xref: /linux-6.15/include/linux/workqueue.h (revision 5ab560ce)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 #include <linux/workqueue_types.h>
18 
19 /*
20  * The first word is the work queue pointer and the flags rolled into
21  * one
22  */
23 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
24 
25 enum work_bits {
26 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
27 	WORK_STRUCT_INACTIVE_BIT,	/* work item is inactive */
28 	WORK_STRUCT_PWQ_BIT,		/* data points to pwq */
29 	WORK_STRUCT_LINKED_BIT,		/* next work is linked to this one */
30 #ifdef CONFIG_DEBUG_OBJECTS_WORK
31 	WORK_STRUCT_STATIC_BIT,		/* static initializer (debugobjects) */
32 #endif
33 	WORK_STRUCT_FLAG_BITS,
34 
35 	/* color for workqueue flushing */
36 	WORK_STRUCT_COLOR_SHIFT	= WORK_STRUCT_FLAG_BITS,
37 	WORK_STRUCT_COLOR_BITS	= 4,
38 
39 	/*
40 	 * When WORK_STRUCT_PWQ is set, reserve 8 bits off of pwq pointer w/
41 	 * debugobjects turned off. This makes pwqs aligned to 256 bytes (512
42 	 * bytes w/ DEBUG_OBJECTS_WORK) and allows 16 workqueue flush colors.
43 	 *
44 	 * MSB
45 	 * [ pwq pointer ] [ flush color ] [ STRUCT flags ]
46 	 *                     4 bits        4 or 5 bits
47 	 */
48 	WORK_STRUCT_PWQ_SHIFT	= WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS,
49 
50 	/*
51 	 * data contains off-queue information when !WORK_STRUCT_PWQ.
52 	 *
53 	 * MSB
54 	 * [ pool ID ] [ OFFQ flags ] [ STRUCT flags ]
55 	 *                 1 bit        4 or 5 bits
56 	 */
57 	WORK_OFFQ_FLAG_SHIFT	= WORK_STRUCT_FLAG_BITS,
58 	WORK_OFFQ_CANCELING_BIT = WORK_OFFQ_FLAG_SHIFT,
59 	WORK_OFFQ_FLAG_END,
60 	WORK_OFFQ_FLAG_BITS	= WORK_OFFQ_FLAG_END - WORK_OFFQ_FLAG_SHIFT,
61 
62 	/*
63 	 * When a work item is off queue, the high bits encode off-queue flags
64 	 * and the last pool it was on. Cap pool ID to 31 bits and use the
65 	 * highest number to indicate that no pool is associated.
66 	 */
67 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_FLAG_SHIFT + WORK_OFFQ_FLAG_BITS,
68 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
69 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
70 };
71 
72 enum work_flags {
73 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
74 	WORK_STRUCT_INACTIVE	= 1 << WORK_STRUCT_INACTIVE_BIT,
75 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
76 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
77 #ifdef CONFIG_DEBUG_OBJECTS_WORK
78 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
79 #else
80 	WORK_STRUCT_STATIC	= 0,
81 #endif
82 };
83 
84 enum wq_misc_consts {
85 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS),
86 
87 	/* not bound to any CPU, prefer the local CPU */
88 	WORK_CPU_UNBOUND	= NR_CPUS,
89 
90 	/* bit mask for work_busy() return values */
91 	WORK_BUSY_PENDING	= 1 << 0,
92 	WORK_BUSY_RUNNING	= 1 << 1,
93 
94 	/* maximum string length for set_worker_desc() */
95 	WORKER_DESC_LEN		= 24,
96 };
97 
98 /* Convenience constants - of type 'unsigned long', not 'enum'! */
99 #define WORK_OFFQ_CANCELING	(1ul << WORK_OFFQ_CANCELING_BIT)
100 #define WORK_OFFQ_POOL_NONE	((1ul << WORK_OFFQ_POOL_BITS) - 1)
101 #define WORK_STRUCT_NO_POOL	(WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT)
102 #define WORK_STRUCT_PWQ_MASK	(~((1ul << WORK_STRUCT_PWQ_SHIFT) - 1))
103 
104 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
105 #define WORK_DATA_STATIC_INIT()	\
106 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
107 
108 struct delayed_work {
109 	struct work_struct work;
110 	struct timer_list timer;
111 
112 	/* target workqueue and CPU ->timer uses to queue ->work */
113 	struct workqueue_struct *wq;
114 	int cpu;
115 };
116 
117 struct rcu_work {
118 	struct work_struct work;
119 	struct rcu_head rcu;
120 
121 	/* target workqueue ->rcu uses to queue ->work */
122 	struct workqueue_struct *wq;
123 };
124 
125 enum wq_affn_scope {
126 	WQ_AFFN_DFL,			/* use system default */
127 	WQ_AFFN_CPU,			/* one pod per CPU */
128 	WQ_AFFN_SMT,			/* one pod poer SMT */
129 	WQ_AFFN_CACHE,			/* one pod per LLC */
130 	WQ_AFFN_NUMA,			/* one pod per NUMA node */
131 	WQ_AFFN_SYSTEM,			/* one pod across the whole system */
132 
133 	WQ_AFFN_NR_TYPES,
134 };
135 
136 /**
137  * struct workqueue_attrs - A struct for workqueue attributes.
138  *
139  * This can be used to change attributes of an unbound workqueue.
140  */
141 struct workqueue_attrs {
142 	/**
143 	 * @nice: nice level
144 	 */
145 	int nice;
146 
147 	/**
148 	 * @cpumask: allowed CPUs
149 	 *
150 	 * Work items in this workqueue are affine to these CPUs and not allowed
151 	 * to execute on other CPUs. A pool serving a workqueue must have the
152 	 * same @cpumask.
153 	 */
154 	cpumask_var_t cpumask;
155 
156 	/**
157 	 * @__pod_cpumask: internal attribute used to create per-pod pools
158 	 *
159 	 * Internal use only.
160 	 *
161 	 * Per-pod unbound worker pools are used to improve locality. Always a
162 	 * subset of ->cpumask. A workqueue can be associated with multiple
163 	 * worker pools with disjoint @__pod_cpumask's. Whether the enforcement
164 	 * of a pool's @__pod_cpumask is strict depends on @affn_strict.
165 	 */
166 	cpumask_var_t __pod_cpumask;
167 
168 	/**
169 	 * @affn_strict: affinity scope is strict
170 	 *
171 	 * If clear, workqueue will make a best-effort attempt at starting the
172 	 * worker inside @__pod_cpumask but the scheduler is free to migrate it
173 	 * outside.
174 	 *
175 	 * If set, workers are only allowed to run inside @__pod_cpumask.
176 	 */
177 	bool affn_strict;
178 
179 	/*
180 	 * Below fields aren't properties of a worker_pool. They only modify how
181 	 * :c:func:`apply_workqueue_attrs` select pools and thus don't
182 	 * participate in pool hash calculations or equality comparisons.
183 	 */
184 
185 	/**
186 	 * @affn_scope: unbound CPU affinity scope
187 	 *
188 	 * CPU pods are used to improve execution locality of unbound work
189 	 * items. There are multiple pod types, one for each wq_affn_scope, and
190 	 * every CPU in the system belongs to one pod in every pod type. CPUs
191 	 * that belong to the same pod share the worker pool. For example,
192 	 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker
193 	 * pool for each NUMA node.
194 	 */
195 	enum wq_affn_scope affn_scope;
196 
197 	/**
198 	 * @ordered: work items must be executed one by one in queueing order
199 	 */
200 	bool ordered;
201 };
202 
203 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
204 {
205 	return container_of(work, struct delayed_work, work);
206 }
207 
208 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
209 {
210 	return container_of(work, struct rcu_work, work);
211 }
212 
213 struct execute_work {
214 	struct work_struct work;
215 };
216 
217 #ifdef CONFIG_LOCKDEP
218 /*
219  * NB: because we have to copy the lockdep_map, setting _key
220  * here is required, otherwise it could get initialised to the
221  * copy of the lockdep_map!
222  */
223 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
224 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
225 #else
226 #define __WORK_INIT_LOCKDEP_MAP(n, k)
227 #endif
228 
229 #define __WORK_INITIALIZER(n, f) {					\
230 	.data = WORK_DATA_STATIC_INIT(),				\
231 	.entry	= { &(n).entry, &(n).entry },				\
232 	.func = (f),							\
233 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
234 	}
235 
236 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
237 	.work = __WORK_INITIALIZER((n).work, (f)),			\
238 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
239 				     (tflags) | TIMER_IRQSAFE),		\
240 	}
241 
242 #define DECLARE_WORK(n, f)						\
243 	struct work_struct n = __WORK_INITIALIZER(n, f)
244 
245 #define DECLARE_DELAYED_WORK(n, f)					\
246 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
247 
248 #define DECLARE_DEFERRABLE_WORK(n, f)					\
249 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
250 
251 #ifdef CONFIG_DEBUG_OBJECTS_WORK
252 extern void __init_work(struct work_struct *work, int onstack);
253 extern void destroy_work_on_stack(struct work_struct *work);
254 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
255 static inline unsigned int work_static(struct work_struct *work)
256 {
257 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
258 }
259 #else
260 static inline void __init_work(struct work_struct *work, int onstack) { }
261 static inline void destroy_work_on_stack(struct work_struct *work) { }
262 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
263 static inline unsigned int work_static(struct work_struct *work) { return 0; }
264 #endif
265 
266 /*
267  * initialize all of a work item in one go
268  *
269  * NOTE! No point in using "atomic_long_set()": using a direct
270  * assignment of the work data initializer allows the compiler
271  * to generate better code.
272  */
273 #ifdef CONFIG_LOCKDEP
274 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
275 	do {								\
276 		__init_work((_work), _onstack);				\
277 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
278 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \
279 		INIT_LIST_HEAD(&(_work)->entry);			\
280 		(_work)->func = (_func);				\
281 	} while (0)
282 #else
283 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
284 	do {								\
285 		__init_work((_work), _onstack);				\
286 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
287 		INIT_LIST_HEAD(&(_work)->entry);			\
288 		(_work)->func = (_func);				\
289 	} while (0)
290 #endif
291 
292 #define __INIT_WORK(_work, _func, _onstack)				\
293 	do {								\
294 		static __maybe_unused struct lock_class_key __key;	\
295 									\
296 		__INIT_WORK_KEY(_work, _func, _onstack, &__key);	\
297 	} while (0)
298 
299 #define INIT_WORK(_work, _func)						\
300 	__INIT_WORK((_work), (_func), 0)
301 
302 #define INIT_WORK_ONSTACK(_work, _func)					\
303 	__INIT_WORK((_work), (_func), 1)
304 
305 #define INIT_WORK_ONSTACK_KEY(_work, _func, _key)			\
306 	__INIT_WORK_KEY((_work), (_func), 1, _key)
307 
308 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
309 	do {								\
310 		INIT_WORK(&(_work)->work, (_func));			\
311 		__init_timer(&(_work)->timer,				\
312 			     delayed_work_timer_fn,			\
313 			     (_tflags) | TIMER_IRQSAFE);		\
314 	} while (0)
315 
316 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
317 	do {								\
318 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
319 		__init_timer_on_stack(&(_work)->timer,			\
320 				      delayed_work_timer_fn,		\
321 				      (_tflags) | TIMER_IRQSAFE);	\
322 	} while (0)
323 
324 #define INIT_DELAYED_WORK(_work, _func)					\
325 	__INIT_DELAYED_WORK(_work, _func, 0)
326 
327 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
328 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
329 
330 #define INIT_DEFERRABLE_WORK(_work, _func)				\
331 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
332 
333 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
334 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
335 
336 #define INIT_RCU_WORK(_work, _func)					\
337 	INIT_WORK(&(_work)->work, (_func))
338 
339 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
340 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
341 
342 /**
343  * work_pending - Find out whether a work item is currently pending
344  * @work: The work item in question
345  */
346 #define work_pending(work) \
347 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
348 
349 /**
350  * delayed_work_pending - Find out whether a delayable work item is currently
351  * pending
352  * @w: The work item in question
353  */
354 #define delayed_work_pending(w) \
355 	work_pending(&(w)->work)
356 
357 /*
358  * Workqueue flags and constants.  For details, please refer to
359  * Documentation/core-api/workqueue.rst.
360  */
361 enum wq_flags {
362 	WQ_BH			= 1 << 0, /* execute in bottom half (softirq) context */
363 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
364 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
365 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
366 	WQ_HIGHPRI		= 1 << 4, /* high priority */
367 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
368 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
369 
370 	/*
371 	 * Per-cpu workqueues are generally preferred because they tend to
372 	 * show better performance thanks to cache locality.  Per-cpu
373 	 * workqueues exclude the scheduler from choosing the CPU to
374 	 * execute the worker threads, which has an unfortunate side effect
375 	 * of increasing power consumption.
376 	 *
377 	 * The scheduler considers a CPU idle if it doesn't have any task
378 	 * to execute and tries to keep idle cores idle to conserve power;
379 	 * however, for example, a per-cpu work item scheduled from an
380 	 * interrupt handler on an idle CPU will force the scheduler to
381 	 * execute the work item on that CPU breaking the idleness, which in
382 	 * turn may lead to more scheduling choices which are sub-optimal
383 	 * in terms of power consumption.
384 	 *
385 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
386 	 * but become unbound if workqueue.power_efficient kernel param is
387 	 * specified.  Per-cpu workqueues which are identified to
388 	 * contribute significantly to power-consumption are identified and
389 	 * marked with this flag and enabling the power_efficient mode
390 	 * leads to noticeable power saving at the cost of small
391 	 * performance disadvantage.
392 	 *
393 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
394 	 */
395 	WQ_POWER_EFFICIENT	= 1 << 7,
396 
397 	__WQ_DESTROYING		= 1 << 15, /* internal: workqueue is destroying */
398 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
399 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
400 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
401 
402 	/* BH wq only allows the following flags */
403 	__WQ_BH_ALLOWS		= WQ_BH | WQ_HIGHPRI,
404 };
405 
406 enum wq_consts {
407 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
408 	WQ_UNBOUND_MAX_ACTIVE	= WQ_MAX_ACTIVE,
409 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
410 
411 	/*
412 	 * Per-node default cap on min_active. Unless explicitly set, min_active
413 	 * is set to min(max_active, WQ_DFL_MIN_ACTIVE). For more details, see
414 	 * workqueue_struct->min_active definition.
415 	 */
416 	WQ_DFL_MIN_ACTIVE	= 8,
417 };
418 
419 /*
420  * System-wide workqueues which are always present.
421  *
422  * system_wq is the one used by schedule[_delayed]_work[_on]().
423  * Multi-CPU multi-threaded.  There are users which expect relatively
424  * short queue flush time.  Don't queue works which can run for too
425  * long.
426  *
427  * system_highpri_wq is similar to system_wq but for work items which
428  * require WQ_HIGHPRI.
429  *
430  * system_long_wq is similar to system_wq but may host long running
431  * works.  Queue flushing might take relatively long.
432  *
433  * system_unbound_wq is unbound workqueue.  Workers are not bound to
434  * any specific CPU, not concurrency managed, and all queued works are
435  * executed immediately as long as max_active limit is not reached and
436  * resources are available.
437  *
438  * system_freezable_wq is equivalent to system_wq except that it's
439  * freezable.
440  *
441  * *_power_efficient_wq are inclined towards saving power and converted
442  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
443  * they are same as their non-power-efficient counterparts - e.g.
444  * system_power_efficient_wq is identical to system_wq if
445  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
446  *
447  * system_bh[_highpri]_wq are convenience interface to softirq. BH work items
448  * are executed in the queueing CPU's BH context in the queueing order.
449  */
450 extern struct workqueue_struct *system_wq;
451 extern struct workqueue_struct *system_highpri_wq;
452 extern struct workqueue_struct *system_long_wq;
453 extern struct workqueue_struct *system_unbound_wq;
454 extern struct workqueue_struct *system_freezable_wq;
455 extern struct workqueue_struct *system_power_efficient_wq;
456 extern struct workqueue_struct *system_freezable_power_efficient_wq;
457 extern struct workqueue_struct *system_bh_wq;
458 extern struct workqueue_struct *system_bh_highpri_wq;
459 
460 void workqueue_softirq_action(bool highpri);
461 void workqueue_softirq_dead(unsigned int cpu);
462 
463 /**
464  * alloc_workqueue - allocate a workqueue
465  * @fmt: printf format for the name of the workqueue
466  * @flags: WQ_* flags
467  * @max_active: max in-flight work items, 0 for default
468  * remaining args: args for @fmt
469  *
470  * For a per-cpu workqueue, @max_active limits the number of in-flight work
471  * items for each CPU. e.g. @max_active of 1 indicates that each CPU can be
472  * executing at most one work item for the workqueue.
473  *
474  * For unbound workqueues, @max_active limits the number of in-flight work items
475  * for the whole system. e.g. @max_active of 16 indicates that that there can be
476  * at most 16 work items executing for the workqueue in the whole system.
477  *
478  * As sharing the same active counter for an unbound workqueue across multiple
479  * NUMA nodes can be expensive, @max_active is distributed to each NUMA node
480  * according to the proportion of the number of online CPUs and enforced
481  * independently.
482  *
483  * Depending on online CPU distribution, a node may end up with per-node
484  * max_active which is significantly lower than @max_active, which can lead to
485  * deadlocks if the per-node concurrency limit is lower than the maximum number
486  * of interdependent work items for the workqueue.
487  *
488  * To guarantee forward progress regardless of online CPU distribution, the
489  * concurrency limit on every node is guaranteed to be equal to or greater than
490  * min_active which is set to min(@max_active, %WQ_DFL_MIN_ACTIVE). This means
491  * that the sum of per-node max_active's may be larger than @max_active.
492  *
493  * For detailed information on %WQ_* flags, please refer to
494  * Documentation/core-api/workqueue.rst.
495  *
496  * RETURNS:
497  * Pointer to the allocated workqueue on success, %NULL on failure.
498  */
499 __printf(1, 4) struct workqueue_struct *
500 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
501 
502 /**
503  * alloc_ordered_workqueue - allocate an ordered workqueue
504  * @fmt: printf format for the name of the workqueue
505  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
506  * @args: args for @fmt
507  *
508  * Allocate an ordered workqueue.  An ordered workqueue executes at
509  * most one work item at any given time in the queued order.  They are
510  * implemented as unbound workqueues with @max_active of one.
511  *
512  * RETURNS:
513  * Pointer to the allocated workqueue on success, %NULL on failure.
514  */
515 #define alloc_ordered_workqueue(fmt, flags, args...)			\
516 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), 1, ##args)
517 
518 #define create_workqueue(name)						\
519 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
520 #define create_freezable_workqueue(name)				\
521 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
522 			WQ_MEM_RECLAIM, 1, (name))
523 #define create_singlethread_workqueue(name)				\
524 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
525 
526 #define from_work(var, callback_work, work_fieldname)	\
527 	container_of(callback_work, typeof(*var), work_fieldname)
528 
529 extern void destroy_workqueue(struct workqueue_struct *wq);
530 
531 struct workqueue_attrs *alloc_workqueue_attrs(void);
532 void free_workqueue_attrs(struct workqueue_attrs *attrs);
533 int apply_workqueue_attrs(struct workqueue_struct *wq,
534 			  const struct workqueue_attrs *attrs);
535 extern int workqueue_unbound_exclude_cpumask(cpumask_var_t cpumask);
536 
537 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
538 			struct work_struct *work);
539 extern bool queue_work_node(int node, struct workqueue_struct *wq,
540 			    struct work_struct *work);
541 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
542 			struct delayed_work *work, unsigned long delay);
543 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
544 			struct delayed_work *dwork, unsigned long delay);
545 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
546 
547 extern void __flush_workqueue(struct workqueue_struct *wq);
548 extern void drain_workqueue(struct workqueue_struct *wq);
549 
550 extern int schedule_on_each_cpu(work_func_t func);
551 
552 int execute_in_process_context(work_func_t fn, struct execute_work *);
553 
554 extern bool flush_work(struct work_struct *work);
555 extern bool cancel_work(struct work_struct *work);
556 extern bool cancel_work_sync(struct work_struct *work);
557 
558 extern bool flush_delayed_work(struct delayed_work *dwork);
559 extern bool cancel_delayed_work(struct delayed_work *dwork);
560 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
561 
562 extern bool flush_rcu_work(struct rcu_work *rwork);
563 
564 extern void workqueue_set_max_active(struct workqueue_struct *wq,
565 				     int max_active);
566 extern void workqueue_set_min_active(struct workqueue_struct *wq,
567 				     int min_active);
568 extern struct work_struct *current_work(void);
569 extern bool current_is_workqueue_rescuer(void);
570 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
571 extern unsigned int work_busy(struct work_struct *work);
572 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
573 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
574 extern void show_all_workqueues(void);
575 extern void show_freezable_workqueues(void);
576 extern void show_one_workqueue(struct workqueue_struct *wq);
577 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
578 
579 /**
580  * queue_work - queue work on a workqueue
581  * @wq: workqueue to use
582  * @work: work to queue
583  *
584  * Returns %false if @work was already on a queue, %true otherwise.
585  *
586  * We queue the work to the CPU on which it was submitted, but if the CPU dies
587  * it can be processed by another CPU.
588  *
589  * Memory-ordering properties:  If it returns %true, guarantees that all stores
590  * preceding the call to queue_work() in the program order will be visible from
591  * the CPU which will execute @work by the time such work executes, e.g.,
592  *
593  * { x is initially 0 }
594  *
595  *   CPU0				CPU1
596  *
597  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
598  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
599  *
600  * Forbids: r0 == true && r1 == 0
601  */
602 static inline bool queue_work(struct workqueue_struct *wq,
603 			      struct work_struct *work)
604 {
605 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
606 }
607 
608 /**
609  * queue_delayed_work - queue work on a workqueue after delay
610  * @wq: workqueue to use
611  * @dwork: delayable work to queue
612  * @delay: number of jiffies to wait before queueing
613  *
614  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
615  */
616 static inline bool queue_delayed_work(struct workqueue_struct *wq,
617 				      struct delayed_work *dwork,
618 				      unsigned long delay)
619 {
620 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
621 }
622 
623 /**
624  * mod_delayed_work - modify delay of or queue a delayed work
625  * @wq: workqueue to use
626  * @dwork: work to queue
627  * @delay: number of jiffies to wait before queueing
628  *
629  * mod_delayed_work_on() on local CPU.
630  */
631 static inline bool mod_delayed_work(struct workqueue_struct *wq,
632 				    struct delayed_work *dwork,
633 				    unsigned long delay)
634 {
635 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
636 }
637 
638 /**
639  * schedule_work_on - put work task on a specific cpu
640  * @cpu: cpu to put the work task on
641  * @work: job to be done
642  *
643  * This puts a job on a specific cpu
644  */
645 static inline bool schedule_work_on(int cpu, struct work_struct *work)
646 {
647 	return queue_work_on(cpu, system_wq, work);
648 }
649 
650 /**
651  * schedule_work - put work task in global workqueue
652  * @work: job to be done
653  *
654  * Returns %false if @work was already on the kernel-global workqueue and
655  * %true otherwise.
656  *
657  * This puts a job in the kernel-global workqueue if it was not already
658  * queued and leaves it in the same position on the kernel-global
659  * workqueue otherwise.
660  *
661  * Shares the same memory-ordering properties of queue_work(), cf. the
662  * DocBook header of queue_work().
663  */
664 static inline bool schedule_work(struct work_struct *work)
665 {
666 	return queue_work(system_wq, work);
667 }
668 
669 /*
670  * Detect attempt to flush system-wide workqueues at compile time when possible.
671  * Warn attempt to flush system-wide workqueues at runtime.
672  *
673  * See https://lkml.kernel.org/r/[email protected]
674  * for reasons and steps for converting system-wide workqueues into local workqueues.
675  */
676 extern void __warn_flushing_systemwide_wq(void)
677 	__compiletime_warning("Please avoid flushing system-wide workqueues.");
678 
679 /* Please stop using this function, for this function will be removed in near future. */
680 #define flush_scheduled_work()						\
681 ({									\
682 	__warn_flushing_systemwide_wq();				\
683 	__flush_workqueue(system_wq);					\
684 })
685 
686 #define flush_workqueue(wq)						\
687 ({									\
688 	struct workqueue_struct *_wq = (wq);				\
689 									\
690 	if ((__builtin_constant_p(_wq == system_wq) &&			\
691 	     _wq == system_wq) ||					\
692 	    (__builtin_constant_p(_wq == system_highpri_wq) &&		\
693 	     _wq == system_highpri_wq) ||				\
694 	    (__builtin_constant_p(_wq == system_long_wq) &&		\
695 	     _wq == system_long_wq) ||					\
696 	    (__builtin_constant_p(_wq == system_unbound_wq) &&		\
697 	     _wq == system_unbound_wq) ||				\
698 	    (__builtin_constant_p(_wq == system_freezable_wq) &&	\
699 	     _wq == system_freezable_wq) ||				\
700 	    (__builtin_constant_p(_wq == system_power_efficient_wq) &&	\
701 	     _wq == system_power_efficient_wq) ||			\
702 	    (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \
703 	     _wq == system_freezable_power_efficient_wq))		\
704 		__warn_flushing_systemwide_wq();			\
705 	__flush_workqueue(_wq);						\
706 })
707 
708 /**
709  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
710  * @cpu: cpu to use
711  * @dwork: job to be done
712  * @delay: number of jiffies to wait
713  *
714  * After waiting for a given time this puts a job in the kernel-global
715  * workqueue on the specified CPU.
716  */
717 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
718 					    unsigned long delay)
719 {
720 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
721 }
722 
723 /**
724  * schedule_delayed_work - put work task in global workqueue after delay
725  * @dwork: job to be done
726  * @delay: number of jiffies to wait or 0 for immediate execution
727  *
728  * After waiting for a given time this puts a job in the kernel-global
729  * workqueue.
730  */
731 static inline bool schedule_delayed_work(struct delayed_work *dwork,
732 					 unsigned long delay)
733 {
734 	return queue_delayed_work(system_wq, dwork, delay);
735 }
736 
737 #ifndef CONFIG_SMP
738 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
739 {
740 	return fn(arg);
741 }
742 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
743 {
744 	return fn(arg);
745 }
746 #else
747 long work_on_cpu_key(int cpu, long (*fn)(void *),
748 		     void *arg, struct lock_class_key *key);
749 /*
750  * A new key is defined for each caller to make sure the work
751  * associated with the function doesn't share its locking class.
752  */
753 #define work_on_cpu(_cpu, _fn, _arg)			\
754 ({							\
755 	static struct lock_class_key __key;		\
756 							\
757 	work_on_cpu_key(_cpu, _fn, _arg, &__key);	\
758 })
759 
760 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
761 			  void *arg, struct lock_class_key *key);
762 
763 /*
764  * A new key is defined for each caller to make sure the work
765  * associated with the function doesn't share its locking class.
766  */
767 #define work_on_cpu_safe(_cpu, _fn, _arg)		\
768 ({							\
769 	static struct lock_class_key __key;		\
770 							\
771 	work_on_cpu_safe_key(_cpu, _fn, _arg, &__key);	\
772 })
773 #endif /* CONFIG_SMP */
774 
775 #ifdef CONFIG_FREEZER
776 extern void freeze_workqueues_begin(void);
777 extern bool freeze_workqueues_busy(void);
778 extern void thaw_workqueues(void);
779 #endif /* CONFIG_FREEZER */
780 
781 #ifdef CONFIG_SYSFS
782 int workqueue_sysfs_register(struct workqueue_struct *wq);
783 #else	/* CONFIG_SYSFS */
784 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
785 { return 0; }
786 #endif	/* CONFIG_SYSFS */
787 
788 #ifdef CONFIG_WQ_WATCHDOG
789 void wq_watchdog_touch(int cpu);
790 #else	/* CONFIG_WQ_WATCHDOG */
791 static inline void wq_watchdog_touch(int cpu) { }
792 #endif	/* CONFIG_WQ_WATCHDOG */
793 
794 #ifdef CONFIG_SMP
795 int workqueue_prepare_cpu(unsigned int cpu);
796 int workqueue_online_cpu(unsigned int cpu);
797 int workqueue_offline_cpu(unsigned int cpu);
798 #endif
799 
800 void __init workqueue_init_early(void);
801 void __init workqueue_init(void);
802 void __init workqueue_init_topology(void);
803 
804 #endif
805