xref: /linux-6.15/include/linux/workqueue.h (revision f09b10b6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 #include <linux/workqueue_types.h>
18 
19 /*
20  * The first word is the work queue pointer and the flags rolled into
21  * one
22  */
23 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
24 
25 enum work_bits {
26 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
27 	WORK_STRUCT_INACTIVE_BIT,	/* work item is inactive */
28 	WORK_STRUCT_PWQ_BIT,		/* data points to pwq */
29 	WORK_STRUCT_LINKED_BIT,		/* next work is linked to this one */
30 #ifdef CONFIG_DEBUG_OBJECTS_WORK
31 	WORK_STRUCT_STATIC_BIT,		/* static initializer (debugobjects) */
32 #endif
33 	WORK_STRUCT_FLAG_BITS,
34 
35 	/* color for workqueue flushing */
36 	WORK_STRUCT_COLOR_SHIFT	= WORK_STRUCT_FLAG_BITS,
37 	WORK_STRUCT_COLOR_BITS	= 4,
38 
39 	/*
40 	 * When WORK_STRUCT_PWQ is set, reserve 8 bits off of pwq pointer w/
41 	 * debugobjects turned off. This makes pwqs aligned to 256 bytes (512
42 	 * bytes w/ DEBUG_OBJECTS_WORK) and allows 16 workqueue flush colors.
43 	 *
44 	 * MSB
45 	 * [ pwq pointer ] [ flush color ] [ STRUCT flags ]
46 	 *                     4 bits        4 or 5 bits
47 	 */
48 	WORK_STRUCT_PWQ_SHIFT	= WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS,
49 
50 	/*
51 	 * data contains off-queue information when !WORK_STRUCT_PWQ.
52 	 *
53 	 * MSB
54 	 * [ pool ID ] [ disable depth ] [ OFFQ flags ] [ STRUCT flags ]
55 	 *                  16 bits          0 bits       4 or 5 bits
56 	 */
57 	WORK_OFFQ_FLAG_SHIFT	= WORK_STRUCT_FLAG_BITS,
58 	WORK_OFFQ_FLAG_END,
59 	WORK_OFFQ_FLAG_BITS	= WORK_OFFQ_FLAG_END - WORK_OFFQ_FLAG_SHIFT,
60 
61 	WORK_OFFQ_DISABLE_SHIFT	= WORK_OFFQ_FLAG_SHIFT + WORK_OFFQ_FLAG_BITS,
62 	WORK_OFFQ_DISABLE_BITS	= 16,
63 
64 	/*
65 	 * When a work item is off queue, the high bits encode off-queue flags
66 	 * and the last pool it was on. Cap pool ID to 31 bits and use the
67 	 * highest number to indicate that no pool is associated.
68 	 */
69 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_DISABLE_SHIFT + WORK_OFFQ_DISABLE_BITS,
70 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
71 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
72 };
73 
74 enum work_flags {
75 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
76 	WORK_STRUCT_INACTIVE	= 1 << WORK_STRUCT_INACTIVE_BIT,
77 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
78 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
79 #ifdef CONFIG_DEBUG_OBJECTS_WORK
80 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
81 #else
82 	WORK_STRUCT_STATIC	= 0,
83 #endif
84 };
85 
86 enum wq_misc_consts {
87 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS),
88 
89 	/* not bound to any CPU, prefer the local CPU */
90 	WORK_CPU_UNBOUND	= NR_CPUS,
91 
92 	/* bit mask for work_busy() return values */
93 	WORK_BUSY_PENDING	= 1 << 0,
94 	WORK_BUSY_RUNNING	= 1 << 1,
95 
96 	/* maximum string length for set_worker_desc() */
97 	WORKER_DESC_LEN		= 24,
98 };
99 
100 /* Convenience constants - of type 'unsigned long', not 'enum'! */
101 #define WORK_OFFQ_FLAG_MASK	(((1ul << WORK_OFFQ_FLAG_BITS) - 1) << WORK_OFFQ_FLAG_SHIFT)
102 #define WORK_OFFQ_DISABLE_MASK	(((1ul << WORK_OFFQ_DISABLE_BITS) - 1) << WORK_OFFQ_DISABLE_SHIFT)
103 #define WORK_OFFQ_POOL_NONE	((1ul << WORK_OFFQ_POOL_BITS) - 1)
104 #define WORK_STRUCT_NO_POOL	(WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT)
105 #define WORK_STRUCT_PWQ_MASK	(~((1ul << WORK_STRUCT_PWQ_SHIFT) - 1))
106 
107 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
108 #define WORK_DATA_STATIC_INIT()	\
109 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
110 
111 struct delayed_work {
112 	struct work_struct work;
113 	struct timer_list timer;
114 
115 	/* target workqueue and CPU ->timer uses to queue ->work */
116 	struct workqueue_struct *wq;
117 	int cpu;
118 };
119 
120 struct rcu_work {
121 	struct work_struct work;
122 	struct rcu_head rcu;
123 
124 	/* target workqueue ->rcu uses to queue ->work */
125 	struct workqueue_struct *wq;
126 };
127 
128 enum wq_affn_scope {
129 	WQ_AFFN_DFL,			/* use system default */
130 	WQ_AFFN_CPU,			/* one pod per CPU */
131 	WQ_AFFN_SMT,			/* one pod poer SMT */
132 	WQ_AFFN_CACHE,			/* one pod per LLC */
133 	WQ_AFFN_NUMA,			/* one pod per NUMA node */
134 	WQ_AFFN_SYSTEM,			/* one pod across the whole system */
135 
136 	WQ_AFFN_NR_TYPES,
137 };
138 
139 /**
140  * struct workqueue_attrs - A struct for workqueue attributes.
141  *
142  * This can be used to change attributes of an unbound workqueue.
143  */
144 struct workqueue_attrs {
145 	/**
146 	 * @nice: nice level
147 	 */
148 	int nice;
149 
150 	/**
151 	 * @cpumask: allowed CPUs
152 	 *
153 	 * Work items in this workqueue are affine to these CPUs and not allowed
154 	 * to execute on other CPUs. A pool serving a workqueue must have the
155 	 * same @cpumask.
156 	 */
157 	cpumask_var_t cpumask;
158 
159 	/**
160 	 * @__pod_cpumask: internal attribute used to create per-pod pools
161 	 *
162 	 * Internal use only.
163 	 *
164 	 * Per-pod unbound worker pools are used to improve locality. Always a
165 	 * subset of ->cpumask. A workqueue can be associated with multiple
166 	 * worker pools with disjoint @__pod_cpumask's. Whether the enforcement
167 	 * of a pool's @__pod_cpumask is strict depends on @affn_strict.
168 	 */
169 	cpumask_var_t __pod_cpumask;
170 
171 	/**
172 	 * @affn_strict: affinity scope is strict
173 	 *
174 	 * If clear, workqueue will make a best-effort attempt at starting the
175 	 * worker inside @__pod_cpumask but the scheduler is free to migrate it
176 	 * outside.
177 	 *
178 	 * If set, workers are only allowed to run inside @__pod_cpumask.
179 	 */
180 	bool affn_strict;
181 
182 	/*
183 	 * Below fields aren't properties of a worker_pool. They only modify how
184 	 * :c:func:`apply_workqueue_attrs` select pools and thus don't
185 	 * participate in pool hash calculations or equality comparisons.
186 	 */
187 
188 	/**
189 	 * @affn_scope: unbound CPU affinity scope
190 	 *
191 	 * CPU pods are used to improve execution locality of unbound work
192 	 * items. There are multiple pod types, one for each wq_affn_scope, and
193 	 * every CPU in the system belongs to one pod in every pod type. CPUs
194 	 * that belong to the same pod share the worker pool. For example,
195 	 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker
196 	 * pool for each NUMA node.
197 	 */
198 	enum wq_affn_scope affn_scope;
199 
200 	/**
201 	 * @ordered: work items must be executed one by one in queueing order
202 	 */
203 	bool ordered;
204 };
205 
206 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
207 {
208 	return container_of(work, struct delayed_work, work);
209 }
210 
211 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
212 {
213 	return container_of(work, struct rcu_work, work);
214 }
215 
216 struct execute_work {
217 	struct work_struct work;
218 };
219 
220 #ifdef CONFIG_LOCKDEP
221 /*
222  * NB: because we have to copy the lockdep_map, setting _key
223  * here is required, otherwise it could get initialised to the
224  * copy of the lockdep_map!
225  */
226 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
227 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
228 #else
229 #define __WORK_INIT_LOCKDEP_MAP(n, k)
230 #endif
231 
232 #define __WORK_INITIALIZER(n, f) {					\
233 	.data = WORK_DATA_STATIC_INIT(),				\
234 	.entry	= { &(n).entry, &(n).entry },				\
235 	.func = (f),							\
236 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
237 	}
238 
239 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
240 	.work = __WORK_INITIALIZER((n).work, (f)),			\
241 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
242 				     (tflags) | TIMER_IRQSAFE),		\
243 	}
244 
245 #define DECLARE_WORK(n, f)						\
246 	struct work_struct n = __WORK_INITIALIZER(n, f)
247 
248 #define DECLARE_DELAYED_WORK(n, f)					\
249 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
250 
251 #define DECLARE_DEFERRABLE_WORK(n, f)					\
252 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
253 
254 #ifdef CONFIG_DEBUG_OBJECTS_WORK
255 extern void __init_work(struct work_struct *work, int onstack);
256 extern void destroy_work_on_stack(struct work_struct *work);
257 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
258 static inline unsigned int work_static(struct work_struct *work)
259 {
260 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
261 }
262 #else
263 static inline void __init_work(struct work_struct *work, int onstack) { }
264 static inline void destroy_work_on_stack(struct work_struct *work) { }
265 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
266 static inline unsigned int work_static(struct work_struct *work) { return 0; }
267 #endif
268 
269 /*
270  * initialize all of a work item in one go
271  *
272  * NOTE! No point in using "atomic_long_set()": using a direct
273  * assignment of the work data initializer allows the compiler
274  * to generate better code.
275  */
276 #ifdef CONFIG_LOCKDEP
277 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
278 	do {								\
279 		__init_work((_work), _onstack);				\
280 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
281 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \
282 		INIT_LIST_HEAD(&(_work)->entry);			\
283 		(_work)->func = (_func);				\
284 	} while (0)
285 #else
286 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
287 	do {								\
288 		__init_work((_work), _onstack);				\
289 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
290 		INIT_LIST_HEAD(&(_work)->entry);			\
291 		(_work)->func = (_func);				\
292 	} while (0)
293 #endif
294 
295 #define __INIT_WORK(_work, _func, _onstack)				\
296 	do {								\
297 		static __maybe_unused struct lock_class_key __key;	\
298 									\
299 		__INIT_WORK_KEY(_work, _func, _onstack, &__key);	\
300 	} while (0)
301 
302 #define INIT_WORK(_work, _func)						\
303 	__INIT_WORK((_work), (_func), 0)
304 
305 #define INIT_WORK_ONSTACK(_work, _func)					\
306 	__INIT_WORK((_work), (_func), 1)
307 
308 #define INIT_WORK_ONSTACK_KEY(_work, _func, _key)			\
309 	__INIT_WORK_KEY((_work), (_func), 1, _key)
310 
311 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
312 	do {								\
313 		INIT_WORK(&(_work)->work, (_func));			\
314 		__init_timer(&(_work)->timer,				\
315 			     delayed_work_timer_fn,			\
316 			     (_tflags) | TIMER_IRQSAFE);		\
317 	} while (0)
318 
319 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
320 	do {								\
321 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
322 		__init_timer_on_stack(&(_work)->timer,			\
323 				      delayed_work_timer_fn,		\
324 				      (_tflags) | TIMER_IRQSAFE);	\
325 	} while (0)
326 
327 #define INIT_DELAYED_WORK(_work, _func)					\
328 	__INIT_DELAYED_WORK(_work, _func, 0)
329 
330 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
331 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
332 
333 #define INIT_DEFERRABLE_WORK(_work, _func)				\
334 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
335 
336 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
337 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
338 
339 #define INIT_RCU_WORK(_work, _func)					\
340 	INIT_WORK(&(_work)->work, (_func))
341 
342 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
343 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
344 
345 /**
346  * work_pending - Find out whether a work item is currently pending
347  * @work: The work item in question
348  */
349 #define work_pending(work) \
350 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
351 
352 /**
353  * delayed_work_pending - Find out whether a delayable work item is currently
354  * pending
355  * @w: The work item in question
356  */
357 #define delayed_work_pending(w) \
358 	work_pending(&(w)->work)
359 
360 /*
361  * Workqueue flags and constants.  For details, please refer to
362  * Documentation/core-api/workqueue.rst.
363  */
364 enum wq_flags {
365 	WQ_BH			= 1 << 0, /* execute in bottom half (softirq) context */
366 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
367 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
368 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
369 	WQ_HIGHPRI		= 1 << 4, /* high priority */
370 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
371 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
372 
373 	/*
374 	 * Per-cpu workqueues are generally preferred because they tend to
375 	 * show better performance thanks to cache locality.  Per-cpu
376 	 * workqueues exclude the scheduler from choosing the CPU to
377 	 * execute the worker threads, which has an unfortunate side effect
378 	 * of increasing power consumption.
379 	 *
380 	 * The scheduler considers a CPU idle if it doesn't have any task
381 	 * to execute and tries to keep idle cores idle to conserve power;
382 	 * however, for example, a per-cpu work item scheduled from an
383 	 * interrupt handler on an idle CPU will force the scheduler to
384 	 * execute the work item on that CPU breaking the idleness, which in
385 	 * turn may lead to more scheduling choices which are sub-optimal
386 	 * in terms of power consumption.
387 	 *
388 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
389 	 * but become unbound if workqueue.power_efficient kernel param is
390 	 * specified.  Per-cpu workqueues which are identified to
391 	 * contribute significantly to power-consumption are identified and
392 	 * marked with this flag and enabling the power_efficient mode
393 	 * leads to noticeable power saving at the cost of small
394 	 * performance disadvantage.
395 	 *
396 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
397 	 */
398 	WQ_POWER_EFFICIENT	= 1 << 7,
399 
400 	__WQ_DESTROYING		= 1 << 15, /* internal: workqueue is destroying */
401 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
402 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
403 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
404 
405 	/* BH wq only allows the following flags */
406 	__WQ_BH_ALLOWS		= WQ_BH | WQ_HIGHPRI,
407 };
408 
409 enum wq_consts {
410 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
411 	WQ_UNBOUND_MAX_ACTIVE	= WQ_MAX_ACTIVE,
412 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
413 
414 	/*
415 	 * Per-node default cap on min_active. Unless explicitly set, min_active
416 	 * is set to min(max_active, WQ_DFL_MIN_ACTIVE). For more details, see
417 	 * workqueue_struct->min_active definition.
418 	 */
419 	WQ_DFL_MIN_ACTIVE	= 8,
420 };
421 
422 /*
423  * System-wide workqueues which are always present.
424  *
425  * system_wq is the one used by schedule[_delayed]_work[_on]().
426  * Multi-CPU multi-threaded.  There are users which expect relatively
427  * short queue flush time.  Don't queue works which can run for too
428  * long.
429  *
430  * system_highpri_wq is similar to system_wq but for work items which
431  * require WQ_HIGHPRI.
432  *
433  * system_long_wq is similar to system_wq but may host long running
434  * works.  Queue flushing might take relatively long.
435  *
436  * system_unbound_wq is unbound workqueue.  Workers are not bound to
437  * any specific CPU, not concurrency managed, and all queued works are
438  * executed immediately as long as max_active limit is not reached and
439  * resources are available.
440  *
441  * system_freezable_wq is equivalent to system_wq except that it's
442  * freezable.
443  *
444  * *_power_efficient_wq are inclined towards saving power and converted
445  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
446  * they are same as their non-power-efficient counterparts - e.g.
447  * system_power_efficient_wq is identical to system_wq if
448  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
449  *
450  * system_bh[_highpri]_wq are convenience interface to softirq. BH work items
451  * are executed in the queueing CPU's BH context in the queueing order.
452  */
453 extern struct workqueue_struct *system_wq;
454 extern struct workqueue_struct *system_highpri_wq;
455 extern struct workqueue_struct *system_long_wq;
456 extern struct workqueue_struct *system_unbound_wq;
457 extern struct workqueue_struct *system_freezable_wq;
458 extern struct workqueue_struct *system_power_efficient_wq;
459 extern struct workqueue_struct *system_freezable_power_efficient_wq;
460 extern struct workqueue_struct *system_bh_wq;
461 extern struct workqueue_struct *system_bh_highpri_wq;
462 
463 void workqueue_softirq_action(bool highpri);
464 void workqueue_softirq_dead(unsigned int cpu);
465 
466 /**
467  * alloc_workqueue - allocate a workqueue
468  * @fmt: printf format for the name of the workqueue
469  * @flags: WQ_* flags
470  * @max_active: max in-flight work items, 0 for default
471  * remaining args: args for @fmt
472  *
473  * For a per-cpu workqueue, @max_active limits the number of in-flight work
474  * items for each CPU. e.g. @max_active of 1 indicates that each CPU can be
475  * executing at most one work item for the workqueue.
476  *
477  * For unbound workqueues, @max_active limits the number of in-flight work items
478  * for the whole system. e.g. @max_active of 16 indicates that that there can be
479  * at most 16 work items executing for the workqueue in the whole system.
480  *
481  * As sharing the same active counter for an unbound workqueue across multiple
482  * NUMA nodes can be expensive, @max_active is distributed to each NUMA node
483  * according to the proportion of the number of online CPUs and enforced
484  * independently.
485  *
486  * Depending on online CPU distribution, a node may end up with per-node
487  * max_active which is significantly lower than @max_active, which can lead to
488  * deadlocks if the per-node concurrency limit is lower than the maximum number
489  * of interdependent work items for the workqueue.
490  *
491  * To guarantee forward progress regardless of online CPU distribution, the
492  * concurrency limit on every node is guaranteed to be equal to or greater than
493  * min_active which is set to min(@max_active, %WQ_DFL_MIN_ACTIVE). This means
494  * that the sum of per-node max_active's may be larger than @max_active.
495  *
496  * For detailed information on %WQ_* flags, please refer to
497  * Documentation/core-api/workqueue.rst.
498  *
499  * RETURNS:
500  * Pointer to the allocated workqueue on success, %NULL on failure.
501  */
502 __printf(1, 4) struct workqueue_struct *
503 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
504 
505 /**
506  * alloc_ordered_workqueue - allocate an ordered workqueue
507  * @fmt: printf format for the name of the workqueue
508  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
509  * @args: args for @fmt
510  *
511  * Allocate an ordered workqueue.  An ordered workqueue executes at
512  * most one work item at any given time in the queued order.  They are
513  * implemented as unbound workqueues with @max_active of one.
514  *
515  * RETURNS:
516  * Pointer to the allocated workqueue on success, %NULL on failure.
517  */
518 #define alloc_ordered_workqueue(fmt, flags, args...)			\
519 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), 1, ##args)
520 
521 #define create_workqueue(name)						\
522 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
523 #define create_freezable_workqueue(name)				\
524 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
525 			WQ_MEM_RECLAIM, 1, (name))
526 #define create_singlethread_workqueue(name)				\
527 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
528 
529 #define from_work(var, callback_work, work_fieldname)	\
530 	container_of(callback_work, typeof(*var), work_fieldname)
531 
532 extern void destroy_workqueue(struct workqueue_struct *wq);
533 
534 struct workqueue_attrs *alloc_workqueue_attrs(void);
535 void free_workqueue_attrs(struct workqueue_attrs *attrs);
536 int apply_workqueue_attrs(struct workqueue_struct *wq,
537 			  const struct workqueue_attrs *attrs);
538 extern int workqueue_unbound_exclude_cpumask(cpumask_var_t cpumask);
539 
540 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
541 			struct work_struct *work);
542 extern bool queue_work_node(int node, struct workqueue_struct *wq,
543 			    struct work_struct *work);
544 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
545 			struct delayed_work *work, unsigned long delay);
546 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
547 			struct delayed_work *dwork, unsigned long delay);
548 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
549 
550 extern void __flush_workqueue(struct workqueue_struct *wq);
551 extern void drain_workqueue(struct workqueue_struct *wq);
552 
553 extern int schedule_on_each_cpu(work_func_t func);
554 
555 int execute_in_process_context(work_func_t fn, struct execute_work *);
556 
557 extern bool flush_work(struct work_struct *work);
558 extern bool cancel_work(struct work_struct *work);
559 extern bool cancel_work_sync(struct work_struct *work);
560 
561 extern bool flush_delayed_work(struct delayed_work *dwork);
562 extern bool cancel_delayed_work(struct delayed_work *dwork);
563 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
564 
565 extern bool disable_work(struct work_struct *work);
566 extern bool disable_work_sync(struct work_struct *work);
567 extern bool enable_work(struct work_struct *work);
568 
569 extern bool disable_delayed_work(struct delayed_work *dwork);
570 extern bool disable_delayed_work_sync(struct delayed_work *dwork);
571 extern bool enable_delayed_work(struct delayed_work *dwork);
572 
573 extern bool flush_rcu_work(struct rcu_work *rwork);
574 
575 extern void workqueue_set_max_active(struct workqueue_struct *wq,
576 				     int max_active);
577 extern void workqueue_set_min_active(struct workqueue_struct *wq,
578 				     int min_active);
579 extern struct work_struct *current_work(void);
580 extern bool current_is_workqueue_rescuer(void);
581 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
582 extern unsigned int work_busy(struct work_struct *work);
583 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
584 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
585 extern void show_all_workqueues(void);
586 extern void show_freezable_workqueues(void);
587 extern void show_one_workqueue(struct workqueue_struct *wq);
588 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
589 
590 /**
591  * queue_work - queue work on a workqueue
592  * @wq: workqueue to use
593  * @work: work to queue
594  *
595  * Returns %false if @work was already on a queue, %true otherwise.
596  *
597  * We queue the work to the CPU on which it was submitted, but if the CPU dies
598  * it can be processed by another CPU.
599  *
600  * Memory-ordering properties:  If it returns %true, guarantees that all stores
601  * preceding the call to queue_work() in the program order will be visible from
602  * the CPU which will execute @work by the time such work executes, e.g.,
603  *
604  * { x is initially 0 }
605  *
606  *   CPU0				CPU1
607  *
608  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
609  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
610  *
611  * Forbids: r0 == true && r1 == 0
612  */
613 static inline bool queue_work(struct workqueue_struct *wq,
614 			      struct work_struct *work)
615 {
616 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
617 }
618 
619 /**
620  * queue_delayed_work - queue work on a workqueue after delay
621  * @wq: workqueue to use
622  * @dwork: delayable work to queue
623  * @delay: number of jiffies to wait before queueing
624  *
625  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
626  */
627 static inline bool queue_delayed_work(struct workqueue_struct *wq,
628 				      struct delayed_work *dwork,
629 				      unsigned long delay)
630 {
631 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
632 }
633 
634 /**
635  * mod_delayed_work - modify delay of or queue a delayed work
636  * @wq: workqueue to use
637  * @dwork: work to queue
638  * @delay: number of jiffies to wait before queueing
639  *
640  * mod_delayed_work_on() on local CPU.
641  */
642 static inline bool mod_delayed_work(struct workqueue_struct *wq,
643 				    struct delayed_work *dwork,
644 				    unsigned long delay)
645 {
646 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
647 }
648 
649 /**
650  * schedule_work_on - put work task on a specific cpu
651  * @cpu: cpu to put the work task on
652  * @work: job to be done
653  *
654  * This puts a job on a specific cpu
655  */
656 static inline bool schedule_work_on(int cpu, struct work_struct *work)
657 {
658 	return queue_work_on(cpu, system_wq, work);
659 }
660 
661 /**
662  * schedule_work - put work task in global workqueue
663  * @work: job to be done
664  *
665  * Returns %false if @work was already on the kernel-global workqueue and
666  * %true otherwise.
667  *
668  * This puts a job in the kernel-global workqueue if it was not already
669  * queued and leaves it in the same position on the kernel-global
670  * workqueue otherwise.
671  *
672  * Shares the same memory-ordering properties of queue_work(), cf. the
673  * DocBook header of queue_work().
674  */
675 static inline bool schedule_work(struct work_struct *work)
676 {
677 	return queue_work(system_wq, work);
678 }
679 
680 /*
681  * Detect attempt to flush system-wide workqueues at compile time when possible.
682  * Warn attempt to flush system-wide workqueues at runtime.
683  *
684  * See https://lkml.kernel.org/r/[email protected]
685  * for reasons and steps for converting system-wide workqueues into local workqueues.
686  */
687 extern void __warn_flushing_systemwide_wq(void)
688 	__compiletime_warning("Please avoid flushing system-wide workqueues.");
689 
690 /* Please stop using this function, for this function will be removed in near future. */
691 #define flush_scheduled_work()						\
692 ({									\
693 	__warn_flushing_systemwide_wq();				\
694 	__flush_workqueue(system_wq);					\
695 })
696 
697 #define flush_workqueue(wq)						\
698 ({									\
699 	struct workqueue_struct *_wq = (wq);				\
700 									\
701 	if ((__builtin_constant_p(_wq == system_wq) &&			\
702 	     _wq == system_wq) ||					\
703 	    (__builtin_constant_p(_wq == system_highpri_wq) &&		\
704 	     _wq == system_highpri_wq) ||				\
705 	    (__builtin_constant_p(_wq == system_long_wq) &&		\
706 	     _wq == system_long_wq) ||					\
707 	    (__builtin_constant_p(_wq == system_unbound_wq) &&		\
708 	     _wq == system_unbound_wq) ||				\
709 	    (__builtin_constant_p(_wq == system_freezable_wq) &&	\
710 	     _wq == system_freezable_wq) ||				\
711 	    (__builtin_constant_p(_wq == system_power_efficient_wq) &&	\
712 	     _wq == system_power_efficient_wq) ||			\
713 	    (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \
714 	     _wq == system_freezable_power_efficient_wq))		\
715 		__warn_flushing_systemwide_wq();			\
716 	__flush_workqueue(_wq);						\
717 })
718 
719 /**
720  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
721  * @cpu: cpu to use
722  * @dwork: job to be done
723  * @delay: number of jiffies to wait
724  *
725  * After waiting for a given time this puts a job in the kernel-global
726  * workqueue on the specified CPU.
727  */
728 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
729 					    unsigned long delay)
730 {
731 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
732 }
733 
734 /**
735  * schedule_delayed_work - put work task in global workqueue after delay
736  * @dwork: job to be done
737  * @delay: number of jiffies to wait or 0 for immediate execution
738  *
739  * After waiting for a given time this puts a job in the kernel-global
740  * workqueue.
741  */
742 static inline bool schedule_delayed_work(struct delayed_work *dwork,
743 					 unsigned long delay)
744 {
745 	return queue_delayed_work(system_wq, dwork, delay);
746 }
747 
748 #ifndef CONFIG_SMP
749 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
750 {
751 	return fn(arg);
752 }
753 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
754 {
755 	return fn(arg);
756 }
757 #else
758 long work_on_cpu_key(int cpu, long (*fn)(void *),
759 		     void *arg, struct lock_class_key *key);
760 /*
761  * A new key is defined for each caller to make sure the work
762  * associated with the function doesn't share its locking class.
763  */
764 #define work_on_cpu(_cpu, _fn, _arg)			\
765 ({							\
766 	static struct lock_class_key __key;		\
767 							\
768 	work_on_cpu_key(_cpu, _fn, _arg, &__key);	\
769 })
770 
771 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
772 			  void *arg, struct lock_class_key *key);
773 
774 /*
775  * A new key is defined for each caller to make sure the work
776  * associated with the function doesn't share its locking class.
777  */
778 #define work_on_cpu_safe(_cpu, _fn, _arg)		\
779 ({							\
780 	static struct lock_class_key __key;		\
781 							\
782 	work_on_cpu_safe_key(_cpu, _fn, _arg, &__key);	\
783 })
784 #endif /* CONFIG_SMP */
785 
786 #ifdef CONFIG_FREEZER
787 extern void freeze_workqueues_begin(void);
788 extern bool freeze_workqueues_busy(void);
789 extern void thaw_workqueues(void);
790 #endif /* CONFIG_FREEZER */
791 
792 #ifdef CONFIG_SYSFS
793 int workqueue_sysfs_register(struct workqueue_struct *wq);
794 #else	/* CONFIG_SYSFS */
795 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
796 { return 0; }
797 #endif	/* CONFIG_SYSFS */
798 
799 #ifdef CONFIG_WQ_WATCHDOG
800 void wq_watchdog_touch(int cpu);
801 #else	/* CONFIG_WQ_WATCHDOG */
802 static inline void wq_watchdog_touch(int cpu) { }
803 #endif	/* CONFIG_WQ_WATCHDOG */
804 
805 #ifdef CONFIG_SMP
806 int workqueue_prepare_cpu(unsigned int cpu);
807 int workqueue_online_cpu(unsigned int cpu);
808 int workqueue_offline_cpu(unsigned int cpu);
809 #endif
810 
811 void __init workqueue_init_early(void);
812 void __init workqueue_init(void);
813 void __init workqueue_init_topology(void);
814 
815 #endif
816