xref: /linux-6.15/include/linux/wait.h (revision e2afb7de)
1 #ifndef _LINUX_WAIT_H
2 #define _LINUX_WAIT_H
3 /*
4  * Linux wait queue related types and methods
5  */
6 #include <linux/list.h>
7 #include <linux/stddef.h>
8 #include <linux/spinlock.h>
9 #include <asm/current.h>
10 #include <uapi/linux/wait.h>
11 
12 typedef struct __wait_queue wait_queue_t;
13 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
14 int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
15 
16 struct __wait_queue {
17 	unsigned int		flags;
18 #define WQ_FLAG_EXCLUSIVE	0x01
19 	void			*private;
20 	wait_queue_func_t	func;
21 	struct list_head	task_list;
22 };
23 
24 struct wait_bit_key {
25 	void			*flags;
26 	int			bit_nr;
27 #define WAIT_ATOMIC_T_BIT_NR	-1
28 	unsigned long		timeout;
29 };
30 
31 struct wait_bit_queue {
32 	struct wait_bit_key	key;
33 	wait_queue_t		wait;
34 };
35 
36 struct __wait_queue_head {
37 	spinlock_t		lock;
38 	struct list_head	task_list;
39 };
40 typedef struct __wait_queue_head wait_queue_head_t;
41 
42 struct task_struct;
43 
44 /*
45  * Macros for declaration and initialisaton of the datatypes
46  */
47 
48 #define __WAITQUEUE_INITIALIZER(name, tsk) {				\
49 	.private	= tsk,						\
50 	.func		= default_wake_function,			\
51 	.task_list	= { NULL, NULL } }
52 
53 #define DECLARE_WAITQUEUE(name, tsk)					\
54 	wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
55 
56 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {				\
57 	.lock		= __SPIN_LOCK_UNLOCKED(name.lock),		\
58 	.task_list	= { &(name).task_list, &(name).task_list } }
59 
60 #define DECLARE_WAIT_QUEUE_HEAD(name) \
61 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
62 
63 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)				\
64 	{ .flags = word, .bit_nr = bit, }
65 
66 #define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)				\
67 	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
68 
69 extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
70 
71 #define init_waitqueue_head(q)				\
72 	do {						\
73 		static struct lock_class_key __key;	\
74 							\
75 		__init_waitqueue_head((q), #q, &__key);	\
76 	} while (0)
77 
78 #ifdef CONFIG_LOCKDEP
79 # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
80 	({ init_waitqueue_head(&name); name; })
81 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
82 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
83 #else
84 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
85 #endif
86 
87 static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
88 {
89 	q->flags	= 0;
90 	q->private	= p;
91 	q->func		= default_wake_function;
92 }
93 
94 static inline void
95 init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
96 {
97 	q->flags	= 0;
98 	q->private	= NULL;
99 	q->func		= func;
100 }
101 
102 static inline int waitqueue_active(wait_queue_head_t *q)
103 {
104 	return !list_empty(&q->task_list);
105 }
106 
107 extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
108 extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
109 extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
110 
111 static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
112 {
113 	list_add(&new->task_list, &head->task_list);
114 }
115 
116 /*
117  * Used for wake-one threads:
118  */
119 static inline void
120 __add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
121 {
122 	wait->flags |= WQ_FLAG_EXCLUSIVE;
123 	__add_wait_queue(q, wait);
124 }
125 
126 static inline void __add_wait_queue_tail(wait_queue_head_t *head,
127 					 wait_queue_t *new)
128 {
129 	list_add_tail(&new->task_list, &head->task_list);
130 }
131 
132 static inline void
133 __add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
134 {
135 	wait->flags |= WQ_FLAG_EXCLUSIVE;
136 	__add_wait_queue_tail(q, wait);
137 }
138 
139 static inline void
140 __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
141 {
142 	list_del(&old->task_list);
143 }
144 
145 typedef int wait_bit_action_f(struct wait_bit_key *);
146 void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
147 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
148 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
149 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
150 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
151 void __wake_up_bit(wait_queue_head_t *, void *, int);
152 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
153 int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
154 void wake_up_bit(void *, int);
155 void wake_up_atomic_t(atomic_t *);
156 int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
157 int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
158 int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
159 int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
160 wait_queue_head_t *bit_waitqueue(void *, int);
161 
162 #define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
163 #define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
164 #define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
165 #define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
166 #define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
167 
168 #define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
169 #define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
170 #define wake_up_interruptible_all(x)	__wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
171 #define wake_up_interruptible_sync(x)	__wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
172 
173 /*
174  * Wakeup macros to be used to report events to the targets.
175  */
176 #define wake_up_poll(x, m)						\
177 	__wake_up(x, TASK_NORMAL, 1, (void *) (m))
178 #define wake_up_locked_poll(x, m)					\
179 	__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
180 #define wake_up_interruptible_poll(x, m)				\
181 	__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
182 #define wake_up_interruptible_sync_poll(x, m)				\
183 	__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
184 
185 #define ___wait_cond_timeout(condition)					\
186 ({									\
187 	bool __cond = (condition);					\
188 	if (__cond && !__ret)						\
189 		__ret = 1;						\
190 	__cond || !__ret;						\
191 })
192 
193 #define ___wait_is_interruptible(state)					\
194 	(!__builtin_constant_p(state) ||				\
195 		state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE)	\
196 
197 /*
198  * The below macro ___wait_event() has an explicit shadow of the __ret
199  * variable when used from the wait_event_*() macros.
200  *
201  * This is so that both can use the ___wait_cond_timeout() construct
202  * to wrap the condition.
203  *
204  * The type inconsistency of the wait_event_*() __ret variable is also
205  * on purpose; we use long where we can return timeout values and int
206  * otherwise.
207  */
208 
209 #define ___wait_event(wq, condition, state, exclusive, ret, cmd)	\
210 ({									\
211 	__label__ __out;						\
212 	wait_queue_t __wait;						\
213 	long __ret = ret;	/* explicit shadow */			\
214 									\
215 	INIT_LIST_HEAD(&__wait.task_list);				\
216 	if (exclusive)							\
217 		__wait.flags = WQ_FLAG_EXCLUSIVE;			\
218 	else								\
219 		__wait.flags = 0;					\
220 									\
221 	for (;;) {							\
222 		long __int = prepare_to_wait_event(&wq, &__wait, state);\
223 									\
224 		if (condition)						\
225 			break;						\
226 									\
227 		if (___wait_is_interruptible(state) && __int) {		\
228 			__ret = __int;					\
229 			if (exclusive) {				\
230 				abort_exclusive_wait(&wq, &__wait,	\
231 						     state, NULL);	\
232 				goto __out;				\
233 			}						\
234 			break;						\
235 		}							\
236 									\
237 		cmd;							\
238 	}								\
239 	finish_wait(&wq, &__wait);					\
240 __out:	__ret;								\
241 })
242 
243 #define __wait_event(wq, condition)					\
244 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
245 			    schedule())
246 
247 /**
248  * wait_event - sleep until a condition gets true
249  * @wq: the waitqueue to wait on
250  * @condition: a C expression for the event to wait for
251  *
252  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
253  * @condition evaluates to true. The @condition is checked each time
254  * the waitqueue @wq is woken up.
255  *
256  * wake_up() has to be called after changing any variable that could
257  * change the result of the wait condition.
258  */
259 #define wait_event(wq, condition)					\
260 do {									\
261 	if (condition)							\
262 		break;							\
263 	__wait_event(wq, condition);					\
264 } while (0)
265 
266 #define __wait_event_timeout(wq, condition, timeout)			\
267 	___wait_event(wq, ___wait_cond_timeout(condition),		\
268 		      TASK_UNINTERRUPTIBLE, 0, timeout,			\
269 		      __ret = schedule_timeout(__ret))
270 
271 /**
272  * wait_event_timeout - sleep until a condition gets true or a timeout elapses
273  * @wq: the waitqueue to wait on
274  * @condition: a C expression for the event to wait for
275  * @timeout: timeout, in jiffies
276  *
277  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
278  * @condition evaluates to true. The @condition is checked each time
279  * the waitqueue @wq is woken up.
280  *
281  * wake_up() has to be called after changing any variable that could
282  * change the result of the wait condition.
283  *
284  * Returns:
285  * 0 if the @condition evaluated to %false after the @timeout elapsed,
286  * 1 if the @condition evaluated to %true after the @timeout elapsed,
287  * or the remaining jiffies (at least 1) if the @condition evaluated
288  * to %true before the @timeout elapsed.
289  */
290 #define wait_event_timeout(wq, condition, timeout)			\
291 ({									\
292 	long __ret = timeout;						\
293 	if (!___wait_cond_timeout(condition))				\
294 		__ret = __wait_event_timeout(wq, condition, timeout);	\
295 	__ret;								\
296 })
297 
298 #define __wait_event_cmd(wq, condition, cmd1, cmd2)			\
299 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
300 			    cmd1; schedule(); cmd2)
301 
302 /**
303  * wait_event_cmd - sleep until a condition gets true
304  * @wq: the waitqueue to wait on
305  * @condition: a C expression for the event to wait for
306  * @cmd1: the command will be executed before sleep
307  * @cmd2: the command will be executed after sleep
308  *
309  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
310  * @condition evaluates to true. The @condition is checked each time
311  * the waitqueue @wq is woken up.
312  *
313  * wake_up() has to be called after changing any variable that could
314  * change the result of the wait condition.
315  */
316 #define wait_event_cmd(wq, condition, cmd1, cmd2)			\
317 do {									\
318 	if (condition)							\
319 		break;							\
320 	__wait_event_cmd(wq, condition, cmd1, cmd2);			\
321 } while (0)
322 
323 #define __wait_event_interruptible(wq, condition)			\
324 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
325 		      schedule())
326 
327 /**
328  * wait_event_interruptible - sleep until a condition gets true
329  * @wq: the waitqueue to wait on
330  * @condition: a C expression for the event to wait for
331  *
332  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
333  * @condition evaluates to true or a signal is received.
334  * The @condition is checked each time the waitqueue @wq is woken up.
335  *
336  * wake_up() has to be called after changing any variable that could
337  * change the result of the wait condition.
338  *
339  * The function will return -ERESTARTSYS if it was interrupted by a
340  * signal and 0 if @condition evaluated to true.
341  */
342 #define wait_event_interruptible(wq, condition)				\
343 ({									\
344 	int __ret = 0;							\
345 	if (!(condition))						\
346 		__ret = __wait_event_interruptible(wq, condition);	\
347 	__ret;								\
348 })
349 
350 #define __wait_event_interruptible_timeout(wq, condition, timeout)	\
351 	___wait_event(wq, ___wait_cond_timeout(condition),		\
352 		      TASK_INTERRUPTIBLE, 0, timeout,			\
353 		      __ret = schedule_timeout(__ret))
354 
355 /**
356  * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
357  * @wq: the waitqueue to wait on
358  * @condition: a C expression for the event to wait for
359  * @timeout: timeout, in jiffies
360  *
361  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
362  * @condition evaluates to true or a signal is received.
363  * The @condition is checked each time the waitqueue @wq is woken up.
364  *
365  * wake_up() has to be called after changing any variable that could
366  * change the result of the wait condition.
367  *
368  * Returns:
369  * 0 if the @condition evaluated to %false after the @timeout elapsed,
370  * 1 if the @condition evaluated to %true after the @timeout elapsed,
371  * the remaining jiffies (at least 1) if the @condition evaluated
372  * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
373  * interrupted by a signal.
374  */
375 #define wait_event_interruptible_timeout(wq, condition, timeout)	\
376 ({									\
377 	long __ret = timeout;						\
378 	if (!___wait_cond_timeout(condition))				\
379 		__ret = __wait_event_interruptible_timeout(wq,		\
380 						condition, timeout);	\
381 	__ret;								\
382 })
383 
384 #define __wait_event_hrtimeout(wq, condition, timeout, state)		\
385 ({									\
386 	int __ret = 0;							\
387 	struct hrtimer_sleeper __t;					\
388 									\
389 	hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC,		\
390 			      HRTIMER_MODE_REL);			\
391 	hrtimer_init_sleeper(&__t, current);				\
392 	if ((timeout).tv64 != KTIME_MAX)				\
393 		hrtimer_start_range_ns(&__t.timer, timeout,		\
394 				       current->timer_slack_ns,		\
395 				       HRTIMER_MODE_REL);		\
396 									\
397 	__ret = ___wait_event(wq, condition, state, 0, 0,		\
398 		if (!__t.task) {					\
399 			__ret = -ETIME;					\
400 			break;						\
401 		}							\
402 		schedule());						\
403 									\
404 	hrtimer_cancel(&__t.timer);					\
405 	destroy_hrtimer_on_stack(&__t.timer);				\
406 	__ret;								\
407 })
408 
409 /**
410  * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
411  * @wq: the waitqueue to wait on
412  * @condition: a C expression for the event to wait for
413  * @timeout: timeout, as a ktime_t
414  *
415  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
416  * @condition evaluates to true or a signal is received.
417  * The @condition is checked each time the waitqueue @wq is woken up.
418  *
419  * wake_up() has to be called after changing any variable that could
420  * change the result of the wait condition.
421  *
422  * The function returns 0 if @condition became true, or -ETIME if the timeout
423  * elapsed.
424  */
425 #define wait_event_hrtimeout(wq, condition, timeout)			\
426 ({									\
427 	int __ret = 0;							\
428 	if (!(condition))						\
429 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
430 					       TASK_UNINTERRUPTIBLE);	\
431 	__ret;								\
432 })
433 
434 /**
435  * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
436  * @wq: the waitqueue to wait on
437  * @condition: a C expression for the event to wait for
438  * @timeout: timeout, as a ktime_t
439  *
440  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
441  * @condition evaluates to true or a signal is received.
442  * The @condition is checked each time the waitqueue @wq is woken up.
443  *
444  * wake_up() has to be called after changing any variable that could
445  * change the result of the wait condition.
446  *
447  * The function returns 0 if @condition became true, -ERESTARTSYS if it was
448  * interrupted by a signal, or -ETIME if the timeout elapsed.
449  */
450 #define wait_event_interruptible_hrtimeout(wq, condition, timeout)	\
451 ({									\
452 	long __ret = 0;							\
453 	if (!(condition))						\
454 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
455 					       TASK_INTERRUPTIBLE);	\
456 	__ret;								\
457 })
458 
459 #define __wait_event_interruptible_exclusive(wq, condition)		\
460 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
461 		      schedule())
462 
463 #define wait_event_interruptible_exclusive(wq, condition)		\
464 ({									\
465 	int __ret = 0;							\
466 	if (!(condition))						\
467 		__ret = __wait_event_interruptible_exclusive(wq, condition);\
468 	__ret;								\
469 })
470 
471 
472 #define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
473 ({									\
474 	int __ret = 0;							\
475 	DEFINE_WAIT(__wait);						\
476 	if (exclusive)							\
477 		__wait.flags |= WQ_FLAG_EXCLUSIVE;			\
478 	do {								\
479 		if (likely(list_empty(&__wait.task_list)))		\
480 			__add_wait_queue_tail(&(wq), &__wait);		\
481 		set_current_state(TASK_INTERRUPTIBLE);			\
482 		if (signal_pending(current)) {				\
483 			__ret = -ERESTARTSYS;				\
484 			break;						\
485 		}							\
486 		if (irq)						\
487 			spin_unlock_irq(&(wq).lock);			\
488 		else							\
489 			spin_unlock(&(wq).lock);			\
490 		schedule();						\
491 		if (irq)						\
492 			spin_lock_irq(&(wq).lock);			\
493 		else							\
494 			spin_lock(&(wq).lock);				\
495 	} while (!(condition));						\
496 	__remove_wait_queue(&(wq), &__wait);				\
497 	__set_current_state(TASK_RUNNING);				\
498 	__ret;								\
499 })
500 
501 
502 /**
503  * wait_event_interruptible_locked - sleep until a condition gets true
504  * @wq: the waitqueue to wait on
505  * @condition: a C expression for the event to wait for
506  *
507  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
508  * @condition evaluates to true or a signal is received.
509  * The @condition is checked each time the waitqueue @wq is woken up.
510  *
511  * It must be called with wq.lock being held.  This spinlock is
512  * unlocked while sleeping but @condition testing is done while lock
513  * is held and when this macro exits the lock is held.
514  *
515  * The lock is locked/unlocked using spin_lock()/spin_unlock()
516  * functions which must match the way they are locked/unlocked outside
517  * of this macro.
518  *
519  * wake_up_locked() has to be called after changing any variable that could
520  * change the result of the wait condition.
521  *
522  * The function will return -ERESTARTSYS if it was interrupted by a
523  * signal and 0 if @condition evaluated to true.
524  */
525 #define wait_event_interruptible_locked(wq, condition)			\
526 	((condition)							\
527 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
528 
529 /**
530  * wait_event_interruptible_locked_irq - sleep until a condition gets true
531  * @wq: the waitqueue to wait on
532  * @condition: a C expression for the event to wait for
533  *
534  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
535  * @condition evaluates to true or a signal is received.
536  * The @condition is checked each time the waitqueue @wq is woken up.
537  *
538  * It must be called with wq.lock being held.  This spinlock is
539  * unlocked while sleeping but @condition testing is done while lock
540  * is held and when this macro exits the lock is held.
541  *
542  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
543  * functions which must match the way they are locked/unlocked outside
544  * of this macro.
545  *
546  * wake_up_locked() has to be called after changing any variable that could
547  * change the result of the wait condition.
548  *
549  * The function will return -ERESTARTSYS if it was interrupted by a
550  * signal and 0 if @condition evaluated to true.
551  */
552 #define wait_event_interruptible_locked_irq(wq, condition)		\
553 	((condition)							\
554 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
555 
556 /**
557  * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
558  * @wq: the waitqueue to wait on
559  * @condition: a C expression for the event to wait for
560  *
561  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
562  * @condition evaluates to true or a signal is received.
563  * The @condition is checked each time the waitqueue @wq is woken up.
564  *
565  * It must be called with wq.lock being held.  This spinlock is
566  * unlocked while sleeping but @condition testing is done while lock
567  * is held and when this macro exits the lock is held.
568  *
569  * The lock is locked/unlocked using spin_lock()/spin_unlock()
570  * functions which must match the way they are locked/unlocked outside
571  * of this macro.
572  *
573  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
574  * set thus when other process waits process on the list if this
575  * process is awaken further processes are not considered.
576  *
577  * wake_up_locked() has to be called after changing any variable that could
578  * change the result of the wait condition.
579  *
580  * The function will return -ERESTARTSYS if it was interrupted by a
581  * signal and 0 if @condition evaluated to true.
582  */
583 #define wait_event_interruptible_exclusive_locked(wq, condition)	\
584 	((condition)							\
585 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
586 
587 /**
588  * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
589  * @wq: the waitqueue to wait on
590  * @condition: a C expression for the event to wait for
591  *
592  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
593  * @condition evaluates to true or a signal is received.
594  * The @condition is checked each time the waitqueue @wq is woken up.
595  *
596  * It must be called with wq.lock being held.  This spinlock is
597  * unlocked while sleeping but @condition testing is done while lock
598  * is held and when this macro exits the lock is held.
599  *
600  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
601  * functions which must match the way they are locked/unlocked outside
602  * of this macro.
603  *
604  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
605  * set thus when other process waits process on the list if this
606  * process is awaken further processes are not considered.
607  *
608  * wake_up_locked() has to be called after changing any variable that could
609  * change the result of the wait condition.
610  *
611  * The function will return -ERESTARTSYS if it was interrupted by a
612  * signal and 0 if @condition evaluated to true.
613  */
614 #define wait_event_interruptible_exclusive_locked_irq(wq, condition)	\
615 	((condition)							\
616 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
617 
618 
619 #define __wait_event_killable(wq, condition)				\
620 	___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
621 
622 /**
623  * wait_event_killable - sleep until a condition gets true
624  * @wq: the waitqueue to wait on
625  * @condition: a C expression for the event to wait for
626  *
627  * The process is put to sleep (TASK_KILLABLE) until the
628  * @condition evaluates to true or a signal is received.
629  * The @condition is checked each time the waitqueue @wq is woken up.
630  *
631  * wake_up() has to be called after changing any variable that could
632  * change the result of the wait condition.
633  *
634  * The function will return -ERESTARTSYS if it was interrupted by a
635  * signal and 0 if @condition evaluated to true.
636  */
637 #define wait_event_killable(wq, condition)				\
638 ({									\
639 	int __ret = 0;							\
640 	if (!(condition))						\
641 		__ret = __wait_event_killable(wq, condition);		\
642 	__ret;								\
643 })
644 
645 
646 #define __wait_event_lock_irq(wq, condition, lock, cmd)			\
647 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
648 			    spin_unlock_irq(&lock);			\
649 			    cmd;					\
650 			    schedule();					\
651 			    spin_lock_irq(&lock))
652 
653 /**
654  * wait_event_lock_irq_cmd - sleep until a condition gets true. The
655  *			     condition is checked under the lock. This
656  *			     is expected to be called with the lock
657  *			     taken.
658  * @wq: the waitqueue to wait on
659  * @condition: a C expression for the event to wait for
660  * @lock: a locked spinlock_t, which will be released before cmd
661  *	  and schedule() and reacquired afterwards.
662  * @cmd: a command which is invoked outside the critical section before
663  *	 sleep
664  *
665  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
666  * @condition evaluates to true. The @condition is checked each time
667  * the waitqueue @wq is woken up.
668  *
669  * wake_up() has to be called after changing any variable that could
670  * change the result of the wait condition.
671  *
672  * This is supposed to be called while holding the lock. The lock is
673  * dropped before invoking the cmd and going to sleep and is reacquired
674  * afterwards.
675  */
676 #define wait_event_lock_irq_cmd(wq, condition, lock, cmd)		\
677 do {									\
678 	if (condition)							\
679 		break;							\
680 	__wait_event_lock_irq(wq, condition, lock, cmd);		\
681 } while (0)
682 
683 /**
684  * wait_event_lock_irq - sleep until a condition gets true. The
685  *			 condition is checked under the lock. This
686  *			 is expected to be called with the lock
687  *			 taken.
688  * @wq: the waitqueue to wait on
689  * @condition: a C expression for the event to wait for
690  * @lock: a locked spinlock_t, which will be released before schedule()
691  *	  and reacquired afterwards.
692  *
693  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
694  * @condition evaluates to true. The @condition is checked each time
695  * the waitqueue @wq is woken up.
696  *
697  * wake_up() has to be called after changing any variable that could
698  * change the result of the wait condition.
699  *
700  * This is supposed to be called while holding the lock. The lock is
701  * dropped before going to sleep and is reacquired afterwards.
702  */
703 #define wait_event_lock_irq(wq, condition, lock)			\
704 do {									\
705 	if (condition)							\
706 		break;							\
707 	__wait_event_lock_irq(wq, condition, lock, );			\
708 } while (0)
709 
710 
711 #define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd)	\
712 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
713 		      spin_unlock_irq(&lock);				\
714 		      cmd;						\
715 		      schedule();					\
716 		      spin_lock_irq(&lock))
717 
718 /**
719  * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
720  *		The condition is checked under the lock. This is expected to
721  *		be called with the lock taken.
722  * @wq: the waitqueue to wait on
723  * @condition: a C expression for the event to wait for
724  * @lock: a locked spinlock_t, which will be released before cmd and
725  *	  schedule() and reacquired afterwards.
726  * @cmd: a command which is invoked outside the critical section before
727  *	 sleep
728  *
729  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
730  * @condition evaluates to true or a signal is received. The @condition is
731  * checked each time the waitqueue @wq is woken up.
732  *
733  * wake_up() has to be called after changing any variable that could
734  * change the result of the wait condition.
735  *
736  * This is supposed to be called while holding the lock. The lock is
737  * dropped before invoking the cmd and going to sleep and is reacquired
738  * afterwards.
739  *
740  * The macro will return -ERESTARTSYS if it was interrupted by a signal
741  * and 0 if @condition evaluated to true.
742  */
743 #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd)	\
744 ({									\
745 	int __ret = 0;							\
746 	if (!(condition))						\
747 		__ret = __wait_event_interruptible_lock_irq(wq,		\
748 						condition, lock, cmd);	\
749 	__ret;								\
750 })
751 
752 /**
753  * wait_event_interruptible_lock_irq - sleep until a condition gets true.
754  *		The condition is checked under the lock. This is expected
755  *		to be called with the lock taken.
756  * @wq: the waitqueue to wait on
757  * @condition: a C expression for the event to wait for
758  * @lock: a locked spinlock_t, which will be released before schedule()
759  *	  and reacquired afterwards.
760  *
761  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
762  * @condition evaluates to true or signal is received. The @condition is
763  * checked each time the waitqueue @wq is woken up.
764  *
765  * wake_up() has to be called after changing any variable that could
766  * change the result of the wait condition.
767  *
768  * This is supposed to be called while holding the lock. The lock is
769  * dropped before going to sleep and is reacquired afterwards.
770  *
771  * The macro will return -ERESTARTSYS if it was interrupted by a signal
772  * and 0 if @condition evaluated to true.
773  */
774 #define wait_event_interruptible_lock_irq(wq, condition, lock)		\
775 ({									\
776 	int __ret = 0;							\
777 	if (!(condition))						\
778 		__ret = __wait_event_interruptible_lock_irq(wq,		\
779 						condition, lock,);	\
780 	__ret;								\
781 })
782 
783 #define __wait_event_interruptible_lock_irq_timeout(wq, condition,	\
784 						    lock, timeout)	\
785 	___wait_event(wq, ___wait_cond_timeout(condition),		\
786 		      TASK_INTERRUPTIBLE, 0, timeout,			\
787 		      spin_unlock_irq(&lock);				\
788 		      __ret = schedule_timeout(__ret);			\
789 		      spin_lock_irq(&lock));
790 
791 /**
792  * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
793  *		true or a timeout elapses. The condition is checked under
794  *		the lock. This is expected to be called with the lock taken.
795  * @wq: the waitqueue to wait on
796  * @condition: a C expression for the event to wait for
797  * @lock: a locked spinlock_t, which will be released before schedule()
798  *	  and reacquired afterwards.
799  * @timeout: timeout, in jiffies
800  *
801  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
802  * @condition evaluates to true or signal is received. The @condition is
803  * checked each time the waitqueue @wq is woken up.
804  *
805  * wake_up() has to be called after changing any variable that could
806  * change the result of the wait condition.
807  *
808  * This is supposed to be called while holding the lock. The lock is
809  * dropped before going to sleep and is reacquired afterwards.
810  *
811  * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
812  * was interrupted by a signal, and the remaining jiffies otherwise
813  * if the condition evaluated to true before the timeout elapsed.
814  */
815 #define wait_event_interruptible_lock_irq_timeout(wq, condition, lock,	\
816 						  timeout)		\
817 ({									\
818 	long __ret = timeout;						\
819 	if (!___wait_cond_timeout(condition))				\
820 		__ret = __wait_event_interruptible_lock_irq_timeout(	\
821 					wq, condition, lock, timeout);	\
822 	__ret;								\
823 })
824 
825 /*
826  * Waitqueues which are removed from the waitqueue_head at wakeup time
827  */
828 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
829 void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
830 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
831 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
832 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
833 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
834 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
835 
836 #define DEFINE_WAIT_FUNC(name, function)				\
837 	wait_queue_t name = {						\
838 		.private	= current,				\
839 		.func		= function,				\
840 		.task_list	= LIST_HEAD_INIT((name).task_list),	\
841 	}
842 
843 #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
844 
845 #define DEFINE_WAIT_BIT(name, word, bit)				\
846 	struct wait_bit_queue name = {					\
847 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),		\
848 		.wait	= {						\
849 			.private	= current,			\
850 			.func		= wake_bit_function,		\
851 			.task_list	=				\
852 				LIST_HEAD_INIT((name).wait.task_list),	\
853 		},							\
854 	}
855 
856 #define init_wait(wait)							\
857 	do {								\
858 		(wait)->private = current;				\
859 		(wait)->func = autoremove_wake_function;		\
860 		INIT_LIST_HEAD(&(wait)->task_list);			\
861 		(wait)->flags = 0;					\
862 	} while (0)
863 
864 
865 extern int bit_wait(struct wait_bit_key *);
866 extern int bit_wait_io(struct wait_bit_key *);
867 extern int bit_wait_timeout(struct wait_bit_key *);
868 extern int bit_wait_io_timeout(struct wait_bit_key *);
869 
870 /**
871  * wait_on_bit - wait for a bit to be cleared
872  * @word: the word being waited on, a kernel virtual address
873  * @bit: the bit of the word being waited on
874  * @mode: the task state to sleep in
875  *
876  * There is a standard hashed waitqueue table for generic use. This
877  * is the part of the hashtable's accessor API that waits on a bit.
878  * For instance, if one were to have waiters on a bitflag, one would
879  * call wait_on_bit() in threads waiting for the bit to clear.
880  * One uses wait_on_bit() where one is waiting for the bit to clear,
881  * but has no intention of setting it.
882  * Returned value will be zero if the bit was cleared, or non-zero
883  * if the process received a signal and the mode permitted wakeup
884  * on that signal.
885  */
886 static inline int
887 wait_on_bit(void *word, int bit, unsigned mode)
888 {
889 	if (!test_bit(bit, word))
890 		return 0;
891 	return out_of_line_wait_on_bit(word, bit,
892 				       bit_wait,
893 				       mode);
894 }
895 
896 /**
897  * wait_on_bit_io - wait for a bit to be cleared
898  * @word: the word being waited on, a kernel virtual address
899  * @bit: the bit of the word being waited on
900  * @mode: the task state to sleep in
901  *
902  * Use the standard hashed waitqueue table to wait for a bit
903  * to be cleared.  This is similar to wait_on_bit(), but calls
904  * io_schedule() instead of schedule() for the actual waiting.
905  *
906  * Returned value will be zero if the bit was cleared, or non-zero
907  * if the process received a signal and the mode permitted wakeup
908  * on that signal.
909  */
910 static inline int
911 wait_on_bit_io(void *word, int bit, unsigned mode)
912 {
913 	if (!test_bit(bit, word))
914 		return 0;
915 	return out_of_line_wait_on_bit(word, bit,
916 				       bit_wait_io,
917 				       mode);
918 }
919 
920 /**
921  * wait_on_bit_action - wait for a bit to be cleared
922  * @word: the word being waited on, a kernel virtual address
923  * @bit: the bit of the word being waited on
924  * @action: the function used to sleep, which may take special actions
925  * @mode: the task state to sleep in
926  *
927  * Use the standard hashed waitqueue table to wait for a bit
928  * to be cleared, and allow the waiting action to be specified.
929  * This is like wait_on_bit() but allows fine control of how the waiting
930  * is done.
931  *
932  * Returned value will be zero if the bit was cleared, or non-zero
933  * if the process received a signal and the mode permitted wakeup
934  * on that signal.
935  */
936 static inline int
937 wait_on_bit_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
938 {
939 	if (!test_bit(bit, word))
940 		return 0;
941 	return out_of_line_wait_on_bit(word, bit, action, mode);
942 }
943 
944 /**
945  * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
946  * @word: the word being waited on, a kernel virtual address
947  * @bit: the bit of the word being waited on
948  * @mode: the task state to sleep in
949  *
950  * There is a standard hashed waitqueue table for generic use. This
951  * is the part of the hashtable's accessor API that waits on a bit
952  * when one intends to set it, for instance, trying to lock bitflags.
953  * For instance, if one were to have waiters trying to set bitflag
954  * and waiting for it to clear before setting it, one would call
955  * wait_on_bit() in threads waiting to be able to set the bit.
956  * One uses wait_on_bit_lock() where one is waiting for the bit to
957  * clear with the intention of setting it, and when done, clearing it.
958  *
959  * Returns zero if the bit was (eventually) found to be clear and was
960  * set.  Returns non-zero if a signal was delivered to the process and
961  * the @mode allows that signal to wake the process.
962  */
963 static inline int
964 wait_on_bit_lock(void *word, int bit, unsigned mode)
965 {
966 	if (!test_and_set_bit(bit, word))
967 		return 0;
968 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
969 }
970 
971 /**
972  * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
973  * @word: the word being waited on, a kernel virtual address
974  * @bit: the bit of the word being waited on
975  * @mode: the task state to sleep in
976  *
977  * Use the standard hashed waitqueue table to wait for a bit
978  * to be cleared and then to atomically set it.  This is similar
979  * to wait_on_bit(), but calls io_schedule() instead of schedule()
980  * for the actual waiting.
981  *
982  * Returns zero if the bit was (eventually) found to be clear and was
983  * set.  Returns non-zero if a signal was delivered to the process and
984  * the @mode allows that signal to wake the process.
985  */
986 static inline int
987 wait_on_bit_lock_io(void *word, int bit, unsigned mode)
988 {
989 	if (!test_and_set_bit(bit, word))
990 		return 0;
991 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
992 }
993 
994 /**
995  * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
996  * @word: the word being waited on, a kernel virtual address
997  * @bit: the bit of the word being waited on
998  * @action: the function used to sleep, which may take special actions
999  * @mode: the task state to sleep in
1000  *
1001  * Use the standard hashed waitqueue table to wait for a bit
1002  * to be cleared and then to set it, and allow the waiting action
1003  * to be specified.
1004  * This is like wait_on_bit() but allows fine control of how the waiting
1005  * is done.
1006  *
1007  * Returns zero if the bit was (eventually) found to be clear and was
1008  * set.  Returns non-zero if a signal was delivered to the process and
1009  * the @mode allows that signal to wake the process.
1010  */
1011 static inline int
1012 wait_on_bit_lock_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
1013 {
1014 	if (!test_and_set_bit(bit, word))
1015 		return 0;
1016 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
1017 }
1018 
1019 /**
1020  * wait_on_atomic_t - Wait for an atomic_t to become 0
1021  * @val: The atomic value being waited on, a kernel virtual address
1022  * @action: the function used to sleep, which may take special actions
1023  * @mode: the task state to sleep in
1024  *
1025  * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
1026  * the purpose of getting a waitqueue, but we set the key to a bit number
1027  * outside of the target 'word'.
1028  */
1029 static inline
1030 int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
1031 {
1032 	if (atomic_read(val) == 0)
1033 		return 0;
1034 	return out_of_line_wait_on_atomic_t(val, action, mode);
1035 }
1036 
1037 #endif /* _LINUX_WAIT_H */
1038