xref: /linux-6.15/include/linux/wait.h (revision fcc8487d)
1 #ifndef _LINUX_WAIT_H
2 #define _LINUX_WAIT_H
3 /*
4  * Linux wait queue related types and methods
5  */
6 #include <linux/list.h>
7 #include <linux/stddef.h>
8 #include <linux/spinlock.h>
9 
10 #include <asm/current.h>
11 #include <uapi/linux/wait.h>
12 
13 typedef struct __wait_queue wait_queue_t;
14 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
15 int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
16 
17 /* __wait_queue::flags */
18 #define WQ_FLAG_EXCLUSIVE	0x01
19 #define WQ_FLAG_WOKEN		0x02
20 
21 struct __wait_queue {
22 	unsigned int		flags;
23 	void			*private;
24 	wait_queue_func_t	func;
25 	struct list_head	task_list;
26 };
27 
28 struct wait_bit_key {
29 	void			*flags;
30 	int			bit_nr;
31 #define WAIT_ATOMIC_T_BIT_NR	-1
32 	unsigned long		timeout;
33 };
34 
35 struct wait_bit_queue {
36 	struct wait_bit_key	key;
37 	wait_queue_t		wait;
38 };
39 
40 struct __wait_queue_head {
41 	spinlock_t		lock;
42 	struct list_head	task_list;
43 };
44 typedef struct __wait_queue_head wait_queue_head_t;
45 
46 struct task_struct;
47 
48 /*
49  * Macros for declaration and initialisaton of the datatypes
50  */
51 
52 #define __WAITQUEUE_INITIALIZER(name, tsk) {				\
53 	.private	= tsk,						\
54 	.func		= default_wake_function,			\
55 	.task_list	= { NULL, NULL } }
56 
57 #define DECLARE_WAITQUEUE(name, tsk)					\
58 	wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
59 
60 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {				\
61 	.lock		= __SPIN_LOCK_UNLOCKED(name.lock),		\
62 	.task_list	= { &(name).task_list, &(name).task_list } }
63 
64 #define DECLARE_WAIT_QUEUE_HEAD(name) \
65 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
66 
67 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)				\
68 	{ .flags = word, .bit_nr = bit, }
69 
70 #define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)				\
71 	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
72 
73 extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
74 
75 #define init_waitqueue_head(q)				\
76 	do {						\
77 		static struct lock_class_key __key;	\
78 							\
79 		__init_waitqueue_head((q), #q, &__key);	\
80 	} while (0)
81 
82 #ifdef CONFIG_LOCKDEP
83 # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
84 	({ init_waitqueue_head(&name); name; })
85 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
86 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
87 #else
88 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
89 #endif
90 
91 static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
92 {
93 	q->flags	= 0;
94 	q->private	= p;
95 	q->func		= default_wake_function;
96 }
97 
98 static inline void
99 init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
100 {
101 	q->flags	= 0;
102 	q->private	= NULL;
103 	q->func		= func;
104 }
105 
106 /**
107  * waitqueue_active -- locklessly test for waiters on the queue
108  * @q: the waitqueue to test for waiters
109  *
110  * returns true if the wait list is not empty
111  *
112  * NOTE: this function is lockless and requires care, incorrect usage _will_
113  * lead to sporadic and non-obvious failure.
114  *
115  * Use either while holding wait_queue_head_t::lock or when used for wakeups
116  * with an extra smp_mb() like:
117  *
118  *      CPU0 - waker                    CPU1 - waiter
119  *
120  *                                      for (;;) {
121  *      @cond = true;                     prepare_to_wait(&wq, &wait, state);
122  *      smp_mb();                         // smp_mb() from set_current_state()
123  *      if (waitqueue_active(wq))         if (@cond)
124  *        wake_up(wq);                      break;
125  *                                        schedule();
126  *                                      }
127  *                                      finish_wait(&wq, &wait);
128  *
129  * Because without the explicit smp_mb() it's possible for the
130  * waitqueue_active() load to get hoisted over the @cond store such that we'll
131  * observe an empty wait list while the waiter might not observe @cond.
132  *
133  * Also note that this 'optimization' trades a spin_lock() for an smp_mb(),
134  * which (when the lock is uncontended) are of roughly equal cost.
135  */
136 static inline int waitqueue_active(wait_queue_head_t *q)
137 {
138 	return !list_empty(&q->task_list);
139 }
140 
141 /**
142  * wq_has_sleeper - check if there are any waiting processes
143  * @wq: wait queue head
144  *
145  * Returns true if wq has waiting processes
146  *
147  * Please refer to the comment for waitqueue_active.
148  */
149 static inline bool wq_has_sleeper(wait_queue_head_t *wq)
150 {
151 	/*
152 	 * We need to be sure we are in sync with the
153 	 * add_wait_queue modifications to the wait queue.
154 	 *
155 	 * This memory barrier should be paired with one on the
156 	 * waiting side.
157 	 */
158 	smp_mb();
159 	return waitqueue_active(wq);
160 }
161 
162 extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
163 extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
164 extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
165 
166 static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
167 {
168 	list_add(&new->task_list, &head->task_list);
169 }
170 
171 /*
172  * Used for wake-one threads:
173  */
174 static inline void
175 __add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
176 {
177 	wait->flags |= WQ_FLAG_EXCLUSIVE;
178 	__add_wait_queue(q, wait);
179 }
180 
181 static inline void __add_wait_queue_tail(wait_queue_head_t *head,
182 					 wait_queue_t *new)
183 {
184 	list_add_tail(&new->task_list, &head->task_list);
185 }
186 
187 static inline void
188 __add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
189 {
190 	wait->flags |= WQ_FLAG_EXCLUSIVE;
191 	__add_wait_queue_tail(q, wait);
192 }
193 
194 static inline void
195 __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
196 {
197 	list_del(&old->task_list);
198 }
199 
200 typedef int wait_bit_action_f(struct wait_bit_key *, int mode);
201 void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
202 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
203 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
204 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
205 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
206 void __wake_up_bit(wait_queue_head_t *, void *, int);
207 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
208 int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
209 void wake_up_bit(void *, int);
210 void wake_up_atomic_t(atomic_t *);
211 int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
212 int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
213 int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
214 int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
215 wait_queue_head_t *bit_waitqueue(void *, int);
216 
217 #define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
218 #define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
219 #define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
220 #define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
221 #define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
222 
223 #define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
224 #define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
225 #define wake_up_interruptible_all(x)	__wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
226 #define wake_up_interruptible_sync(x)	__wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
227 
228 /*
229  * Wakeup macros to be used to report events to the targets.
230  */
231 #define wake_up_poll(x, m)						\
232 	__wake_up(x, TASK_NORMAL, 1, (void *) (m))
233 #define wake_up_locked_poll(x, m)					\
234 	__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
235 #define wake_up_interruptible_poll(x, m)				\
236 	__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
237 #define wake_up_interruptible_sync_poll(x, m)				\
238 	__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
239 
240 #define ___wait_cond_timeout(condition)					\
241 ({									\
242 	bool __cond = (condition);					\
243 	if (__cond && !__ret)						\
244 		__ret = 1;						\
245 	__cond || !__ret;						\
246 })
247 
248 #define ___wait_is_interruptible(state)					\
249 	(!__builtin_constant_p(state) ||				\
250 		state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE)	\
251 
252 extern void init_wait_entry(wait_queue_t *__wait, int flags);
253 
254 /*
255  * The below macro ___wait_event() has an explicit shadow of the __ret
256  * variable when used from the wait_event_*() macros.
257  *
258  * This is so that both can use the ___wait_cond_timeout() construct
259  * to wrap the condition.
260  *
261  * The type inconsistency of the wait_event_*() __ret variable is also
262  * on purpose; we use long where we can return timeout values and int
263  * otherwise.
264  */
265 
266 #define ___wait_event(wq, condition, state, exclusive, ret, cmd)	\
267 ({									\
268 	__label__ __out;						\
269 	wait_queue_t __wait;						\
270 	long __ret = ret;	/* explicit shadow */			\
271 									\
272 	init_wait_entry(&__wait, exclusive ? WQ_FLAG_EXCLUSIVE : 0);	\
273 	for (;;) {							\
274 		long __int = prepare_to_wait_event(&wq, &__wait, state);\
275 									\
276 		if (condition)						\
277 			break;						\
278 									\
279 		if (___wait_is_interruptible(state) && __int) {		\
280 			__ret = __int;					\
281 			goto __out;					\
282 		}							\
283 									\
284 		cmd;							\
285 	}								\
286 	finish_wait(&wq, &__wait);					\
287 __out:	__ret;								\
288 })
289 
290 #define __wait_event(wq, condition)					\
291 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
292 			    schedule())
293 
294 /**
295  * wait_event - sleep until a condition gets true
296  * @wq: the waitqueue to wait on
297  * @condition: a C expression for the event to wait for
298  *
299  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
300  * @condition evaluates to true. The @condition is checked each time
301  * the waitqueue @wq is woken up.
302  *
303  * wake_up() has to be called after changing any variable that could
304  * change the result of the wait condition.
305  */
306 #define wait_event(wq, condition)					\
307 do {									\
308 	might_sleep();							\
309 	if (condition)							\
310 		break;							\
311 	__wait_event(wq, condition);					\
312 } while (0)
313 
314 #define __io_wait_event(wq, condition)					\
315 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
316 			    io_schedule())
317 
318 /*
319  * io_wait_event() -- like wait_event() but with io_schedule()
320  */
321 #define io_wait_event(wq, condition)					\
322 do {									\
323 	might_sleep();							\
324 	if (condition)							\
325 		break;							\
326 	__io_wait_event(wq, condition);					\
327 } while (0)
328 
329 #define __wait_event_freezable(wq, condition)				\
330 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
331 			    schedule(); try_to_freeze())
332 
333 /**
334  * wait_event_freezable - sleep (or freeze) until a condition gets true
335  * @wq: the waitqueue to wait on
336  * @condition: a C expression for the event to wait for
337  *
338  * The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute
339  * to system load) until the @condition evaluates to true. The
340  * @condition is checked each time the waitqueue @wq is woken up.
341  *
342  * wake_up() has to be called after changing any variable that could
343  * change the result of the wait condition.
344  */
345 #define wait_event_freezable(wq, condition)				\
346 ({									\
347 	int __ret = 0;							\
348 	might_sleep();							\
349 	if (!(condition))						\
350 		__ret = __wait_event_freezable(wq, condition);		\
351 	__ret;								\
352 })
353 
354 #define __wait_event_timeout(wq, condition, timeout)			\
355 	___wait_event(wq, ___wait_cond_timeout(condition),		\
356 		      TASK_UNINTERRUPTIBLE, 0, timeout,			\
357 		      __ret = schedule_timeout(__ret))
358 
359 /**
360  * wait_event_timeout - sleep until a condition gets true or a timeout elapses
361  * @wq: the waitqueue to wait on
362  * @condition: a C expression for the event to wait for
363  * @timeout: timeout, in jiffies
364  *
365  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
366  * @condition evaluates to true. The @condition is checked each time
367  * the waitqueue @wq is woken up.
368  *
369  * wake_up() has to be called after changing any variable that could
370  * change the result of the wait condition.
371  *
372  * Returns:
373  * 0 if the @condition evaluated to %false after the @timeout elapsed,
374  * 1 if the @condition evaluated to %true after the @timeout elapsed,
375  * or the remaining jiffies (at least 1) if the @condition evaluated
376  * to %true before the @timeout elapsed.
377  */
378 #define wait_event_timeout(wq, condition, timeout)			\
379 ({									\
380 	long __ret = timeout;						\
381 	might_sleep();							\
382 	if (!___wait_cond_timeout(condition))				\
383 		__ret = __wait_event_timeout(wq, condition, timeout);	\
384 	__ret;								\
385 })
386 
387 #define __wait_event_freezable_timeout(wq, condition, timeout)		\
388 	___wait_event(wq, ___wait_cond_timeout(condition),		\
389 		      TASK_INTERRUPTIBLE, 0, timeout,			\
390 		      __ret = schedule_timeout(__ret); try_to_freeze())
391 
392 /*
393  * like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid
394  * increasing load and is freezable.
395  */
396 #define wait_event_freezable_timeout(wq, condition, timeout)		\
397 ({									\
398 	long __ret = timeout;						\
399 	might_sleep();							\
400 	if (!___wait_cond_timeout(condition))				\
401 		__ret = __wait_event_freezable_timeout(wq, condition, timeout);	\
402 	__ret;								\
403 })
404 
405 #define __wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
406 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 1, 0,	\
407 			    cmd1; schedule(); cmd2)
408 /*
409  * Just like wait_event_cmd(), except it sets exclusive flag
410  */
411 #define wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
412 do {									\
413 	if (condition)							\
414 		break;							\
415 	__wait_event_exclusive_cmd(wq, condition, cmd1, cmd2);		\
416 } while (0)
417 
418 #define __wait_event_cmd(wq, condition, cmd1, cmd2)			\
419 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
420 			    cmd1; schedule(); cmd2)
421 
422 /**
423  * wait_event_cmd - sleep until a condition gets true
424  * @wq: the waitqueue to wait on
425  * @condition: a C expression for the event to wait for
426  * @cmd1: the command will be executed before sleep
427  * @cmd2: the command will be executed after sleep
428  *
429  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
430  * @condition evaluates to true. The @condition is checked each time
431  * the waitqueue @wq is woken up.
432  *
433  * wake_up() has to be called after changing any variable that could
434  * change the result of the wait condition.
435  */
436 #define wait_event_cmd(wq, condition, cmd1, cmd2)			\
437 do {									\
438 	if (condition)							\
439 		break;							\
440 	__wait_event_cmd(wq, condition, cmd1, cmd2);			\
441 } while (0)
442 
443 #define __wait_event_interruptible(wq, condition)			\
444 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
445 		      schedule())
446 
447 /**
448  * wait_event_interruptible - sleep until a condition gets true
449  * @wq: the waitqueue to wait on
450  * @condition: a C expression for the event to wait for
451  *
452  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
453  * @condition evaluates to true or a signal is received.
454  * The @condition is checked each time the waitqueue @wq is woken up.
455  *
456  * wake_up() has to be called after changing any variable that could
457  * change the result of the wait condition.
458  *
459  * The function will return -ERESTARTSYS if it was interrupted by a
460  * signal and 0 if @condition evaluated to true.
461  */
462 #define wait_event_interruptible(wq, condition)				\
463 ({									\
464 	int __ret = 0;							\
465 	might_sleep();							\
466 	if (!(condition))						\
467 		__ret = __wait_event_interruptible(wq, condition);	\
468 	__ret;								\
469 })
470 
471 #define __wait_event_interruptible_timeout(wq, condition, timeout)	\
472 	___wait_event(wq, ___wait_cond_timeout(condition),		\
473 		      TASK_INTERRUPTIBLE, 0, timeout,			\
474 		      __ret = schedule_timeout(__ret))
475 
476 /**
477  * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
478  * @wq: the waitqueue to wait on
479  * @condition: a C expression for the event to wait for
480  * @timeout: timeout, in jiffies
481  *
482  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
483  * @condition evaluates to true or a signal is received.
484  * The @condition is checked each time the waitqueue @wq is woken up.
485  *
486  * wake_up() has to be called after changing any variable that could
487  * change the result of the wait condition.
488  *
489  * Returns:
490  * 0 if the @condition evaluated to %false after the @timeout elapsed,
491  * 1 if the @condition evaluated to %true after the @timeout elapsed,
492  * the remaining jiffies (at least 1) if the @condition evaluated
493  * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
494  * interrupted by a signal.
495  */
496 #define wait_event_interruptible_timeout(wq, condition, timeout)	\
497 ({									\
498 	long __ret = timeout;						\
499 	might_sleep();							\
500 	if (!___wait_cond_timeout(condition))				\
501 		__ret = __wait_event_interruptible_timeout(wq,		\
502 						condition, timeout);	\
503 	__ret;								\
504 })
505 
506 #define __wait_event_hrtimeout(wq, condition, timeout, state)		\
507 ({									\
508 	int __ret = 0;							\
509 	struct hrtimer_sleeper __t;					\
510 									\
511 	hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC,		\
512 			      HRTIMER_MODE_REL);			\
513 	hrtimer_init_sleeper(&__t, current);				\
514 	if ((timeout) != KTIME_MAX)				\
515 		hrtimer_start_range_ns(&__t.timer, timeout,		\
516 				       current->timer_slack_ns,		\
517 				       HRTIMER_MODE_REL);		\
518 									\
519 	__ret = ___wait_event(wq, condition, state, 0, 0,		\
520 		if (!__t.task) {					\
521 			__ret = -ETIME;					\
522 			break;						\
523 		}							\
524 		schedule());						\
525 									\
526 	hrtimer_cancel(&__t.timer);					\
527 	destroy_hrtimer_on_stack(&__t.timer);				\
528 	__ret;								\
529 })
530 
531 /**
532  * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
533  * @wq: the waitqueue to wait on
534  * @condition: a C expression for the event to wait for
535  * @timeout: timeout, as a ktime_t
536  *
537  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
538  * @condition evaluates to true or a signal is received.
539  * The @condition is checked each time the waitqueue @wq is woken up.
540  *
541  * wake_up() has to be called after changing any variable that could
542  * change the result of the wait condition.
543  *
544  * The function returns 0 if @condition became true, or -ETIME if the timeout
545  * elapsed.
546  */
547 #define wait_event_hrtimeout(wq, condition, timeout)			\
548 ({									\
549 	int __ret = 0;							\
550 	might_sleep();							\
551 	if (!(condition))						\
552 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
553 					       TASK_UNINTERRUPTIBLE);	\
554 	__ret;								\
555 })
556 
557 /**
558  * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
559  * @wq: the waitqueue to wait on
560  * @condition: a C expression for the event to wait for
561  * @timeout: timeout, as a ktime_t
562  *
563  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
564  * @condition evaluates to true or a signal is received.
565  * The @condition is checked each time the waitqueue @wq is woken up.
566  *
567  * wake_up() has to be called after changing any variable that could
568  * change the result of the wait condition.
569  *
570  * The function returns 0 if @condition became true, -ERESTARTSYS if it was
571  * interrupted by a signal, or -ETIME if the timeout elapsed.
572  */
573 #define wait_event_interruptible_hrtimeout(wq, condition, timeout)	\
574 ({									\
575 	long __ret = 0;							\
576 	might_sleep();							\
577 	if (!(condition))						\
578 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
579 					       TASK_INTERRUPTIBLE);	\
580 	__ret;								\
581 })
582 
583 #define __wait_event_interruptible_exclusive(wq, condition)		\
584 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
585 		      schedule())
586 
587 #define wait_event_interruptible_exclusive(wq, condition)		\
588 ({									\
589 	int __ret = 0;							\
590 	might_sleep();							\
591 	if (!(condition))						\
592 		__ret = __wait_event_interruptible_exclusive(wq, condition);\
593 	__ret;								\
594 })
595 
596 #define __wait_event_killable_exclusive(wq, condition)			\
597 	___wait_event(wq, condition, TASK_KILLABLE, 1, 0,		\
598 		      schedule())
599 
600 #define wait_event_killable_exclusive(wq, condition)			\
601 ({									\
602 	int __ret = 0;							\
603 	might_sleep();							\
604 	if (!(condition))						\
605 		__ret = __wait_event_killable_exclusive(wq, condition);	\
606 	__ret;								\
607 })
608 
609 
610 #define __wait_event_freezable_exclusive(wq, condition)			\
611 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
612 			schedule(); try_to_freeze())
613 
614 #define wait_event_freezable_exclusive(wq, condition)			\
615 ({									\
616 	int __ret = 0;							\
617 	might_sleep();							\
618 	if (!(condition))						\
619 		__ret = __wait_event_freezable_exclusive(wq, condition);\
620 	__ret;								\
621 })
622 
623 extern int do_wait_intr(wait_queue_head_t *, wait_queue_t *);
624 extern int do_wait_intr_irq(wait_queue_head_t *, wait_queue_t *);
625 
626 #define __wait_event_interruptible_locked(wq, condition, exclusive, fn) \
627 ({									\
628 	int __ret;							\
629 	DEFINE_WAIT(__wait);						\
630 	if (exclusive)							\
631 		__wait.flags |= WQ_FLAG_EXCLUSIVE;			\
632 	do {								\
633 		__ret = fn(&(wq), &__wait);				\
634 		if (__ret)						\
635 			break;						\
636 	} while (!(condition));						\
637 	__remove_wait_queue(&(wq), &__wait);				\
638 	__set_current_state(TASK_RUNNING);				\
639 	__ret;								\
640 })
641 
642 
643 /**
644  * wait_event_interruptible_locked - sleep until a condition gets true
645  * @wq: the waitqueue to wait on
646  * @condition: a C expression for the event to wait for
647  *
648  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
649  * @condition evaluates to true or a signal is received.
650  * The @condition is checked each time the waitqueue @wq is woken up.
651  *
652  * It must be called with wq.lock being held.  This spinlock is
653  * unlocked while sleeping but @condition testing is done while lock
654  * is held and when this macro exits the lock is held.
655  *
656  * The lock is locked/unlocked using spin_lock()/spin_unlock()
657  * functions which must match the way they are locked/unlocked outside
658  * of this macro.
659  *
660  * wake_up_locked() has to be called after changing any variable that could
661  * change the result of the wait condition.
662  *
663  * The function will return -ERESTARTSYS if it was interrupted by a
664  * signal and 0 if @condition evaluated to true.
665  */
666 #define wait_event_interruptible_locked(wq, condition)			\
667 	((condition)							\
668 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, do_wait_intr))
669 
670 /**
671  * wait_event_interruptible_locked_irq - sleep until a condition gets true
672  * @wq: the waitqueue to wait on
673  * @condition: a C expression for the event to wait for
674  *
675  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
676  * @condition evaluates to true or a signal is received.
677  * The @condition is checked each time the waitqueue @wq is woken up.
678  *
679  * It must be called with wq.lock being held.  This spinlock is
680  * unlocked while sleeping but @condition testing is done while lock
681  * is held and when this macro exits the lock is held.
682  *
683  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
684  * functions which must match the way they are locked/unlocked outside
685  * of this macro.
686  *
687  * wake_up_locked() has to be called after changing any variable that could
688  * change the result of the wait condition.
689  *
690  * The function will return -ERESTARTSYS if it was interrupted by a
691  * signal and 0 if @condition evaluated to true.
692  */
693 #define wait_event_interruptible_locked_irq(wq, condition)		\
694 	((condition)							\
695 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, do_wait_intr_irq))
696 
697 /**
698  * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
699  * @wq: the waitqueue to wait on
700  * @condition: a C expression for the event to wait for
701  *
702  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
703  * @condition evaluates to true or a signal is received.
704  * The @condition is checked each time the waitqueue @wq is woken up.
705  *
706  * It must be called with wq.lock being held.  This spinlock is
707  * unlocked while sleeping but @condition testing is done while lock
708  * is held and when this macro exits the lock is held.
709  *
710  * The lock is locked/unlocked using spin_lock()/spin_unlock()
711  * functions which must match the way they are locked/unlocked outside
712  * of this macro.
713  *
714  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
715  * set thus when other process waits process on the list if this
716  * process is awaken further processes are not considered.
717  *
718  * wake_up_locked() has to be called after changing any variable that could
719  * change the result of the wait condition.
720  *
721  * The function will return -ERESTARTSYS if it was interrupted by a
722  * signal and 0 if @condition evaluated to true.
723  */
724 #define wait_event_interruptible_exclusive_locked(wq, condition)	\
725 	((condition)							\
726 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, do_wait_intr))
727 
728 /**
729  * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
730  * @wq: the waitqueue to wait on
731  * @condition: a C expression for the event to wait for
732  *
733  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
734  * @condition evaluates to true or a signal is received.
735  * The @condition is checked each time the waitqueue @wq is woken up.
736  *
737  * It must be called with wq.lock being held.  This spinlock is
738  * unlocked while sleeping but @condition testing is done while lock
739  * is held and when this macro exits the lock is held.
740  *
741  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
742  * functions which must match the way they are locked/unlocked outside
743  * of this macro.
744  *
745  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
746  * set thus when other process waits process on the list if this
747  * process is awaken further processes are not considered.
748  *
749  * wake_up_locked() has to be called after changing any variable that could
750  * change the result of the wait condition.
751  *
752  * The function will return -ERESTARTSYS if it was interrupted by a
753  * signal and 0 if @condition evaluated to true.
754  */
755 #define wait_event_interruptible_exclusive_locked_irq(wq, condition)	\
756 	((condition)							\
757 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, do_wait_intr_irq))
758 
759 
760 #define __wait_event_killable(wq, condition)				\
761 	___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
762 
763 /**
764  * wait_event_killable - sleep until a condition gets true
765  * @wq: the waitqueue to wait on
766  * @condition: a C expression for the event to wait for
767  *
768  * The process is put to sleep (TASK_KILLABLE) until the
769  * @condition evaluates to true or a signal is received.
770  * The @condition is checked each time the waitqueue @wq is woken up.
771  *
772  * wake_up() has to be called after changing any variable that could
773  * change the result of the wait condition.
774  *
775  * The function will return -ERESTARTSYS if it was interrupted by a
776  * signal and 0 if @condition evaluated to true.
777  */
778 #define wait_event_killable(wq, condition)				\
779 ({									\
780 	int __ret = 0;							\
781 	might_sleep();							\
782 	if (!(condition))						\
783 		__ret = __wait_event_killable(wq, condition);		\
784 	__ret;								\
785 })
786 
787 
788 #define __wait_event_lock_irq(wq, condition, lock, cmd)			\
789 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
790 			    spin_unlock_irq(&lock);			\
791 			    cmd;					\
792 			    schedule();					\
793 			    spin_lock_irq(&lock))
794 
795 /**
796  * wait_event_lock_irq_cmd - sleep until a condition gets true. The
797  *			     condition is checked under the lock. This
798  *			     is expected to be called with the lock
799  *			     taken.
800  * @wq: the waitqueue to wait on
801  * @condition: a C expression for the event to wait for
802  * @lock: a locked spinlock_t, which will be released before cmd
803  *	  and schedule() and reacquired afterwards.
804  * @cmd: a command which is invoked outside the critical section before
805  *	 sleep
806  *
807  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
808  * @condition evaluates to true. The @condition is checked each time
809  * the waitqueue @wq is woken up.
810  *
811  * wake_up() has to be called after changing any variable that could
812  * change the result of the wait condition.
813  *
814  * This is supposed to be called while holding the lock. The lock is
815  * dropped before invoking the cmd and going to sleep and is reacquired
816  * afterwards.
817  */
818 #define wait_event_lock_irq_cmd(wq, condition, lock, cmd)		\
819 do {									\
820 	if (condition)							\
821 		break;							\
822 	__wait_event_lock_irq(wq, condition, lock, cmd);		\
823 } while (0)
824 
825 /**
826  * wait_event_lock_irq - sleep until a condition gets true. The
827  *			 condition is checked under the lock. This
828  *			 is expected to be called with the lock
829  *			 taken.
830  * @wq: the waitqueue to wait on
831  * @condition: a C expression for the event to wait for
832  * @lock: a locked spinlock_t, which will be released before schedule()
833  *	  and reacquired afterwards.
834  *
835  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
836  * @condition evaluates to true. The @condition is checked each time
837  * the waitqueue @wq is woken up.
838  *
839  * wake_up() has to be called after changing any variable that could
840  * change the result of the wait condition.
841  *
842  * This is supposed to be called while holding the lock. The lock is
843  * dropped before going to sleep and is reacquired afterwards.
844  */
845 #define wait_event_lock_irq(wq, condition, lock)			\
846 do {									\
847 	if (condition)							\
848 		break;							\
849 	__wait_event_lock_irq(wq, condition, lock, );			\
850 } while (0)
851 
852 
853 #define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd)	\
854 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
855 		      spin_unlock_irq(&lock);				\
856 		      cmd;						\
857 		      schedule();					\
858 		      spin_lock_irq(&lock))
859 
860 /**
861  * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
862  *		The condition is checked under the lock. This is expected to
863  *		be called with the lock taken.
864  * @wq: the waitqueue to wait on
865  * @condition: a C expression for the event to wait for
866  * @lock: a locked spinlock_t, which will be released before cmd and
867  *	  schedule() and reacquired afterwards.
868  * @cmd: a command which is invoked outside the critical section before
869  *	 sleep
870  *
871  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
872  * @condition evaluates to true or a signal is received. The @condition is
873  * checked each time the waitqueue @wq is woken up.
874  *
875  * wake_up() has to be called after changing any variable that could
876  * change the result of the wait condition.
877  *
878  * This is supposed to be called while holding the lock. The lock is
879  * dropped before invoking the cmd and going to sleep and is reacquired
880  * afterwards.
881  *
882  * The macro will return -ERESTARTSYS if it was interrupted by a signal
883  * and 0 if @condition evaluated to true.
884  */
885 #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd)	\
886 ({									\
887 	int __ret = 0;							\
888 	if (!(condition))						\
889 		__ret = __wait_event_interruptible_lock_irq(wq,		\
890 						condition, lock, cmd);	\
891 	__ret;								\
892 })
893 
894 /**
895  * wait_event_interruptible_lock_irq - sleep until a condition gets true.
896  *		The condition is checked under the lock. This is expected
897  *		to be called with the lock taken.
898  * @wq: the waitqueue to wait on
899  * @condition: a C expression for the event to wait for
900  * @lock: a locked spinlock_t, which will be released before schedule()
901  *	  and reacquired afterwards.
902  *
903  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
904  * @condition evaluates to true or signal is received. The @condition is
905  * checked each time the waitqueue @wq is woken up.
906  *
907  * wake_up() has to be called after changing any variable that could
908  * change the result of the wait condition.
909  *
910  * This is supposed to be called while holding the lock. The lock is
911  * dropped before going to sleep and is reacquired afterwards.
912  *
913  * The macro will return -ERESTARTSYS if it was interrupted by a signal
914  * and 0 if @condition evaluated to true.
915  */
916 #define wait_event_interruptible_lock_irq(wq, condition, lock)		\
917 ({									\
918 	int __ret = 0;							\
919 	if (!(condition))						\
920 		__ret = __wait_event_interruptible_lock_irq(wq,		\
921 						condition, lock,);	\
922 	__ret;								\
923 })
924 
925 #define __wait_event_interruptible_lock_irq_timeout(wq, condition,	\
926 						    lock, timeout)	\
927 	___wait_event(wq, ___wait_cond_timeout(condition),		\
928 		      TASK_INTERRUPTIBLE, 0, timeout,			\
929 		      spin_unlock_irq(&lock);				\
930 		      __ret = schedule_timeout(__ret);			\
931 		      spin_lock_irq(&lock));
932 
933 /**
934  * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
935  *		true or a timeout elapses. The condition is checked under
936  *		the lock. This is expected to be called with the lock taken.
937  * @wq: the waitqueue to wait on
938  * @condition: a C expression for the event to wait for
939  * @lock: a locked spinlock_t, which will be released before schedule()
940  *	  and reacquired afterwards.
941  * @timeout: timeout, in jiffies
942  *
943  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
944  * @condition evaluates to true or signal is received. The @condition is
945  * checked each time the waitqueue @wq is woken up.
946  *
947  * wake_up() has to be called after changing any variable that could
948  * change the result of the wait condition.
949  *
950  * This is supposed to be called while holding the lock. The lock is
951  * dropped before going to sleep and is reacquired afterwards.
952  *
953  * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
954  * was interrupted by a signal, and the remaining jiffies otherwise
955  * if the condition evaluated to true before the timeout elapsed.
956  */
957 #define wait_event_interruptible_lock_irq_timeout(wq, condition, lock,	\
958 						  timeout)		\
959 ({									\
960 	long __ret = timeout;						\
961 	if (!___wait_cond_timeout(condition))				\
962 		__ret = __wait_event_interruptible_lock_irq_timeout(	\
963 					wq, condition, lock, timeout);	\
964 	__ret;								\
965 })
966 
967 /*
968  * Waitqueues which are removed from the waitqueue_head at wakeup time
969  */
970 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
971 void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
972 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
973 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
974 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
975 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
976 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
977 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
978 
979 #define DEFINE_WAIT_FUNC(name, function)				\
980 	wait_queue_t name = {						\
981 		.private	= current,				\
982 		.func		= function,				\
983 		.task_list	= LIST_HEAD_INIT((name).task_list),	\
984 	}
985 
986 #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
987 
988 #define DEFINE_WAIT_BIT(name, word, bit)				\
989 	struct wait_bit_queue name = {					\
990 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),		\
991 		.wait	= {						\
992 			.private	= current,			\
993 			.func		= wake_bit_function,		\
994 			.task_list	=				\
995 				LIST_HEAD_INIT((name).wait.task_list),	\
996 		},							\
997 	}
998 
999 #define init_wait(wait)							\
1000 	do {								\
1001 		(wait)->private = current;				\
1002 		(wait)->func = autoremove_wake_function;		\
1003 		INIT_LIST_HEAD(&(wait)->task_list);			\
1004 		(wait)->flags = 0;					\
1005 	} while (0)
1006 
1007 
1008 extern int bit_wait(struct wait_bit_key *, int);
1009 extern int bit_wait_io(struct wait_bit_key *, int);
1010 extern int bit_wait_timeout(struct wait_bit_key *, int);
1011 extern int bit_wait_io_timeout(struct wait_bit_key *, int);
1012 
1013 /**
1014  * wait_on_bit - wait for a bit to be cleared
1015  * @word: the word being waited on, a kernel virtual address
1016  * @bit: the bit of the word being waited on
1017  * @mode: the task state to sleep in
1018  *
1019  * There is a standard hashed waitqueue table for generic use. This
1020  * is the part of the hashtable's accessor API that waits on a bit.
1021  * For instance, if one were to have waiters on a bitflag, one would
1022  * call wait_on_bit() in threads waiting for the bit to clear.
1023  * One uses wait_on_bit() where one is waiting for the bit to clear,
1024  * but has no intention of setting it.
1025  * Returned value will be zero if the bit was cleared, or non-zero
1026  * if the process received a signal and the mode permitted wakeup
1027  * on that signal.
1028  */
1029 static inline int
1030 wait_on_bit(unsigned long *word, int bit, unsigned mode)
1031 {
1032 	might_sleep();
1033 	if (!test_bit(bit, word))
1034 		return 0;
1035 	return out_of_line_wait_on_bit(word, bit,
1036 				       bit_wait,
1037 				       mode);
1038 }
1039 
1040 /**
1041  * wait_on_bit_io - wait for a bit to be cleared
1042  * @word: the word being waited on, a kernel virtual address
1043  * @bit: the bit of the word being waited on
1044  * @mode: the task state to sleep in
1045  *
1046  * Use the standard hashed waitqueue table to wait for a bit
1047  * to be cleared.  This is similar to wait_on_bit(), but calls
1048  * io_schedule() instead of schedule() for the actual waiting.
1049  *
1050  * Returned value will be zero if the bit was cleared, or non-zero
1051  * if the process received a signal and the mode permitted wakeup
1052  * on that signal.
1053  */
1054 static inline int
1055 wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
1056 {
1057 	might_sleep();
1058 	if (!test_bit(bit, word))
1059 		return 0;
1060 	return out_of_line_wait_on_bit(word, bit,
1061 				       bit_wait_io,
1062 				       mode);
1063 }
1064 
1065 /**
1066  * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
1067  * @word: the word being waited on, a kernel virtual address
1068  * @bit: the bit of the word being waited on
1069  * @mode: the task state to sleep in
1070  * @timeout: timeout, in jiffies
1071  *
1072  * Use the standard hashed waitqueue table to wait for a bit
1073  * to be cleared. This is similar to wait_on_bit(), except also takes a
1074  * timeout parameter.
1075  *
1076  * Returned value will be zero if the bit was cleared before the
1077  * @timeout elapsed, or non-zero if the @timeout elapsed or process
1078  * received a signal and the mode permitted wakeup on that signal.
1079  */
1080 static inline int
1081 wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
1082 		    unsigned long timeout)
1083 {
1084 	might_sleep();
1085 	if (!test_bit(bit, word))
1086 		return 0;
1087 	return out_of_line_wait_on_bit_timeout(word, bit,
1088 					       bit_wait_timeout,
1089 					       mode, timeout);
1090 }
1091 
1092 /**
1093  * wait_on_bit_action - wait for a bit to be cleared
1094  * @word: the word being waited on, a kernel virtual address
1095  * @bit: the bit of the word being waited on
1096  * @action: the function used to sleep, which may take special actions
1097  * @mode: the task state to sleep in
1098  *
1099  * Use the standard hashed waitqueue table to wait for a bit
1100  * to be cleared, and allow the waiting action to be specified.
1101  * This is like wait_on_bit() but allows fine control of how the waiting
1102  * is done.
1103  *
1104  * Returned value will be zero if the bit was cleared, or non-zero
1105  * if the process received a signal and the mode permitted wakeup
1106  * on that signal.
1107  */
1108 static inline int
1109 wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
1110 		   unsigned mode)
1111 {
1112 	might_sleep();
1113 	if (!test_bit(bit, word))
1114 		return 0;
1115 	return out_of_line_wait_on_bit(word, bit, action, mode);
1116 }
1117 
1118 /**
1119  * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
1120  * @word: the word being waited on, a kernel virtual address
1121  * @bit: the bit of the word being waited on
1122  * @mode: the task state to sleep in
1123  *
1124  * There is a standard hashed waitqueue table for generic use. This
1125  * is the part of the hashtable's accessor API that waits on a bit
1126  * when one intends to set it, for instance, trying to lock bitflags.
1127  * For instance, if one were to have waiters trying to set bitflag
1128  * and waiting for it to clear before setting it, one would call
1129  * wait_on_bit() in threads waiting to be able to set the bit.
1130  * One uses wait_on_bit_lock() where one is waiting for the bit to
1131  * clear with the intention of setting it, and when done, clearing it.
1132  *
1133  * Returns zero if the bit was (eventually) found to be clear and was
1134  * set.  Returns non-zero if a signal was delivered to the process and
1135  * the @mode allows that signal to wake the process.
1136  */
1137 static inline int
1138 wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
1139 {
1140 	might_sleep();
1141 	if (!test_and_set_bit(bit, word))
1142 		return 0;
1143 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
1144 }
1145 
1146 /**
1147  * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
1148  * @word: the word being waited on, a kernel virtual address
1149  * @bit: the bit of the word being waited on
1150  * @mode: the task state to sleep in
1151  *
1152  * Use the standard hashed waitqueue table to wait for a bit
1153  * to be cleared and then to atomically set it.  This is similar
1154  * to wait_on_bit(), but calls io_schedule() instead of schedule()
1155  * for the actual waiting.
1156  *
1157  * Returns zero if the bit was (eventually) found to be clear and was
1158  * set.  Returns non-zero if a signal was delivered to the process and
1159  * the @mode allows that signal to wake the process.
1160  */
1161 static inline int
1162 wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
1163 {
1164 	might_sleep();
1165 	if (!test_and_set_bit(bit, word))
1166 		return 0;
1167 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
1168 }
1169 
1170 /**
1171  * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
1172  * @word: the word being waited on, a kernel virtual address
1173  * @bit: the bit of the word being waited on
1174  * @action: the function used to sleep, which may take special actions
1175  * @mode: the task state to sleep in
1176  *
1177  * Use the standard hashed waitqueue table to wait for a bit
1178  * to be cleared and then to set it, and allow the waiting action
1179  * to be specified.
1180  * This is like wait_on_bit() but allows fine control of how the waiting
1181  * is done.
1182  *
1183  * Returns zero if the bit was (eventually) found to be clear and was
1184  * set.  Returns non-zero if a signal was delivered to the process and
1185  * the @mode allows that signal to wake the process.
1186  */
1187 static inline int
1188 wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
1189 			unsigned mode)
1190 {
1191 	might_sleep();
1192 	if (!test_and_set_bit(bit, word))
1193 		return 0;
1194 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
1195 }
1196 
1197 /**
1198  * wait_on_atomic_t - Wait for an atomic_t to become 0
1199  * @val: The atomic value being waited on, a kernel virtual address
1200  * @action: the function used to sleep, which may take special actions
1201  * @mode: the task state to sleep in
1202  *
1203  * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
1204  * the purpose of getting a waitqueue, but we set the key to a bit number
1205  * outside of the target 'word'.
1206  */
1207 static inline
1208 int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
1209 {
1210 	might_sleep();
1211 	if (atomic_read(val) == 0)
1212 		return 0;
1213 	return out_of_line_wait_on_atomic_t(val, action, mode);
1214 }
1215 
1216 #endif /* _LINUX_WAIT_H */
1217