xref: /linux-6.15/include/linux/workqueue.h (revision e563d0a7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 #include <linux/workqueue_types.h>
18 
19 /*
20  * The first word is the work queue pointer and the flags rolled into
21  * one
22  */
23 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
24 
25 enum work_bits {
26 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
27 	WORK_STRUCT_INACTIVE_BIT= 1,	/* work item is inactive */
28 	WORK_STRUCT_PWQ_BIT	= 2,	/* data points to pwq */
29 	WORK_STRUCT_LINKED_BIT	= 3,	/* next work is linked to this one */
30 #ifdef CONFIG_DEBUG_OBJECTS_WORK
31 	WORK_STRUCT_STATIC_BIT	= 4,	/* static initializer (debugobjects) */
32 	WORK_STRUCT_COLOR_SHIFT	= 5,	/* color for workqueue flushing */
33 #else
34 	WORK_STRUCT_COLOR_SHIFT	= 4,	/* color for workqueue flushing */
35 #endif
36 
37 	WORK_STRUCT_COLOR_BITS	= 4,
38 
39 	/*
40 	 * Reserve 8 bits off of pwq pointer w/ debugobjects turned off.
41 	 * This makes pwqs aligned to 256 bytes and allows 16 workqueue
42 	 * flush colors.
43 	 */
44 	WORK_STRUCT_FLAG_BITS	= WORK_STRUCT_COLOR_SHIFT +
45 				  WORK_STRUCT_COLOR_BITS,
46 
47 	/* data contains off-queue information when !WORK_STRUCT_PWQ */
48 	WORK_OFFQ_FLAG_BASE	= WORK_STRUCT_COLOR_SHIFT,
49 
50 	__WORK_OFFQ_CANCELING	= WORK_OFFQ_FLAG_BASE,
51 
52 	/*
53 	 * When a work item is off queue, its high bits point to the last
54 	 * pool it was on.  Cap at 31 bits and use the highest number to
55 	 * indicate that no pool is associated.
56 	 */
57 	WORK_OFFQ_FLAG_BITS	= 1,
58 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
59 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
60 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
61 
62 };
63 
64 enum work_flags {
65 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
66 	WORK_STRUCT_INACTIVE	= 1 << WORK_STRUCT_INACTIVE_BIT,
67 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
68 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
69 #ifdef CONFIG_DEBUG_OBJECTS_WORK
70 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
71 #else
72 	WORK_STRUCT_STATIC	= 0,
73 #endif
74 };
75 
76 enum wq_misc_consts {
77 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS),
78 
79 	/* not bound to any CPU, prefer the local CPU */
80 	WORK_CPU_UNBOUND	= NR_CPUS,
81 
82 	/* bit mask for work_busy() return values */
83 	WORK_BUSY_PENDING	= 1 << 0,
84 	WORK_BUSY_RUNNING	= 1 << 1,
85 
86 	/* maximum string length for set_worker_desc() */
87 	WORKER_DESC_LEN		= 24,
88 };
89 
90 /* Convenience constants - of type 'unsigned long', not 'enum'! */
91 #define WORK_OFFQ_CANCELING	(1ul << __WORK_OFFQ_CANCELING)
92 #define WORK_OFFQ_POOL_NONE	((1ul << WORK_OFFQ_POOL_BITS) - 1)
93 #define WORK_STRUCT_NO_POOL	(WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT)
94 
95 #define WORK_STRUCT_FLAG_MASK    ((1ul << WORK_STRUCT_FLAG_BITS) - 1)
96 #define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)
97 
98 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
99 #define WORK_DATA_STATIC_INIT()	\
100 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
101 
102 struct delayed_work {
103 	struct work_struct work;
104 	struct timer_list timer;
105 
106 	/* target workqueue and CPU ->timer uses to queue ->work */
107 	struct workqueue_struct *wq;
108 	int cpu;
109 };
110 
111 struct rcu_work {
112 	struct work_struct work;
113 	struct rcu_head rcu;
114 
115 	/* target workqueue ->rcu uses to queue ->work */
116 	struct workqueue_struct *wq;
117 };
118 
119 enum wq_affn_scope {
120 	WQ_AFFN_DFL,			/* use system default */
121 	WQ_AFFN_CPU,			/* one pod per CPU */
122 	WQ_AFFN_SMT,			/* one pod poer SMT */
123 	WQ_AFFN_CACHE,			/* one pod per LLC */
124 	WQ_AFFN_NUMA,			/* one pod per NUMA node */
125 	WQ_AFFN_SYSTEM,			/* one pod across the whole system */
126 
127 	WQ_AFFN_NR_TYPES,
128 };
129 
130 /**
131  * struct workqueue_attrs - A struct for workqueue attributes.
132  *
133  * This can be used to change attributes of an unbound workqueue.
134  */
135 struct workqueue_attrs {
136 	/**
137 	 * @nice: nice level
138 	 */
139 	int nice;
140 
141 	/**
142 	 * @cpumask: allowed CPUs
143 	 *
144 	 * Work items in this workqueue are affine to these CPUs and not allowed
145 	 * to execute on other CPUs. A pool serving a workqueue must have the
146 	 * same @cpumask.
147 	 */
148 	cpumask_var_t cpumask;
149 
150 	/**
151 	 * @__pod_cpumask: internal attribute used to create per-pod pools
152 	 *
153 	 * Internal use only.
154 	 *
155 	 * Per-pod unbound worker pools are used to improve locality. Always a
156 	 * subset of ->cpumask. A workqueue can be associated with multiple
157 	 * worker pools with disjoint @__pod_cpumask's. Whether the enforcement
158 	 * of a pool's @__pod_cpumask is strict depends on @affn_strict.
159 	 */
160 	cpumask_var_t __pod_cpumask;
161 
162 	/**
163 	 * @affn_strict: affinity scope is strict
164 	 *
165 	 * If clear, workqueue will make a best-effort attempt at starting the
166 	 * worker inside @__pod_cpumask but the scheduler is free to migrate it
167 	 * outside.
168 	 *
169 	 * If set, workers are only allowed to run inside @__pod_cpumask.
170 	 */
171 	bool affn_strict;
172 
173 	/*
174 	 * Below fields aren't properties of a worker_pool. They only modify how
175 	 * :c:func:`apply_workqueue_attrs` select pools and thus don't
176 	 * participate in pool hash calculations or equality comparisons.
177 	 */
178 
179 	/**
180 	 * @affn_scope: unbound CPU affinity scope
181 	 *
182 	 * CPU pods are used to improve execution locality of unbound work
183 	 * items. There are multiple pod types, one for each wq_affn_scope, and
184 	 * every CPU in the system belongs to one pod in every pod type. CPUs
185 	 * that belong to the same pod share the worker pool. For example,
186 	 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker
187 	 * pool for each NUMA node.
188 	 */
189 	enum wq_affn_scope affn_scope;
190 
191 	/**
192 	 * @ordered: work items must be executed one by one in queueing order
193 	 */
194 	bool ordered;
195 };
196 
197 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
198 {
199 	return container_of(work, struct delayed_work, work);
200 }
201 
202 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
203 {
204 	return container_of(work, struct rcu_work, work);
205 }
206 
207 struct execute_work {
208 	struct work_struct work;
209 };
210 
211 #ifdef CONFIG_LOCKDEP
212 /*
213  * NB: because we have to copy the lockdep_map, setting _key
214  * here is required, otherwise it could get initialised to the
215  * copy of the lockdep_map!
216  */
217 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
218 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
219 #else
220 #define __WORK_INIT_LOCKDEP_MAP(n, k)
221 #endif
222 
223 #define __WORK_INITIALIZER(n, f) {					\
224 	.data = WORK_DATA_STATIC_INIT(),				\
225 	.entry	= { &(n).entry, &(n).entry },				\
226 	.func = (f),							\
227 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
228 	}
229 
230 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
231 	.work = __WORK_INITIALIZER((n).work, (f)),			\
232 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
233 				     (tflags) | TIMER_IRQSAFE),		\
234 	}
235 
236 #define DECLARE_WORK(n, f)						\
237 	struct work_struct n = __WORK_INITIALIZER(n, f)
238 
239 #define DECLARE_DELAYED_WORK(n, f)					\
240 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
241 
242 #define DECLARE_DEFERRABLE_WORK(n, f)					\
243 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
244 
245 #ifdef CONFIG_DEBUG_OBJECTS_WORK
246 extern void __init_work(struct work_struct *work, int onstack);
247 extern void destroy_work_on_stack(struct work_struct *work);
248 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
249 static inline unsigned int work_static(struct work_struct *work)
250 {
251 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
252 }
253 #else
254 static inline void __init_work(struct work_struct *work, int onstack) { }
255 static inline void destroy_work_on_stack(struct work_struct *work) { }
256 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
257 static inline unsigned int work_static(struct work_struct *work) { return 0; }
258 #endif
259 
260 /*
261  * initialize all of a work item in one go
262  *
263  * NOTE! No point in using "atomic_long_set()": using a direct
264  * assignment of the work data initializer allows the compiler
265  * to generate better code.
266  */
267 #ifdef CONFIG_LOCKDEP
268 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
269 	do {								\
270 		__init_work((_work), _onstack);				\
271 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
272 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \
273 		INIT_LIST_HEAD(&(_work)->entry);			\
274 		(_work)->func = (_func);				\
275 	} while (0)
276 #else
277 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
278 	do {								\
279 		__init_work((_work), _onstack);				\
280 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
281 		INIT_LIST_HEAD(&(_work)->entry);			\
282 		(_work)->func = (_func);				\
283 	} while (0)
284 #endif
285 
286 #define __INIT_WORK(_work, _func, _onstack)				\
287 	do {								\
288 		static __maybe_unused struct lock_class_key __key;	\
289 									\
290 		__INIT_WORK_KEY(_work, _func, _onstack, &__key);	\
291 	} while (0)
292 
293 #define INIT_WORK(_work, _func)						\
294 	__INIT_WORK((_work), (_func), 0)
295 
296 #define INIT_WORK_ONSTACK(_work, _func)					\
297 	__INIT_WORK((_work), (_func), 1)
298 
299 #define INIT_WORK_ONSTACK_KEY(_work, _func, _key)			\
300 	__INIT_WORK_KEY((_work), (_func), 1, _key)
301 
302 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
303 	do {								\
304 		INIT_WORK(&(_work)->work, (_func));			\
305 		__init_timer(&(_work)->timer,				\
306 			     delayed_work_timer_fn,			\
307 			     (_tflags) | TIMER_IRQSAFE);		\
308 	} while (0)
309 
310 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
311 	do {								\
312 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
313 		__init_timer_on_stack(&(_work)->timer,			\
314 				      delayed_work_timer_fn,		\
315 				      (_tflags) | TIMER_IRQSAFE);	\
316 	} while (0)
317 
318 #define INIT_DELAYED_WORK(_work, _func)					\
319 	__INIT_DELAYED_WORK(_work, _func, 0)
320 
321 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
322 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
323 
324 #define INIT_DEFERRABLE_WORK(_work, _func)				\
325 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
326 
327 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
328 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
329 
330 #define INIT_RCU_WORK(_work, _func)					\
331 	INIT_WORK(&(_work)->work, (_func))
332 
333 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
334 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
335 
336 /**
337  * work_pending - Find out whether a work item is currently pending
338  * @work: The work item in question
339  */
340 #define work_pending(work) \
341 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
342 
343 /**
344  * delayed_work_pending - Find out whether a delayable work item is currently
345  * pending
346  * @w: The work item in question
347  */
348 #define delayed_work_pending(w) \
349 	work_pending(&(w)->work)
350 
351 /*
352  * Workqueue flags and constants.  For details, please refer to
353  * Documentation/core-api/workqueue.rst.
354  */
355 enum wq_flags {
356 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
357 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
358 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
359 	WQ_HIGHPRI		= 1 << 4, /* high priority */
360 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
361 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
362 
363 	/*
364 	 * Per-cpu workqueues are generally preferred because they tend to
365 	 * show better performance thanks to cache locality.  Per-cpu
366 	 * workqueues exclude the scheduler from choosing the CPU to
367 	 * execute the worker threads, which has an unfortunate side effect
368 	 * of increasing power consumption.
369 	 *
370 	 * The scheduler considers a CPU idle if it doesn't have any task
371 	 * to execute and tries to keep idle cores idle to conserve power;
372 	 * however, for example, a per-cpu work item scheduled from an
373 	 * interrupt handler on an idle CPU will force the scheduler to
374 	 * execute the work item on that CPU breaking the idleness, which in
375 	 * turn may lead to more scheduling choices which are sub-optimal
376 	 * in terms of power consumption.
377 	 *
378 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
379 	 * but become unbound if workqueue.power_efficient kernel param is
380 	 * specified.  Per-cpu workqueues which are identified to
381 	 * contribute significantly to power-consumption are identified and
382 	 * marked with this flag and enabling the power_efficient mode
383 	 * leads to noticeable power saving at the cost of small
384 	 * performance disadvantage.
385 	 *
386 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
387 	 */
388 	WQ_POWER_EFFICIENT	= 1 << 7,
389 
390 	__WQ_DESTROYING		= 1 << 15, /* internal: workqueue is destroying */
391 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
392 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
393 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
394 	__WQ_ORDERED_EXPLICIT	= 1 << 19, /* internal: alloc_ordered_workqueue() */
395 };
396 
397 enum wq_consts {
398 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
399 	WQ_UNBOUND_MAX_ACTIVE	= WQ_MAX_ACTIVE,
400 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
401 };
402 
403 /*
404  * System-wide workqueues which are always present.
405  *
406  * system_wq is the one used by schedule[_delayed]_work[_on]().
407  * Multi-CPU multi-threaded.  There are users which expect relatively
408  * short queue flush time.  Don't queue works which can run for too
409  * long.
410  *
411  * system_highpri_wq is similar to system_wq but for work items which
412  * require WQ_HIGHPRI.
413  *
414  * system_long_wq is similar to system_wq but may host long running
415  * works.  Queue flushing might take relatively long.
416  *
417  * system_unbound_wq is unbound workqueue.  Workers are not bound to
418  * any specific CPU, not concurrency managed, and all queued works are
419  * executed immediately as long as max_active limit is not reached and
420  * resources are available.
421  *
422  * system_freezable_wq is equivalent to system_wq except that it's
423  * freezable.
424  *
425  * *_power_efficient_wq are inclined towards saving power and converted
426  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
427  * they are same as their non-power-efficient counterparts - e.g.
428  * system_power_efficient_wq is identical to system_wq if
429  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
430  */
431 extern struct workqueue_struct *system_wq;
432 extern struct workqueue_struct *system_highpri_wq;
433 extern struct workqueue_struct *system_long_wq;
434 extern struct workqueue_struct *system_unbound_wq;
435 extern struct workqueue_struct *system_freezable_wq;
436 extern struct workqueue_struct *system_power_efficient_wq;
437 extern struct workqueue_struct *system_freezable_power_efficient_wq;
438 
439 /**
440  * alloc_workqueue - allocate a workqueue
441  * @fmt: printf format for the name of the workqueue
442  * @flags: WQ_* flags
443  * @max_active: max in-flight work items per CPU, 0 for default
444  * remaining args: args for @fmt
445  *
446  * Allocate a workqueue with the specified parameters.  For detailed
447  * information on WQ_* flags, please refer to
448  * Documentation/core-api/workqueue.rst.
449  *
450  * RETURNS:
451  * Pointer to the allocated workqueue on success, %NULL on failure.
452  */
453 __printf(1, 4) struct workqueue_struct *
454 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
455 
456 /**
457  * alloc_ordered_workqueue - allocate an ordered workqueue
458  * @fmt: printf format for the name of the workqueue
459  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
460  * @args: args for @fmt
461  *
462  * Allocate an ordered workqueue.  An ordered workqueue executes at
463  * most one work item at any given time in the queued order.  They are
464  * implemented as unbound workqueues with @max_active of one.
465  *
466  * RETURNS:
467  * Pointer to the allocated workqueue on success, %NULL on failure.
468  */
469 #define alloc_ordered_workqueue(fmt, flags, args...)			\
470 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED |		\
471 			__WQ_ORDERED_EXPLICIT | (flags), 1, ##args)
472 
473 #define create_workqueue(name)						\
474 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
475 #define create_freezable_workqueue(name)				\
476 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
477 			WQ_MEM_RECLAIM, 1, (name))
478 #define create_singlethread_workqueue(name)				\
479 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
480 
481 extern void destroy_workqueue(struct workqueue_struct *wq);
482 
483 struct workqueue_attrs *alloc_workqueue_attrs(void);
484 void free_workqueue_attrs(struct workqueue_attrs *attrs);
485 int apply_workqueue_attrs(struct workqueue_struct *wq,
486 			  const struct workqueue_attrs *attrs);
487 extern int workqueue_unbound_exclude_cpumask(cpumask_var_t cpumask);
488 
489 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
490 			struct work_struct *work);
491 extern bool queue_work_node(int node, struct workqueue_struct *wq,
492 			    struct work_struct *work);
493 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
494 			struct delayed_work *work, unsigned long delay);
495 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
496 			struct delayed_work *dwork, unsigned long delay);
497 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
498 
499 extern void __flush_workqueue(struct workqueue_struct *wq);
500 extern void drain_workqueue(struct workqueue_struct *wq);
501 
502 extern int schedule_on_each_cpu(work_func_t func);
503 
504 int execute_in_process_context(work_func_t fn, struct execute_work *);
505 
506 extern bool flush_work(struct work_struct *work);
507 extern bool cancel_work(struct work_struct *work);
508 extern bool cancel_work_sync(struct work_struct *work);
509 
510 extern bool flush_delayed_work(struct delayed_work *dwork);
511 extern bool cancel_delayed_work(struct delayed_work *dwork);
512 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
513 
514 extern bool flush_rcu_work(struct rcu_work *rwork);
515 
516 extern void workqueue_set_max_active(struct workqueue_struct *wq,
517 				     int max_active);
518 extern struct work_struct *current_work(void);
519 extern bool current_is_workqueue_rescuer(void);
520 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
521 extern unsigned int work_busy(struct work_struct *work);
522 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
523 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
524 extern void show_all_workqueues(void);
525 extern void show_freezable_workqueues(void);
526 extern void show_one_workqueue(struct workqueue_struct *wq);
527 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
528 
529 /**
530  * queue_work - queue work on a workqueue
531  * @wq: workqueue to use
532  * @work: work to queue
533  *
534  * Returns %false if @work was already on a queue, %true otherwise.
535  *
536  * We queue the work to the CPU on which it was submitted, but if the CPU dies
537  * it can be processed by another CPU.
538  *
539  * Memory-ordering properties:  If it returns %true, guarantees that all stores
540  * preceding the call to queue_work() in the program order will be visible from
541  * the CPU which will execute @work by the time such work executes, e.g.,
542  *
543  * { x is initially 0 }
544  *
545  *   CPU0				CPU1
546  *
547  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
548  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
549  *
550  * Forbids: r0 == true && r1 == 0
551  */
552 static inline bool queue_work(struct workqueue_struct *wq,
553 			      struct work_struct *work)
554 {
555 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
556 }
557 
558 /**
559  * queue_delayed_work - queue work on a workqueue after delay
560  * @wq: workqueue to use
561  * @dwork: delayable work to queue
562  * @delay: number of jiffies to wait before queueing
563  *
564  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
565  */
566 static inline bool queue_delayed_work(struct workqueue_struct *wq,
567 				      struct delayed_work *dwork,
568 				      unsigned long delay)
569 {
570 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
571 }
572 
573 /**
574  * mod_delayed_work - modify delay of or queue a delayed work
575  * @wq: workqueue to use
576  * @dwork: work to queue
577  * @delay: number of jiffies to wait before queueing
578  *
579  * mod_delayed_work_on() on local CPU.
580  */
581 static inline bool mod_delayed_work(struct workqueue_struct *wq,
582 				    struct delayed_work *dwork,
583 				    unsigned long delay)
584 {
585 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
586 }
587 
588 /**
589  * schedule_work_on - put work task on a specific cpu
590  * @cpu: cpu to put the work task on
591  * @work: job to be done
592  *
593  * This puts a job on a specific cpu
594  */
595 static inline bool schedule_work_on(int cpu, struct work_struct *work)
596 {
597 	return queue_work_on(cpu, system_wq, work);
598 }
599 
600 /**
601  * schedule_work - put work task in global workqueue
602  * @work: job to be done
603  *
604  * Returns %false if @work was already on the kernel-global workqueue and
605  * %true otherwise.
606  *
607  * This puts a job in the kernel-global workqueue if it was not already
608  * queued and leaves it in the same position on the kernel-global
609  * workqueue otherwise.
610  *
611  * Shares the same memory-ordering properties of queue_work(), cf. the
612  * DocBook header of queue_work().
613  */
614 static inline bool schedule_work(struct work_struct *work)
615 {
616 	return queue_work(system_wq, work);
617 }
618 
619 /*
620  * Detect attempt to flush system-wide workqueues at compile time when possible.
621  * Warn attempt to flush system-wide workqueues at runtime.
622  *
623  * See https://lkml.kernel.org/r/[email protected]
624  * for reasons and steps for converting system-wide workqueues into local workqueues.
625  */
626 extern void __warn_flushing_systemwide_wq(void)
627 	__compiletime_warning("Please avoid flushing system-wide workqueues.");
628 
629 /* Please stop using this function, for this function will be removed in near future. */
630 #define flush_scheduled_work()						\
631 ({									\
632 	__warn_flushing_systemwide_wq();				\
633 	__flush_workqueue(system_wq);					\
634 })
635 
636 #define flush_workqueue(wq)						\
637 ({									\
638 	struct workqueue_struct *_wq = (wq);				\
639 									\
640 	if ((__builtin_constant_p(_wq == system_wq) &&			\
641 	     _wq == system_wq) ||					\
642 	    (__builtin_constant_p(_wq == system_highpri_wq) &&		\
643 	     _wq == system_highpri_wq) ||				\
644 	    (__builtin_constant_p(_wq == system_long_wq) &&		\
645 	     _wq == system_long_wq) ||					\
646 	    (__builtin_constant_p(_wq == system_unbound_wq) &&		\
647 	     _wq == system_unbound_wq) ||				\
648 	    (__builtin_constant_p(_wq == system_freezable_wq) &&	\
649 	     _wq == system_freezable_wq) ||				\
650 	    (__builtin_constant_p(_wq == system_power_efficient_wq) &&	\
651 	     _wq == system_power_efficient_wq) ||			\
652 	    (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \
653 	     _wq == system_freezable_power_efficient_wq))		\
654 		__warn_flushing_systemwide_wq();			\
655 	__flush_workqueue(_wq);						\
656 })
657 
658 /**
659  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
660  * @cpu: cpu to use
661  * @dwork: job to be done
662  * @delay: number of jiffies to wait
663  *
664  * After waiting for a given time this puts a job in the kernel-global
665  * workqueue on the specified CPU.
666  */
667 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
668 					    unsigned long delay)
669 {
670 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
671 }
672 
673 /**
674  * schedule_delayed_work - put work task in global workqueue after delay
675  * @dwork: job to be done
676  * @delay: number of jiffies to wait or 0 for immediate execution
677  *
678  * After waiting for a given time this puts a job in the kernel-global
679  * workqueue.
680  */
681 static inline bool schedule_delayed_work(struct delayed_work *dwork,
682 					 unsigned long delay)
683 {
684 	return queue_delayed_work(system_wq, dwork, delay);
685 }
686 
687 #ifndef CONFIG_SMP
688 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
689 {
690 	return fn(arg);
691 }
692 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
693 {
694 	return fn(arg);
695 }
696 #else
697 long work_on_cpu_key(int cpu, long (*fn)(void *),
698 		     void *arg, struct lock_class_key *key);
699 /*
700  * A new key is defined for each caller to make sure the work
701  * associated with the function doesn't share its locking class.
702  */
703 #define work_on_cpu(_cpu, _fn, _arg)			\
704 ({							\
705 	static struct lock_class_key __key;		\
706 							\
707 	work_on_cpu_key(_cpu, _fn, _arg, &__key);	\
708 })
709 
710 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
711 			  void *arg, struct lock_class_key *key);
712 
713 /*
714  * A new key is defined for each caller to make sure the work
715  * associated with the function doesn't share its locking class.
716  */
717 #define work_on_cpu_safe(_cpu, _fn, _arg)		\
718 ({							\
719 	static struct lock_class_key __key;		\
720 							\
721 	work_on_cpu_safe_key(_cpu, _fn, _arg, &__key);	\
722 })
723 #endif /* CONFIG_SMP */
724 
725 #ifdef CONFIG_FREEZER
726 extern void freeze_workqueues_begin(void);
727 extern bool freeze_workqueues_busy(void);
728 extern void thaw_workqueues(void);
729 #endif /* CONFIG_FREEZER */
730 
731 #ifdef CONFIG_SYSFS
732 int workqueue_sysfs_register(struct workqueue_struct *wq);
733 #else	/* CONFIG_SYSFS */
734 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
735 { return 0; }
736 #endif	/* CONFIG_SYSFS */
737 
738 #ifdef CONFIG_WQ_WATCHDOG
739 void wq_watchdog_touch(int cpu);
740 #else	/* CONFIG_WQ_WATCHDOG */
741 static inline void wq_watchdog_touch(int cpu) { }
742 #endif	/* CONFIG_WQ_WATCHDOG */
743 
744 #ifdef CONFIG_SMP
745 int workqueue_prepare_cpu(unsigned int cpu);
746 int workqueue_online_cpu(unsigned int cpu);
747 int workqueue_offline_cpu(unsigned int cpu);
748 #endif
749 
750 void __init workqueue_init_early(void);
751 void __init workqueue_init(void);
752 void __init workqueue_init_topology(void);
753 
754 #endif
755