xref: /linux-6.15/include/linux/workqueue.h (revision 1211f3b2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 #include <linux/workqueue_types.h>
18 
19 /*
20  * The first word is the work queue pointer and the flags rolled into
21  * one
22  */
23 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
24 
25 enum work_bits {
26 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
27 	WORK_STRUCT_INACTIVE_BIT,	/* work item is inactive */
28 	WORK_STRUCT_PWQ_BIT,		/* data points to pwq */
29 	WORK_STRUCT_LINKED_BIT,		/* next work is linked to this one */
30 #ifdef CONFIG_DEBUG_OBJECTS_WORK
31 	WORK_STRUCT_STATIC_BIT,		/* static initializer (debugobjects) */
32 #endif
33 	WORK_STRUCT_FLAG_BITS,
34 
35 	/* color for workqueue flushing */
36 	WORK_STRUCT_COLOR_SHIFT	= WORK_STRUCT_FLAG_BITS,
37 	WORK_STRUCT_COLOR_BITS	= 4,
38 
39 	/*
40 	 * When WORK_STRUCT_PWQ is set, reserve 8 bits off of pwq pointer w/
41 	 * debugobjects turned off. This makes pwqs aligned to 256 bytes (512
42 	 * bytes w/ DEBUG_OBJECTS_WORK) and allows 16 workqueue flush colors.
43 	 *
44 	 * MSB
45 	 * [ pwq pointer ] [ flush color ] [ STRUCT flags ]
46 	 *                     4 bits        4 or 5 bits
47 	 */
48 	WORK_STRUCT_PWQ_SHIFT	= WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS,
49 
50 	/*
51 	 * data contains off-queue information when !WORK_STRUCT_PWQ.
52 	 *
53 	 * MSB
54 	 * [ pool ID ] [ OFFQ flags ] [ STRUCT flags ]
55 	 *                 1 bit        4 or 5 bits
56 	 */
57 	WORK_OFFQ_FLAG_SHIFT	= WORK_STRUCT_FLAG_BITS,
58 	WORK_OFFQ_CANCELING_BIT = WORK_OFFQ_FLAG_SHIFT,
59 	WORK_OFFQ_FLAG_END,
60 	WORK_OFFQ_FLAG_BITS	= WORK_OFFQ_FLAG_END - WORK_OFFQ_FLAG_SHIFT,
61 
62 	/*
63 	 * When a work item is off queue, the high bits encode off-queue flags
64 	 * and the last pool it was on. Cap pool ID to 31 bits and use the
65 	 * highest number to indicate that no pool is associated.
66 	 */
67 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_FLAG_SHIFT + WORK_OFFQ_FLAG_BITS,
68 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
69 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
70 };
71 
72 enum work_flags {
73 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
74 	WORK_STRUCT_INACTIVE	= 1 << WORK_STRUCT_INACTIVE_BIT,
75 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
76 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
77 #ifdef CONFIG_DEBUG_OBJECTS_WORK
78 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
79 #else
80 	WORK_STRUCT_STATIC	= 0,
81 #endif
82 };
83 
84 enum wq_misc_consts {
85 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS),
86 
87 	/* not bound to any CPU, prefer the local CPU */
88 	WORK_CPU_UNBOUND	= NR_CPUS,
89 
90 	/* bit mask for work_busy() return values */
91 	WORK_BUSY_PENDING	= 1 << 0,
92 	WORK_BUSY_RUNNING	= 1 << 1,
93 
94 	/* maximum string length for set_worker_desc() */
95 	WORKER_DESC_LEN		= 24,
96 };
97 
98 /* Convenience constants - of type 'unsigned long', not 'enum'! */
99 #define WORK_OFFQ_CANCELING	(1ul << WORK_OFFQ_CANCELING_BIT)
100 #define WORK_OFFQ_FLAG_MASK	(((1ul << WORK_OFFQ_FLAG_BITS) - 1) << WORK_OFFQ_FLAG_SHIFT)
101 #define WORK_OFFQ_POOL_NONE	((1ul << WORK_OFFQ_POOL_BITS) - 1)
102 #define WORK_STRUCT_NO_POOL	(WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT)
103 #define WORK_STRUCT_PWQ_MASK	(~((1ul << WORK_STRUCT_PWQ_SHIFT) - 1))
104 
105 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
106 #define WORK_DATA_STATIC_INIT()	\
107 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
108 
109 struct delayed_work {
110 	struct work_struct work;
111 	struct timer_list timer;
112 
113 	/* target workqueue and CPU ->timer uses to queue ->work */
114 	struct workqueue_struct *wq;
115 	int cpu;
116 };
117 
118 struct rcu_work {
119 	struct work_struct work;
120 	struct rcu_head rcu;
121 
122 	/* target workqueue ->rcu uses to queue ->work */
123 	struct workqueue_struct *wq;
124 };
125 
126 enum wq_affn_scope {
127 	WQ_AFFN_DFL,			/* use system default */
128 	WQ_AFFN_CPU,			/* one pod per CPU */
129 	WQ_AFFN_SMT,			/* one pod poer SMT */
130 	WQ_AFFN_CACHE,			/* one pod per LLC */
131 	WQ_AFFN_NUMA,			/* one pod per NUMA node */
132 	WQ_AFFN_SYSTEM,			/* one pod across the whole system */
133 
134 	WQ_AFFN_NR_TYPES,
135 };
136 
137 /**
138  * struct workqueue_attrs - A struct for workqueue attributes.
139  *
140  * This can be used to change attributes of an unbound workqueue.
141  */
142 struct workqueue_attrs {
143 	/**
144 	 * @nice: nice level
145 	 */
146 	int nice;
147 
148 	/**
149 	 * @cpumask: allowed CPUs
150 	 *
151 	 * Work items in this workqueue are affine to these CPUs and not allowed
152 	 * to execute on other CPUs. A pool serving a workqueue must have the
153 	 * same @cpumask.
154 	 */
155 	cpumask_var_t cpumask;
156 
157 	/**
158 	 * @__pod_cpumask: internal attribute used to create per-pod pools
159 	 *
160 	 * Internal use only.
161 	 *
162 	 * Per-pod unbound worker pools are used to improve locality. Always a
163 	 * subset of ->cpumask. A workqueue can be associated with multiple
164 	 * worker pools with disjoint @__pod_cpumask's. Whether the enforcement
165 	 * of a pool's @__pod_cpumask is strict depends on @affn_strict.
166 	 */
167 	cpumask_var_t __pod_cpumask;
168 
169 	/**
170 	 * @affn_strict: affinity scope is strict
171 	 *
172 	 * If clear, workqueue will make a best-effort attempt at starting the
173 	 * worker inside @__pod_cpumask but the scheduler is free to migrate it
174 	 * outside.
175 	 *
176 	 * If set, workers are only allowed to run inside @__pod_cpumask.
177 	 */
178 	bool affn_strict;
179 
180 	/*
181 	 * Below fields aren't properties of a worker_pool. They only modify how
182 	 * :c:func:`apply_workqueue_attrs` select pools and thus don't
183 	 * participate in pool hash calculations or equality comparisons.
184 	 */
185 
186 	/**
187 	 * @affn_scope: unbound CPU affinity scope
188 	 *
189 	 * CPU pods are used to improve execution locality of unbound work
190 	 * items. There are multiple pod types, one for each wq_affn_scope, and
191 	 * every CPU in the system belongs to one pod in every pod type. CPUs
192 	 * that belong to the same pod share the worker pool. For example,
193 	 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker
194 	 * pool for each NUMA node.
195 	 */
196 	enum wq_affn_scope affn_scope;
197 
198 	/**
199 	 * @ordered: work items must be executed one by one in queueing order
200 	 */
201 	bool ordered;
202 };
203 
204 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
205 {
206 	return container_of(work, struct delayed_work, work);
207 }
208 
209 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
210 {
211 	return container_of(work, struct rcu_work, work);
212 }
213 
214 struct execute_work {
215 	struct work_struct work;
216 };
217 
218 #ifdef CONFIG_LOCKDEP
219 /*
220  * NB: because we have to copy the lockdep_map, setting _key
221  * here is required, otherwise it could get initialised to the
222  * copy of the lockdep_map!
223  */
224 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
225 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
226 #else
227 #define __WORK_INIT_LOCKDEP_MAP(n, k)
228 #endif
229 
230 #define __WORK_INITIALIZER(n, f) {					\
231 	.data = WORK_DATA_STATIC_INIT(),				\
232 	.entry	= { &(n).entry, &(n).entry },				\
233 	.func = (f),							\
234 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
235 	}
236 
237 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
238 	.work = __WORK_INITIALIZER((n).work, (f)),			\
239 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
240 				     (tflags) | TIMER_IRQSAFE),		\
241 	}
242 
243 #define DECLARE_WORK(n, f)						\
244 	struct work_struct n = __WORK_INITIALIZER(n, f)
245 
246 #define DECLARE_DELAYED_WORK(n, f)					\
247 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
248 
249 #define DECLARE_DEFERRABLE_WORK(n, f)					\
250 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
251 
252 #ifdef CONFIG_DEBUG_OBJECTS_WORK
253 extern void __init_work(struct work_struct *work, int onstack);
254 extern void destroy_work_on_stack(struct work_struct *work);
255 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
256 static inline unsigned int work_static(struct work_struct *work)
257 {
258 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
259 }
260 #else
261 static inline void __init_work(struct work_struct *work, int onstack) { }
262 static inline void destroy_work_on_stack(struct work_struct *work) { }
263 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
264 static inline unsigned int work_static(struct work_struct *work) { return 0; }
265 #endif
266 
267 /*
268  * initialize all of a work item in one go
269  *
270  * NOTE! No point in using "atomic_long_set()": using a direct
271  * assignment of the work data initializer allows the compiler
272  * to generate better code.
273  */
274 #ifdef CONFIG_LOCKDEP
275 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
276 	do {								\
277 		__init_work((_work), _onstack);				\
278 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
279 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \
280 		INIT_LIST_HEAD(&(_work)->entry);			\
281 		(_work)->func = (_func);				\
282 	} while (0)
283 #else
284 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
285 	do {								\
286 		__init_work((_work), _onstack);				\
287 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
288 		INIT_LIST_HEAD(&(_work)->entry);			\
289 		(_work)->func = (_func);				\
290 	} while (0)
291 #endif
292 
293 #define __INIT_WORK(_work, _func, _onstack)				\
294 	do {								\
295 		static __maybe_unused struct lock_class_key __key;	\
296 									\
297 		__INIT_WORK_KEY(_work, _func, _onstack, &__key);	\
298 	} while (0)
299 
300 #define INIT_WORK(_work, _func)						\
301 	__INIT_WORK((_work), (_func), 0)
302 
303 #define INIT_WORK_ONSTACK(_work, _func)					\
304 	__INIT_WORK((_work), (_func), 1)
305 
306 #define INIT_WORK_ONSTACK_KEY(_work, _func, _key)			\
307 	__INIT_WORK_KEY((_work), (_func), 1, _key)
308 
309 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
310 	do {								\
311 		INIT_WORK(&(_work)->work, (_func));			\
312 		__init_timer(&(_work)->timer,				\
313 			     delayed_work_timer_fn,			\
314 			     (_tflags) | TIMER_IRQSAFE);		\
315 	} while (0)
316 
317 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
318 	do {								\
319 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
320 		__init_timer_on_stack(&(_work)->timer,			\
321 				      delayed_work_timer_fn,		\
322 				      (_tflags) | TIMER_IRQSAFE);	\
323 	} while (0)
324 
325 #define INIT_DELAYED_WORK(_work, _func)					\
326 	__INIT_DELAYED_WORK(_work, _func, 0)
327 
328 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
329 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
330 
331 #define INIT_DEFERRABLE_WORK(_work, _func)				\
332 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
333 
334 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
335 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
336 
337 #define INIT_RCU_WORK(_work, _func)					\
338 	INIT_WORK(&(_work)->work, (_func))
339 
340 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
341 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
342 
343 /**
344  * work_pending - Find out whether a work item is currently pending
345  * @work: The work item in question
346  */
347 #define work_pending(work) \
348 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
349 
350 /**
351  * delayed_work_pending - Find out whether a delayable work item is currently
352  * pending
353  * @w: The work item in question
354  */
355 #define delayed_work_pending(w) \
356 	work_pending(&(w)->work)
357 
358 /*
359  * Workqueue flags and constants.  For details, please refer to
360  * Documentation/core-api/workqueue.rst.
361  */
362 enum wq_flags {
363 	WQ_BH			= 1 << 0, /* execute in bottom half (softirq) context */
364 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
365 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
366 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
367 	WQ_HIGHPRI		= 1 << 4, /* high priority */
368 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
369 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
370 
371 	/*
372 	 * Per-cpu workqueues are generally preferred because they tend to
373 	 * show better performance thanks to cache locality.  Per-cpu
374 	 * workqueues exclude the scheduler from choosing the CPU to
375 	 * execute the worker threads, which has an unfortunate side effect
376 	 * of increasing power consumption.
377 	 *
378 	 * The scheduler considers a CPU idle if it doesn't have any task
379 	 * to execute and tries to keep idle cores idle to conserve power;
380 	 * however, for example, a per-cpu work item scheduled from an
381 	 * interrupt handler on an idle CPU will force the scheduler to
382 	 * execute the work item on that CPU breaking the idleness, which in
383 	 * turn may lead to more scheduling choices which are sub-optimal
384 	 * in terms of power consumption.
385 	 *
386 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
387 	 * but become unbound if workqueue.power_efficient kernel param is
388 	 * specified.  Per-cpu workqueues which are identified to
389 	 * contribute significantly to power-consumption are identified and
390 	 * marked with this flag and enabling the power_efficient mode
391 	 * leads to noticeable power saving at the cost of small
392 	 * performance disadvantage.
393 	 *
394 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
395 	 */
396 	WQ_POWER_EFFICIENT	= 1 << 7,
397 
398 	__WQ_DESTROYING		= 1 << 15, /* internal: workqueue is destroying */
399 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
400 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
401 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
402 
403 	/* BH wq only allows the following flags */
404 	__WQ_BH_ALLOWS		= WQ_BH | WQ_HIGHPRI,
405 };
406 
407 enum wq_consts {
408 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
409 	WQ_UNBOUND_MAX_ACTIVE	= WQ_MAX_ACTIVE,
410 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
411 
412 	/*
413 	 * Per-node default cap on min_active. Unless explicitly set, min_active
414 	 * is set to min(max_active, WQ_DFL_MIN_ACTIVE). For more details, see
415 	 * workqueue_struct->min_active definition.
416 	 */
417 	WQ_DFL_MIN_ACTIVE	= 8,
418 };
419 
420 /*
421  * System-wide workqueues which are always present.
422  *
423  * system_wq is the one used by schedule[_delayed]_work[_on]().
424  * Multi-CPU multi-threaded.  There are users which expect relatively
425  * short queue flush time.  Don't queue works which can run for too
426  * long.
427  *
428  * system_highpri_wq is similar to system_wq but for work items which
429  * require WQ_HIGHPRI.
430  *
431  * system_long_wq is similar to system_wq but may host long running
432  * works.  Queue flushing might take relatively long.
433  *
434  * system_unbound_wq is unbound workqueue.  Workers are not bound to
435  * any specific CPU, not concurrency managed, and all queued works are
436  * executed immediately as long as max_active limit is not reached and
437  * resources are available.
438  *
439  * system_freezable_wq is equivalent to system_wq except that it's
440  * freezable.
441  *
442  * *_power_efficient_wq are inclined towards saving power and converted
443  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
444  * they are same as their non-power-efficient counterparts - e.g.
445  * system_power_efficient_wq is identical to system_wq if
446  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
447  *
448  * system_bh[_highpri]_wq are convenience interface to softirq. BH work items
449  * are executed in the queueing CPU's BH context in the queueing order.
450  */
451 extern struct workqueue_struct *system_wq;
452 extern struct workqueue_struct *system_highpri_wq;
453 extern struct workqueue_struct *system_long_wq;
454 extern struct workqueue_struct *system_unbound_wq;
455 extern struct workqueue_struct *system_freezable_wq;
456 extern struct workqueue_struct *system_power_efficient_wq;
457 extern struct workqueue_struct *system_freezable_power_efficient_wq;
458 extern struct workqueue_struct *system_bh_wq;
459 extern struct workqueue_struct *system_bh_highpri_wq;
460 
461 void workqueue_softirq_action(bool highpri);
462 void workqueue_softirq_dead(unsigned int cpu);
463 
464 /**
465  * alloc_workqueue - allocate a workqueue
466  * @fmt: printf format for the name of the workqueue
467  * @flags: WQ_* flags
468  * @max_active: max in-flight work items, 0 for default
469  * remaining args: args for @fmt
470  *
471  * For a per-cpu workqueue, @max_active limits the number of in-flight work
472  * items for each CPU. e.g. @max_active of 1 indicates that each CPU can be
473  * executing at most one work item for the workqueue.
474  *
475  * For unbound workqueues, @max_active limits the number of in-flight work items
476  * for the whole system. e.g. @max_active of 16 indicates that that there can be
477  * at most 16 work items executing for the workqueue in the whole system.
478  *
479  * As sharing the same active counter for an unbound workqueue across multiple
480  * NUMA nodes can be expensive, @max_active is distributed to each NUMA node
481  * according to the proportion of the number of online CPUs and enforced
482  * independently.
483  *
484  * Depending on online CPU distribution, a node may end up with per-node
485  * max_active which is significantly lower than @max_active, which can lead to
486  * deadlocks if the per-node concurrency limit is lower than the maximum number
487  * of interdependent work items for the workqueue.
488  *
489  * To guarantee forward progress regardless of online CPU distribution, the
490  * concurrency limit on every node is guaranteed to be equal to or greater than
491  * min_active which is set to min(@max_active, %WQ_DFL_MIN_ACTIVE). This means
492  * that the sum of per-node max_active's may be larger than @max_active.
493  *
494  * For detailed information on %WQ_* flags, please refer to
495  * Documentation/core-api/workqueue.rst.
496  *
497  * RETURNS:
498  * Pointer to the allocated workqueue on success, %NULL on failure.
499  */
500 __printf(1, 4) struct workqueue_struct *
501 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
502 
503 /**
504  * alloc_ordered_workqueue - allocate an ordered workqueue
505  * @fmt: printf format for the name of the workqueue
506  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
507  * @args: args for @fmt
508  *
509  * Allocate an ordered workqueue.  An ordered workqueue executes at
510  * most one work item at any given time in the queued order.  They are
511  * implemented as unbound workqueues with @max_active of one.
512  *
513  * RETURNS:
514  * Pointer to the allocated workqueue on success, %NULL on failure.
515  */
516 #define alloc_ordered_workqueue(fmt, flags, args...)			\
517 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), 1, ##args)
518 
519 #define create_workqueue(name)						\
520 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
521 #define create_freezable_workqueue(name)				\
522 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
523 			WQ_MEM_RECLAIM, 1, (name))
524 #define create_singlethread_workqueue(name)				\
525 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
526 
527 #define from_work(var, callback_work, work_fieldname)	\
528 	container_of(callback_work, typeof(*var), work_fieldname)
529 
530 extern void destroy_workqueue(struct workqueue_struct *wq);
531 
532 struct workqueue_attrs *alloc_workqueue_attrs(void);
533 void free_workqueue_attrs(struct workqueue_attrs *attrs);
534 int apply_workqueue_attrs(struct workqueue_struct *wq,
535 			  const struct workqueue_attrs *attrs);
536 extern int workqueue_unbound_exclude_cpumask(cpumask_var_t cpumask);
537 
538 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
539 			struct work_struct *work);
540 extern bool queue_work_node(int node, struct workqueue_struct *wq,
541 			    struct work_struct *work);
542 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
543 			struct delayed_work *work, unsigned long delay);
544 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
545 			struct delayed_work *dwork, unsigned long delay);
546 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
547 
548 extern void __flush_workqueue(struct workqueue_struct *wq);
549 extern void drain_workqueue(struct workqueue_struct *wq);
550 
551 extern int schedule_on_each_cpu(work_func_t func);
552 
553 int execute_in_process_context(work_func_t fn, struct execute_work *);
554 
555 extern bool flush_work(struct work_struct *work);
556 extern bool cancel_work(struct work_struct *work);
557 extern bool cancel_work_sync(struct work_struct *work);
558 
559 extern bool flush_delayed_work(struct delayed_work *dwork);
560 extern bool cancel_delayed_work(struct delayed_work *dwork);
561 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
562 
563 extern bool flush_rcu_work(struct rcu_work *rwork);
564 
565 extern void workqueue_set_max_active(struct workqueue_struct *wq,
566 				     int max_active);
567 extern void workqueue_set_min_active(struct workqueue_struct *wq,
568 				     int min_active);
569 extern struct work_struct *current_work(void);
570 extern bool current_is_workqueue_rescuer(void);
571 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
572 extern unsigned int work_busy(struct work_struct *work);
573 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
574 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
575 extern void show_all_workqueues(void);
576 extern void show_freezable_workqueues(void);
577 extern void show_one_workqueue(struct workqueue_struct *wq);
578 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
579 
580 /**
581  * queue_work - queue work on a workqueue
582  * @wq: workqueue to use
583  * @work: work to queue
584  *
585  * Returns %false if @work was already on a queue, %true otherwise.
586  *
587  * We queue the work to the CPU on which it was submitted, but if the CPU dies
588  * it can be processed by another CPU.
589  *
590  * Memory-ordering properties:  If it returns %true, guarantees that all stores
591  * preceding the call to queue_work() in the program order will be visible from
592  * the CPU which will execute @work by the time such work executes, e.g.,
593  *
594  * { x is initially 0 }
595  *
596  *   CPU0				CPU1
597  *
598  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
599  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
600  *
601  * Forbids: r0 == true && r1 == 0
602  */
603 static inline bool queue_work(struct workqueue_struct *wq,
604 			      struct work_struct *work)
605 {
606 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
607 }
608 
609 /**
610  * queue_delayed_work - queue work on a workqueue after delay
611  * @wq: workqueue to use
612  * @dwork: delayable work to queue
613  * @delay: number of jiffies to wait before queueing
614  *
615  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
616  */
617 static inline bool queue_delayed_work(struct workqueue_struct *wq,
618 				      struct delayed_work *dwork,
619 				      unsigned long delay)
620 {
621 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
622 }
623 
624 /**
625  * mod_delayed_work - modify delay of or queue a delayed work
626  * @wq: workqueue to use
627  * @dwork: work to queue
628  * @delay: number of jiffies to wait before queueing
629  *
630  * mod_delayed_work_on() on local CPU.
631  */
632 static inline bool mod_delayed_work(struct workqueue_struct *wq,
633 				    struct delayed_work *dwork,
634 				    unsigned long delay)
635 {
636 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
637 }
638 
639 /**
640  * schedule_work_on - put work task on a specific cpu
641  * @cpu: cpu to put the work task on
642  * @work: job to be done
643  *
644  * This puts a job on a specific cpu
645  */
646 static inline bool schedule_work_on(int cpu, struct work_struct *work)
647 {
648 	return queue_work_on(cpu, system_wq, work);
649 }
650 
651 /**
652  * schedule_work - put work task in global workqueue
653  * @work: job to be done
654  *
655  * Returns %false if @work was already on the kernel-global workqueue and
656  * %true otherwise.
657  *
658  * This puts a job in the kernel-global workqueue if it was not already
659  * queued and leaves it in the same position on the kernel-global
660  * workqueue otherwise.
661  *
662  * Shares the same memory-ordering properties of queue_work(), cf. the
663  * DocBook header of queue_work().
664  */
665 static inline bool schedule_work(struct work_struct *work)
666 {
667 	return queue_work(system_wq, work);
668 }
669 
670 /*
671  * Detect attempt to flush system-wide workqueues at compile time when possible.
672  * Warn attempt to flush system-wide workqueues at runtime.
673  *
674  * See https://lkml.kernel.org/r/[email protected]
675  * for reasons and steps for converting system-wide workqueues into local workqueues.
676  */
677 extern void __warn_flushing_systemwide_wq(void)
678 	__compiletime_warning("Please avoid flushing system-wide workqueues.");
679 
680 /* Please stop using this function, for this function will be removed in near future. */
681 #define flush_scheduled_work()						\
682 ({									\
683 	__warn_flushing_systemwide_wq();				\
684 	__flush_workqueue(system_wq);					\
685 })
686 
687 #define flush_workqueue(wq)						\
688 ({									\
689 	struct workqueue_struct *_wq = (wq);				\
690 									\
691 	if ((__builtin_constant_p(_wq == system_wq) &&			\
692 	     _wq == system_wq) ||					\
693 	    (__builtin_constant_p(_wq == system_highpri_wq) &&		\
694 	     _wq == system_highpri_wq) ||				\
695 	    (__builtin_constant_p(_wq == system_long_wq) &&		\
696 	     _wq == system_long_wq) ||					\
697 	    (__builtin_constant_p(_wq == system_unbound_wq) &&		\
698 	     _wq == system_unbound_wq) ||				\
699 	    (__builtin_constant_p(_wq == system_freezable_wq) &&	\
700 	     _wq == system_freezable_wq) ||				\
701 	    (__builtin_constant_p(_wq == system_power_efficient_wq) &&	\
702 	     _wq == system_power_efficient_wq) ||			\
703 	    (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \
704 	     _wq == system_freezable_power_efficient_wq))		\
705 		__warn_flushing_systemwide_wq();			\
706 	__flush_workqueue(_wq);						\
707 })
708 
709 /**
710  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
711  * @cpu: cpu to use
712  * @dwork: job to be done
713  * @delay: number of jiffies to wait
714  *
715  * After waiting for a given time this puts a job in the kernel-global
716  * workqueue on the specified CPU.
717  */
718 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
719 					    unsigned long delay)
720 {
721 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
722 }
723 
724 /**
725  * schedule_delayed_work - put work task in global workqueue after delay
726  * @dwork: job to be done
727  * @delay: number of jiffies to wait or 0 for immediate execution
728  *
729  * After waiting for a given time this puts a job in the kernel-global
730  * workqueue.
731  */
732 static inline bool schedule_delayed_work(struct delayed_work *dwork,
733 					 unsigned long delay)
734 {
735 	return queue_delayed_work(system_wq, dwork, delay);
736 }
737 
738 #ifndef CONFIG_SMP
739 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
740 {
741 	return fn(arg);
742 }
743 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
744 {
745 	return fn(arg);
746 }
747 #else
748 long work_on_cpu_key(int cpu, long (*fn)(void *),
749 		     void *arg, struct lock_class_key *key);
750 /*
751  * A new key is defined for each caller to make sure the work
752  * associated with the function doesn't share its locking class.
753  */
754 #define work_on_cpu(_cpu, _fn, _arg)			\
755 ({							\
756 	static struct lock_class_key __key;		\
757 							\
758 	work_on_cpu_key(_cpu, _fn, _arg, &__key);	\
759 })
760 
761 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
762 			  void *arg, struct lock_class_key *key);
763 
764 /*
765  * A new key is defined for each caller to make sure the work
766  * associated with the function doesn't share its locking class.
767  */
768 #define work_on_cpu_safe(_cpu, _fn, _arg)		\
769 ({							\
770 	static struct lock_class_key __key;		\
771 							\
772 	work_on_cpu_safe_key(_cpu, _fn, _arg, &__key);	\
773 })
774 #endif /* CONFIG_SMP */
775 
776 #ifdef CONFIG_FREEZER
777 extern void freeze_workqueues_begin(void);
778 extern bool freeze_workqueues_busy(void);
779 extern void thaw_workqueues(void);
780 #endif /* CONFIG_FREEZER */
781 
782 #ifdef CONFIG_SYSFS
783 int workqueue_sysfs_register(struct workqueue_struct *wq);
784 #else	/* CONFIG_SYSFS */
785 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
786 { return 0; }
787 #endif	/* CONFIG_SYSFS */
788 
789 #ifdef CONFIG_WQ_WATCHDOG
790 void wq_watchdog_touch(int cpu);
791 #else	/* CONFIG_WQ_WATCHDOG */
792 static inline void wq_watchdog_touch(int cpu) { }
793 #endif	/* CONFIG_WQ_WATCHDOG */
794 
795 #ifdef CONFIG_SMP
796 int workqueue_prepare_cpu(unsigned int cpu);
797 int workqueue_online_cpu(unsigned int cpu);
798 int workqueue_offline_cpu(unsigned int cpu);
799 #endif
800 
801 void __init workqueue_init_early(void);
802 void __init workqueue_init(void);
803 void __init workqueue_init_topology(void);
804 
805 #endif
806