1 /* 2 * workqueue.h --- work queue handling for Linux. 3 */ 4 5 #ifndef _LINUX_WORKQUEUE_H 6 #define _LINUX_WORKQUEUE_H 7 8 #include <linux/timer.h> 9 #include <linux/linkage.h> 10 #include <linux/bitops.h> 11 #include <linux/lockdep.h> 12 #include <linux/threads.h> 13 #include <asm/atomic.h> 14 15 struct workqueue_struct; 16 17 struct work_struct; 18 typedef void (*work_func_t)(struct work_struct *work); 19 20 /* 21 * The first word is the work queue pointer and the flags rolled into 22 * one 23 */ 24 #define work_data_bits(work) ((unsigned long *)(&(work)->data)) 25 26 enum { 27 WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ 28 WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */ 29 WORK_STRUCT_CWQ_BIT = 2, /* data points to cwq */ 30 WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ 31 #ifdef CONFIG_DEBUG_OBJECTS_WORK 32 WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ 33 WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ 34 #else 35 WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ 36 #endif 37 38 WORK_STRUCT_COLOR_BITS = 4, 39 40 WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, 41 WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT, 42 WORK_STRUCT_CWQ = 1 << WORK_STRUCT_CWQ_BIT, 43 WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, 44 #ifdef CONFIG_DEBUG_OBJECTS_WORK 45 WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, 46 #else 47 WORK_STRUCT_STATIC = 0, 48 #endif 49 50 /* 51 * The last color is no color used for works which don't 52 * participate in workqueue flushing. 53 */ 54 WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1, 55 WORK_NO_COLOR = WORK_NR_COLORS, 56 57 /* special cpu IDs */ 58 WORK_CPU_UNBOUND = NR_CPUS, 59 WORK_CPU_NONE = NR_CPUS + 1, 60 WORK_CPU_LAST = WORK_CPU_NONE, 61 62 /* 63 * Reserve 7 bits off of cwq pointer w/ debugobjects turned 64 * off. This makes cwqs aligned to 256 bytes and allows 15 65 * workqueue flush colors. 66 */ 67 WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + 68 WORK_STRUCT_COLOR_BITS, 69 70 WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1, 71 WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK, 72 WORK_STRUCT_NO_CPU = WORK_CPU_NONE << WORK_STRUCT_FLAG_BITS, 73 74 /* bit mask for work_busy() return values */ 75 WORK_BUSY_PENDING = 1 << 0, 76 WORK_BUSY_RUNNING = 1 << 1, 77 }; 78 79 struct work_struct { 80 atomic_long_t data; 81 struct list_head entry; 82 work_func_t func; 83 #ifdef CONFIG_LOCKDEP 84 struct lockdep_map lockdep_map; 85 #endif 86 }; 87 88 #define WORK_DATA_INIT() ATOMIC_LONG_INIT(WORK_STRUCT_NO_CPU) 89 #define WORK_DATA_STATIC_INIT() \ 90 ATOMIC_LONG_INIT(WORK_STRUCT_NO_CPU | WORK_STRUCT_STATIC) 91 92 struct delayed_work { 93 struct work_struct work; 94 struct timer_list timer; 95 }; 96 97 static inline struct delayed_work *to_delayed_work(struct work_struct *work) 98 { 99 return container_of(work, struct delayed_work, work); 100 } 101 102 struct execute_work { 103 struct work_struct work; 104 }; 105 106 #ifdef CONFIG_LOCKDEP 107 /* 108 * NB: because we have to copy the lockdep_map, setting _key 109 * here is required, otherwise it could get initialised to the 110 * copy of the lockdep_map! 111 */ 112 #define __WORK_INIT_LOCKDEP_MAP(n, k) \ 113 .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), 114 #else 115 #define __WORK_INIT_LOCKDEP_MAP(n, k) 116 #endif 117 118 #define __WORK_INITIALIZER(n, f) { \ 119 .data = WORK_DATA_STATIC_INIT(), \ 120 .entry = { &(n).entry, &(n).entry }, \ 121 .func = (f), \ 122 __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ 123 } 124 125 #define __DELAYED_WORK_INITIALIZER(n, f) { \ 126 .work = __WORK_INITIALIZER((n).work, (f)), \ 127 .timer = TIMER_INITIALIZER(NULL, 0, 0), \ 128 } 129 130 #define DECLARE_WORK(n, f) \ 131 struct work_struct n = __WORK_INITIALIZER(n, f) 132 133 #define DECLARE_DELAYED_WORK(n, f) \ 134 struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f) 135 136 /* 137 * initialize a work item's function pointer 138 */ 139 #define PREPARE_WORK(_work, _func) \ 140 do { \ 141 (_work)->func = (_func); \ 142 } while (0) 143 144 #define PREPARE_DELAYED_WORK(_work, _func) \ 145 PREPARE_WORK(&(_work)->work, (_func)) 146 147 #ifdef CONFIG_DEBUG_OBJECTS_WORK 148 extern void __init_work(struct work_struct *work, int onstack); 149 extern void destroy_work_on_stack(struct work_struct *work); 150 static inline unsigned int work_static(struct work_struct *work) 151 { 152 return *work_data_bits(work) & WORK_STRUCT_STATIC; 153 } 154 #else 155 static inline void __init_work(struct work_struct *work, int onstack) { } 156 static inline void destroy_work_on_stack(struct work_struct *work) { } 157 static inline unsigned int work_static(struct work_struct *work) { return 0; } 158 #endif 159 160 /* 161 * initialize all of a work item in one go 162 * 163 * NOTE! No point in using "atomic_long_set()": using a direct 164 * assignment of the work data initializer allows the compiler 165 * to generate better code. 166 */ 167 #ifdef CONFIG_LOCKDEP 168 #define __INIT_WORK(_work, _func, _onstack) \ 169 do { \ 170 static struct lock_class_key __key; \ 171 \ 172 __init_work((_work), _onstack); \ 173 (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ 174 lockdep_init_map(&(_work)->lockdep_map, #_work, &__key, 0);\ 175 INIT_LIST_HEAD(&(_work)->entry); \ 176 PREPARE_WORK((_work), (_func)); \ 177 } while (0) 178 #else 179 #define __INIT_WORK(_work, _func, _onstack) \ 180 do { \ 181 __init_work((_work), _onstack); \ 182 (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ 183 INIT_LIST_HEAD(&(_work)->entry); \ 184 PREPARE_WORK((_work), (_func)); \ 185 } while (0) 186 #endif 187 188 #define INIT_WORK(_work, _func) \ 189 do { \ 190 __INIT_WORK((_work), (_func), 0); \ 191 } while (0) 192 193 #define INIT_WORK_ON_STACK(_work, _func) \ 194 do { \ 195 __INIT_WORK((_work), (_func), 1); \ 196 } while (0) 197 198 #define INIT_DELAYED_WORK(_work, _func) \ 199 do { \ 200 INIT_WORK(&(_work)->work, (_func)); \ 201 init_timer(&(_work)->timer); \ 202 } while (0) 203 204 #define INIT_DELAYED_WORK_ON_STACK(_work, _func) \ 205 do { \ 206 INIT_WORK_ON_STACK(&(_work)->work, (_func)); \ 207 init_timer_on_stack(&(_work)->timer); \ 208 } while (0) 209 210 #define INIT_DELAYED_WORK_DEFERRABLE(_work, _func) \ 211 do { \ 212 INIT_WORK(&(_work)->work, (_func)); \ 213 init_timer_deferrable(&(_work)->timer); \ 214 } while (0) 215 216 /** 217 * work_pending - Find out whether a work item is currently pending 218 * @work: The work item in question 219 */ 220 #define work_pending(work) \ 221 test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) 222 223 /** 224 * delayed_work_pending - Find out whether a delayable work item is currently 225 * pending 226 * @work: The work item in question 227 */ 228 #define delayed_work_pending(w) \ 229 work_pending(&(w)->work) 230 231 /** 232 * work_clear_pending - for internal use only, mark a work item as not pending 233 * @work: The work item in question 234 */ 235 #define work_clear_pending(work) \ 236 clear_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) 237 238 enum { 239 WQ_NON_REENTRANT = 1 << 0, /* guarantee non-reentrance */ 240 WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ 241 WQ_FREEZEABLE = 1 << 2, /* freeze during suspend */ 242 WQ_RESCUER = 1 << 3, /* has an rescue worker */ 243 WQ_HIGHPRI = 1 << 4, /* high priority */ 244 WQ_CPU_INTENSIVE = 1 << 5, /* cpu instensive workqueue */ 245 246 WQ_DYING = 1 << 6, /* internal: workqueue is dying */ 247 248 WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ 249 WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */ 250 WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, 251 }; 252 253 /* unbound wq's aren't per-cpu, scale max_active according to #cpus */ 254 #define WQ_UNBOUND_MAX_ACTIVE \ 255 max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU) 256 257 /* 258 * System-wide workqueues which are always present. 259 * 260 * system_wq is the one used by schedule[_delayed]_work[_on](). 261 * Multi-CPU multi-threaded. There are users which expect relatively 262 * short queue flush time. Don't queue works which can run for too 263 * long. 264 * 265 * system_long_wq is similar to system_wq but may host long running 266 * works. Queue flushing might take relatively long. 267 * 268 * system_nrt_wq is non-reentrant and guarantees that any given work 269 * item is never executed in parallel by multiple CPUs. Queue 270 * flushing might take relatively long. 271 * 272 * system_unbound_wq is unbound workqueue. Workers are not bound to 273 * any specific CPU, not concurrency managed, and all queued works are 274 * executed immediately as long as max_active limit is not reached and 275 * resources are available. 276 */ 277 extern struct workqueue_struct *system_wq; 278 extern struct workqueue_struct *system_long_wq; 279 extern struct workqueue_struct *system_nrt_wq; 280 extern struct workqueue_struct *system_unbound_wq; 281 282 extern struct workqueue_struct * 283 __alloc_workqueue_key(const char *name, unsigned int flags, int max_active, 284 struct lock_class_key *key, const char *lock_name); 285 286 #ifdef CONFIG_LOCKDEP 287 #define alloc_workqueue(name, flags, max_active) \ 288 ({ \ 289 static struct lock_class_key __key; \ 290 const char *__lock_name; \ 291 \ 292 if (__builtin_constant_p(name)) \ 293 __lock_name = (name); \ 294 else \ 295 __lock_name = #name; \ 296 \ 297 __alloc_workqueue_key((name), (flags), (max_active), \ 298 &__key, __lock_name); \ 299 }) 300 #else 301 #define alloc_workqueue(name, flags, max_active) \ 302 __alloc_workqueue_key((name), (flags), (max_active), NULL, NULL) 303 #endif 304 305 #define create_workqueue(name) \ 306 alloc_workqueue((name), WQ_RESCUER, 1) 307 #define create_freezeable_workqueue(name) \ 308 alloc_workqueue((name), WQ_FREEZEABLE | WQ_UNBOUND | WQ_RESCUER, 1) 309 #define create_singlethread_workqueue(name) \ 310 alloc_workqueue((name), WQ_UNBOUND | WQ_RESCUER, 1) 311 312 extern void destroy_workqueue(struct workqueue_struct *wq); 313 314 extern int queue_work(struct workqueue_struct *wq, struct work_struct *work); 315 extern int queue_work_on(int cpu, struct workqueue_struct *wq, 316 struct work_struct *work); 317 extern int queue_delayed_work(struct workqueue_struct *wq, 318 struct delayed_work *work, unsigned long delay); 319 extern int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 320 struct delayed_work *work, unsigned long delay); 321 322 extern void flush_workqueue(struct workqueue_struct *wq); 323 extern void flush_scheduled_work(void); 324 extern void flush_delayed_work(struct delayed_work *work); 325 326 extern int schedule_work(struct work_struct *work); 327 extern int schedule_work_on(int cpu, struct work_struct *work); 328 extern int schedule_delayed_work(struct delayed_work *work, unsigned long delay); 329 extern int schedule_delayed_work_on(int cpu, struct delayed_work *work, 330 unsigned long delay); 331 extern int schedule_on_each_cpu(work_func_t func); 332 extern int keventd_up(void); 333 334 int execute_in_process_context(work_func_t fn, struct execute_work *); 335 336 extern int flush_work(struct work_struct *work); 337 extern int cancel_work_sync(struct work_struct *work); 338 339 extern void workqueue_set_max_active(struct workqueue_struct *wq, 340 int max_active); 341 extern bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq); 342 extern unsigned int work_cpu(struct work_struct *work); 343 extern unsigned int work_busy(struct work_struct *work); 344 345 /* 346 * Kill off a pending schedule_delayed_work(). Note that the work callback 347 * function may still be running on return from cancel_delayed_work(), unless 348 * it returns 1 and the work doesn't re-arm itself. Run flush_workqueue() or 349 * cancel_work_sync() to wait on it. 350 */ 351 static inline int cancel_delayed_work(struct delayed_work *work) 352 { 353 int ret; 354 355 ret = del_timer_sync(&work->timer); 356 if (ret) 357 work_clear_pending(&work->work); 358 return ret; 359 } 360 361 /* 362 * Like above, but uses del_timer() instead of del_timer_sync(). This means, 363 * if it returns 0 the timer function may be running and the queueing is in 364 * progress. 365 */ 366 static inline int __cancel_delayed_work(struct delayed_work *work) 367 { 368 int ret; 369 370 ret = del_timer(&work->timer); 371 if (ret) 372 work_clear_pending(&work->work); 373 return ret; 374 } 375 376 extern int cancel_delayed_work_sync(struct delayed_work *work); 377 378 /* Obsolete. use cancel_delayed_work_sync() */ 379 static inline 380 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq, 381 struct delayed_work *work) 382 { 383 cancel_delayed_work_sync(work); 384 } 385 386 /* Obsolete. use cancel_delayed_work_sync() */ 387 static inline 388 void cancel_rearming_delayed_work(struct delayed_work *work) 389 { 390 cancel_delayed_work_sync(work); 391 } 392 393 #ifndef CONFIG_SMP 394 static inline long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 395 { 396 return fn(arg); 397 } 398 #else 399 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg); 400 #endif /* CONFIG_SMP */ 401 402 #ifdef CONFIG_FREEZER 403 extern void freeze_workqueues_begin(void); 404 extern bool freeze_workqueues_busy(void); 405 extern void thaw_workqueues(void); 406 #endif /* CONFIG_FREEZER */ 407 408 #ifdef CONFIG_LOCKDEP 409 int in_workqueue_context(struct workqueue_struct *wq); 410 #endif 411 412 #endif 413