xref: /linux-6.15/include/linux/workqueue.h (revision 7f7dc377)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 
18 struct workqueue_struct;
19 
20 struct work_struct;
21 typedef void (*work_func_t)(struct work_struct *work);
22 void delayed_work_timer_fn(struct timer_list *t);
23 
24 /*
25  * The first word is the work queue pointer and the flags rolled into
26  * one
27  */
28 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
29 
30 enum {
31 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
32 	WORK_STRUCT_INACTIVE_BIT= 1,	/* work item is inactive */
33 	WORK_STRUCT_PWQ_BIT	= 2,	/* data points to pwq */
34 	WORK_STRUCT_LINKED_BIT	= 3,	/* next work is linked to this one */
35 #ifdef CONFIG_DEBUG_OBJECTS_WORK
36 	WORK_STRUCT_STATIC_BIT	= 4,	/* static initializer (debugobjects) */
37 	WORK_STRUCT_COLOR_SHIFT	= 5,	/* color for workqueue flushing */
38 #else
39 	WORK_STRUCT_COLOR_SHIFT	= 4,	/* color for workqueue flushing */
40 #endif
41 
42 	WORK_STRUCT_COLOR_BITS	= 4,
43 
44 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
45 	WORK_STRUCT_INACTIVE	= 1 << WORK_STRUCT_INACTIVE_BIT,
46 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
47 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
48 #ifdef CONFIG_DEBUG_OBJECTS_WORK
49 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
50 #else
51 	WORK_STRUCT_STATIC	= 0,
52 #endif
53 
54 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS),
55 
56 	/* not bound to any CPU, prefer the local CPU */
57 	WORK_CPU_UNBOUND	= NR_CPUS,
58 
59 	/*
60 	 * Reserve 8 bits off of pwq pointer w/ debugobjects turned off.
61 	 * This makes pwqs aligned to 256 bytes and allows 16 workqueue
62 	 * flush colors.
63 	 */
64 	WORK_STRUCT_FLAG_BITS	= WORK_STRUCT_COLOR_SHIFT +
65 				  WORK_STRUCT_COLOR_BITS,
66 
67 	/* data contains off-queue information when !WORK_STRUCT_PWQ */
68 	WORK_OFFQ_FLAG_BASE	= WORK_STRUCT_COLOR_SHIFT,
69 
70 	__WORK_OFFQ_CANCELING	= WORK_OFFQ_FLAG_BASE,
71 
72 	/*
73 	 * When a work item is off queue, its high bits point to the last
74 	 * pool it was on.  Cap at 31 bits and use the highest number to
75 	 * indicate that no pool is associated.
76 	 */
77 	WORK_OFFQ_FLAG_BITS	= 1,
78 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
79 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
80 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
81 
82 	/* bit mask for work_busy() return values */
83 	WORK_BUSY_PENDING	= 1 << 0,
84 	WORK_BUSY_RUNNING	= 1 << 1,
85 
86 	/* maximum string length for set_worker_desc() */
87 	WORKER_DESC_LEN		= 24,
88 };
89 
90 /* Convenience constants - of type 'unsigned long', not 'enum'! */
91 #define WORK_OFFQ_CANCELING	(1ul << __WORK_OFFQ_CANCELING)
92 #define WORK_OFFQ_POOL_NONE	((1ul << WORK_OFFQ_POOL_BITS) - 1)
93 #define WORK_STRUCT_NO_POOL	(WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT)
94 
95 #define WORK_STRUCT_FLAG_MASK    ((1ul << WORK_STRUCT_FLAG_BITS) - 1)
96 #define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)
97 
98 struct work_struct {
99 	atomic_long_t data;
100 	struct list_head entry;
101 	work_func_t func;
102 #ifdef CONFIG_LOCKDEP
103 	struct lockdep_map lockdep_map;
104 #endif
105 };
106 
107 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
108 #define WORK_DATA_STATIC_INIT()	\
109 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
110 
111 struct delayed_work {
112 	struct work_struct work;
113 	struct timer_list timer;
114 
115 	/* target workqueue and CPU ->timer uses to queue ->work */
116 	struct workqueue_struct *wq;
117 	int cpu;
118 };
119 
120 struct rcu_work {
121 	struct work_struct work;
122 	struct rcu_head rcu;
123 
124 	/* target workqueue ->rcu uses to queue ->work */
125 	struct workqueue_struct *wq;
126 };
127 
128 enum wq_affn_scope {
129 	WQ_AFFN_NUMA,			/* one pod per NUMA node */
130 	WQ_AFFN_SYSTEM,			/* one pod across the whole system */
131 
132 	WQ_AFFN_NR_TYPES,
133 
134 	WQ_AFFN_DFL = WQ_AFFN_NUMA,
135 };
136 
137 /**
138  * struct workqueue_attrs - A struct for workqueue attributes.
139  *
140  * This can be used to change attributes of an unbound workqueue.
141  */
142 struct workqueue_attrs {
143 	/**
144 	 * @nice: nice level
145 	 */
146 	int nice;
147 
148 	/**
149 	 * @cpumask: allowed CPUs
150 	 */
151 	cpumask_var_t cpumask;
152 
153 	/*
154 	 * Below fields aren't properties of a worker_pool. They only modify how
155 	 * :c:func:`apply_workqueue_attrs` select pools and thus don't
156 	 * participate in pool hash calculations or equality comparisons.
157 	 */
158 
159 	/**
160 	 * @affn_scope: unbound CPU affinity scope
161 	 *
162 	 * CPU pods are used to improve execution locality of unbound work
163 	 * items. There are multiple pod types, one for each wq_affn_scope, and
164 	 * every CPU in the system belongs to one pod in every pod type. CPUs
165 	 * that belong to the same pod share the worker pool. For example,
166 	 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker
167 	 * pool for each NUMA node.
168 	 */
169 	enum wq_affn_scope affn_scope;
170 
171 	/**
172 	 * @ordered: work items must be executed one by one in queueing order
173 	 */
174 	bool ordered;
175 };
176 
177 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
178 {
179 	return container_of(work, struct delayed_work, work);
180 }
181 
182 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
183 {
184 	return container_of(work, struct rcu_work, work);
185 }
186 
187 struct execute_work {
188 	struct work_struct work;
189 };
190 
191 #ifdef CONFIG_LOCKDEP
192 /*
193  * NB: because we have to copy the lockdep_map, setting _key
194  * here is required, otherwise it could get initialised to the
195  * copy of the lockdep_map!
196  */
197 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
198 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
199 #else
200 #define __WORK_INIT_LOCKDEP_MAP(n, k)
201 #endif
202 
203 #define __WORK_INITIALIZER(n, f) {					\
204 	.data = WORK_DATA_STATIC_INIT(),				\
205 	.entry	= { &(n).entry, &(n).entry },				\
206 	.func = (f),							\
207 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
208 	}
209 
210 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
211 	.work = __WORK_INITIALIZER((n).work, (f)),			\
212 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
213 				     (tflags) | TIMER_IRQSAFE),		\
214 	}
215 
216 #define DECLARE_WORK(n, f)						\
217 	struct work_struct n = __WORK_INITIALIZER(n, f)
218 
219 #define DECLARE_DELAYED_WORK(n, f)					\
220 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
221 
222 #define DECLARE_DEFERRABLE_WORK(n, f)					\
223 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
224 
225 #ifdef CONFIG_DEBUG_OBJECTS_WORK
226 extern void __init_work(struct work_struct *work, int onstack);
227 extern void destroy_work_on_stack(struct work_struct *work);
228 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
229 static inline unsigned int work_static(struct work_struct *work)
230 {
231 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
232 }
233 #else
234 static inline void __init_work(struct work_struct *work, int onstack) { }
235 static inline void destroy_work_on_stack(struct work_struct *work) { }
236 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
237 static inline unsigned int work_static(struct work_struct *work) { return 0; }
238 #endif
239 
240 /*
241  * initialize all of a work item in one go
242  *
243  * NOTE! No point in using "atomic_long_set()": using a direct
244  * assignment of the work data initializer allows the compiler
245  * to generate better code.
246  */
247 #ifdef CONFIG_LOCKDEP
248 #define __INIT_WORK(_work, _func, _onstack)				\
249 	do {								\
250 		static struct lock_class_key __key;			\
251 									\
252 		__init_work((_work), _onstack);				\
253 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
254 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \
255 		INIT_LIST_HEAD(&(_work)->entry);			\
256 		(_work)->func = (_func);				\
257 	} while (0)
258 #else
259 #define __INIT_WORK(_work, _func, _onstack)				\
260 	do {								\
261 		__init_work((_work), _onstack);				\
262 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
263 		INIT_LIST_HEAD(&(_work)->entry);			\
264 		(_work)->func = (_func);				\
265 	} while (0)
266 #endif
267 
268 #define INIT_WORK(_work, _func)						\
269 	__INIT_WORK((_work), (_func), 0)
270 
271 #define INIT_WORK_ONSTACK(_work, _func)					\
272 	__INIT_WORK((_work), (_func), 1)
273 
274 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
275 	do {								\
276 		INIT_WORK(&(_work)->work, (_func));			\
277 		__init_timer(&(_work)->timer,				\
278 			     delayed_work_timer_fn,			\
279 			     (_tflags) | TIMER_IRQSAFE);		\
280 	} while (0)
281 
282 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
283 	do {								\
284 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
285 		__init_timer_on_stack(&(_work)->timer,			\
286 				      delayed_work_timer_fn,		\
287 				      (_tflags) | TIMER_IRQSAFE);	\
288 	} while (0)
289 
290 #define INIT_DELAYED_WORK(_work, _func)					\
291 	__INIT_DELAYED_WORK(_work, _func, 0)
292 
293 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
294 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
295 
296 #define INIT_DEFERRABLE_WORK(_work, _func)				\
297 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
298 
299 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
300 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
301 
302 #define INIT_RCU_WORK(_work, _func)					\
303 	INIT_WORK(&(_work)->work, (_func))
304 
305 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
306 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
307 
308 /**
309  * work_pending - Find out whether a work item is currently pending
310  * @work: The work item in question
311  */
312 #define work_pending(work) \
313 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
314 
315 /**
316  * delayed_work_pending - Find out whether a delayable work item is currently
317  * pending
318  * @w: The work item in question
319  */
320 #define delayed_work_pending(w) \
321 	work_pending(&(w)->work)
322 
323 /*
324  * Workqueue flags and constants.  For details, please refer to
325  * Documentation/core-api/workqueue.rst.
326  */
327 enum {
328 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
329 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
330 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
331 	WQ_HIGHPRI		= 1 << 4, /* high priority */
332 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
333 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
334 
335 	/*
336 	 * Per-cpu workqueues are generally preferred because they tend to
337 	 * show better performance thanks to cache locality.  Per-cpu
338 	 * workqueues exclude the scheduler from choosing the CPU to
339 	 * execute the worker threads, which has an unfortunate side effect
340 	 * of increasing power consumption.
341 	 *
342 	 * The scheduler considers a CPU idle if it doesn't have any task
343 	 * to execute and tries to keep idle cores idle to conserve power;
344 	 * however, for example, a per-cpu work item scheduled from an
345 	 * interrupt handler on an idle CPU will force the scheduler to
346 	 * execute the work item on that CPU breaking the idleness, which in
347 	 * turn may lead to more scheduling choices which are sub-optimal
348 	 * in terms of power consumption.
349 	 *
350 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
351 	 * but become unbound if workqueue.power_efficient kernel param is
352 	 * specified.  Per-cpu workqueues which are identified to
353 	 * contribute significantly to power-consumption are identified and
354 	 * marked with this flag and enabling the power_efficient mode
355 	 * leads to noticeable power saving at the cost of small
356 	 * performance disadvantage.
357 	 *
358 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
359 	 */
360 	WQ_POWER_EFFICIENT	= 1 << 7,
361 
362 	__WQ_DESTROYING		= 1 << 15, /* internal: workqueue is destroying */
363 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
364 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
365 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
366 	__WQ_ORDERED_EXPLICIT	= 1 << 19, /* internal: alloc_ordered_workqueue() */
367 
368 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
369 	WQ_UNBOUND_MAX_ACTIVE	= WQ_MAX_ACTIVE,
370 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
371 };
372 
373 /*
374  * System-wide workqueues which are always present.
375  *
376  * system_wq is the one used by schedule[_delayed]_work[_on]().
377  * Multi-CPU multi-threaded.  There are users which expect relatively
378  * short queue flush time.  Don't queue works which can run for too
379  * long.
380  *
381  * system_highpri_wq is similar to system_wq but for work items which
382  * require WQ_HIGHPRI.
383  *
384  * system_long_wq is similar to system_wq but may host long running
385  * works.  Queue flushing might take relatively long.
386  *
387  * system_unbound_wq is unbound workqueue.  Workers are not bound to
388  * any specific CPU, not concurrency managed, and all queued works are
389  * executed immediately as long as max_active limit is not reached and
390  * resources are available.
391  *
392  * system_freezable_wq is equivalent to system_wq except that it's
393  * freezable.
394  *
395  * *_power_efficient_wq are inclined towards saving power and converted
396  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
397  * they are same as their non-power-efficient counterparts - e.g.
398  * system_power_efficient_wq is identical to system_wq if
399  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
400  */
401 extern struct workqueue_struct *system_wq;
402 extern struct workqueue_struct *system_highpri_wq;
403 extern struct workqueue_struct *system_long_wq;
404 extern struct workqueue_struct *system_unbound_wq;
405 extern struct workqueue_struct *system_freezable_wq;
406 extern struct workqueue_struct *system_power_efficient_wq;
407 extern struct workqueue_struct *system_freezable_power_efficient_wq;
408 
409 /**
410  * alloc_workqueue - allocate a workqueue
411  * @fmt: printf format for the name of the workqueue
412  * @flags: WQ_* flags
413  * @max_active: max in-flight work items per CPU, 0 for default
414  * remaining args: args for @fmt
415  *
416  * Allocate a workqueue with the specified parameters.  For detailed
417  * information on WQ_* flags, please refer to
418  * Documentation/core-api/workqueue.rst.
419  *
420  * RETURNS:
421  * Pointer to the allocated workqueue on success, %NULL on failure.
422  */
423 __printf(1, 4) struct workqueue_struct *
424 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
425 
426 /**
427  * alloc_ordered_workqueue - allocate an ordered workqueue
428  * @fmt: printf format for the name of the workqueue
429  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
430  * @args: args for @fmt
431  *
432  * Allocate an ordered workqueue.  An ordered workqueue executes at
433  * most one work item at any given time in the queued order.  They are
434  * implemented as unbound workqueues with @max_active of one.
435  *
436  * RETURNS:
437  * Pointer to the allocated workqueue on success, %NULL on failure.
438  */
439 #define alloc_ordered_workqueue(fmt, flags, args...)			\
440 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED |		\
441 			__WQ_ORDERED_EXPLICIT | (flags), 1, ##args)
442 
443 #define create_workqueue(name)						\
444 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
445 #define create_freezable_workqueue(name)				\
446 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
447 			WQ_MEM_RECLAIM, 1, (name))
448 #define create_singlethread_workqueue(name)				\
449 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
450 
451 extern void destroy_workqueue(struct workqueue_struct *wq);
452 
453 struct workqueue_attrs *alloc_workqueue_attrs(void);
454 void free_workqueue_attrs(struct workqueue_attrs *attrs);
455 int apply_workqueue_attrs(struct workqueue_struct *wq,
456 			  const struct workqueue_attrs *attrs);
457 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask);
458 
459 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
460 			struct work_struct *work);
461 extern bool queue_work_node(int node, struct workqueue_struct *wq,
462 			    struct work_struct *work);
463 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
464 			struct delayed_work *work, unsigned long delay);
465 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
466 			struct delayed_work *dwork, unsigned long delay);
467 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
468 
469 extern void __flush_workqueue(struct workqueue_struct *wq);
470 extern void drain_workqueue(struct workqueue_struct *wq);
471 
472 extern int schedule_on_each_cpu(work_func_t func);
473 
474 int execute_in_process_context(work_func_t fn, struct execute_work *);
475 
476 extern bool flush_work(struct work_struct *work);
477 extern bool cancel_work(struct work_struct *work);
478 extern bool cancel_work_sync(struct work_struct *work);
479 
480 extern bool flush_delayed_work(struct delayed_work *dwork);
481 extern bool cancel_delayed_work(struct delayed_work *dwork);
482 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
483 
484 extern bool flush_rcu_work(struct rcu_work *rwork);
485 
486 extern void workqueue_set_max_active(struct workqueue_struct *wq,
487 				     int max_active);
488 extern struct work_struct *current_work(void);
489 extern bool current_is_workqueue_rescuer(void);
490 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
491 extern unsigned int work_busy(struct work_struct *work);
492 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
493 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
494 extern void show_all_workqueues(void);
495 extern void show_freezable_workqueues(void);
496 extern void show_one_workqueue(struct workqueue_struct *wq);
497 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
498 
499 /**
500  * queue_work - queue work on a workqueue
501  * @wq: workqueue to use
502  * @work: work to queue
503  *
504  * Returns %false if @work was already on a queue, %true otherwise.
505  *
506  * We queue the work to the CPU on which it was submitted, but if the CPU dies
507  * it can be processed by another CPU.
508  *
509  * Memory-ordering properties:  If it returns %true, guarantees that all stores
510  * preceding the call to queue_work() in the program order will be visible from
511  * the CPU which will execute @work by the time such work executes, e.g.,
512  *
513  * { x is initially 0 }
514  *
515  *   CPU0				CPU1
516  *
517  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
518  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
519  *
520  * Forbids: r0 == true && r1 == 0
521  */
522 static inline bool queue_work(struct workqueue_struct *wq,
523 			      struct work_struct *work)
524 {
525 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
526 }
527 
528 /**
529  * queue_delayed_work - queue work on a workqueue after delay
530  * @wq: workqueue to use
531  * @dwork: delayable work to queue
532  * @delay: number of jiffies to wait before queueing
533  *
534  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
535  */
536 static inline bool queue_delayed_work(struct workqueue_struct *wq,
537 				      struct delayed_work *dwork,
538 				      unsigned long delay)
539 {
540 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
541 }
542 
543 /**
544  * mod_delayed_work - modify delay of or queue a delayed work
545  * @wq: workqueue to use
546  * @dwork: work to queue
547  * @delay: number of jiffies to wait before queueing
548  *
549  * mod_delayed_work_on() on local CPU.
550  */
551 static inline bool mod_delayed_work(struct workqueue_struct *wq,
552 				    struct delayed_work *dwork,
553 				    unsigned long delay)
554 {
555 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
556 }
557 
558 /**
559  * schedule_work_on - put work task on a specific cpu
560  * @cpu: cpu to put the work task on
561  * @work: job to be done
562  *
563  * This puts a job on a specific cpu
564  */
565 static inline bool schedule_work_on(int cpu, struct work_struct *work)
566 {
567 	return queue_work_on(cpu, system_wq, work);
568 }
569 
570 /**
571  * schedule_work - put work task in global workqueue
572  * @work: job to be done
573  *
574  * Returns %false if @work was already on the kernel-global workqueue and
575  * %true otherwise.
576  *
577  * This puts a job in the kernel-global workqueue if it was not already
578  * queued and leaves it in the same position on the kernel-global
579  * workqueue otherwise.
580  *
581  * Shares the same memory-ordering properties of queue_work(), cf. the
582  * DocBook header of queue_work().
583  */
584 static inline bool schedule_work(struct work_struct *work)
585 {
586 	return queue_work(system_wq, work);
587 }
588 
589 /*
590  * Detect attempt to flush system-wide workqueues at compile time when possible.
591  * Warn attempt to flush system-wide workqueues at runtime.
592  *
593  * See https://lkml.kernel.org/r/[email protected]
594  * for reasons and steps for converting system-wide workqueues into local workqueues.
595  */
596 extern void __warn_flushing_systemwide_wq(void)
597 	__compiletime_warning("Please avoid flushing system-wide workqueues.");
598 
599 /* Please stop using this function, for this function will be removed in near future. */
600 #define flush_scheduled_work()						\
601 ({									\
602 	__warn_flushing_systemwide_wq();				\
603 	__flush_workqueue(system_wq);					\
604 })
605 
606 #define flush_workqueue(wq)						\
607 ({									\
608 	struct workqueue_struct *_wq = (wq);				\
609 									\
610 	if ((__builtin_constant_p(_wq == system_wq) &&			\
611 	     _wq == system_wq) ||					\
612 	    (__builtin_constant_p(_wq == system_highpri_wq) &&		\
613 	     _wq == system_highpri_wq) ||				\
614 	    (__builtin_constant_p(_wq == system_long_wq) &&		\
615 	     _wq == system_long_wq) ||					\
616 	    (__builtin_constant_p(_wq == system_unbound_wq) &&		\
617 	     _wq == system_unbound_wq) ||				\
618 	    (__builtin_constant_p(_wq == system_freezable_wq) &&	\
619 	     _wq == system_freezable_wq) ||				\
620 	    (__builtin_constant_p(_wq == system_power_efficient_wq) &&	\
621 	     _wq == system_power_efficient_wq) ||			\
622 	    (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \
623 	     _wq == system_freezable_power_efficient_wq))		\
624 		__warn_flushing_systemwide_wq();			\
625 	__flush_workqueue(_wq);						\
626 })
627 
628 /**
629  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
630  * @cpu: cpu to use
631  * @dwork: job to be done
632  * @delay: number of jiffies to wait
633  *
634  * After waiting for a given time this puts a job in the kernel-global
635  * workqueue on the specified CPU.
636  */
637 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
638 					    unsigned long delay)
639 {
640 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
641 }
642 
643 /**
644  * schedule_delayed_work - put work task in global workqueue after delay
645  * @dwork: job to be done
646  * @delay: number of jiffies to wait or 0 for immediate execution
647  *
648  * After waiting for a given time this puts a job in the kernel-global
649  * workqueue.
650  */
651 static inline bool schedule_delayed_work(struct delayed_work *dwork,
652 					 unsigned long delay)
653 {
654 	return queue_delayed_work(system_wq, dwork, delay);
655 }
656 
657 #ifndef CONFIG_SMP
658 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
659 {
660 	return fn(arg);
661 }
662 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
663 {
664 	return fn(arg);
665 }
666 #else
667 long work_on_cpu(int cpu, long (*fn)(void *), void *arg);
668 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg);
669 #endif /* CONFIG_SMP */
670 
671 #ifdef CONFIG_FREEZER
672 extern void freeze_workqueues_begin(void);
673 extern bool freeze_workqueues_busy(void);
674 extern void thaw_workqueues(void);
675 #endif /* CONFIG_FREEZER */
676 
677 #ifdef CONFIG_SYSFS
678 int workqueue_sysfs_register(struct workqueue_struct *wq);
679 #else	/* CONFIG_SYSFS */
680 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
681 { return 0; }
682 #endif	/* CONFIG_SYSFS */
683 
684 #ifdef CONFIG_WQ_WATCHDOG
685 void wq_watchdog_touch(int cpu);
686 #else	/* CONFIG_WQ_WATCHDOG */
687 static inline void wq_watchdog_touch(int cpu) { }
688 #endif	/* CONFIG_WQ_WATCHDOG */
689 
690 #ifdef CONFIG_SMP
691 int workqueue_prepare_cpu(unsigned int cpu);
692 int workqueue_online_cpu(unsigned int cpu);
693 int workqueue_offline_cpu(unsigned int cpu);
694 #endif
695 
696 void __init workqueue_init_early(void);
697 void __init workqueue_init(void);
698 void __init workqueue_init_topology(void);
699 
700 #endif
701