1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * workqueue.h --- work queue handling for Linux. 4 */ 5 6 #ifndef _LINUX_WORKQUEUE_H 7 #define _LINUX_WORKQUEUE_H 8 9 #include <linux/timer.h> 10 #include <linux/linkage.h> 11 #include <linux/bitops.h> 12 #include <linux/lockdep.h> 13 #include <linux/threads.h> 14 #include <linux/atomic.h> 15 #include <linux/cpumask.h> 16 #include <linux/rcupdate.h> 17 18 struct workqueue_struct; 19 20 struct work_struct; 21 typedef void (*work_func_t)(struct work_struct *work); 22 void delayed_work_timer_fn(struct timer_list *t); 23 24 /* 25 * The first word is the work queue pointer and the flags rolled into 26 * one 27 */ 28 #define work_data_bits(work) ((unsigned long *)(&(work)->data)) 29 30 enum { 31 WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ 32 WORK_STRUCT_INACTIVE_BIT= 1, /* work item is inactive */ 33 WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ 34 WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ 35 #ifdef CONFIG_DEBUG_OBJECTS_WORK 36 WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ 37 WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ 38 #else 39 WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ 40 #endif 41 42 WORK_STRUCT_COLOR_BITS = 4, 43 44 WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, 45 WORK_STRUCT_INACTIVE = 1 << WORK_STRUCT_INACTIVE_BIT, 46 WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, 47 WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, 48 #ifdef CONFIG_DEBUG_OBJECTS_WORK 49 WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, 50 #else 51 WORK_STRUCT_STATIC = 0, 52 #endif 53 54 WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS), 55 56 /* not bound to any CPU, prefer the local CPU */ 57 WORK_CPU_UNBOUND = NR_CPUS, 58 59 /* 60 * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. 61 * This makes pwqs aligned to 256 bytes and allows 16 workqueue 62 * flush colors. 63 */ 64 WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + 65 WORK_STRUCT_COLOR_BITS, 66 67 /* data contains off-queue information when !WORK_STRUCT_PWQ */ 68 WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, 69 70 __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, 71 72 /* 73 * When a work item is off queue, its high bits point to the last 74 * pool it was on. Cap at 31 bits and use the highest number to 75 * indicate that no pool is associated. 76 */ 77 WORK_OFFQ_FLAG_BITS = 1, 78 WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, 79 WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, 80 WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, 81 82 /* bit mask for work_busy() return values */ 83 WORK_BUSY_PENDING = 1 << 0, 84 WORK_BUSY_RUNNING = 1 << 1, 85 86 /* maximum string length for set_worker_desc() */ 87 WORKER_DESC_LEN = 24, 88 }; 89 90 /* Convenience constants - of type 'unsigned long', not 'enum'! */ 91 #define WORK_OFFQ_CANCELING (1ul << __WORK_OFFQ_CANCELING) 92 #define WORK_OFFQ_POOL_NONE ((1ul << WORK_OFFQ_POOL_BITS) - 1) 93 #define WORK_STRUCT_NO_POOL (WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT) 94 95 #define WORK_STRUCT_FLAG_MASK ((1ul << WORK_STRUCT_FLAG_BITS) - 1) 96 #define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK) 97 98 struct work_struct { 99 atomic_long_t data; 100 struct list_head entry; 101 work_func_t func; 102 #ifdef CONFIG_LOCKDEP 103 struct lockdep_map lockdep_map; 104 #endif 105 }; 106 107 #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) 108 #define WORK_DATA_STATIC_INIT() \ 109 ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) 110 111 struct delayed_work { 112 struct work_struct work; 113 struct timer_list timer; 114 115 /* target workqueue and CPU ->timer uses to queue ->work */ 116 struct workqueue_struct *wq; 117 int cpu; 118 }; 119 120 struct rcu_work { 121 struct work_struct work; 122 struct rcu_head rcu; 123 124 /* target workqueue ->rcu uses to queue ->work */ 125 struct workqueue_struct *wq; 126 }; 127 128 enum wq_affn_scope { 129 WQ_AFFN_CPU, /* one pod per CPU */ 130 WQ_AFFN_SMT, /* one pod poer SMT */ 131 WQ_AFFN_CACHE, /* one pod per LLC */ 132 WQ_AFFN_NUMA, /* one pod per NUMA node */ 133 WQ_AFFN_SYSTEM, /* one pod across the whole system */ 134 135 WQ_AFFN_NR_TYPES, 136 137 WQ_AFFN_DFL = WQ_AFFN_CACHE, 138 }; 139 140 /** 141 * struct workqueue_attrs - A struct for workqueue attributes. 142 * 143 * This can be used to change attributes of an unbound workqueue. 144 */ 145 struct workqueue_attrs { 146 /** 147 * @nice: nice level 148 */ 149 int nice; 150 151 /** 152 * @cpumask: allowed CPUs 153 */ 154 cpumask_var_t cpumask; 155 156 /* 157 * Below fields aren't properties of a worker_pool. They only modify how 158 * :c:func:`apply_workqueue_attrs` select pools and thus don't 159 * participate in pool hash calculations or equality comparisons. 160 */ 161 162 /** 163 * @affn_scope: unbound CPU affinity scope 164 * 165 * CPU pods are used to improve execution locality of unbound work 166 * items. There are multiple pod types, one for each wq_affn_scope, and 167 * every CPU in the system belongs to one pod in every pod type. CPUs 168 * that belong to the same pod share the worker pool. For example, 169 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker 170 * pool for each NUMA node. 171 */ 172 enum wq_affn_scope affn_scope; 173 174 /** 175 * @ordered: work items must be executed one by one in queueing order 176 */ 177 bool ordered; 178 }; 179 180 static inline struct delayed_work *to_delayed_work(struct work_struct *work) 181 { 182 return container_of(work, struct delayed_work, work); 183 } 184 185 static inline struct rcu_work *to_rcu_work(struct work_struct *work) 186 { 187 return container_of(work, struct rcu_work, work); 188 } 189 190 struct execute_work { 191 struct work_struct work; 192 }; 193 194 #ifdef CONFIG_LOCKDEP 195 /* 196 * NB: because we have to copy the lockdep_map, setting _key 197 * here is required, otherwise it could get initialised to the 198 * copy of the lockdep_map! 199 */ 200 #define __WORK_INIT_LOCKDEP_MAP(n, k) \ 201 .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), 202 #else 203 #define __WORK_INIT_LOCKDEP_MAP(n, k) 204 #endif 205 206 #define __WORK_INITIALIZER(n, f) { \ 207 .data = WORK_DATA_STATIC_INIT(), \ 208 .entry = { &(n).entry, &(n).entry }, \ 209 .func = (f), \ 210 __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ 211 } 212 213 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ 214 .work = __WORK_INITIALIZER((n).work, (f)), \ 215 .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ 216 (tflags) | TIMER_IRQSAFE), \ 217 } 218 219 #define DECLARE_WORK(n, f) \ 220 struct work_struct n = __WORK_INITIALIZER(n, f) 221 222 #define DECLARE_DELAYED_WORK(n, f) \ 223 struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) 224 225 #define DECLARE_DEFERRABLE_WORK(n, f) \ 226 struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) 227 228 #ifdef CONFIG_DEBUG_OBJECTS_WORK 229 extern void __init_work(struct work_struct *work, int onstack); 230 extern void destroy_work_on_stack(struct work_struct *work); 231 extern void destroy_delayed_work_on_stack(struct delayed_work *work); 232 static inline unsigned int work_static(struct work_struct *work) 233 { 234 return *work_data_bits(work) & WORK_STRUCT_STATIC; 235 } 236 #else 237 static inline void __init_work(struct work_struct *work, int onstack) { } 238 static inline void destroy_work_on_stack(struct work_struct *work) { } 239 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } 240 static inline unsigned int work_static(struct work_struct *work) { return 0; } 241 #endif 242 243 /* 244 * initialize all of a work item in one go 245 * 246 * NOTE! No point in using "atomic_long_set()": using a direct 247 * assignment of the work data initializer allows the compiler 248 * to generate better code. 249 */ 250 #ifdef CONFIG_LOCKDEP 251 #define __INIT_WORK(_work, _func, _onstack) \ 252 do { \ 253 static struct lock_class_key __key; \ 254 \ 255 __init_work((_work), _onstack); \ 256 (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ 257 lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \ 258 INIT_LIST_HEAD(&(_work)->entry); \ 259 (_work)->func = (_func); \ 260 } while (0) 261 #else 262 #define __INIT_WORK(_work, _func, _onstack) \ 263 do { \ 264 __init_work((_work), _onstack); \ 265 (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ 266 INIT_LIST_HEAD(&(_work)->entry); \ 267 (_work)->func = (_func); \ 268 } while (0) 269 #endif 270 271 #define INIT_WORK(_work, _func) \ 272 __INIT_WORK((_work), (_func), 0) 273 274 #define INIT_WORK_ONSTACK(_work, _func) \ 275 __INIT_WORK((_work), (_func), 1) 276 277 #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ 278 do { \ 279 INIT_WORK(&(_work)->work, (_func)); \ 280 __init_timer(&(_work)->timer, \ 281 delayed_work_timer_fn, \ 282 (_tflags) | TIMER_IRQSAFE); \ 283 } while (0) 284 285 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ 286 do { \ 287 INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ 288 __init_timer_on_stack(&(_work)->timer, \ 289 delayed_work_timer_fn, \ 290 (_tflags) | TIMER_IRQSAFE); \ 291 } while (0) 292 293 #define INIT_DELAYED_WORK(_work, _func) \ 294 __INIT_DELAYED_WORK(_work, _func, 0) 295 296 #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ 297 __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) 298 299 #define INIT_DEFERRABLE_WORK(_work, _func) \ 300 __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) 301 302 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ 303 __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) 304 305 #define INIT_RCU_WORK(_work, _func) \ 306 INIT_WORK(&(_work)->work, (_func)) 307 308 #define INIT_RCU_WORK_ONSTACK(_work, _func) \ 309 INIT_WORK_ONSTACK(&(_work)->work, (_func)) 310 311 /** 312 * work_pending - Find out whether a work item is currently pending 313 * @work: The work item in question 314 */ 315 #define work_pending(work) \ 316 test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) 317 318 /** 319 * delayed_work_pending - Find out whether a delayable work item is currently 320 * pending 321 * @w: The work item in question 322 */ 323 #define delayed_work_pending(w) \ 324 work_pending(&(w)->work) 325 326 /* 327 * Workqueue flags and constants. For details, please refer to 328 * Documentation/core-api/workqueue.rst. 329 */ 330 enum { 331 WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ 332 WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ 333 WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ 334 WQ_HIGHPRI = 1 << 4, /* high priority */ 335 WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ 336 WQ_SYSFS = 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */ 337 338 /* 339 * Per-cpu workqueues are generally preferred because they tend to 340 * show better performance thanks to cache locality. Per-cpu 341 * workqueues exclude the scheduler from choosing the CPU to 342 * execute the worker threads, which has an unfortunate side effect 343 * of increasing power consumption. 344 * 345 * The scheduler considers a CPU idle if it doesn't have any task 346 * to execute and tries to keep idle cores idle to conserve power; 347 * however, for example, a per-cpu work item scheduled from an 348 * interrupt handler on an idle CPU will force the scheduler to 349 * execute the work item on that CPU breaking the idleness, which in 350 * turn may lead to more scheduling choices which are sub-optimal 351 * in terms of power consumption. 352 * 353 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default 354 * but become unbound if workqueue.power_efficient kernel param is 355 * specified. Per-cpu workqueues which are identified to 356 * contribute significantly to power-consumption are identified and 357 * marked with this flag and enabling the power_efficient mode 358 * leads to noticeable power saving at the cost of small 359 * performance disadvantage. 360 * 361 * http://thread.gmane.org/gmane.linux.kernel/1480396 362 */ 363 WQ_POWER_EFFICIENT = 1 << 7, 364 365 __WQ_DESTROYING = 1 << 15, /* internal: workqueue is destroying */ 366 __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ 367 __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ 368 __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ 369 __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ 370 371 WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ 372 WQ_UNBOUND_MAX_ACTIVE = WQ_MAX_ACTIVE, 373 WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, 374 }; 375 376 /* 377 * System-wide workqueues which are always present. 378 * 379 * system_wq is the one used by schedule[_delayed]_work[_on](). 380 * Multi-CPU multi-threaded. There are users which expect relatively 381 * short queue flush time. Don't queue works which can run for too 382 * long. 383 * 384 * system_highpri_wq is similar to system_wq but for work items which 385 * require WQ_HIGHPRI. 386 * 387 * system_long_wq is similar to system_wq but may host long running 388 * works. Queue flushing might take relatively long. 389 * 390 * system_unbound_wq is unbound workqueue. Workers are not bound to 391 * any specific CPU, not concurrency managed, and all queued works are 392 * executed immediately as long as max_active limit is not reached and 393 * resources are available. 394 * 395 * system_freezable_wq is equivalent to system_wq except that it's 396 * freezable. 397 * 398 * *_power_efficient_wq are inclined towards saving power and converted 399 * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, 400 * they are same as their non-power-efficient counterparts - e.g. 401 * system_power_efficient_wq is identical to system_wq if 402 * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. 403 */ 404 extern struct workqueue_struct *system_wq; 405 extern struct workqueue_struct *system_highpri_wq; 406 extern struct workqueue_struct *system_long_wq; 407 extern struct workqueue_struct *system_unbound_wq; 408 extern struct workqueue_struct *system_freezable_wq; 409 extern struct workqueue_struct *system_power_efficient_wq; 410 extern struct workqueue_struct *system_freezable_power_efficient_wq; 411 412 /** 413 * alloc_workqueue - allocate a workqueue 414 * @fmt: printf format for the name of the workqueue 415 * @flags: WQ_* flags 416 * @max_active: max in-flight work items per CPU, 0 for default 417 * remaining args: args for @fmt 418 * 419 * Allocate a workqueue with the specified parameters. For detailed 420 * information on WQ_* flags, please refer to 421 * Documentation/core-api/workqueue.rst. 422 * 423 * RETURNS: 424 * Pointer to the allocated workqueue on success, %NULL on failure. 425 */ 426 __printf(1, 4) struct workqueue_struct * 427 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); 428 429 /** 430 * alloc_ordered_workqueue - allocate an ordered workqueue 431 * @fmt: printf format for the name of the workqueue 432 * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) 433 * @args: args for @fmt 434 * 435 * Allocate an ordered workqueue. An ordered workqueue executes at 436 * most one work item at any given time in the queued order. They are 437 * implemented as unbound workqueues with @max_active of one. 438 * 439 * RETURNS: 440 * Pointer to the allocated workqueue on success, %NULL on failure. 441 */ 442 #define alloc_ordered_workqueue(fmt, flags, args...) \ 443 alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ 444 __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) 445 446 #define create_workqueue(name) \ 447 alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) 448 #define create_freezable_workqueue(name) \ 449 alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ 450 WQ_MEM_RECLAIM, 1, (name)) 451 #define create_singlethread_workqueue(name) \ 452 alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) 453 454 extern void destroy_workqueue(struct workqueue_struct *wq); 455 456 struct workqueue_attrs *alloc_workqueue_attrs(void); 457 void free_workqueue_attrs(struct workqueue_attrs *attrs); 458 int apply_workqueue_attrs(struct workqueue_struct *wq, 459 const struct workqueue_attrs *attrs); 460 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); 461 462 extern bool queue_work_on(int cpu, struct workqueue_struct *wq, 463 struct work_struct *work); 464 extern bool queue_work_node(int node, struct workqueue_struct *wq, 465 struct work_struct *work); 466 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 467 struct delayed_work *work, unsigned long delay); 468 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 469 struct delayed_work *dwork, unsigned long delay); 470 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); 471 472 extern void __flush_workqueue(struct workqueue_struct *wq); 473 extern void drain_workqueue(struct workqueue_struct *wq); 474 475 extern int schedule_on_each_cpu(work_func_t func); 476 477 int execute_in_process_context(work_func_t fn, struct execute_work *); 478 479 extern bool flush_work(struct work_struct *work); 480 extern bool cancel_work(struct work_struct *work); 481 extern bool cancel_work_sync(struct work_struct *work); 482 483 extern bool flush_delayed_work(struct delayed_work *dwork); 484 extern bool cancel_delayed_work(struct delayed_work *dwork); 485 extern bool cancel_delayed_work_sync(struct delayed_work *dwork); 486 487 extern bool flush_rcu_work(struct rcu_work *rwork); 488 489 extern void workqueue_set_max_active(struct workqueue_struct *wq, 490 int max_active); 491 extern struct work_struct *current_work(void); 492 extern bool current_is_workqueue_rescuer(void); 493 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); 494 extern unsigned int work_busy(struct work_struct *work); 495 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); 496 extern void print_worker_info(const char *log_lvl, struct task_struct *task); 497 extern void show_all_workqueues(void); 498 extern void show_freezable_workqueues(void); 499 extern void show_one_workqueue(struct workqueue_struct *wq); 500 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); 501 502 /** 503 * queue_work - queue work on a workqueue 504 * @wq: workqueue to use 505 * @work: work to queue 506 * 507 * Returns %false if @work was already on a queue, %true otherwise. 508 * 509 * We queue the work to the CPU on which it was submitted, but if the CPU dies 510 * it can be processed by another CPU. 511 * 512 * Memory-ordering properties: If it returns %true, guarantees that all stores 513 * preceding the call to queue_work() in the program order will be visible from 514 * the CPU which will execute @work by the time such work executes, e.g., 515 * 516 * { x is initially 0 } 517 * 518 * CPU0 CPU1 519 * 520 * WRITE_ONCE(x, 1); [ @work is being executed ] 521 * r0 = queue_work(wq, work); r1 = READ_ONCE(x); 522 * 523 * Forbids: r0 == true && r1 == 0 524 */ 525 static inline bool queue_work(struct workqueue_struct *wq, 526 struct work_struct *work) 527 { 528 return queue_work_on(WORK_CPU_UNBOUND, wq, work); 529 } 530 531 /** 532 * queue_delayed_work - queue work on a workqueue after delay 533 * @wq: workqueue to use 534 * @dwork: delayable work to queue 535 * @delay: number of jiffies to wait before queueing 536 * 537 * Equivalent to queue_delayed_work_on() but tries to use the local CPU. 538 */ 539 static inline bool queue_delayed_work(struct workqueue_struct *wq, 540 struct delayed_work *dwork, 541 unsigned long delay) 542 { 543 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 544 } 545 546 /** 547 * mod_delayed_work - modify delay of or queue a delayed work 548 * @wq: workqueue to use 549 * @dwork: work to queue 550 * @delay: number of jiffies to wait before queueing 551 * 552 * mod_delayed_work_on() on local CPU. 553 */ 554 static inline bool mod_delayed_work(struct workqueue_struct *wq, 555 struct delayed_work *dwork, 556 unsigned long delay) 557 { 558 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 559 } 560 561 /** 562 * schedule_work_on - put work task on a specific cpu 563 * @cpu: cpu to put the work task on 564 * @work: job to be done 565 * 566 * This puts a job on a specific cpu 567 */ 568 static inline bool schedule_work_on(int cpu, struct work_struct *work) 569 { 570 return queue_work_on(cpu, system_wq, work); 571 } 572 573 /** 574 * schedule_work - put work task in global workqueue 575 * @work: job to be done 576 * 577 * Returns %false if @work was already on the kernel-global workqueue and 578 * %true otherwise. 579 * 580 * This puts a job in the kernel-global workqueue if it was not already 581 * queued and leaves it in the same position on the kernel-global 582 * workqueue otherwise. 583 * 584 * Shares the same memory-ordering properties of queue_work(), cf. the 585 * DocBook header of queue_work(). 586 */ 587 static inline bool schedule_work(struct work_struct *work) 588 { 589 return queue_work(system_wq, work); 590 } 591 592 /* 593 * Detect attempt to flush system-wide workqueues at compile time when possible. 594 * Warn attempt to flush system-wide workqueues at runtime. 595 * 596 * See https://lkml.kernel.org/r/[email protected] 597 * for reasons and steps for converting system-wide workqueues into local workqueues. 598 */ 599 extern void __warn_flushing_systemwide_wq(void) 600 __compiletime_warning("Please avoid flushing system-wide workqueues."); 601 602 /* Please stop using this function, for this function will be removed in near future. */ 603 #define flush_scheduled_work() \ 604 ({ \ 605 __warn_flushing_systemwide_wq(); \ 606 __flush_workqueue(system_wq); \ 607 }) 608 609 #define flush_workqueue(wq) \ 610 ({ \ 611 struct workqueue_struct *_wq = (wq); \ 612 \ 613 if ((__builtin_constant_p(_wq == system_wq) && \ 614 _wq == system_wq) || \ 615 (__builtin_constant_p(_wq == system_highpri_wq) && \ 616 _wq == system_highpri_wq) || \ 617 (__builtin_constant_p(_wq == system_long_wq) && \ 618 _wq == system_long_wq) || \ 619 (__builtin_constant_p(_wq == system_unbound_wq) && \ 620 _wq == system_unbound_wq) || \ 621 (__builtin_constant_p(_wq == system_freezable_wq) && \ 622 _wq == system_freezable_wq) || \ 623 (__builtin_constant_p(_wq == system_power_efficient_wq) && \ 624 _wq == system_power_efficient_wq) || \ 625 (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \ 626 _wq == system_freezable_power_efficient_wq)) \ 627 __warn_flushing_systemwide_wq(); \ 628 __flush_workqueue(_wq); \ 629 }) 630 631 /** 632 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 633 * @cpu: cpu to use 634 * @dwork: job to be done 635 * @delay: number of jiffies to wait 636 * 637 * After waiting for a given time this puts a job in the kernel-global 638 * workqueue on the specified CPU. 639 */ 640 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 641 unsigned long delay) 642 { 643 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 644 } 645 646 /** 647 * schedule_delayed_work - put work task in global workqueue after delay 648 * @dwork: job to be done 649 * @delay: number of jiffies to wait or 0 for immediate execution 650 * 651 * After waiting for a given time this puts a job in the kernel-global 652 * workqueue. 653 */ 654 static inline bool schedule_delayed_work(struct delayed_work *dwork, 655 unsigned long delay) 656 { 657 return queue_delayed_work(system_wq, dwork, delay); 658 } 659 660 #ifndef CONFIG_SMP 661 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 662 { 663 return fn(arg); 664 } 665 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 666 { 667 return fn(arg); 668 } 669 #else 670 long work_on_cpu(int cpu, long (*fn)(void *), void *arg); 671 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg); 672 #endif /* CONFIG_SMP */ 673 674 #ifdef CONFIG_FREEZER 675 extern void freeze_workqueues_begin(void); 676 extern bool freeze_workqueues_busy(void); 677 extern void thaw_workqueues(void); 678 #endif /* CONFIG_FREEZER */ 679 680 #ifdef CONFIG_SYSFS 681 int workqueue_sysfs_register(struct workqueue_struct *wq); 682 #else /* CONFIG_SYSFS */ 683 static inline int workqueue_sysfs_register(struct workqueue_struct *wq) 684 { return 0; } 685 #endif /* CONFIG_SYSFS */ 686 687 #ifdef CONFIG_WQ_WATCHDOG 688 void wq_watchdog_touch(int cpu); 689 #else /* CONFIG_WQ_WATCHDOG */ 690 static inline void wq_watchdog_touch(int cpu) { } 691 #endif /* CONFIG_WQ_WATCHDOG */ 692 693 #ifdef CONFIG_SMP 694 int workqueue_prepare_cpu(unsigned int cpu); 695 int workqueue_online_cpu(unsigned int cpu); 696 int workqueue_offline_cpu(unsigned int cpu); 697 #endif 698 699 void __init workqueue_init_early(void); 700 void __init workqueue_init(void); 701 void __init workqueue_init_topology(void); 702 703 #endif 704