1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * workqueue.h --- work queue handling for Linux. 4 */ 5 6 #ifndef _LINUX_WORKQUEUE_H 7 #define _LINUX_WORKQUEUE_H 8 9 #include <linux/timer.h> 10 #include <linux/linkage.h> 11 #include <linux/bitops.h> 12 #include <linux/lockdep.h> 13 #include <linux/threads.h> 14 #include <linux/atomic.h> 15 #include <linux/cpumask.h> 16 #include <linux/rcupdate.h> 17 #include <linux/workqueue_types.h> 18 19 /* 20 * The first word is the work queue pointer and the flags rolled into 21 * one 22 */ 23 #define work_data_bits(work) ((unsigned long *)(&(work)->data)) 24 25 enum { 26 WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ 27 WORK_STRUCT_INACTIVE_BIT= 1, /* work item is inactive */ 28 WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ 29 WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ 30 #ifdef CONFIG_DEBUG_OBJECTS_WORK 31 WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ 32 WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ 33 #else 34 WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ 35 #endif 36 37 WORK_STRUCT_COLOR_BITS = 4, 38 39 WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, 40 WORK_STRUCT_INACTIVE = 1 << WORK_STRUCT_INACTIVE_BIT, 41 WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, 42 WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, 43 #ifdef CONFIG_DEBUG_OBJECTS_WORK 44 WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, 45 #else 46 WORK_STRUCT_STATIC = 0, 47 #endif 48 49 WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS), 50 51 /* not bound to any CPU, prefer the local CPU */ 52 WORK_CPU_UNBOUND = NR_CPUS, 53 54 /* 55 * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. 56 * This makes pwqs aligned to 256 bytes and allows 16 workqueue 57 * flush colors. 58 */ 59 WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + 60 WORK_STRUCT_COLOR_BITS, 61 62 /* data contains off-queue information when !WORK_STRUCT_PWQ */ 63 WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, 64 65 __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, 66 67 /* 68 * When a work item is off queue, its high bits point to the last 69 * pool it was on. Cap at 31 bits and use the highest number to 70 * indicate that no pool is associated. 71 */ 72 WORK_OFFQ_FLAG_BITS = 1, 73 WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, 74 WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, 75 WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, 76 77 /* bit mask for work_busy() return values */ 78 WORK_BUSY_PENDING = 1 << 0, 79 WORK_BUSY_RUNNING = 1 << 1, 80 81 /* maximum string length for set_worker_desc() */ 82 WORKER_DESC_LEN = 24, 83 }; 84 85 /* Convenience constants - of type 'unsigned long', not 'enum'! */ 86 #define WORK_OFFQ_CANCELING (1ul << __WORK_OFFQ_CANCELING) 87 #define WORK_OFFQ_POOL_NONE ((1ul << WORK_OFFQ_POOL_BITS) - 1) 88 #define WORK_STRUCT_NO_POOL (WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT) 89 90 #define WORK_STRUCT_FLAG_MASK ((1ul << WORK_STRUCT_FLAG_BITS) - 1) 91 #define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK) 92 93 #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) 94 #define WORK_DATA_STATIC_INIT() \ 95 ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) 96 97 struct delayed_work { 98 struct work_struct work; 99 struct timer_list timer; 100 101 /* target workqueue and CPU ->timer uses to queue ->work */ 102 struct workqueue_struct *wq; 103 int cpu; 104 }; 105 106 struct rcu_work { 107 struct work_struct work; 108 struct rcu_head rcu; 109 110 /* target workqueue ->rcu uses to queue ->work */ 111 struct workqueue_struct *wq; 112 }; 113 114 enum wq_affn_scope { 115 WQ_AFFN_DFL, /* use system default */ 116 WQ_AFFN_CPU, /* one pod per CPU */ 117 WQ_AFFN_SMT, /* one pod poer SMT */ 118 WQ_AFFN_CACHE, /* one pod per LLC */ 119 WQ_AFFN_NUMA, /* one pod per NUMA node */ 120 WQ_AFFN_SYSTEM, /* one pod across the whole system */ 121 122 WQ_AFFN_NR_TYPES, 123 }; 124 125 /** 126 * struct workqueue_attrs - A struct for workqueue attributes. 127 * 128 * This can be used to change attributes of an unbound workqueue. 129 */ 130 struct workqueue_attrs { 131 /** 132 * @nice: nice level 133 */ 134 int nice; 135 136 /** 137 * @cpumask: allowed CPUs 138 * 139 * Work items in this workqueue are affine to these CPUs and not allowed 140 * to execute on other CPUs. A pool serving a workqueue must have the 141 * same @cpumask. 142 */ 143 cpumask_var_t cpumask; 144 145 /** 146 * @__pod_cpumask: internal attribute used to create per-pod pools 147 * 148 * Internal use only. 149 * 150 * Per-pod unbound worker pools are used to improve locality. Always a 151 * subset of ->cpumask. A workqueue can be associated with multiple 152 * worker pools with disjoint @__pod_cpumask's. Whether the enforcement 153 * of a pool's @__pod_cpumask is strict depends on @affn_strict. 154 */ 155 cpumask_var_t __pod_cpumask; 156 157 /** 158 * @affn_strict: affinity scope is strict 159 * 160 * If clear, workqueue will make a best-effort attempt at starting the 161 * worker inside @__pod_cpumask but the scheduler is free to migrate it 162 * outside. 163 * 164 * If set, workers are only allowed to run inside @__pod_cpumask. 165 */ 166 bool affn_strict; 167 168 /* 169 * Below fields aren't properties of a worker_pool. They only modify how 170 * :c:func:`apply_workqueue_attrs` select pools and thus don't 171 * participate in pool hash calculations or equality comparisons. 172 */ 173 174 /** 175 * @affn_scope: unbound CPU affinity scope 176 * 177 * CPU pods are used to improve execution locality of unbound work 178 * items. There are multiple pod types, one for each wq_affn_scope, and 179 * every CPU in the system belongs to one pod in every pod type. CPUs 180 * that belong to the same pod share the worker pool. For example, 181 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker 182 * pool for each NUMA node. 183 */ 184 enum wq_affn_scope affn_scope; 185 186 /** 187 * @ordered: work items must be executed one by one in queueing order 188 */ 189 bool ordered; 190 }; 191 192 static inline struct delayed_work *to_delayed_work(struct work_struct *work) 193 { 194 return container_of(work, struct delayed_work, work); 195 } 196 197 static inline struct rcu_work *to_rcu_work(struct work_struct *work) 198 { 199 return container_of(work, struct rcu_work, work); 200 } 201 202 struct execute_work { 203 struct work_struct work; 204 }; 205 206 #ifdef CONFIG_LOCKDEP 207 /* 208 * NB: because we have to copy the lockdep_map, setting _key 209 * here is required, otherwise it could get initialised to the 210 * copy of the lockdep_map! 211 */ 212 #define __WORK_INIT_LOCKDEP_MAP(n, k) \ 213 .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), 214 #else 215 #define __WORK_INIT_LOCKDEP_MAP(n, k) 216 #endif 217 218 #define __WORK_INITIALIZER(n, f) { \ 219 .data = WORK_DATA_STATIC_INIT(), \ 220 .entry = { &(n).entry, &(n).entry }, \ 221 .func = (f), \ 222 __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ 223 } 224 225 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ 226 .work = __WORK_INITIALIZER((n).work, (f)), \ 227 .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ 228 (tflags) | TIMER_IRQSAFE), \ 229 } 230 231 #define DECLARE_WORK(n, f) \ 232 struct work_struct n = __WORK_INITIALIZER(n, f) 233 234 #define DECLARE_DELAYED_WORK(n, f) \ 235 struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) 236 237 #define DECLARE_DEFERRABLE_WORK(n, f) \ 238 struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) 239 240 #ifdef CONFIG_DEBUG_OBJECTS_WORK 241 extern void __init_work(struct work_struct *work, int onstack); 242 extern void destroy_work_on_stack(struct work_struct *work); 243 extern void destroy_delayed_work_on_stack(struct delayed_work *work); 244 static inline unsigned int work_static(struct work_struct *work) 245 { 246 return *work_data_bits(work) & WORK_STRUCT_STATIC; 247 } 248 #else 249 static inline void __init_work(struct work_struct *work, int onstack) { } 250 static inline void destroy_work_on_stack(struct work_struct *work) { } 251 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } 252 static inline unsigned int work_static(struct work_struct *work) { return 0; } 253 #endif 254 255 /* 256 * initialize all of a work item in one go 257 * 258 * NOTE! No point in using "atomic_long_set()": using a direct 259 * assignment of the work data initializer allows the compiler 260 * to generate better code. 261 */ 262 #ifdef CONFIG_LOCKDEP 263 #define __INIT_WORK_KEY(_work, _func, _onstack, _key) \ 264 do { \ 265 __init_work((_work), _onstack); \ 266 (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ 267 lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \ 268 INIT_LIST_HEAD(&(_work)->entry); \ 269 (_work)->func = (_func); \ 270 } while (0) 271 #else 272 #define __INIT_WORK_KEY(_work, _func, _onstack, _key) \ 273 do { \ 274 __init_work((_work), _onstack); \ 275 (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ 276 INIT_LIST_HEAD(&(_work)->entry); \ 277 (_work)->func = (_func); \ 278 } while (0) 279 #endif 280 281 #define __INIT_WORK(_work, _func, _onstack) \ 282 do { \ 283 static __maybe_unused struct lock_class_key __key; \ 284 \ 285 __INIT_WORK_KEY(_work, _func, _onstack, &__key); \ 286 } while (0) 287 288 #define INIT_WORK(_work, _func) \ 289 __INIT_WORK((_work), (_func), 0) 290 291 #define INIT_WORK_ONSTACK(_work, _func) \ 292 __INIT_WORK((_work), (_func), 1) 293 294 #define INIT_WORK_ONSTACK_KEY(_work, _func, _key) \ 295 __INIT_WORK_KEY((_work), (_func), 1, _key) 296 297 #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ 298 do { \ 299 INIT_WORK(&(_work)->work, (_func)); \ 300 __init_timer(&(_work)->timer, \ 301 delayed_work_timer_fn, \ 302 (_tflags) | TIMER_IRQSAFE); \ 303 } while (0) 304 305 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ 306 do { \ 307 INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ 308 __init_timer_on_stack(&(_work)->timer, \ 309 delayed_work_timer_fn, \ 310 (_tflags) | TIMER_IRQSAFE); \ 311 } while (0) 312 313 #define INIT_DELAYED_WORK(_work, _func) \ 314 __INIT_DELAYED_WORK(_work, _func, 0) 315 316 #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ 317 __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) 318 319 #define INIT_DEFERRABLE_WORK(_work, _func) \ 320 __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) 321 322 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ 323 __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) 324 325 #define INIT_RCU_WORK(_work, _func) \ 326 INIT_WORK(&(_work)->work, (_func)) 327 328 #define INIT_RCU_WORK_ONSTACK(_work, _func) \ 329 INIT_WORK_ONSTACK(&(_work)->work, (_func)) 330 331 /** 332 * work_pending - Find out whether a work item is currently pending 333 * @work: The work item in question 334 */ 335 #define work_pending(work) \ 336 test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) 337 338 /** 339 * delayed_work_pending - Find out whether a delayable work item is currently 340 * pending 341 * @w: The work item in question 342 */ 343 #define delayed_work_pending(w) \ 344 work_pending(&(w)->work) 345 346 /* 347 * Workqueue flags and constants. For details, please refer to 348 * Documentation/core-api/workqueue.rst. 349 */ 350 enum { 351 WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ 352 WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ 353 WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ 354 WQ_HIGHPRI = 1 << 4, /* high priority */ 355 WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ 356 WQ_SYSFS = 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */ 357 358 /* 359 * Per-cpu workqueues are generally preferred because they tend to 360 * show better performance thanks to cache locality. Per-cpu 361 * workqueues exclude the scheduler from choosing the CPU to 362 * execute the worker threads, which has an unfortunate side effect 363 * of increasing power consumption. 364 * 365 * The scheduler considers a CPU idle if it doesn't have any task 366 * to execute and tries to keep idle cores idle to conserve power; 367 * however, for example, a per-cpu work item scheduled from an 368 * interrupt handler on an idle CPU will force the scheduler to 369 * execute the work item on that CPU breaking the idleness, which in 370 * turn may lead to more scheduling choices which are sub-optimal 371 * in terms of power consumption. 372 * 373 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default 374 * but become unbound if workqueue.power_efficient kernel param is 375 * specified. Per-cpu workqueues which are identified to 376 * contribute significantly to power-consumption are identified and 377 * marked with this flag and enabling the power_efficient mode 378 * leads to noticeable power saving at the cost of small 379 * performance disadvantage. 380 * 381 * http://thread.gmane.org/gmane.linux.kernel/1480396 382 */ 383 WQ_POWER_EFFICIENT = 1 << 7, 384 385 __WQ_DESTROYING = 1 << 15, /* internal: workqueue is destroying */ 386 __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ 387 __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ 388 __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ 389 __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ 390 391 WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ 392 WQ_UNBOUND_MAX_ACTIVE = WQ_MAX_ACTIVE, 393 WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, 394 }; 395 396 /* 397 * System-wide workqueues which are always present. 398 * 399 * system_wq is the one used by schedule[_delayed]_work[_on](). 400 * Multi-CPU multi-threaded. There are users which expect relatively 401 * short queue flush time. Don't queue works which can run for too 402 * long. 403 * 404 * system_highpri_wq is similar to system_wq but for work items which 405 * require WQ_HIGHPRI. 406 * 407 * system_long_wq is similar to system_wq but may host long running 408 * works. Queue flushing might take relatively long. 409 * 410 * system_unbound_wq is unbound workqueue. Workers are not bound to 411 * any specific CPU, not concurrency managed, and all queued works are 412 * executed immediately as long as max_active limit is not reached and 413 * resources are available. 414 * 415 * system_freezable_wq is equivalent to system_wq except that it's 416 * freezable. 417 * 418 * *_power_efficient_wq are inclined towards saving power and converted 419 * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, 420 * they are same as their non-power-efficient counterparts - e.g. 421 * system_power_efficient_wq is identical to system_wq if 422 * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. 423 */ 424 extern struct workqueue_struct *system_wq; 425 extern struct workqueue_struct *system_highpri_wq; 426 extern struct workqueue_struct *system_long_wq; 427 extern struct workqueue_struct *system_unbound_wq; 428 extern struct workqueue_struct *system_freezable_wq; 429 extern struct workqueue_struct *system_power_efficient_wq; 430 extern struct workqueue_struct *system_freezable_power_efficient_wq; 431 432 /** 433 * alloc_workqueue - allocate a workqueue 434 * @fmt: printf format for the name of the workqueue 435 * @flags: WQ_* flags 436 * @max_active: max in-flight work items per CPU, 0 for default 437 * remaining args: args for @fmt 438 * 439 * Allocate a workqueue with the specified parameters. For detailed 440 * information on WQ_* flags, please refer to 441 * Documentation/core-api/workqueue.rst. 442 * 443 * RETURNS: 444 * Pointer to the allocated workqueue on success, %NULL on failure. 445 */ 446 __printf(1, 4) struct workqueue_struct * 447 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); 448 449 /** 450 * alloc_ordered_workqueue - allocate an ordered workqueue 451 * @fmt: printf format for the name of the workqueue 452 * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) 453 * @args: args for @fmt 454 * 455 * Allocate an ordered workqueue. An ordered workqueue executes at 456 * most one work item at any given time in the queued order. They are 457 * implemented as unbound workqueues with @max_active of one. 458 * 459 * RETURNS: 460 * Pointer to the allocated workqueue on success, %NULL on failure. 461 */ 462 #define alloc_ordered_workqueue(fmt, flags, args...) \ 463 alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ 464 __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) 465 466 #define create_workqueue(name) \ 467 alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) 468 #define create_freezable_workqueue(name) \ 469 alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ 470 WQ_MEM_RECLAIM, 1, (name)) 471 #define create_singlethread_workqueue(name) \ 472 alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) 473 474 extern void destroy_workqueue(struct workqueue_struct *wq); 475 476 struct workqueue_attrs *alloc_workqueue_attrs(void); 477 void free_workqueue_attrs(struct workqueue_attrs *attrs); 478 int apply_workqueue_attrs(struct workqueue_struct *wq, 479 const struct workqueue_attrs *attrs); 480 extern int workqueue_unbound_exclude_cpumask(cpumask_var_t cpumask); 481 482 extern bool queue_work_on(int cpu, struct workqueue_struct *wq, 483 struct work_struct *work); 484 extern bool queue_work_node(int node, struct workqueue_struct *wq, 485 struct work_struct *work); 486 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 487 struct delayed_work *work, unsigned long delay); 488 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 489 struct delayed_work *dwork, unsigned long delay); 490 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); 491 492 extern void __flush_workqueue(struct workqueue_struct *wq); 493 extern void drain_workqueue(struct workqueue_struct *wq); 494 495 extern int schedule_on_each_cpu(work_func_t func); 496 497 int execute_in_process_context(work_func_t fn, struct execute_work *); 498 499 extern bool flush_work(struct work_struct *work); 500 extern bool cancel_work(struct work_struct *work); 501 extern bool cancel_work_sync(struct work_struct *work); 502 503 extern bool flush_delayed_work(struct delayed_work *dwork); 504 extern bool cancel_delayed_work(struct delayed_work *dwork); 505 extern bool cancel_delayed_work_sync(struct delayed_work *dwork); 506 507 extern bool flush_rcu_work(struct rcu_work *rwork); 508 509 extern void workqueue_set_max_active(struct workqueue_struct *wq, 510 int max_active); 511 extern struct work_struct *current_work(void); 512 extern bool current_is_workqueue_rescuer(void); 513 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); 514 extern unsigned int work_busy(struct work_struct *work); 515 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); 516 extern void print_worker_info(const char *log_lvl, struct task_struct *task); 517 extern void show_all_workqueues(void); 518 extern void show_freezable_workqueues(void); 519 extern void show_one_workqueue(struct workqueue_struct *wq); 520 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); 521 522 /** 523 * queue_work - queue work on a workqueue 524 * @wq: workqueue to use 525 * @work: work to queue 526 * 527 * Returns %false if @work was already on a queue, %true otherwise. 528 * 529 * We queue the work to the CPU on which it was submitted, but if the CPU dies 530 * it can be processed by another CPU. 531 * 532 * Memory-ordering properties: If it returns %true, guarantees that all stores 533 * preceding the call to queue_work() in the program order will be visible from 534 * the CPU which will execute @work by the time such work executes, e.g., 535 * 536 * { x is initially 0 } 537 * 538 * CPU0 CPU1 539 * 540 * WRITE_ONCE(x, 1); [ @work is being executed ] 541 * r0 = queue_work(wq, work); r1 = READ_ONCE(x); 542 * 543 * Forbids: r0 == true && r1 == 0 544 */ 545 static inline bool queue_work(struct workqueue_struct *wq, 546 struct work_struct *work) 547 { 548 return queue_work_on(WORK_CPU_UNBOUND, wq, work); 549 } 550 551 /** 552 * queue_delayed_work - queue work on a workqueue after delay 553 * @wq: workqueue to use 554 * @dwork: delayable work to queue 555 * @delay: number of jiffies to wait before queueing 556 * 557 * Equivalent to queue_delayed_work_on() but tries to use the local CPU. 558 */ 559 static inline bool queue_delayed_work(struct workqueue_struct *wq, 560 struct delayed_work *dwork, 561 unsigned long delay) 562 { 563 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 564 } 565 566 /** 567 * mod_delayed_work - modify delay of or queue a delayed work 568 * @wq: workqueue to use 569 * @dwork: work to queue 570 * @delay: number of jiffies to wait before queueing 571 * 572 * mod_delayed_work_on() on local CPU. 573 */ 574 static inline bool mod_delayed_work(struct workqueue_struct *wq, 575 struct delayed_work *dwork, 576 unsigned long delay) 577 { 578 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 579 } 580 581 /** 582 * schedule_work_on - put work task on a specific cpu 583 * @cpu: cpu to put the work task on 584 * @work: job to be done 585 * 586 * This puts a job on a specific cpu 587 */ 588 static inline bool schedule_work_on(int cpu, struct work_struct *work) 589 { 590 return queue_work_on(cpu, system_wq, work); 591 } 592 593 /** 594 * schedule_work - put work task in global workqueue 595 * @work: job to be done 596 * 597 * Returns %false if @work was already on the kernel-global workqueue and 598 * %true otherwise. 599 * 600 * This puts a job in the kernel-global workqueue if it was not already 601 * queued and leaves it in the same position on the kernel-global 602 * workqueue otherwise. 603 * 604 * Shares the same memory-ordering properties of queue_work(), cf. the 605 * DocBook header of queue_work(). 606 */ 607 static inline bool schedule_work(struct work_struct *work) 608 { 609 return queue_work(system_wq, work); 610 } 611 612 /* 613 * Detect attempt to flush system-wide workqueues at compile time when possible. 614 * Warn attempt to flush system-wide workqueues at runtime. 615 * 616 * See https://lkml.kernel.org/r/[email protected] 617 * for reasons and steps for converting system-wide workqueues into local workqueues. 618 */ 619 extern void __warn_flushing_systemwide_wq(void) 620 __compiletime_warning("Please avoid flushing system-wide workqueues."); 621 622 /* Please stop using this function, for this function will be removed in near future. */ 623 #define flush_scheduled_work() \ 624 ({ \ 625 __warn_flushing_systemwide_wq(); \ 626 __flush_workqueue(system_wq); \ 627 }) 628 629 #define flush_workqueue(wq) \ 630 ({ \ 631 struct workqueue_struct *_wq = (wq); \ 632 \ 633 if ((__builtin_constant_p(_wq == system_wq) && \ 634 _wq == system_wq) || \ 635 (__builtin_constant_p(_wq == system_highpri_wq) && \ 636 _wq == system_highpri_wq) || \ 637 (__builtin_constant_p(_wq == system_long_wq) && \ 638 _wq == system_long_wq) || \ 639 (__builtin_constant_p(_wq == system_unbound_wq) && \ 640 _wq == system_unbound_wq) || \ 641 (__builtin_constant_p(_wq == system_freezable_wq) && \ 642 _wq == system_freezable_wq) || \ 643 (__builtin_constant_p(_wq == system_power_efficient_wq) && \ 644 _wq == system_power_efficient_wq) || \ 645 (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \ 646 _wq == system_freezable_power_efficient_wq)) \ 647 __warn_flushing_systemwide_wq(); \ 648 __flush_workqueue(_wq); \ 649 }) 650 651 /** 652 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 653 * @cpu: cpu to use 654 * @dwork: job to be done 655 * @delay: number of jiffies to wait 656 * 657 * After waiting for a given time this puts a job in the kernel-global 658 * workqueue on the specified CPU. 659 */ 660 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 661 unsigned long delay) 662 { 663 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 664 } 665 666 /** 667 * schedule_delayed_work - put work task in global workqueue after delay 668 * @dwork: job to be done 669 * @delay: number of jiffies to wait or 0 for immediate execution 670 * 671 * After waiting for a given time this puts a job in the kernel-global 672 * workqueue. 673 */ 674 static inline bool schedule_delayed_work(struct delayed_work *dwork, 675 unsigned long delay) 676 { 677 return queue_delayed_work(system_wq, dwork, delay); 678 } 679 680 #ifndef CONFIG_SMP 681 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 682 { 683 return fn(arg); 684 } 685 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 686 { 687 return fn(arg); 688 } 689 #else 690 long work_on_cpu_key(int cpu, long (*fn)(void *), 691 void *arg, struct lock_class_key *key); 692 /* 693 * A new key is defined for each caller to make sure the work 694 * associated with the function doesn't share its locking class. 695 */ 696 #define work_on_cpu(_cpu, _fn, _arg) \ 697 ({ \ 698 static struct lock_class_key __key; \ 699 \ 700 work_on_cpu_key(_cpu, _fn, _arg, &__key); \ 701 }) 702 703 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 704 void *arg, struct lock_class_key *key); 705 706 /* 707 * A new key is defined for each caller to make sure the work 708 * associated with the function doesn't share its locking class. 709 */ 710 #define work_on_cpu_safe(_cpu, _fn, _arg) \ 711 ({ \ 712 static struct lock_class_key __key; \ 713 \ 714 work_on_cpu_safe_key(_cpu, _fn, _arg, &__key); \ 715 }) 716 #endif /* CONFIG_SMP */ 717 718 #ifdef CONFIG_FREEZER 719 extern void freeze_workqueues_begin(void); 720 extern bool freeze_workqueues_busy(void); 721 extern void thaw_workqueues(void); 722 #endif /* CONFIG_FREEZER */ 723 724 #ifdef CONFIG_SYSFS 725 int workqueue_sysfs_register(struct workqueue_struct *wq); 726 #else /* CONFIG_SYSFS */ 727 static inline int workqueue_sysfs_register(struct workqueue_struct *wq) 728 { return 0; } 729 #endif /* CONFIG_SYSFS */ 730 731 #ifdef CONFIG_WQ_WATCHDOG 732 void wq_watchdog_touch(int cpu); 733 #else /* CONFIG_WQ_WATCHDOG */ 734 static inline void wq_watchdog_touch(int cpu) { } 735 #endif /* CONFIG_WQ_WATCHDOG */ 736 737 #ifdef CONFIG_SMP 738 int workqueue_prepare_cpu(unsigned int cpu); 739 int workqueue_online_cpu(unsigned int cpu); 740 int workqueue_offline_cpu(unsigned int cpu); 741 #endif 742 743 void __init workqueue_init_early(void); 744 void __init workqueue_init(void); 745 void __init workqueue_init_topology(void); 746 747 #endif 748