1 /* 2 * include/linux/writeback.h 3 */ 4 #ifndef WRITEBACK_H 5 #define WRITEBACK_H 6 7 #include <linux/sched.h> 8 #include <linux/workqueue.h> 9 #include <linux/fs.h> 10 #include <linux/flex_proportions.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/blk_types.h> 13 14 struct bio; 15 16 DECLARE_PER_CPU(int, dirty_throttle_leaks); 17 18 /* 19 * The 1/4 region under the global dirty thresh is for smooth dirty throttling: 20 * 21 * (thresh - thresh/DIRTY_FULL_SCOPE, thresh) 22 * 23 * Further beyond, all dirtier tasks will enter a loop waiting (possibly long 24 * time) for the dirty pages to drop, unless written enough pages. 25 * 26 * The global dirty threshold is normally equal to the global dirty limit, 27 * except when the system suddenly allocates a lot of anonymous memory and 28 * knocks down the global dirty threshold quickly, in which case the global 29 * dirty limit will follow down slowly to prevent livelocking all dirtier tasks. 30 */ 31 #define DIRTY_SCOPE 8 32 #define DIRTY_FULL_SCOPE (DIRTY_SCOPE / 2) 33 34 struct backing_dev_info; 35 36 /* 37 * fs/fs-writeback.c 38 */ 39 enum writeback_sync_modes { 40 WB_SYNC_NONE, /* Don't wait on anything */ 41 WB_SYNC_ALL, /* Wait on every mapping */ 42 }; 43 44 /* 45 * why some writeback work was initiated 46 */ 47 enum wb_reason { 48 WB_REASON_BACKGROUND, 49 WB_REASON_VMSCAN, 50 WB_REASON_SYNC, 51 WB_REASON_PERIODIC, 52 WB_REASON_LAPTOP_TIMER, 53 WB_REASON_FREE_MORE_MEM, 54 WB_REASON_FS_FREE_SPACE, 55 /* 56 * There is no bdi forker thread any more and works are done 57 * by emergency worker, however, this is TPs userland visible 58 * and we'll be exposing exactly the same information, 59 * so it has a mismatch name. 60 */ 61 WB_REASON_FORKER_THREAD, 62 63 WB_REASON_MAX, 64 }; 65 66 /* 67 * A control structure which tells the writeback code what to do. These are 68 * always on the stack, and hence need no locking. They are always initialised 69 * in a manner such that unspecified fields are set to zero. 70 */ 71 struct writeback_control { 72 long nr_to_write; /* Write this many pages, and decrement 73 this for each page written */ 74 long pages_skipped; /* Pages which were not written */ 75 76 /* 77 * For a_ops->writepages(): if start or end are non-zero then this is 78 * a hint that the filesystem need only write out the pages inside that 79 * byterange. The byte at `end' is included in the writeout request. 80 */ 81 loff_t range_start; 82 loff_t range_end; 83 84 enum writeback_sync_modes sync_mode; 85 86 unsigned for_kupdate:1; /* A kupdate writeback */ 87 unsigned for_background:1; /* A background writeback */ 88 unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */ 89 unsigned for_reclaim:1; /* Invoked from the page allocator */ 90 unsigned range_cyclic:1; /* range_start is cyclic */ 91 unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 92 #ifdef CONFIG_CGROUP_WRITEBACK 93 struct bdi_writeback *wb; /* wb this writeback is issued under */ 94 struct inode *inode; /* inode being written out */ 95 96 /* foreign inode detection, see wbc_detach_inode() */ 97 int wb_id; /* current wb id */ 98 int wb_lcand_id; /* last foreign candidate wb id */ 99 int wb_tcand_id; /* this foreign candidate wb id */ 100 size_t wb_bytes; /* bytes written by current wb */ 101 size_t wb_lcand_bytes; /* bytes written by last candidate */ 102 size_t wb_tcand_bytes; /* bytes written by this candidate */ 103 #endif 104 }; 105 106 static inline int wbc_to_write_flags(struct writeback_control *wbc) 107 { 108 if (wbc->sync_mode == WB_SYNC_ALL) 109 return REQ_SYNC; 110 else if (wbc->for_kupdate || wbc->for_background) 111 return REQ_BACKGROUND; 112 113 return 0; 114 } 115 116 /* 117 * A wb_domain represents a domain that wb's (bdi_writeback's) belong to 118 * and are measured against each other in. There always is one global 119 * domain, global_wb_domain, that every wb in the system is a member of. 120 * This allows measuring the relative bandwidth of each wb to distribute 121 * dirtyable memory accordingly. 122 */ 123 struct wb_domain { 124 spinlock_t lock; 125 126 /* 127 * Scale the writeback cache size proportional to the relative 128 * writeout speed. 129 * 130 * We do this by keeping a floating proportion between BDIs, based 131 * on page writeback completions [end_page_writeback()]. Those 132 * devices that write out pages fastest will get the larger share, 133 * while the slower will get a smaller share. 134 * 135 * We use page writeout completions because we are interested in 136 * getting rid of dirty pages. Having them written out is the 137 * primary goal. 138 * 139 * We introduce a concept of time, a period over which we measure 140 * these events, because demand can/will vary over time. The length 141 * of this period itself is measured in page writeback completions. 142 */ 143 struct fprop_global completions; 144 struct timer_list period_timer; /* timer for aging of completions */ 145 unsigned long period_time; 146 147 /* 148 * The dirtyable memory and dirty threshold could be suddenly 149 * knocked down by a large amount (eg. on the startup of KVM in a 150 * swapless system). This may throw the system into deep dirty 151 * exceeded state and throttle heavy/light dirtiers alike. To 152 * retain good responsiveness, maintain global_dirty_limit for 153 * tracking slowly down to the knocked down dirty threshold. 154 * 155 * Both fields are protected by ->lock. 156 */ 157 unsigned long dirty_limit_tstamp; 158 unsigned long dirty_limit; 159 }; 160 161 /** 162 * wb_domain_size_changed - memory available to a wb_domain has changed 163 * @dom: wb_domain of interest 164 * 165 * This function should be called when the amount of memory available to 166 * @dom has changed. It resets @dom's dirty limit parameters to prevent 167 * the past values which don't match the current configuration from skewing 168 * dirty throttling. Without this, when memory size of a wb_domain is 169 * greatly reduced, the dirty throttling logic may allow too many pages to 170 * be dirtied leading to consecutive unnecessary OOMs and may get stuck in 171 * that situation. 172 */ 173 static inline void wb_domain_size_changed(struct wb_domain *dom) 174 { 175 spin_lock(&dom->lock); 176 dom->dirty_limit_tstamp = jiffies; 177 dom->dirty_limit = 0; 178 spin_unlock(&dom->lock); 179 } 180 181 /* 182 * fs/fs-writeback.c 183 */ 184 struct bdi_writeback; 185 void writeback_inodes_sb(struct super_block *, enum wb_reason reason); 186 void writeback_inodes_sb_nr(struct super_block *, unsigned long nr, 187 enum wb_reason reason); 188 bool try_to_writeback_inodes_sb(struct super_block *, enum wb_reason reason); 189 bool try_to_writeback_inodes_sb_nr(struct super_block *, unsigned long nr, 190 enum wb_reason reason); 191 void sync_inodes_sb(struct super_block *); 192 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason); 193 void inode_wait_for_writeback(struct inode *inode); 194 195 /* writeback.h requires fs.h; it, too, is not included from here. */ 196 static inline void wait_on_inode(struct inode *inode) 197 { 198 might_sleep(); 199 wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE); 200 } 201 202 #ifdef CONFIG_CGROUP_WRITEBACK 203 204 #include <linux/cgroup.h> 205 #include <linux/bio.h> 206 207 void __inode_attach_wb(struct inode *inode, struct page *page); 208 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 209 struct inode *inode) 210 __releases(&inode->i_lock); 211 void wbc_detach_inode(struct writeback_control *wbc); 212 void wbc_account_io(struct writeback_control *wbc, struct page *page, 213 size_t bytes); 214 void cgroup_writeback_umount(void); 215 216 /** 217 * inode_attach_wb - associate an inode with its wb 218 * @inode: inode of interest 219 * @page: page being dirtied (may be NULL) 220 * 221 * If @inode doesn't have its wb, associate it with the wb matching the 222 * memcg of @page or, if @page is NULL, %current. May be called w/ or w/o 223 * @inode->i_lock. 224 */ 225 static inline void inode_attach_wb(struct inode *inode, struct page *page) 226 { 227 if (!inode->i_wb) 228 __inode_attach_wb(inode, page); 229 } 230 231 /** 232 * inode_detach_wb - disassociate an inode from its wb 233 * @inode: inode of interest 234 * 235 * @inode is being freed. Detach from its wb. 236 */ 237 static inline void inode_detach_wb(struct inode *inode) 238 { 239 if (inode->i_wb) { 240 wb_put(inode->i_wb); 241 inode->i_wb = NULL; 242 } 243 } 244 245 /** 246 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite 247 * @wbc: writeback_control of interest 248 * @inode: target inode 249 * 250 * This function is to be used by __filemap_fdatawrite_range(), which is an 251 * alternative entry point into writeback code, and first ensures @inode is 252 * associated with a bdi_writeback and attaches it to @wbc. 253 */ 254 static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 255 struct inode *inode) 256 { 257 spin_lock(&inode->i_lock); 258 inode_attach_wb(inode, NULL); 259 wbc_attach_and_unlock_inode(wbc, inode); 260 } 261 262 /** 263 * wbc_init_bio - writeback specific initializtion of bio 264 * @wbc: writeback_control for the writeback in progress 265 * @bio: bio to be initialized 266 * 267 * @bio is a part of the writeback in progress controlled by @wbc. Perform 268 * writeback specific initialization. This is used to apply the cgroup 269 * writeback context. 270 */ 271 static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) 272 { 273 /* 274 * pageout() path doesn't attach @wbc to the inode being written 275 * out. This is intentional as we don't want the function to block 276 * behind a slow cgroup. Ultimately, we want pageout() to kick off 277 * regular writeback instead of writing things out itself. 278 */ 279 if (wbc->wb) 280 bio_associate_blkcg(bio, wbc->wb->blkcg_css); 281 } 282 283 #else /* CONFIG_CGROUP_WRITEBACK */ 284 285 static inline void inode_attach_wb(struct inode *inode, struct page *page) 286 { 287 } 288 289 static inline void inode_detach_wb(struct inode *inode) 290 { 291 } 292 293 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 294 struct inode *inode) 295 __releases(&inode->i_lock) 296 { 297 spin_unlock(&inode->i_lock); 298 } 299 300 static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 301 struct inode *inode) 302 { 303 } 304 305 static inline void wbc_detach_inode(struct writeback_control *wbc) 306 { 307 } 308 309 static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) 310 { 311 } 312 313 static inline void wbc_account_io(struct writeback_control *wbc, 314 struct page *page, size_t bytes) 315 { 316 } 317 318 static inline void cgroup_writeback_umount(void) 319 { 320 } 321 322 #endif /* CONFIG_CGROUP_WRITEBACK */ 323 324 /* 325 * mm/page-writeback.c 326 */ 327 #ifdef CONFIG_BLOCK 328 void laptop_io_completion(struct backing_dev_info *info); 329 void laptop_sync_completion(void); 330 void laptop_mode_sync(struct work_struct *work); 331 void laptop_mode_timer_fn(unsigned long data); 332 #else 333 static inline void laptop_sync_completion(void) { } 334 #endif 335 bool node_dirty_ok(struct pglist_data *pgdat); 336 int wb_domain_init(struct wb_domain *dom, gfp_t gfp); 337 #ifdef CONFIG_CGROUP_WRITEBACK 338 void wb_domain_exit(struct wb_domain *dom); 339 #endif 340 341 extern struct wb_domain global_wb_domain; 342 343 /* These are exported to sysctl. */ 344 extern int dirty_background_ratio; 345 extern unsigned long dirty_background_bytes; 346 extern int vm_dirty_ratio; 347 extern unsigned long vm_dirty_bytes; 348 extern unsigned int dirty_writeback_interval; 349 extern unsigned int dirty_expire_interval; 350 extern unsigned int dirtytime_expire_interval; 351 extern int vm_highmem_is_dirtyable; 352 extern int block_dump; 353 extern int laptop_mode; 354 355 extern int dirty_background_ratio_handler(struct ctl_table *table, int write, 356 void __user *buffer, size_t *lenp, 357 loff_t *ppos); 358 extern int dirty_background_bytes_handler(struct ctl_table *table, int write, 359 void __user *buffer, size_t *lenp, 360 loff_t *ppos); 361 extern int dirty_ratio_handler(struct ctl_table *table, int write, 362 void __user *buffer, size_t *lenp, 363 loff_t *ppos); 364 extern int dirty_bytes_handler(struct ctl_table *table, int write, 365 void __user *buffer, size_t *lenp, 366 loff_t *ppos); 367 int dirtytime_interval_handler(struct ctl_table *table, int write, 368 void __user *buffer, size_t *lenp, loff_t *ppos); 369 370 struct ctl_table; 371 int dirty_writeback_centisecs_handler(struct ctl_table *, int, 372 void __user *, size_t *, loff_t *); 373 374 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty); 375 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh); 376 377 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time); 378 void balance_dirty_pages_ratelimited(struct address_space *mapping); 379 bool wb_over_bg_thresh(struct bdi_writeback *wb); 380 381 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc, 382 void *data); 383 384 int generic_writepages(struct address_space *mapping, 385 struct writeback_control *wbc); 386 void tag_pages_for_writeback(struct address_space *mapping, 387 pgoff_t start, pgoff_t end); 388 int write_cache_pages(struct address_space *mapping, 389 struct writeback_control *wbc, writepage_t writepage, 390 void *data); 391 int do_writepages(struct address_space *mapping, struct writeback_control *wbc); 392 void writeback_set_ratelimit(void); 393 void tag_pages_for_writeback(struct address_space *mapping, 394 pgoff_t start, pgoff_t end); 395 396 void account_page_redirty(struct page *page); 397 398 void sb_mark_inode_writeback(struct inode *inode); 399 void sb_clear_inode_writeback(struct inode *inode); 400 401 #endif /* WRITEBACK_H */ 402