa_insert_irq() - Store this entry in the XArray unless another entry is 781 * already present. 782 * @xa: XArray. 783 * @index: Index into array. 784 * @entry: New entry. 785 * @gfp: Memory allocation flags. 786 * 787 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 788 * if no entry is present. Inserting will fail if a reserved entry is 789 * present, even though loading from this index will return NULL. 790 * 791 * Context: Process context. Takes and releases the xa_lock while 792 * disabling interrupts. May sleep if the @gfp flags permit. 793 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 794 * -ENOMEM if memory could not be allocated. 795 */ 796 static inline int __must_check xa_insert_irq(struct xarray *xa, 797 unsigned long index, void *entry, gfp_t gfp) 798 { 799 int err; 800 801 xa_lock_irq(xa); 802 err = __xa_insert(xa, index, entry, gfp); 803 xa_unlock_irq(xa); 804 805 return err; 806 } 807 808 /** 809 * xa_alloc() - Find somewhere to store this entry in the XArray. 810 * @xa: XArray. 811 * @id: Pointer to ID. 812 * @entry: New entry. 813 * @limit: Range of ID to allocate. 814 * @gfp: Memory allocation flags. 815 * 816 * Finds an empty entry in @xa between @limit.min and @limit.max, 817 * stores the index into the @id pointer, then stores the entry at 818 * that index. A concurrent lookup will not see an uninitialised @id. 819 * 820 * Context: Any context. Takes and releases the xa_lock. May sleep if 821 * the @gfp flags permit. 822 * Return: 0 on success, -ENOMEM if memory could not be allocated or 823 * -EBUSY if there are no free entries in @limit. 824 */ 825 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id, 826 void *entry, struct xa_limit limit, gfp_t gfp) 827 { 828 int err; 829 830 xa_lock(xa); 831 err = __xa_alloc(xa, id, entry, limit, gfp); 832 xa_unlock(xa); 833 834 return err; 835 } 836 837 /** 838 * xa_alloc_bh() - Find somewhere to store this entry in the XArray. 839 * @xa: XArray. 840 * @id: Pointer to ID. 841 * @entry: New entry. 842 * @limit: Range of ID to allocate. 843 * @gfp: Memory allocation flags. 844 * 845 * Finds an empty entry in @xa between @limit.min and @limit.max, 846 * stores the index into the @id pointer, then stores the entry at 847 * that index. A concurrent lookup will not see an uninitialised @id. 848 * 849 * Context: Any context. Takes and releases the xa_lock while 850 * disabling softirqs. May sleep if the @gfp flags permit. 851 * Return: 0 on success, -ENOMEM if memory could not be allocated or 852 * -EBUSY if there are no free entries in @limit. 853 */ 854 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id, 855 void *entry, struct xa_limit limit, gfp_t gfp) 856 { 857 int err; 858 859 xa_lock_bh(xa); 860 err = __xa_alloc(xa, id, entry, limit, gfp); 861 xa_unlock_bh(xa); 862 863 return err; 864 } 865 866 /** 867 * xa_alloc_irq() - Find somewhere to store this entry in the XArray. 868 * @xa: XArray. 869 * @id: Pointer to ID. 870 * @entry: New entry. 871 * @limit: Range of ID to allocate. 872 * @gfp: Memory allocation flags. 873 * 874 * Finds an empty entry in @xa between @limit.min and @limit.max, 875 * stores the index into the @id pointer, then stores the entry at 876 * that index. A concurrent lookup will not see an uninitialised @id. 877 * 878 * Context: Process context. Takes and releases the xa_lock while 879 * disabling interrupts. May sleep if the @gfp flags permit. 880 * Return: 0 on success, -ENOMEM if memory could not be allocated or 881 * -EBUSY if there are no free entries in @limit. 882 */ 883 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id, 884 void *entry, struct xa_limit limit, gfp_t gfp) 885 { 886 int err; 887 888 xa_lock_irq(xa); 889 err = __xa_alloc(xa, id, entry, limit, gfp); 890 xa_unlock_irq(xa); 891 892 return err; 893 } 894 895 /** 896 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 897 * @xa: XArray. 898 * @id: Pointer to ID. 899 * @entry: New entry. 900 * @limit: Range of allocated ID. 901 * @next: Pointer to next ID to allocate. 902 * @gfp: Memory allocation flags. 903 * 904 * Finds an empty entry in @xa between @limit.min and @limit.max, 905 * stores the index into the @id pointer, then stores the entry at 906 * that index. A concurrent lookup will not see an uninitialised @id. 907 * The search for an empty entry will start at @next and will wrap 908 * around if necessary. 909 * 910 * Context: Any context. Takes and releases the xa_lock. May sleep if 911 * the @gfp flags permit. 912 * Return: 0 if the allocation succeeded without wrapping. 1 if the 913 * allocation succeeded after wrapping, -ENOMEM if memory could not be 914 * allocated or -EBUSY if there are no free entries in @limit. 915 */ 916 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 917 struct xa_limit limit, u32 *next, gfp_t gfp) 918 { 919 int err; 920 921 xa_lock(xa); 922 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 923 xa_unlock(xa); 924 925 return err; 926 } 927 928 /** 929 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray. 930 * @xa: XArray. 931 * @id: Pointer to ID. 932 * @entry: New entry. 933 * @limit: Range of allocated ID. 934 * @next: Pointer to next ID to allocate. 935 * @gfp: Memory allocation flags. 936 * 937 * Finds an empty entry in @xa between @limit.min and @limit.max, 938 * stores the index into the @id pointer, then stores the entry at 939 * that index. A concurrent lookup will not see an uninitialised @id. 940 * The search for an empty entry will start at @next and will wrap 941 * around if necessary. 942 * 943 * Context: Any context. Takes and releases the xa_lock while 944 * disabling softirqs. May sleep if the @gfp flags permit. 945 * Return: 0 if the allocation succeeded without wrapping. 1 if the 946 * allocation succeeded after wrapping, -ENOMEM if memory could not be 947 * allocated or -EBUSY if there are no free entries in @limit. 948 */ 949 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry, 950 struct xa_limit limit, u32 *next, gfp_t gfp) 951 { 952 int err; 953 954 xa_lock_bh(xa); 955 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 956 xa_unlock_bh(xa); 957 958 return err; 959 } 960 961 /** 962 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray. 963 * @xa: XArray. 964 * @id: Pointer to ID. 965 * @entry: New entry. 966 * @limit: Range of allocated ID. 967 * @next: Pointer to next ID to allocate. 968 * @gfp: Memory allocation flags. 969 * 970 * Finds an empty entry in @xa between @limit.min and @limit.max, 971 * stores the index into the @id pointer, then stores the entry at 972 * that index. A concurrent lookup will not see an uninitialised @id. 973 * The search for an empty entry will start at @next and will wrap 974 * around if necessary. 975 * 976 * Context: Process context. Takes and releases the xa_lock while 977 * disabling interrupts. May sleep if the @gfp flags permit. 978 * Return: 0 if the allocation succeeded without wrapping. 1 if the 979 * allocation succeeded after wrapping, -ENOMEM if memory could not be 980 * allocated or -EBUSY if there are no free entries in @limit. 981 */ 982 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry, 983 struct xa_limit limit, u32 *next, gfp_t gfp) 984 { 985 int err; 986 987 xa_lock_irq(xa); 988 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 989 xa_unlock_irq(xa); 990 991 return err; 992 } 993 994 /** 995 * xa_reserve() - Reserve this index in the XArray. 996 * @xa: XArray. 997 * @index: Index into array. 998 * @gfp: Memory allocation flags. 999 * 1000 * Ensures there is somewhere to store an entry at @index in the array. 1001 * If there is already something stored at @index, this function does 1002 * nothing. If there was nothing there, the entry is marked as reserved. 1003 * Loading from a reserved entry returns a %NULL pointer. 1004 * 1005 * If you do not use the entry that you have reserved, call xa_release() 1006 * or xa_erase() to free any unnecessary memory. 1007 * 1008 * Context: Any context. Takes and releases the xa_lock. 1009 * May sleep if the @gfp flags permit. 1010 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1011 */ 1012 static inline __must_check 1013 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 1014 { 1015 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1016 } 1017 1018 /** 1019 * xa_reserve_bh() - Reserve this index in the XArray. 1020 * @xa: XArray. 1021 * @index: Index into array. 1022 * @gfp: Memory allocation flags. 1023 * 1024 * A softirq-disabling version of xa_reserve(). 1025 * 1026 * Context: Any context. Takes and releases the xa_lock while 1027 * disabling softirqs. 1028 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1029 */ 1030 static inline __must_check 1031 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) 1032 { 1033 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1034 } 1035 1036 /** 1037 * xa_reserve_irq() - Reserve this index in the XArray. 1038 * @xa: XArray. 1039 * @index: Index into array. 1040 * @gfp: Memory allocation flags. 1041 * 1042 * An interrupt-disabling version of xa_reserve(). 1043 * 1044 * Context: Process context. Takes and releases the xa_lock while 1045 * disabling interrupts. 1046 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1047 */ 1048 static inline __must_check 1049 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) 1050 { 1051 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1052 } 1053 1054 /** 1055 * xa_release() - Release a reserved entry. 1056 * @xa: XArray. 1057 * @index: Index of entry. 1058 * 1059 * After calling xa_reserve(), you can call this function to release the 1060 * reservation. If the entry at @index has been stored to, this function 1061 * will do nothing. 1062 */ 1063 static inline void xa_release(struct xarray *xa, unsigned long index) 1064 { 1065 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0); 1066 } 1067 1068 /* Everything below here is the Advanced API. Proceed with caution. */ 1069 1070 /* 1071 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing 1072 * the best chunk size requires some tradeoffs. A power of two recommends 1073 * itself so that we can walk the tree based purely on shifts and masks. 1074 * Generally, the larger the better; as the number of slots per level of the 1075 * tree increases, the less tall the tree needs to be. But that needs to be 1076 * balanced against the memory consumption of each node. On a 64-bit system, 1077 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we 1078 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. 1079 */ 1080 #ifndef XA_CHUNK_SHIFT 1081 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 1082 #endif 1083 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) 1084 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) 1085 #define XA_MAX_MARKS 3 1086 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) 1087 1088 /* 1089 * @count is the count of every non-NULL element in the ->slots array 1090 * whether that is a value entry, a retry entry, a user pointer, 1091 * a sibling entry or a pointer to the next level of the tree. 1092 * @nr_values is the count of every element in ->slots which is 1093 * either a value entry or a sibling of a value entry. 1094 */ 1095 struct xa_node { 1096 unsigned char shift; /* Bits remaining in each slot */ 1097 unsigned char offset; /* Slot offset in parent */ 1098 unsigned char count; /* Total entry count */ 1099 unsigned char nr_values; /* Value entry count */ 1100 struct xa_node __rcu *parent; /* NULL at top of tree */ 1101 struct xarray *array; /* The array we belong to */ 1102 union { 1103 struct list_head private_list; /* For tree user */ 1104 struct rcu_head rcu_head; /* Used when freeing node */ 1105 }; 1106 void __rcu *slots[XA_CHUNK_SIZE]; 1107 union { 1108 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; 1109 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; 1110 }; 1111 }; 1112 1113 void xa_dump(const struct xarray *); 1114 void xa_dump_node(const struct xa_node *); 1115 1116 #ifdef XA_DEBUG 1117 #define XA_BUG_ON(xa, x) do { \ 1118 if (x) { \ 1119 xa_dump(xa); \ 1120 BUG(); \ 1121 } \ 1122 } while (0) 1123 #define XA_NODE_BUG_ON(node, x) do { \ 1124 if (x) { \ 1125 if (node) xa_dump_node(node); \ 1126 BUG(); \ 1127 } \ 1128 } while (0) 1129 #else 1130 #define XA_BUG_ON(xa, x) do { } while (0) 1131 #define XA_NODE_BUG_ON(node, x) do { } while (0) 1132 #endif 1133 1134 /* Private */ 1135 static inline void *xa_head(const struct xarray *xa) 1136 { 1137 return rcu_dereference_check(xa->xa_head, 1138 lockdep_is_held(&xa->xa_lock)); 1139 } 1140 1141 /* Private */ 1142 static inline void *xa_head_locked(const struct xarray *xa) 1143 { 1144 return rcu_dereference_protected(xa->xa_head, 1145 lockdep_is_held(&xa->xa_lock)); 1146 } 1147 1148 /* Private */ 1149 static inline void *xa_entry(const struct xarray *xa, 1150 const struct xa_node *node, unsigned int offset) 1151 { 1152 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1153 return rcu_dereference_check(node->slots[offset], 1154 lockdep_is_held(&xa->xa_lock)); 1155 } 1156 1157 /* Private */ 1158 static inline void *xa_entry_locked(const struct xarray *xa, 1159 const struct xa_node *node, unsigned int offset) 1160 { 1161 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1162 return rcu_dereference_protected(node->slots[offset], 1163 lockdep_is_held(&xa->xa_lock)); 1164 } 1165 1166 /* Private */ 1167 static inline struct xa_node *xa_parent(const struct xarray *xa, 1168 const struct xa_node *node) 1169 { 1170 return rcu_dereference_check(node->parent, 1171 lockdep_is_held(&xa->xa_lock)); 1172 } 1173 1174 /* Private */ 1175 static inline struct xa_node *xa_parent_locked(const struct xarray *xa, 1176 const struct xa_node *node) 1177 { 1178 return rcu_dereference_protected(node->parent, 1179 lockdep_is_held(&xa->xa_lock)); 1180 } 1181 1182 /* Private */ 1183 static inline void *xa_mk_node(const struct xa_node *node) 1184 { 1185 return (void *)((unsigned long)node | 2); 1186 } 1187 1188 /* Private */ 1189 static inline struct xa_node *xa_to_node(const void *entry) 1190 { 1191 return (struct xa_node *)((unsigned long)entry - 2); 1192 } 1193 1194 /* Private */ 1195 static inline bool xa_is_node(const void *entry) 1196 { 1197 return xa_is_internal(entry) && (unsigned long)entry > 4096; 1198 } 1199 1200 /* Private */ 1201 static inline void *xa_mk_sibling(unsigned int offset) 1202 { 1203 return xa_mk_internal(offset); 1204 } 1205 1206 /* Private */ 1207 static inline unsigned long xa_to_sibling(const void *entry) 1208 { 1209 return xa_to_internal(entry); 1210 } 1211 1212 /** 1213 * xa_is_sibling() - Is the entry a sibling entry? 1214 * @entry: Entry retrieved from the XArray 1215 * 1216 * Return: %true if the entry is a sibling entry. 1217 */ 1218 static inline bool xa_is_sibling(const void *entry) 1219 { 1220 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && 1221 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); 1222 } 1223 1224 #define XA_RETRY_ENTRY xa_mk_internal(256) 1225 1226 /** 1227 * xa_is_retry() - Is the entry a retry entry? 1228 * @entry: Entry retrieved from the XArray 1229 * 1230 * Return: %true if the entry is a retry entry. 1231 */ 1232 static inline bool xa_is_retry(const void *entry) 1233 { 1234 return unlikely(entry == XA_RETRY_ENTRY); 1235 } 1236 1237 /** 1238 * xa_is_advanced() - Is the entry only permitted for the advanced API? 1239 * @entry: Entry to be stored in the XArray. 1240 * 1241 * Return: %true if the entry cannot be stored by the normal API. 1242 */ 1243 static inline bool xa_is_advanced(const void *entry) 1244 { 1245 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY); 1246 } 1247 1248 /** 1249 * typedef xa_update_node_t - A callback function from the XArray. 1250 * @node: The node which is being processed 1251 * 1252 * This function is called every time the XArray updates the count of 1253 * present and value entries in a node. It allows advanced users to 1254 * maintain the private_list in the node. 1255 * 1256 * Context: The xa_lock is held and interrupts may be disabled. 1257 * Implementations should not drop the xa_lock, nor re-enable 1258 * interrupts. 1259 */ 1260 typedef void (*xa_update_node_t)(struct xa_node *node); 1261 1262 /* 1263 * The xa_state is opaque to its users. It contains various different pieces 1264 * of state involved in the current operation on the XArray. It should be 1265 * declared on the stack and passed between the various internal routines. 1266 * The various elements in it should not be accessed directly, but only 1267 * through the provided accessor functions. The below documentation is for 1268 * the benefit of those working on the code, not for users of the XArray. 1269 * 1270 * @xa_node usually points to the xa_node containing the slot we're operating 1271 * on (and @xa_offset is the offset in the slots array). If there is a 1272 * single entry in the array at index 0, there are no allocated xa_nodes to 1273 * point to, and so we store %NULL in @xa_node. @xa_node is set to 1274 * the value %XAS_RESTART if the xa_state is not walked to the correct 1275 * position in the tree of nodes for this operation. If an error occurs 1276 * during an operation, it is set to an %XAS_ERROR value. If we run off the 1277 * end of the allocated nodes, it is set to %XAS_BOUNDS. 1278 */ 1279 struct xa_state { 1280 struct xarray *xa; 1281 unsigned long xa_index; 1282 unsigned char xa_shift; 1283 unsigned char xa_sibs; 1284 unsigned char xa_offset; 1285 unsigned char xa_pad; /* Helps gcc generate better code */ 1286 struct xa_node *xa_node; 1287 struct xa_node *xa_alloc; 1288 xa_update_node_t xa_update; 1289 }; 1290 1291 /* 1292 * We encode errnos in the xas->xa_node. If an error has happened, we need to 1293 * drop the lock to fix it, and once we've done so the xa_state is invalid. 1294 */ 1295 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) 1296 #define XAS_BOUNDS ((struct xa_node *)1UL) 1297 #define XAS_RESTART ((struct xa_node *)3UL) 1298 1299 #define __XA_STATE(array, index, shift, sibs) { \ 1300 .xa = array, \ 1301 .xa_index = index, \ 1302 .xa_shift = shift, \ 1303 .xa_sibs = sibs, \ 1304 .xa_offset = 0, \ 1305 .xa_pad = 0, \ 1306 .xa_node = XAS_RESTART, \ 1307 .xa_alloc = NULL, \ 1308 .xa_update = NULL \ 1309 } 1310 1311 /** 1312 * XA_STATE() - Declare an XArray operation state. 1313 * @name: Name of this operation state (usually xas). 1314 * @array: Array to operate on. 1315 * @index: Initial index of interest. 1316 * 1317 * Declare and initialise an xa_state on the stack. 1318 */ 1319 #define XA_STATE(name, array, index) \ 1320 struct xa_state name = __XA_STATE(array, index, 0, 0) 1321 1322 /** 1323 * XA_STATE_ORDER() - Declare an XArray operation state. 1324 * @name: Name of this operation state (usually xas). 1325 * @array: Array to operate on. 1326 * @index: Initial index of interest. 1327 * @order: Order of entry. 1328 * 1329 * Declare and initialise an xa_state on the stack. This variant of 1330 * XA_STATE() allows you to specify the 'order' of the element you 1331 * want to operate on.` 1332 */ 1333 #define XA_STATE_ORDER(name, array, index, order) \ 1334 struct xa_state name = __XA_STATE(array, \ 1335 (index >> order) << order, \ 1336 order - (order % XA_CHUNK_SHIFT), \ 1337 (1U << (order % XA_CHUNK_SHIFT)) - 1) 1338 1339 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) 1340 #define xas_trylock(xas) xa_trylock((xas)->xa) 1341 #define xas_lock(xas) xa_lock((xas)->xa) 1342 #define xas_unlock(xas) xa_unlock((xas)->xa) 1343 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) 1344 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) 1345 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) 1346 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) 1347 #define xas_lock_irqsave(xas, flags) \ 1348 xa_lock_irqsave((xas)->xa, flags) 1349 #define xas_unlock_irqrestore(xas, flags) \ 1350 xa_unlock_irqrestore((xas)->xa, flags) 1351 1352 /** 1353 * xas_error() - Return an errno stored in the xa_state. 1354 * @xas: XArray operation state. 1355 * 1356 * Return: 0 if no error has been noted. A negative errno if one has. 1357 */ 1358 static inline int xas_error(const struct xa_state *xas) 1359 { 1360 return xa_err(xas->xa_node); 1361 } 1362 1363 /** 1364 * xas_set_err() - Note an error in the xa_state. 1365 * @xas: XArray operation state. 1366 * @err: Negative error number. 1367 * 1368 * Only call this function with a negative @err; zero or positive errors 1369 * will probably not behave the way you think they should. If you want 1370 * to clear the error from an xa_state, use xas_reset(). 1371 */ 1372 static inline void xas_set_err(struct xa_state *xas, long err) 1373 { 1374 xas->xa_node = XA_ERROR(err); 1375 } 1376 1377 /** 1378 * xas_invalid() - Is the xas in a retry or error state? 1379 * @xas: XArray operation state. 1380 * 1381 * Return: %true if the xas cannot be used for operations. 1382 */ 1383 static inline bool xas_invalid(const struct xa_state *xas) 1384 { 1385 return (unsigned long)xas->xa_node & 3; 1386 } 1387 1388 /** 1389 * xas_valid() - Is the xas a valid cursor into the array? 1390 * @xas: XArray operation state. 1391 * 1392 * Return: %true if the xas can be used for operations. 1393 */ 1394 static inline bool xas_valid(const struct xa_state *xas) 1395 { 1396 return !xas_invalid(xas); 1397 } 1398 1399 /** 1400 * xas_is_node() - Does the xas point to a node? 1401 * @xas: XArray operation state. 1402 * 1403 * Return: %true if the xas currently references a node. 1404 */ 1405 static inline bool xas_is_node(const struct xa_state *xas) 1406 { 1407 return xas_valid(xas) && xas->xa_node; 1408 } 1409 1410 /* True if the pointer is something other than a node */ 1411 static inline bool xas_not_node(struct xa_node *node) 1412 { 1413 return ((unsigned long)node & 3) || !node; 1414 } 1415 1416 /* True if the node represents RESTART or an error */ 1417 static inline bool xas_frozen(struct xa_node *node) 1418 { 1419 return (unsigned long)node & 2; 1420 } 1421 1422 /* True if the node represents head-of-tree, RESTART or BOUNDS */ 1423 static inline bool xas_top(struct xa_node *node) 1424 { 1425 return node <= XAS_RESTART; 1426 } 1427 1428 /** 1429 * xas_reset() - Reset an XArray operation state. 1430 * @xas: XArray operation state. 1431 * 1432 * Resets the error or walk state of the @xas so future walks of the 1433 * array will start from the root. Use this if you have dropped the 1434 * xarray lock and want to reuse the xa_state. 1435 * 1436 * Context: Any context. 1437 */ 1438 static inline void xas_reset(struct xa_state *xas) 1439 { 1440 xas->xa_node = XAS_RESTART; 1441 } 1442 1443 /** 1444 * xas_retry() - Retry the operation if appropriate. 1445 * @xas: XArray operation state. 1446 * @entry: Entry from xarray. 1447 * 1448 * The advanced functions may sometimes return an internal entry, such as 1449 * a retry entry or a zero entry. This function sets up the @xas to restart 1450 * the walk from the head of the array if needed. 1451 * 1452 * Context: Any context. 1453 * Return: true if the operation needs to be retried. 1454 */ 1455 static inline bool xas_retry(struct xa_state *xas, const void *entry) 1456 { 1457 if (xa_is_zero(entry)) 1458 return true; 1459 if (!xa_is_retry(entry)) 1460 return false; 1461 xas_reset(xas); 1462 return true; 1463 } 1464 1465 void *xas_load(struct xa_state *); 1466 void *xas_store(struct xa_state *, void *entry); 1467 void *xas_find(struct xa_state *, unsigned long max); 1468 void *xas_find_conflict(struct xa_state *); 1469 1470 bool xas_get_mark(const struct xa_state *, xa_mark_t); 1471 void xas_set_mark(const struct xa_state *, xa_mark_t); 1472 void xas_clear_mark(const struct xa_state *, xa_mark_t); 1473 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); 1474 void xas_init_marks(const struct xa_state *); 1475 1476 bool xas_nomem(struct xa_state *, gfp_t); 1477 void xas_pause(struct xa_state *); 1478 1479 void xas_create_range(struct xa_state *); 1480 1481 /** 1482 * xas_reload() - Refetch an entry from the xarray. 1483 * @xas: XArray operation state. 1484 * 1485 * Use this function to check that a previously loaded entry still has 1486 * the same value. This is useful for the lockless pagecache lookup where 1487 * we walk the array with only the RCU lock to protect us, lock the page, 1488 * then check that the page hasn't moved since we looked it up. 1489 * 1490 * The caller guarantees that @xas is still valid. If it may be in an 1491 * error or restart state, call xas_load() instead. 1492 * 1493 * Return: The entry at this location in the xarray. 1494 */ 1495 static inline void *xas_reload(struct xa_state *xas) 1496 { 1497 struct xa_node *node = xas->xa_node; 1498 1499 if (node) 1500 return xa_entry(xas->xa, node, xas->xa_offset); 1501 return xa_head(xas->xa); 1502 } 1503 1504 /** 1505 * xas_set() - Set up XArray operation state for a different index. 1506 * @xas: XArray operation state. 1507 * @index: New index into the XArray. 1508 * 1509 * Move the operation state to refer to a different index. This will 1510 * have the effect of starting a walk from the top; see xas_next() 1511 * to move to an adjacent index. 1512 */ 1513 static inline void xas_set(struct xa_state *xas, unsigned long index) 1514 { 1515 xas->xa_index = index; 1516 xas->xa_node = XAS_RESTART; 1517 } 1518 1519 /** 1520 * xas_set_order() - Set up XArray operation state for a multislot entry. 1521 * @xas: XArray operation state. 1522 * @index: Target of the operation. 1523 * @order: Entry occupies 2^@order indices. 1524 */ 1525 static inline void xas_set_order(struct xa_state *xas, unsigned long index, 1526 unsigned int order) 1527 { 1528 #ifdef CONFIG_XARRAY_MULTI 1529 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; 1530 xas->xa_shift = order - (order % XA_CHUNK_SHIFT); 1531 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1532 xas->xa_node = XAS_RESTART; 1533 #else 1534 BUG_ON(order > 0); 1535 xas_set(xas, index); 1536 #endif 1537 } 1538 1539 /** 1540 * xas_set_update() - Set up XArray operation state for a callback. 1541 * @xas: XArray operation state. 1542 * @update: Function to call when updating a node. 1543 * 1544 * The XArray can notify a caller after it has updated an xa_node. 1545 * This is advanced functionality and is only needed by the page cache. 1546 */ 1547 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) 1548 { 1549 xas->xa_update = update; 1550 } 1551 1552 /** 1553 * xas_next_entry() - Advance iterator to next present entry. 1554 * @xas: XArray operation state. 1555 * @max: Highest index to return. 1556 * 1557 * xas_next_entry() is an inline function to optimise xarray traversal for 1558 * speed. It is equivalent to calling xas_find(), and will call xas_find() 1559 * for all the hard cases. 1560 * 1561 * Return: The next present entry after the one currently referred to by @xas. 1562 */ 1563 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) 1564 { 1565 struct xa_node *node = xas->xa_node; 1566 void *entry; 1567 1568 if (unlikely(xas_not_node(node) || node->shift || 1569 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) 1570 return xas_find(xas, max); 1571 1572 do { 1573 if (unlikely(xas->xa_index >= max)) 1574 return xas_find(xas, max); 1575 if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) 1576 return xas_find(xas, max); 1577 entry = xa_entry(xas->xa, node, xas->xa_offset + 1); 1578 if (unlikely(xa_is_internal(entry))) 1579 return xas_find(xas, max); 1580 xas->xa_offset++; 1581 xas->xa_index++; 1582 } while (!entry); 1583 1584 return entry; 1585 } 1586 1587 /* Private */ 1588 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, 1589 xa_mark_t mark) 1590 { 1591 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; 1592 unsigned int offset = xas->xa_offset; 1593 1594 if (advance) 1595 offset++; 1596 if (XA_CHUNK_SIZE == BITS_PER_LONG) { 1597 if (offset < XA_CHUNK_SIZE) { 1598 unsigned long data = *addr & (~0UL << offset); 1599 if (data) 1600 return __ffs(data); 1601 } 1602 return XA_CHUNK_SIZE; 1603 } 1604 1605 return find_next_bit(addr, XA_CHUNK_SIZE, offset); 1606 } 1607 1608 /** 1609 * xas_next_marked() - Advance iterator to next marked entry. 1610 * @xas: XArray operation state. 1611 * @max: Highest index to return. 1612 * @mark: Mark to search for. 1613 * 1614 * xas_next_marked() is an inline function to optimise xarray traversal for 1615 * speed. It is equivalent to calling xas_find_marked(), and will call 1616 * xas_find_marked() for all the hard cases. 1617 * 1618 * Return: The next marked entry after the one currently referred to by @xas. 1619 */ 1620 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, 1621 xa_mark_t mark) 1622 { 1623 struct xa_node *node = xas->xa_node; 1624 unsigned int offset; 1625 1626 if (unlikely(xas_not_node(node) || node->shift)) 1627 return xas_find_marked(xas, max, mark); 1628 offset = xas_find_chunk(xas, true, mark); 1629 xas->xa_offset = offset; 1630 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; 1631 if (xas->xa_index > max) 1632 return NULL; 1633 if (offset == XA_CHUNK_SIZE) 1634 return xas_find_marked(xas, max, mark); 1635 return xa_entry(xas->xa, node, offset); 1636 } 1637 1638 /* 1639 * If iterating while holding a lock, drop the lock and reschedule 1640 * every %XA_CHECK_SCHED loops. 1641 */ 1642 enum { 1643 XA_CHECK_SCHED = 4096, 1644 }; 1645 1646 /** 1647 * xas_for_each() - Iterate over a range of an XArray. 1648 * @xas: XArray operation state. 1649 * @entry: Entry retrieved from the array. 1650 * @max: Maximum index to retrieve from array. 1651 * 1652 * The loop body will be executed for each entry present in the xarray 1653 * between the current xas position and @max. @entry will be set to 1654 * the entry retrieved from the xarray. It is safe to delete entries 1655 * from the array in the loop body. You should hold either the RCU lock 1656 * or the xa_lock while iterating. If you need to drop the lock, call 1657 * xas_pause() first. 1658 */ 1659 #define xas_for_each(xas, entry, max) \ 1660 for (entry = xas_find(xas, max); entry; \ 1661 entry = xas_next_entry(xas, max)) 1662 1663 /** 1664 * xas_for_each_marked() - Iterate over a range of an XArray. 1665 * @xas: XArray operation state. 1666 * @entry: Entry retrieved from the array. 1667 * @max: Maximum index to retrieve from array. 1668 * @mark: Mark to search for. 1669 * 1670 * The loop body will be executed for each marked entry in the xarray 1671 * between the current xas position and @max. @entry will be set to 1672 * the entry retrieved from the xarray. It is safe to delete entries 1673 * from the array in the loop body. You should hold either the RCU lock 1674 * or the xa_lock while iterating. If you need to drop the lock, call 1675 * xas_pause() first. 1676 */ 1677 #define xas_for_each_marked(xas, entry, max, mark) \ 1678 for (entry = xas_find_marked(xas, max, mark); entry; \ 1679 entry = xas_next_marked(xas, max, mark)) 1680 1681 /** 1682 * xas_for_each_conflict() - Iterate over a range of an XArray. 1683 * @xas: XArray operation state. 1684 * @entry: Entry retrieved from the array. 1685 * 1686 * The loop body will be executed for each entry in the XArray that lies 1687 * within the range specified by @xas. If the loop completes successfully, 1688 * any entries that lie in this range will be replaced by @entry. The caller 1689 * may break out of the loop; if they do so, the contents of the XArray will 1690 * be unchanged. The operation may fail due to an out of memory condition. 1691 * The caller may also call xa_set_err() to exit the loop while setting an 1692 * error to record the reason. 1693 */ 1694 #define xas_for_each_conflict(xas, entry) \ 1695 while ((entry = xas_find_conflict(xas))) 1696 1697 void *__xas_next(struct xa_state *); 1698 void *__xas_prev(struct xa_state *); 1699 1700 /** 1701 * xas_prev() - Move iterator to previous index. 1702 * @xas: XArray operation state. 1703 * 1704 * If the @xas was in an error state, it will remain in an error state 1705 * and this function will return %NULL. If the @xas has never been walked, 1706 * it will have the effect of calling xas_load(). Otherwise one will be 1707 * subtracted from the index and the state will be walked to the correct 1708 * location in the array for the next operation. 1709 * 1710 * If the iterator was referencing index 0, this function wraps 1711 * around to %ULONG_MAX. 1712 * 1713 * Return: The entry at the new index. This may be %NULL or an internal 1714 * entry. 1715 */ 1716 static inline void *xas_prev(struct xa_state *xas) 1717 { 1718 struct xa_node *node = xas->xa_node; 1719 1720 if (unlikely(xas_not_node(node) || node->shift || 1721 xas->xa_offset == 0)) 1722 return __xas_prev(xas); 1723 1724 xas->xa_index--; 1725 xas->xa_offset--; 1726 return xa_entry(xas->xa, node, xas->xa_offset); 1727 } 1728 1729 /** 1730 * xas_next() - Move state to next index. 1731 * @xas: XArray operation state. 1732 * 1733 * If the @xas was in an error state, it will remain in an error state 1734 * and this function will return %NULL. If the @xas has never been walked, 1735 * it will have the effect of calling xas_load(). Otherwise one will be 1736 * added to the index and the state will be walked to the correct 1737 * location in the array for the next operation. 1738 * 1739 * If the iterator was referencing index %ULONG_MAX, this function wraps 1740 * around to 0. 1741 * 1742 * Return: The entry at the new index. This may be %NULL or an internal 1743 * entry. 1744 */ 1745 static inline void *xas_next(struct xa_state *xas) 1746 { 1747 struct xa_node *node = xas->xa_node; 1748 1749 if (unlikely(xas_not_node(node) || node->shift || 1750 xas->xa_offset == XA_CHUNK_MASK)) 1751 return __xas_next(xas); 1752 1753 xas->xa_index++; 1754 xas->xa_offset++; 1755 return xa_entry(xas->xa, node, xas->xa_offset); 1756 } 1757 1758 #endif /* _LINUX_XARRAY_H */ 1759