xref: /linux-6.15/include/linux/wait_bit.h (revision 3cdee6b3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_WAIT_BIT_H
3 #define _LINUX_WAIT_BIT_H
4 
5 /*
6  * Linux wait-bit related types and methods:
7  */
8 #include <linux/wait.h>
9 
10 struct wait_bit_key {
11 	unsigned long		*flags;
12 	int			bit_nr;
13 	unsigned long		timeout;
14 };
15 
16 struct wait_bit_queue_entry {
17 	struct wait_bit_key	key;
18 	struct wait_queue_entry	wq_entry;
19 };
20 
21 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)					\
22 	{ .flags = word, .bit_nr = bit, }
23 
24 typedef int wait_bit_action_f(struct wait_bit_key *key, int mode);
25 
26 void __wake_up_bit(struct wait_queue_head *wq_head, unsigned long *word, int bit);
27 int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
28 int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
29 void wake_up_bit(unsigned long *word, int bit);
30 int out_of_line_wait_on_bit(unsigned long *word, int, wait_bit_action_f *action, unsigned int mode);
31 int out_of_line_wait_on_bit_timeout(unsigned long *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout);
32 int out_of_line_wait_on_bit_lock(unsigned long *word, int, wait_bit_action_f *action, unsigned int mode);
33 struct wait_queue_head *bit_waitqueue(unsigned long *word, int bit);
34 extern void __init wait_bit_init(void);
35 
36 int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key);
37 
38 #define DEFINE_WAIT_BIT(name, word, bit)					\
39 	struct wait_bit_queue_entry name = {					\
40 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),			\
41 		.wq_entry = {							\
42 			.private	= current,				\
43 			.func		= wake_bit_function,			\
44 			.entry		=					\
45 				LIST_HEAD_INIT((name).wq_entry.entry),		\
46 		},								\
47 	}
48 
49 extern int bit_wait(struct wait_bit_key *key, int mode);
50 extern int bit_wait_io(struct wait_bit_key *key, int mode);
51 extern int bit_wait_timeout(struct wait_bit_key *key, int mode);
52 extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode);
53 
54 /**
55  * wait_on_bit - wait for a bit to be cleared
56  * @word: the address containing the bit being waited on
57  * @bit: the bit at that address being waited on
58  * @mode: the task state to sleep in
59  *
60  * Wait for the given bit in an unsigned long or bitmap (see DECLARE_BITMAP())
61  * to be cleared.  The clearing of the bit must be signalled with
62  * wake_up_bit(), often as clear_and_wake_up_bit().
63  *
64  * The process will wait on a waitqueue selected by hash from a shared
65  * pool.  It will only be woken on a wake_up for the target bit, even
66  * if other processes on the same queue are waiting for other bits.
67  *
68  * Returned value will be zero if the bit was cleared in which case the
69  * call has ACQUIRE semantics, or %-EINTR if the process received a
70  * signal and the mode permitted wake up on that signal.
71  */
72 static inline int
73 wait_on_bit(unsigned long *word, int bit, unsigned mode)
74 {
75 	might_sleep();
76 	if (!test_bit_acquire(bit, word))
77 		return 0;
78 	return out_of_line_wait_on_bit(word, bit,
79 				       bit_wait,
80 				       mode);
81 }
82 
83 /**
84  * wait_on_bit_io - wait for a bit to be cleared
85  * @word: the address containing the bit being waited on
86  * @bit: the bit at that address being waited on
87  * @mode: the task state to sleep in
88  *
89  * Wait for the given bit in an unsigned long or bitmap (see DECLARE_BITMAP())
90  * to be cleared.  The clearing of the bit must be signalled with
91  * wake_up_bit(), often as clear_and_wake_up_bit().
92  *
93  * This is similar to wait_on_bit(), but calls io_schedule() instead of
94  * schedule() for the actual waiting.
95  *
96  * Returned value will be zero if the bit was cleared in which case the
97  * call has ACQUIRE semantics, or %-EINTR if the process received a
98  * signal and the mode permitted wake up on that signal.
99  */
100 static inline int
101 wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
102 {
103 	might_sleep();
104 	if (!test_bit_acquire(bit, word))
105 		return 0;
106 	return out_of_line_wait_on_bit(word, bit,
107 				       bit_wait_io,
108 				       mode);
109 }
110 
111 /**
112  * wait_on_bit_timeout - wait for a bit to be cleared or a timeout to elapse
113  * @word: the address containing the bit being waited on
114  * @bit: the bit at that address being waited on
115  * @mode: the task state to sleep in
116  * @timeout: timeout, in jiffies
117  *
118  * Wait for the given bit in an unsigned long or bitmap (see
119  * DECLARE_BITMAP()) to be cleared, or for a timeout to expire.  The
120  * clearing of the bit must be signalled with wake_up_bit(), often as
121  * clear_and_wake_up_bit().
122  *
123  * This is similar to wait_on_bit(), except it also takes a timeout
124  * parameter.
125  *
126  * Returned value will be zero if the bit was cleared in which case the
127  * call has ACQUIRE semantics, or %-EINTR if the process received a
128  * signal and the mode permitted wake up on that signal, or %-EAGAIN if the
129  * timeout elapsed.
130  */
131 static inline int
132 wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
133 		    unsigned long timeout)
134 {
135 	might_sleep();
136 	if (!test_bit_acquire(bit, word))
137 		return 0;
138 	return out_of_line_wait_on_bit_timeout(word, bit,
139 					       bit_wait_timeout,
140 					       mode, timeout);
141 }
142 
143 /**
144  * wait_on_bit_action - wait for a bit to be cleared
145  * @word: the address containing the bit waited on
146  * @bit: the bit at that address being waited on
147  * @action: the function used to sleep, which may take special actions
148  * @mode: the task state to sleep in
149  *
150  * Wait for the given bit in an unsigned long or bitmap (see DECLARE_BITMAP())
151  * to be cleared.  The clearing of the bit must be signalled with
152  * wake_up_bit(), often as clear_and_wake_up_bit().
153  *
154  * This is similar to wait_on_bit(), but calls @action() instead of
155  * schedule() for the actual waiting.
156  *
157  * Returned value will be zero if the bit was cleared in which case the
158  * call has ACQUIRE semantics, or the error code returned by @action if
159  * that call returned non-zero.
160  */
161 static inline int
162 wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
163 		   unsigned mode)
164 {
165 	might_sleep();
166 	if (!test_bit_acquire(bit, word))
167 		return 0;
168 	return out_of_line_wait_on_bit(word, bit, action, mode);
169 }
170 
171 /**
172  * wait_on_bit_lock - wait for a bit to be cleared, then set it
173  * @word: the address containing the bit being waited on
174  * @bit: the bit of the word being waited on and set
175  * @mode: the task state to sleep in
176  *
177  * Wait for the given bit in an unsigned long or bitmap (see
178  * DECLARE_BITMAP()) to be cleared.  The clearing of the bit must be
179  * signalled with wake_up_bit(), often as clear_and_wake_up_bit().  As
180  * soon as it is clear, atomically set it and return.
181  *
182  * This is similar to wait_on_bit(), but sets the bit before returning.
183  *
184  * Returned value will be zero if the bit was successfully set in which
185  * case the call has the same memory sequencing semantics as
186  * test_and_clear_bit(), or %-EINTR if the process received a signal and
187  * the mode permitted wake up on that signal.
188  */
189 static inline int
190 wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
191 {
192 	might_sleep();
193 	if (!test_and_set_bit(bit, word))
194 		return 0;
195 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
196 }
197 
198 /**
199  * wait_on_bit_lock_io - wait for a bit to be cleared, then set it
200  * @word: the address containing the bit being waited on
201  * @bit: the bit of the word being waited on and set
202  * @mode: the task state to sleep in
203  *
204  * Wait for the given bit in an unsigned long or bitmap (see
205  * DECLARE_BITMAP()) to be cleared.  The clearing of the bit must be
206  * signalled with wake_up_bit(), often as clear_and_wake_up_bit().  As
207  * soon as it is clear, atomically set it and return.
208  *
209  * This is similar to wait_on_bit_lock(), but calls io_schedule() instead
210  * of schedule().
211  *
212  * Returns zero if the bit was (eventually) found to be clear and was
213  * set.  Returns non-zero if a signal was delivered to the process and
214  * the @mode allows that signal to wake the process.
215  */
216 static inline int
217 wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
218 {
219 	might_sleep();
220 	if (!test_and_set_bit(bit, word))
221 		return 0;
222 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
223 }
224 
225 /**
226  * wait_on_bit_lock_action - wait for a bit to be cleared, then set it
227  * @word: the address containing the bit being waited on
228  * @bit: the bit of the word being waited on and set
229  * @action: the function used to sleep, which may take special actions
230  * @mode: the task state to sleep in
231  *
232  * This is similar to wait_on_bit_lock(), but calls @action() instead of
233  * schedule() for the actual waiting.
234  *
235  * Returned value will be zero if the bit was successfully set in which
236  * case the call has the same memory sequencing semantics as
237  * test_and_clear_bit(), or the error code returned by @action if that
238  * call returned non-zero.
239  */
240 static inline int
241 wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
242 			unsigned mode)
243 {
244 	might_sleep();
245 	if (!test_and_set_bit(bit, word))
246 		return 0;
247 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
248 }
249 
250 extern void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags);
251 extern void wake_up_var(void *var);
252 extern wait_queue_head_t *__var_waitqueue(void *p);
253 
254 #define ___wait_var_event(var, condition, state, exclusive, ret, cmd)	\
255 ({									\
256 	__label__ __out;						\
257 	struct wait_queue_head *__wq_head = __var_waitqueue(var);	\
258 	struct wait_bit_queue_entry __wbq_entry;			\
259 	long __ret = ret; /* explicit shadow */				\
260 									\
261 	init_wait_var_entry(&__wbq_entry, var,				\
262 			    exclusive ? WQ_FLAG_EXCLUSIVE : 0);		\
263 	for (;;) {							\
264 		long __int = prepare_to_wait_event(__wq_head,		\
265 						   &__wbq_entry.wq_entry, \
266 						   state);		\
267 		if (condition)						\
268 			break;						\
269 									\
270 		if (___wait_is_interruptible(state) && __int) {		\
271 			__ret = __int;					\
272 			goto __out;					\
273 		}							\
274 									\
275 		cmd;							\
276 	}								\
277 	finish_wait(__wq_head, &__wbq_entry.wq_entry);			\
278 __out:	__ret;								\
279 })
280 
281 #define __wait_var_event(var, condition)				\
282 	___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
283 			  schedule())
284 
285 #define wait_var_event(var, condition)					\
286 do {									\
287 	might_sleep();							\
288 	if (condition)							\
289 		break;							\
290 	__wait_var_event(var, condition);				\
291 } while (0)
292 
293 #define __wait_var_event_killable(var, condition)			\
294 	___wait_var_event(var, condition, TASK_KILLABLE, 0, 0,		\
295 			  schedule())
296 
297 #define wait_var_event_killable(var, condition)				\
298 ({									\
299 	int __ret = 0;							\
300 	might_sleep();							\
301 	if (!(condition))						\
302 		__ret = __wait_var_event_killable(var, condition);	\
303 	__ret;								\
304 })
305 
306 #define __wait_var_event_timeout(var, condition, timeout)		\
307 	___wait_var_event(var, ___wait_cond_timeout(condition),		\
308 			  TASK_UNINTERRUPTIBLE, 0, timeout,		\
309 			  __ret = schedule_timeout(__ret))
310 
311 #define wait_var_event_timeout(var, condition, timeout)			\
312 ({									\
313 	long __ret = timeout;						\
314 	might_sleep();							\
315 	if (!___wait_cond_timeout(condition))				\
316 		__ret = __wait_var_event_timeout(var, condition, timeout); \
317 	__ret;								\
318 })
319 
320 #define __wait_var_event_interruptible(var, condition)			\
321 	___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0,	\
322 			  schedule())
323 
324 #define wait_var_event_interruptible(var, condition)			\
325 ({									\
326 	int __ret = 0;							\
327 	might_sleep();							\
328 	if (!(condition))						\
329 		__ret = __wait_var_event_interruptible(var, condition);	\
330 	__ret;								\
331 })
332 
333 /**
334  * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit
335  * @bit: the bit of the word being waited on
336  * @word: the address containing the bit being waited on
337  *
338  * The designated bit is cleared and any tasks waiting in wait_on_bit()
339  * or similar will be woken.  This call has RELEASE semantics so that
340  * any changes to memory made before this call are guaranteed to be visible
341  * after the corresponding wait_on_bit() completes.
342  */
343 static inline void clear_and_wake_up_bit(int bit, unsigned long *word)
344 {
345 	clear_bit_unlock(bit, word);
346 	/* See wake_up_bit() for which memory barrier you need to use. */
347 	smp_mb__after_atomic();
348 	wake_up_bit(word, bit);
349 }
350 
351 #endif /* _LINUX_WAIT_BIT_H */
352