xref: /linux-6.15/include/linux/workqueue.h (revision 07daa99b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 #include <linux/workqueue_types.h>
18 
19 /*
20  * The first word is the work queue pointer and the flags rolled into
21  * one
22  */
23 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
24 
25 enum work_bits {
26 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
27 	WORK_STRUCT_INACTIVE_BIT= 1,	/* work item is inactive */
28 	WORK_STRUCT_PWQ_BIT	= 2,	/* data points to pwq */
29 	WORK_STRUCT_LINKED_BIT	= 3,	/* next work is linked to this one */
30 #ifdef CONFIG_DEBUG_OBJECTS_WORK
31 	WORK_STRUCT_STATIC_BIT	= 4,	/* static initializer (debugobjects) */
32 	WORK_STRUCT_COLOR_SHIFT	= 5,	/* color for workqueue flushing */
33 #else
34 	WORK_STRUCT_COLOR_SHIFT	= 4,	/* color for workqueue flushing */
35 #endif
36 
37 	WORK_STRUCT_COLOR_BITS	= 4,
38 
39 	/*
40 	 * Reserve 8 bits off of pwq pointer w/ debugobjects turned off.
41 	 * This makes pwqs aligned to 256 bytes and allows 16 workqueue
42 	 * flush colors.
43 	 */
44 	WORK_STRUCT_FLAG_BITS	= WORK_STRUCT_COLOR_SHIFT +
45 				  WORK_STRUCT_COLOR_BITS,
46 
47 	/* data contains off-queue information when !WORK_STRUCT_PWQ */
48 	WORK_OFFQ_FLAG_BASE	= WORK_STRUCT_COLOR_SHIFT,
49 
50 	__WORK_OFFQ_CANCELING	= WORK_OFFQ_FLAG_BASE,
51 
52 	/*
53 	 * When a work item is off queue, its high bits point to the last
54 	 * pool it was on.  Cap at 31 bits and use the highest number to
55 	 * indicate that no pool is associated.
56 	 */
57 	WORK_OFFQ_FLAG_BITS	= 1,
58 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
59 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
60 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
61 
62 };
63 
64 enum work_flags {
65 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
66 	WORK_STRUCT_INACTIVE	= 1 << WORK_STRUCT_INACTIVE_BIT,
67 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
68 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
69 #ifdef CONFIG_DEBUG_OBJECTS_WORK
70 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
71 #else
72 	WORK_STRUCT_STATIC	= 0,
73 #endif
74 };
75 
76 enum wq_misc_consts {
77 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS),
78 
79 	/* not bound to any CPU, prefer the local CPU */
80 	WORK_CPU_UNBOUND	= NR_CPUS,
81 
82 	/* bit mask for work_busy() return values */
83 	WORK_BUSY_PENDING	= 1 << 0,
84 	WORK_BUSY_RUNNING	= 1 << 1,
85 
86 	/* maximum string length for set_worker_desc() */
87 	WORKER_DESC_LEN		= 24,
88 };
89 
90 /* Convenience constants - of type 'unsigned long', not 'enum'! */
91 #define WORK_OFFQ_CANCELING	(1ul << __WORK_OFFQ_CANCELING)
92 #define WORK_OFFQ_POOL_NONE	((1ul << WORK_OFFQ_POOL_BITS) - 1)
93 #define WORK_STRUCT_NO_POOL	(WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT)
94 
95 #define WORK_STRUCT_FLAG_MASK    ((1ul << WORK_STRUCT_FLAG_BITS) - 1)
96 #define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)
97 
98 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
99 #define WORK_DATA_STATIC_INIT()	\
100 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
101 
102 struct delayed_work {
103 	struct work_struct work;
104 	struct timer_list timer;
105 
106 	/* target workqueue and CPU ->timer uses to queue ->work */
107 	struct workqueue_struct *wq;
108 	int cpu;
109 };
110 
111 struct rcu_work {
112 	struct work_struct work;
113 	struct rcu_head rcu;
114 
115 	/* target workqueue ->rcu uses to queue ->work */
116 	struct workqueue_struct *wq;
117 };
118 
119 enum wq_affn_scope {
120 	WQ_AFFN_DFL,			/* use system default */
121 	WQ_AFFN_CPU,			/* one pod per CPU */
122 	WQ_AFFN_SMT,			/* one pod poer SMT */
123 	WQ_AFFN_CACHE,			/* one pod per LLC */
124 	WQ_AFFN_NUMA,			/* one pod per NUMA node */
125 	WQ_AFFN_SYSTEM,			/* one pod across the whole system */
126 
127 	WQ_AFFN_NR_TYPES,
128 };
129 
130 /**
131  * struct workqueue_attrs - A struct for workqueue attributes.
132  *
133  * This can be used to change attributes of an unbound workqueue.
134  */
135 struct workqueue_attrs {
136 	/**
137 	 * @nice: nice level
138 	 */
139 	int nice;
140 
141 	/**
142 	 * @cpumask: allowed CPUs
143 	 *
144 	 * Work items in this workqueue are affine to these CPUs and not allowed
145 	 * to execute on other CPUs. A pool serving a workqueue must have the
146 	 * same @cpumask.
147 	 */
148 	cpumask_var_t cpumask;
149 
150 	/**
151 	 * @__pod_cpumask: internal attribute used to create per-pod pools
152 	 *
153 	 * Internal use only.
154 	 *
155 	 * Per-pod unbound worker pools are used to improve locality. Always a
156 	 * subset of ->cpumask. A workqueue can be associated with multiple
157 	 * worker pools with disjoint @__pod_cpumask's. Whether the enforcement
158 	 * of a pool's @__pod_cpumask is strict depends on @affn_strict.
159 	 */
160 	cpumask_var_t __pod_cpumask;
161 
162 	/**
163 	 * @affn_strict: affinity scope is strict
164 	 *
165 	 * If clear, workqueue will make a best-effort attempt at starting the
166 	 * worker inside @__pod_cpumask but the scheduler is free to migrate it
167 	 * outside.
168 	 *
169 	 * If set, workers are only allowed to run inside @__pod_cpumask.
170 	 */
171 	bool affn_strict;
172 
173 	/*
174 	 * Below fields aren't properties of a worker_pool. They only modify how
175 	 * :c:func:`apply_workqueue_attrs` select pools and thus don't
176 	 * participate in pool hash calculations or equality comparisons.
177 	 */
178 
179 	/**
180 	 * @affn_scope: unbound CPU affinity scope
181 	 *
182 	 * CPU pods are used to improve execution locality of unbound work
183 	 * items. There are multiple pod types, one for each wq_affn_scope, and
184 	 * every CPU in the system belongs to one pod in every pod type. CPUs
185 	 * that belong to the same pod share the worker pool. For example,
186 	 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker
187 	 * pool for each NUMA node.
188 	 */
189 	enum wq_affn_scope affn_scope;
190 
191 	/**
192 	 * @ordered: work items must be executed one by one in queueing order
193 	 */
194 	bool ordered;
195 };
196 
197 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
198 {
199 	return container_of(work, struct delayed_work, work);
200 }
201 
202 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
203 {
204 	return container_of(work, struct rcu_work, work);
205 }
206 
207 struct execute_work {
208 	struct work_struct work;
209 };
210 
211 #ifdef CONFIG_LOCKDEP
212 /*
213  * NB: because we have to copy the lockdep_map, setting _key
214  * here is required, otherwise it could get initialised to the
215  * copy of the lockdep_map!
216  */
217 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
218 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
219 #else
220 #define __WORK_INIT_LOCKDEP_MAP(n, k)
221 #endif
222 
223 #define __WORK_INITIALIZER(n, f) {					\
224 	.data = WORK_DATA_STATIC_INIT(),				\
225 	.entry	= { &(n).entry, &(n).entry },				\
226 	.func = (f),							\
227 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
228 	}
229 
230 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
231 	.work = __WORK_INITIALIZER((n).work, (f)),			\
232 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
233 				     (tflags) | TIMER_IRQSAFE),		\
234 	}
235 
236 #define DECLARE_WORK(n, f)						\
237 	struct work_struct n = __WORK_INITIALIZER(n, f)
238 
239 #define DECLARE_DELAYED_WORK(n, f)					\
240 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
241 
242 #define DECLARE_DEFERRABLE_WORK(n, f)					\
243 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
244 
245 #ifdef CONFIG_DEBUG_OBJECTS_WORK
246 extern void __init_work(struct work_struct *work, int onstack);
247 extern void destroy_work_on_stack(struct work_struct *work);
248 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
249 static inline unsigned int work_static(struct work_struct *work)
250 {
251 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
252 }
253 #else
254 static inline void __init_work(struct work_struct *work, int onstack) { }
255 static inline void destroy_work_on_stack(struct work_struct *work) { }
256 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
257 static inline unsigned int work_static(struct work_struct *work) { return 0; }
258 #endif
259 
260 /*
261  * initialize all of a work item in one go
262  *
263  * NOTE! No point in using "atomic_long_set()": using a direct
264  * assignment of the work data initializer allows the compiler
265  * to generate better code.
266  */
267 #ifdef CONFIG_LOCKDEP
268 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
269 	do {								\
270 		__init_work((_work), _onstack);				\
271 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
272 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \
273 		INIT_LIST_HEAD(&(_work)->entry);			\
274 		(_work)->func = (_func);				\
275 	} while (0)
276 #else
277 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
278 	do {								\
279 		__init_work((_work), _onstack);				\
280 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
281 		INIT_LIST_HEAD(&(_work)->entry);			\
282 		(_work)->func = (_func);				\
283 	} while (0)
284 #endif
285 
286 #define __INIT_WORK(_work, _func, _onstack)				\
287 	do {								\
288 		static __maybe_unused struct lock_class_key __key;	\
289 									\
290 		__INIT_WORK_KEY(_work, _func, _onstack, &__key);	\
291 	} while (0)
292 
293 #define INIT_WORK(_work, _func)						\
294 	__INIT_WORK((_work), (_func), 0)
295 
296 #define INIT_WORK_ONSTACK(_work, _func)					\
297 	__INIT_WORK((_work), (_func), 1)
298 
299 #define INIT_WORK_ONSTACK_KEY(_work, _func, _key)			\
300 	__INIT_WORK_KEY((_work), (_func), 1, _key)
301 
302 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
303 	do {								\
304 		INIT_WORK(&(_work)->work, (_func));			\
305 		__init_timer(&(_work)->timer,				\
306 			     delayed_work_timer_fn,			\
307 			     (_tflags) | TIMER_IRQSAFE);		\
308 	} while (0)
309 
310 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
311 	do {								\
312 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
313 		__init_timer_on_stack(&(_work)->timer,			\
314 				      delayed_work_timer_fn,		\
315 				      (_tflags) | TIMER_IRQSAFE);	\
316 	} while (0)
317 
318 #define INIT_DELAYED_WORK(_work, _func)					\
319 	__INIT_DELAYED_WORK(_work, _func, 0)
320 
321 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
322 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
323 
324 #define INIT_DEFERRABLE_WORK(_work, _func)				\
325 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
326 
327 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
328 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
329 
330 #define INIT_RCU_WORK(_work, _func)					\
331 	INIT_WORK(&(_work)->work, (_func))
332 
333 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
334 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
335 
336 /**
337  * work_pending - Find out whether a work item is currently pending
338  * @work: The work item in question
339  */
340 #define work_pending(work) \
341 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
342 
343 /**
344  * delayed_work_pending - Find out whether a delayable work item is currently
345  * pending
346  * @w: The work item in question
347  */
348 #define delayed_work_pending(w) \
349 	work_pending(&(w)->work)
350 
351 /*
352  * Workqueue flags and constants.  For details, please refer to
353  * Documentation/core-api/workqueue.rst.
354  */
355 enum wq_flags {
356 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
357 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
358 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
359 	WQ_HIGHPRI		= 1 << 4, /* high priority */
360 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
361 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
362 
363 	/*
364 	 * Per-cpu workqueues are generally preferred because they tend to
365 	 * show better performance thanks to cache locality.  Per-cpu
366 	 * workqueues exclude the scheduler from choosing the CPU to
367 	 * execute the worker threads, which has an unfortunate side effect
368 	 * of increasing power consumption.
369 	 *
370 	 * The scheduler considers a CPU idle if it doesn't have any task
371 	 * to execute and tries to keep idle cores idle to conserve power;
372 	 * however, for example, a per-cpu work item scheduled from an
373 	 * interrupt handler on an idle CPU will force the scheduler to
374 	 * execute the work item on that CPU breaking the idleness, which in
375 	 * turn may lead to more scheduling choices which are sub-optimal
376 	 * in terms of power consumption.
377 	 *
378 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
379 	 * but become unbound if workqueue.power_efficient kernel param is
380 	 * specified.  Per-cpu workqueues which are identified to
381 	 * contribute significantly to power-consumption are identified and
382 	 * marked with this flag and enabling the power_efficient mode
383 	 * leads to noticeable power saving at the cost of small
384 	 * performance disadvantage.
385 	 *
386 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
387 	 */
388 	WQ_POWER_EFFICIENT	= 1 << 7,
389 
390 	__WQ_DESTROYING		= 1 << 15, /* internal: workqueue is destroying */
391 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
392 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
393 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
394 	__WQ_ORDERED_EXPLICIT	= 1 << 19, /* internal: alloc_ordered_workqueue() */
395 };
396 
397 enum wq_consts {
398 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
399 	WQ_UNBOUND_MAX_ACTIVE	= WQ_MAX_ACTIVE,
400 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
401 
402 	/*
403 	 * Per-node default cap on min_active. Unless explicitly set, min_active
404 	 * is set to min(max_active, WQ_DFL_MIN_ACTIVE). For more details, see
405 	 * workqueue_struct->min_active definition.
406 	 */
407 	WQ_DFL_MIN_ACTIVE	= 8,
408 };
409 
410 /*
411  * System-wide workqueues which are always present.
412  *
413  * system_wq is the one used by schedule[_delayed]_work[_on]().
414  * Multi-CPU multi-threaded.  There are users which expect relatively
415  * short queue flush time.  Don't queue works which can run for too
416  * long.
417  *
418  * system_highpri_wq is similar to system_wq but for work items which
419  * require WQ_HIGHPRI.
420  *
421  * system_long_wq is similar to system_wq but may host long running
422  * works.  Queue flushing might take relatively long.
423  *
424  * system_unbound_wq is unbound workqueue.  Workers are not bound to
425  * any specific CPU, not concurrency managed, and all queued works are
426  * executed immediately as long as max_active limit is not reached and
427  * resources are available.
428  *
429  * system_freezable_wq is equivalent to system_wq except that it's
430  * freezable.
431  *
432  * *_power_efficient_wq are inclined towards saving power and converted
433  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
434  * they are same as their non-power-efficient counterparts - e.g.
435  * system_power_efficient_wq is identical to system_wq if
436  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
437  */
438 extern struct workqueue_struct *system_wq;
439 extern struct workqueue_struct *system_highpri_wq;
440 extern struct workqueue_struct *system_long_wq;
441 extern struct workqueue_struct *system_unbound_wq;
442 extern struct workqueue_struct *system_freezable_wq;
443 extern struct workqueue_struct *system_power_efficient_wq;
444 extern struct workqueue_struct *system_freezable_power_efficient_wq;
445 
446 /**
447  * alloc_workqueue - allocate a workqueue
448  * @fmt: printf format for the name of the workqueue
449  * @flags: WQ_* flags
450  * @max_active: max in-flight work items, 0 for default
451  * remaining args: args for @fmt
452  *
453  * For a per-cpu workqueue, @max_active limits the number of in-flight work
454  * items for each CPU. e.g. @max_active of 1 indicates that each CPU can be
455  * executing at most one work item for the workqueue.
456  *
457  * For unbound workqueues, @max_active limits the number of in-flight work items
458  * for the whole system. e.g. @max_active of 16 indicates that that there can be
459  * at most 16 work items executing for the workqueue in the whole system.
460  *
461  * As sharing the same active counter for an unbound workqueue across multiple
462  * NUMA nodes can be expensive, @max_active is distributed to each NUMA node
463  * according to the proportion of the number of online CPUs and enforced
464  * independently.
465  *
466  * Depending on online CPU distribution, a node may end up with per-node
467  * max_active which is significantly lower than @max_active, which can lead to
468  * deadlocks if the per-node concurrency limit is lower than the maximum number
469  * of interdependent work items for the workqueue.
470  *
471  * To guarantee forward progress regardless of online CPU distribution, the
472  * concurrency limit on every node is guaranteed to be equal to or greater than
473  * min_active which is set to min(@max_active, %WQ_DFL_MIN_ACTIVE). This means
474  * that the sum of per-node max_active's may be larger than @max_active.
475  *
476  * For detailed information on %WQ_* flags, please refer to
477  * Documentation/core-api/workqueue.rst.
478  *
479  * RETURNS:
480  * Pointer to the allocated workqueue on success, %NULL on failure.
481  */
482 __printf(1, 4) struct workqueue_struct *
483 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
484 
485 /**
486  * alloc_ordered_workqueue - allocate an ordered workqueue
487  * @fmt: printf format for the name of the workqueue
488  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
489  * @args: args for @fmt
490  *
491  * Allocate an ordered workqueue.  An ordered workqueue executes at
492  * most one work item at any given time in the queued order.  They are
493  * implemented as unbound workqueues with @max_active of one.
494  *
495  * RETURNS:
496  * Pointer to the allocated workqueue on success, %NULL on failure.
497  */
498 #define alloc_ordered_workqueue(fmt, flags, args...)			\
499 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED |		\
500 			__WQ_ORDERED_EXPLICIT | (flags), 1, ##args)
501 
502 #define create_workqueue(name)						\
503 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
504 #define create_freezable_workqueue(name)				\
505 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
506 			WQ_MEM_RECLAIM, 1, (name))
507 #define create_singlethread_workqueue(name)				\
508 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
509 
510 extern void destroy_workqueue(struct workqueue_struct *wq);
511 
512 struct workqueue_attrs *alloc_workqueue_attrs(void);
513 void free_workqueue_attrs(struct workqueue_attrs *attrs);
514 int apply_workqueue_attrs(struct workqueue_struct *wq,
515 			  const struct workqueue_attrs *attrs);
516 extern int workqueue_unbound_exclude_cpumask(cpumask_var_t cpumask);
517 
518 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
519 			struct work_struct *work);
520 extern bool queue_work_node(int node, struct workqueue_struct *wq,
521 			    struct work_struct *work);
522 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
523 			struct delayed_work *work, unsigned long delay);
524 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
525 			struct delayed_work *dwork, unsigned long delay);
526 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
527 
528 extern void __flush_workqueue(struct workqueue_struct *wq);
529 extern void drain_workqueue(struct workqueue_struct *wq);
530 
531 extern int schedule_on_each_cpu(work_func_t func);
532 
533 int execute_in_process_context(work_func_t fn, struct execute_work *);
534 
535 extern bool flush_work(struct work_struct *work);
536 extern bool cancel_work(struct work_struct *work);
537 extern bool cancel_work_sync(struct work_struct *work);
538 
539 extern bool flush_delayed_work(struct delayed_work *dwork);
540 extern bool cancel_delayed_work(struct delayed_work *dwork);
541 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
542 
543 extern bool flush_rcu_work(struct rcu_work *rwork);
544 
545 extern void workqueue_set_max_active(struct workqueue_struct *wq,
546 				     int max_active);
547 extern struct work_struct *current_work(void);
548 extern bool current_is_workqueue_rescuer(void);
549 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
550 extern unsigned int work_busy(struct work_struct *work);
551 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
552 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
553 extern void show_all_workqueues(void);
554 extern void show_freezable_workqueues(void);
555 extern void show_one_workqueue(struct workqueue_struct *wq);
556 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
557 
558 /**
559  * queue_work - queue work on a workqueue
560  * @wq: workqueue to use
561  * @work: work to queue
562  *
563  * Returns %false if @work was already on a queue, %true otherwise.
564  *
565  * We queue the work to the CPU on which it was submitted, but if the CPU dies
566  * it can be processed by another CPU.
567  *
568  * Memory-ordering properties:  If it returns %true, guarantees that all stores
569  * preceding the call to queue_work() in the program order will be visible from
570  * the CPU which will execute @work by the time such work executes, e.g.,
571  *
572  * { x is initially 0 }
573  *
574  *   CPU0				CPU1
575  *
576  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
577  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
578  *
579  * Forbids: r0 == true && r1 == 0
580  */
581 static inline bool queue_work(struct workqueue_struct *wq,
582 			      struct work_struct *work)
583 {
584 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
585 }
586 
587 /**
588  * queue_delayed_work - queue work on a workqueue after delay
589  * @wq: workqueue to use
590  * @dwork: delayable work to queue
591  * @delay: number of jiffies to wait before queueing
592  *
593  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
594  */
595 static inline bool queue_delayed_work(struct workqueue_struct *wq,
596 				      struct delayed_work *dwork,
597 				      unsigned long delay)
598 {
599 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
600 }
601 
602 /**
603  * mod_delayed_work - modify delay of or queue a delayed work
604  * @wq: workqueue to use
605  * @dwork: work to queue
606  * @delay: number of jiffies to wait before queueing
607  *
608  * mod_delayed_work_on() on local CPU.
609  */
610 static inline bool mod_delayed_work(struct workqueue_struct *wq,
611 				    struct delayed_work *dwork,
612 				    unsigned long delay)
613 {
614 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
615 }
616 
617 /**
618  * schedule_work_on - put work task on a specific cpu
619  * @cpu: cpu to put the work task on
620  * @work: job to be done
621  *
622  * This puts a job on a specific cpu
623  */
624 static inline bool schedule_work_on(int cpu, struct work_struct *work)
625 {
626 	return queue_work_on(cpu, system_wq, work);
627 }
628 
629 /**
630  * schedule_work - put work task in global workqueue
631  * @work: job to be done
632  *
633  * Returns %false if @work was already on the kernel-global workqueue and
634  * %true otherwise.
635  *
636  * This puts a job in the kernel-global workqueue if it was not already
637  * queued and leaves it in the same position on the kernel-global
638  * workqueue otherwise.
639  *
640  * Shares the same memory-ordering properties of queue_work(), cf. the
641  * DocBook header of queue_work().
642  */
643 static inline bool schedule_work(struct work_struct *work)
644 {
645 	return queue_work(system_wq, work);
646 }
647 
648 /*
649  * Detect attempt to flush system-wide workqueues at compile time when possible.
650  * Warn attempt to flush system-wide workqueues at runtime.
651  *
652  * See https://lkml.kernel.org/r/[email protected]
653  * for reasons and steps for converting system-wide workqueues into local workqueues.
654  */
655 extern void __warn_flushing_systemwide_wq(void)
656 	__compiletime_warning("Please avoid flushing system-wide workqueues.");
657 
658 /* Please stop using this function, for this function will be removed in near future. */
659 #define flush_scheduled_work()						\
660 ({									\
661 	__warn_flushing_systemwide_wq();				\
662 	__flush_workqueue(system_wq);					\
663 })
664 
665 #define flush_workqueue(wq)						\
666 ({									\
667 	struct workqueue_struct *_wq = (wq);				\
668 									\
669 	if ((__builtin_constant_p(_wq == system_wq) &&			\
670 	     _wq == system_wq) ||					\
671 	    (__builtin_constant_p(_wq == system_highpri_wq) &&		\
672 	     _wq == system_highpri_wq) ||				\
673 	    (__builtin_constant_p(_wq == system_long_wq) &&		\
674 	     _wq == system_long_wq) ||					\
675 	    (__builtin_constant_p(_wq == system_unbound_wq) &&		\
676 	     _wq == system_unbound_wq) ||				\
677 	    (__builtin_constant_p(_wq == system_freezable_wq) &&	\
678 	     _wq == system_freezable_wq) ||				\
679 	    (__builtin_constant_p(_wq == system_power_efficient_wq) &&	\
680 	     _wq == system_power_efficient_wq) ||			\
681 	    (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \
682 	     _wq == system_freezable_power_efficient_wq))		\
683 		__warn_flushing_systemwide_wq();			\
684 	__flush_workqueue(_wq);						\
685 })
686 
687 /**
688  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
689  * @cpu: cpu to use
690  * @dwork: job to be done
691  * @delay: number of jiffies to wait
692  *
693  * After waiting for a given time this puts a job in the kernel-global
694  * workqueue on the specified CPU.
695  */
696 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
697 					    unsigned long delay)
698 {
699 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
700 }
701 
702 /**
703  * schedule_delayed_work - put work task in global workqueue after delay
704  * @dwork: job to be done
705  * @delay: number of jiffies to wait or 0 for immediate execution
706  *
707  * After waiting for a given time this puts a job in the kernel-global
708  * workqueue.
709  */
710 static inline bool schedule_delayed_work(struct delayed_work *dwork,
711 					 unsigned long delay)
712 {
713 	return queue_delayed_work(system_wq, dwork, delay);
714 }
715 
716 #ifndef CONFIG_SMP
717 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
718 {
719 	return fn(arg);
720 }
721 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
722 {
723 	return fn(arg);
724 }
725 #else
726 long work_on_cpu_key(int cpu, long (*fn)(void *),
727 		     void *arg, struct lock_class_key *key);
728 /*
729  * A new key is defined for each caller to make sure the work
730  * associated with the function doesn't share its locking class.
731  */
732 #define work_on_cpu(_cpu, _fn, _arg)			\
733 ({							\
734 	static struct lock_class_key __key;		\
735 							\
736 	work_on_cpu_key(_cpu, _fn, _arg, &__key);	\
737 })
738 
739 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
740 			  void *arg, struct lock_class_key *key);
741 
742 /*
743  * A new key is defined for each caller to make sure the work
744  * associated with the function doesn't share its locking class.
745  */
746 #define work_on_cpu_safe(_cpu, _fn, _arg)		\
747 ({							\
748 	static struct lock_class_key __key;		\
749 							\
750 	work_on_cpu_safe_key(_cpu, _fn, _arg, &__key);	\
751 })
752 #endif /* CONFIG_SMP */
753 
754 #ifdef CONFIG_FREEZER
755 extern void freeze_workqueues_begin(void);
756 extern bool freeze_workqueues_busy(void);
757 extern void thaw_workqueues(void);
758 #endif /* CONFIG_FREEZER */
759 
760 #ifdef CONFIG_SYSFS
761 int workqueue_sysfs_register(struct workqueue_struct *wq);
762 #else	/* CONFIG_SYSFS */
763 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
764 { return 0; }
765 #endif	/* CONFIG_SYSFS */
766 
767 #ifdef CONFIG_WQ_WATCHDOG
768 void wq_watchdog_touch(int cpu);
769 #else	/* CONFIG_WQ_WATCHDOG */
770 static inline void wq_watchdog_touch(int cpu) { }
771 #endif	/* CONFIG_WQ_WATCHDOG */
772 
773 #ifdef CONFIG_SMP
774 int workqueue_prepare_cpu(unsigned int cpu);
775 int workqueue_online_cpu(unsigned int cpu);
776 int workqueue_offline_cpu(unsigned int cpu);
777 #endif
778 
779 void __init workqueue_init_early(void);
780 void __init workqueue_init(void);
781 void __init workqueue_init_topology(void);
782 
783 #endif
784