xref: /linux-6.15/include/linux/wait.h (revision 071bf69a)
1 #ifndef _LINUX_WAIT_H
2 #define _LINUX_WAIT_H
3 /*
4  * Linux wait queue related types and methods
5  */
6 #include <linux/list.h>
7 #include <linux/stddef.h>
8 #include <linux/spinlock.h>
9 #include <asm/current.h>
10 #include <uapi/linux/wait.h>
11 
12 typedef struct __wait_queue wait_queue_t;
13 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
14 int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
15 
16 /* __wait_queue::flags */
17 #define WQ_FLAG_EXCLUSIVE	0x01
18 #define WQ_FLAG_WOKEN		0x02
19 
20 struct __wait_queue {
21 	unsigned int		flags;
22 	void			*private;
23 	wait_queue_func_t	func;
24 	struct list_head	task_list;
25 };
26 
27 struct wait_bit_key {
28 	void			*flags;
29 	int			bit_nr;
30 #define WAIT_ATOMIC_T_BIT_NR	-1
31 	unsigned long		timeout;
32 };
33 
34 struct wait_bit_queue {
35 	struct wait_bit_key	key;
36 	wait_queue_t		wait;
37 };
38 
39 struct __wait_queue_head {
40 	spinlock_t		lock;
41 	struct list_head	task_list;
42 };
43 typedef struct __wait_queue_head wait_queue_head_t;
44 
45 struct task_struct;
46 
47 /*
48  * Macros for declaration and initialisaton of the datatypes
49  */
50 
51 #define __WAITQUEUE_INITIALIZER(name, tsk) {				\
52 	.private	= tsk,						\
53 	.func		= default_wake_function,			\
54 	.task_list	= { NULL, NULL } }
55 
56 #define DECLARE_WAITQUEUE(name, tsk)					\
57 	wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
58 
59 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {				\
60 	.lock		= __SPIN_LOCK_UNLOCKED(name.lock),		\
61 	.task_list	= { &(name).task_list, &(name).task_list } }
62 
63 #define DECLARE_WAIT_QUEUE_HEAD(name) \
64 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
65 
66 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)				\
67 	{ .flags = word, .bit_nr = bit, }
68 
69 #define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)				\
70 	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
71 
72 extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
73 
74 #define init_waitqueue_head(q)				\
75 	do {						\
76 		static struct lock_class_key __key;	\
77 							\
78 		__init_waitqueue_head((q), #q, &__key);	\
79 	} while (0)
80 
81 #ifdef CONFIG_LOCKDEP
82 # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
83 	({ init_waitqueue_head(&name); name; })
84 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
85 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
86 #else
87 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
88 #endif
89 
90 static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
91 {
92 	q->flags	= 0;
93 	q->private	= p;
94 	q->func		= default_wake_function;
95 }
96 
97 static inline void
98 init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
99 {
100 	q->flags	= 0;
101 	q->private	= NULL;
102 	q->func		= func;
103 }
104 
105 /**
106  * waitqueue_active -- locklessly test for waiters on the queue
107  * @q: the waitqueue to test for waiters
108  *
109  * returns true if the wait list is not empty
110  *
111  * NOTE: this function is lockless and requires care, incorrect usage _will_
112  * lead to sporadic and non-obvious failure.
113  *
114  * Use either while holding wait_queue_head_t::lock or when used for wakeups
115  * with an extra smp_mb() like:
116  *
117  *      CPU0 - waker                    CPU1 - waiter
118  *
119  *                                      for (;;) {
120  *      @cond = true;                     prepare_to_wait(&wq, &wait, state);
121  *      smp_mb();                         // smp_mb() from set_current_state()
122  *      if (waitqueue_active(wq))         if (@cond)
123  *        wake_up(wq);                      break;
124  *                                        schedule();
125  *                                      }
126  *                                      finish_wait(&wq, &wait);
127  *
128  * Because without the explicit smp_mb() it's possible for the
129  * waitqueue_active() load to get hoisted over the @cond store such that we'll
130  * observe an empty wait list while the waiter might not observe @cond.
131  *
132  * Also note that this 'optimization' trades a spin_lock() for an smp_mb(),
133  * which (when the lock is uncontended) are of roughly equal cost.
134  */
135 static inline int waitqueue_active(wait_queue_head_t *q)
136 {
137 	return !list_empty(&q->task_list);
138 }
139 
140 /**
141  * wq_has_sleeper - check if there are any waiting processes
142  * @wq: wait queue head
143  *
144  * Returns true if wq has waiting processes
145  *
146  * Please refer to the comment for waitqueue_active.
147  */
148 static inline bool wq_has_sleeper(wait_queue_head_t *wq)
149 {
150 	/*
151 	 * We need to be sure we are in sync with the
152 	 * add_wait_queue modifications to the wait queue.
153 	 *
154 	 * This memory barrier should be paired with one on the
155 	 * waiting side.
156 	 */
157 	smp_mb();
158 	return waitqueue_active(wq);
159 }
160 
161 extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
162 extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
163 extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
164 
165 static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
166 {
167 	list_add(&new->task_list, &head->task_list);
168 }
169 
170 /*
171  * Used for wake-one threads:
172  */
173 static inline void
174 __add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
175 {
176 	wait->flags |= WQ_FLAG_EXCLUSIVE;
177 	__add_wait_queue(q, wait);
178 }
179 
180 static inline void __add_wait_queue_tail(wait_queue_head_t *head,
181 					 wait_queue_t *new)
182 {
183 	list_add_tail(&new->task_list, &head->task_list);
184 }
185 
186 static inline void
187 __add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
188 {
189 	wait->flags |= WQ_FLAG_EXCLUSIVE;
190 	__add_wait_queue_tail(q, wait);
191 }
192 
193 static inline void
194 __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
195 {
196 	list_del(&old->task_list);
197 }
198 
199 typedef int wait_bit_action_f(struct wait_bit_key *, int mode);
200 void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
201 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
202 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
203 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
204 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
205 void __wake_up_bit(wait_queue_head_t *, void *, int);
206 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
207 int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
208 void wake_up_bit(void *, int);
209 void wake_up_atomic_t(atomic_t *);
210 int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
211 int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
212 int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
213 int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
214 wait_queue_head_t *bit_waitqueue(void *, int);
215 
216 #define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
217 #define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
218 #define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
219 #define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
220 #define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
221 
222 #define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
223 #define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
224 #define wake_up_interruptible_all(x)	__wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
225 #define wake_up_interruptible_sync(x)	__wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
226 
227 /*
228  * Wakeup macros to be used to report events to the targets.
229  */
230 #define wake_up_poll(x, m)						\
231 	__wake_up(x, TASK_NORMAL, 1, (void *) (m))
232 #define wake_up_locked_poll(x, m)					\
233 	__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
234 #define wake_up_interruptible_poll(x, m)				\
235 	__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
236 #define wake_up_interruptible_sync_poll(x, m)				\
237 	__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
238 
239 #define ___wait_cond_timeout(condition)					\
240 ({									\
241 	bool __cond = (condition);					\
242 	if (__cond && !__ret)						\
243 		__ret = 1;						\
244 	__cond || !__ret;						\
245 })
246 
247 #define ___wait_is_interruptible(state)					\
248 	(!__builtin_constant_p(state) ||				\
249 		state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE)	\
250 
251 /*
252  * The below macro ___wait_event() has an explicit shadow of the __ret
253  * variable when used from the wait_event_*() macros.
254  *
255  * This is so that both can use the ___wait_cond_timeout() construct
256  * to wrap the condition.
257  *
258  * The type inconsistency of the wait_event_*() __ret variable is also
259  * on purpose; we use long where we can return timeout values and int
260  * otherwise.
261  */
262 
263 #define ___wait_event(wq, condition, state, exclusive, ret, cmd)	\
264 ({									\
265 	__label__ __out;						\
266 	wait_queue_t __wait;						\
267 	long __ret = ret;	/* explicit shadow */			\
268 									\
269 	INIT_LIST_HEAD(&__wait.task_list);				\
270 	if (exclusive)							\
271 		__wait.flags = WQ_FLAG_EXCLUSIVE;			\
272 	else								\
273 		__wait.flags = 0;					\
274 									\
275 	for (;;) {							\
276 		long __int = prepare_to_wait_event(&wq, &__wait, state);\
277 									\
278 		if (condition)						\
279 			break;						\
280 									\
281 		if (___wait_is_interruptible(state) && __int) {		\
282 			__ret = __int;					\
283 			if (exclusive) {				\
284 				abort_exclusive_wait(&wq, &__wait,	\
285 						     state, NULL);	\
286 				goto __out;				\
287 			}						\
288 			break;						\
289 		}							\
290 									\
291 		cmd;							\
292 	}								\
293 	finish_wait(&wq, &__wait);					\
294 __out:	__ret;								\
295 })
296 
297 #define __wait_event(wq, condition)					\
298 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
299 			    schedule())
300 
301 /**
302  * wait_event - sleep until a condition gets true
303  * @wq: the waitqueue to wait on
304  * @condition: a C expression for the event to wait for
305  *
306  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
307  * @condition evaluates to true. The @condition is checked each time
308  * the waitqueue @wq is woken up.
309  *
310  * wake_up() has to be called after changing any variable that could
311  * change the result of the wait condition.
312  */
313 #define wait_event(wq, condition)					\
314 do {									\
315 	might_sleep();							\
316 	if (condition)							\
317 		break;							\
318 	__wait_event(wq, condition);					\
319 } while (0)
320 
321 #define __io_wait_event(wq, condition)					\
322 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
323 			    io_schedule())
324 
325 /*
326  * io_wait_event() -- like wait_event() but with io_schedule()
327  */
328 #define io_wait_event(wq, condition)					\
329 do {									\
330 	might_sleep();							\
331 	if (condition)							\
332 		break;							\
333 	__io_wait_event(wq, condition);					\
334 } while (0)
335 
336 #define __wait_event_freezable(wq, condition)				\
337 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
338 			    schedule(); try_to_freeze())
339 
340 /**
341  * wait_event_freezable - sleep (or freeze) until a condition gets true
342  * @wq: the waitqueue to wait on
343  * @condition: a C expression for the event to wait for
344  *
345  * The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute
346  * to system load) until the @condition evaluates to true. The
347  * @condition is checked each time the waitqueue @wq is woken up.
348  *
349  * wake_up() has to be called after changing any variable that could
350  * change the result of the wait condition.
351  */
352 #define wait_event_freezable(wq, condition)				\
353 ({									\
354 	int __ret = 0;							\
355 	might_sleep();							\
356 	if (!(condition))						\
357 		__ret = __wait_event_freezable(wq, condition);		\
358 	__ret;								\
359 })
360 
361 #define __wait_event_timeout(wq, condition, timeout)			\
362 	___wait_event(wq, ___wait_cond_timeout(condition),		\
363 		      TASK_UNINTERRUPTIBLE, 0, timeout,			\
364 		      __ret = schedule_timeout(__ret))
365 
366 /**
367  * wait_event_timeout - sleep until a condition gets true or a timeout elapses
368  * @wq: the waitqueue to wait on
369  * @condition: a C expression for the event to wait for
370  * @timeout: timeout, in jiffies
371  *
372  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
373  * @condition evaluates to true. The @condition is checked each time
374  * the waitqueue @wq is woken up.
375  *
376  * wake_up() has to be called after changing any variable that could
377  * change the result of the wait condition.
378  *
379  * Returns:
380  * 0 if the @condition evaluated to %false after the @timeout elapsed,
381  * 1 if the @condition evaluated to %true after the @timeout elapsed,
382  * or the remaining jiffies (at least 1) if the @condition evaluated
383  * to %true before the @timeout elapsed.
384  */
385 #define wait_event_timeout(wq, condition, timeout)			\
386 ({									\
387 	long __ret = timeout;						\
388 	might_sleep();							\
389 	if (!___wait_cond_timeout(condition))				\
390 		__ret = __wait_event_timeout(wq, condition, timeout);	\
391 	__ret;								\
392 })
393 
394 #define __wait_event_freezable_timeout(wq, condition, timeout)		\
395 	___wait_event(wq, ___wait_cond_timeout(condition),		\
396 		      TASK_INTERRUPTIBLE, 0, timeout,			\
397 		      __ret = schedule_timeout(__ret); try_to_freeze())
398 
399 /*
400  * like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid
401  * increasing load and is freezable.
402  */
403 #define wait_event_freezable_timeout(wq, condition, timeout)		\
404 ({									\
405 	long __ret = timeout;						\
406 	might_sleep();							\
407 	if (!___wait_cond_timeout(condition))				\
408 		__ret = __wait_event_freezable_timeout(wq, condition, timeout);	\
409 	__ret;								\
410 })
411 
412 #define __wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
413 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 1, 0,	\
414 			    cmd1; schedule(); cmd2)
415 /*
416  * Just like wait_event_cmd(), except it sets exclusive flag
417  */
418 #define wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
419 do {									\
420 	if (condition)							\
421 		break;							\
422 	__wait_event_exclusive_cmd(wq, condition, cmd1, cmd2);		\
423 } while (0)
424 
425 #define __wait_event_cmd(wq, condition, cmd1, cmd2)			\
426 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
427 			    cmd1; schedule(); cmd2)
428 
429 /**
430  * wait_event_cmd - sleep until a condition gets true
431  * @wq: the waitqueue to wait on
432  * @condition: a C expression for the event to wait for
433  * @cmd1: the command will be executed before sleep
434  * @cmd2: the command will be executed after sleep
435  *
436  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
437  * @condition evaluates to true. The @condition is checked each time
438  * the waitqueue @wq is woken up.
439  *
440  * wake_up() has to be called after changing any variable that could
441  * change the result of the wait condition.
442  */
443 #define wait_event_cmd(wq, condition, cmd1, cmd2)			\
444 do {									\
445 	if (condition)							\
446 		break;							\
447 	__wait_event_cmd(wq, condition, cmd1, cmd2);			\
448 } while (0)
449 
450 #define __wait_event_interruptible(wq, condition)			\
451 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
452 		      schedule())
453 
454 /**
455  * wait_event_interruptible - sleep until a condition gets true
456  * @wq: the waitqueue to wait on
457  * @condition: a C expression for the event to wait for
458  *
459  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
460  * @condition evaluates to true or a signal is received.
461  * The @condition is checked each time the waitqueue @wq is woken up.
462  *
463  * wake_up() has to be called after changing any variable that could
464  * change the result of the wait condition.
465  *
466  * The function will return -ERESTARTSYS if it was interrupted by a
467  * signal and 0 if @condition evaluated to true.
468  */
469 #define wait_event_interruptible(wq, condition)				\
470 ({									\
471 	int __ret = 0;							\
472 	might_sleep();							\
473 	if (!(condition))						\
474 		__ret = __wait_event_interruptible(wq, condition);	\
475 	__ret;								\
476 })
477 
478 #define __wait_event_interruptible_timeout(wq, condition, timeout)	\
479 	___wait_event(wq, ___wait_cond_timeout(condition),		\
480 		      TASK_INTERRUPTIBLE, 0, timeout,			\
481 		      __ret = schedule_timeout(__ret))
482 
483 /**
484  * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
485  * @wq: the waitqueue to wait on
486  * @condition: a C expression for the event to wait for
487  * @timeout: timeout, in jiffies
488  *
489  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
490  * @condition evaluates to true or a signal is received.
491  * The @condition is checked each time the waitqueue @wq is woken up.
492  *
493  * wake_up() has to be called after changing any variable that could
494  * change the result of the wait condition.
495  *
496  * Returns:
497  * 0 if the @condition evaluated to %false after the @timeout elapsed,
498  * 1 if the @condition evaluated to %true after the @timeout elapsed,
499  * the remaining jiffies (at least 1) if the @condition evaluated
500  * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
501  * interrupted by a signal.
502  */
503 #define wait_event_interruptible_timeout(wq, condition, timeout)	\
504 ({									\
505 	long __ret = timeout;						\
506 	might_sleep();							\
507 	if (!___wait_cond_timeout(condition))				\
508 		__ret = __wait_event_interruptible_timeout(wq,		\
509 						condition, timeout);	\
510 	__ret;								\
511 })
512 
513 #define __wait_event_hrtimeout(wq, condition, timeout, state)		\
514 ({									\
515 	int __ret = 0;							\
516 	struct hrtimer_sleeper __t;					\
517 									\
518 	hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC,		\
519 			      HRTIMER_MODE_REL);			\
520 	hrtimer_init_sleeper(&__t, current);				\
521 	if ((timeout).tv64 != KTIME_MAX)				\
522 		hrtimer_start_range_ns(&__t.timer, timeout,		\
523 				       current->timer_slack_ns,		\
524 				       HRTIMER_MODE_REL);		\
525 									\
526 	__ret = ___wait_event(wq, condition, state, 0, 0,		\
527 		if (!__t.task) {					\
528 			__ret = -ETIME;					\
529 			break;						\
530 		}							\
531 		schedule());						\
532 									\
533 	hrtimer_cancel(&__t.timer);					\
534 	destroy_hrtimer_on_stack(&__t.timer);				\
535 	__ret;								\
536 })
537 
538 /**
539  * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
540  * @wq: the waitqueue to wait on
541  * @condition: a C expression for the event to wait for
542  * @timeout: timeout, as a ktime_t
543  *
544  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
545  * @condition evaluates to true or a signal is received.
546  * The @condition is checked each time the waitqueue @wq is woken up.
547  *
548  * wake_up() has to be called after changing any variable that could
549  * change the result of the wait condition.
550  *
551  * The function returns 0 if @condition became true, or -ETIME if the timeout
552  * elapsed.
553  */
554 #define wait_event_hrtimeout(wq, condition, timeout)			\
555 ({									\
556 	int __ret = 0;							\
557 	might_sleep();							\
558 	if (!(condition))						\
559 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
560 					       TASK_UNINTERRUPTIBLE);	\
561 	__ret;								\
562 })
563 
564 /**
565  * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
566  * @wq: the waitqueue to wait on
567  * @condition: a C expression for the event to wait for
568  * @timeout: timeout, as a ktime_t
569  *
570  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
571  * @condition evaluates to true or a signal is received.
572  * The @condition is checked each time the waitqueue @wq is woken up.
573  *
574  * wake_up() has to be called after changing any variable that could
575  * change the result of the wait condition.
576  *
577  * The function returns 0 if @condition became true, -ERESTARTSYS if it was
578  * interrupted by a signal, or -ETIME if the timeout elapsed.
579  */
580 #define wait_event_interruptible_hrtimeout(wq, condition, timeout)	\
581 ({									\
582 	long __ret = 0;							\
583 	might_sleep();							\
584 	if (!(condition))						\
585 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
586 					       TASK_INTERRUPTIBLE);	\
587 	__ret;								\
588 })
589 
590 #define __wait_event_interruptible_exclusive(wq, condition)		\
591 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
592 		      schedule())
593 
594 #define wait_event_interruptible_exclusive(wq, condition)		\
595 ({									\
596 	int __ret = 0;							\
597 	might_sleep();							\
598 	if (!(condition))						\
599 		__ret = __wait_event_interruptible_exclusive(wq, condition);\
600 	__ret;								\
601 })
602 
603 #define __wait_event_killable_exclusive(wq, condition)			\
604 	___wait_event(wq, condition, TASK_KILLABLE, 1, 0,		\
605 		      schedule())
606 
607 #define wait_event_killable_exclusive(wq, condition)			\
608 ({									\
609 	int __ret = 0;							\
610 	might_sleep();							\
611 	if (!(condition))						\
612 		__ret = __wait_event_killable_exclusive(wq, condition);	\
613 	__ret;								\
614 })
615 
616 
617 #define __wait_event_freezable_exclusive(wq, condition)			\
618 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
619 			schedule(); try_to_freeze())
620 
621 #define wait_event_freezable_exclusive(wq, condition)			\
622 ({									\
623 	int __ret = 0;							\
624 	might_sleep();							\
625 	if (!(condition))						\
626 		__ret = __wait_event_freezable_exclusive(wq, condition);\
627 	__ret;								\
628 })
629 
630 
631 #define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
632 ({									\
633 	int __ret = 0;							\
634 	DEFINE_WAIT(__wait);						\
635 	if (exclusive)							\
636 		__wait.flags |= WQ_FLAG_EXCLUSIVE;			\
637 	do {								\
638 		if (likely(list_empty(&__wait.task_list)))		\
639 			__add_wait_queue_tail(&(wq), &__wait);		\
640 		set_current_state(TASK_INTERRUPTIBLE);			\
641 		if (signal_pending(current)) {				\
642 			__ret = -ERESTARTSYS;				\
643 			break;						\
644 		}							\
645 		if (irq)						\
646 			spin_unlock_irq(&(wq).lock);			\
647 		else							\
648 			spin_unlock(&(wq).lock);			\
649 		schedule();						\
650 		if (irq)						\
651 			spin_lock_irq(&(wq).lock);			\
652 		else							\
653 			spin_lock(&(wq).lock);				\
654 	} while (!(condition));						\
655 	__remove_wait_queue(&(wq), &__wait);				\
656 	__set_current_state(TASK_RUNNING);				\
657 	__ret;								\
658 })
659 
660 
661 /**
662  * wait_event_interruptible_locked - sleep until a condition gets true
663  * @wq: the waitqueue to wait on
664  * @condition: a C expression for the event to wait for
665  *
666  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
667  * @condition evaluates to true or a signal is received.
668  * The @condition is checked each time the waitqueue @wq is woken up.
669  *
670  * It must be called with wq.lock being held.  This spinlock is
671  * unlocked while sleeping but @condition testing is done while lock
672  * is held and when this macro exits the lock is held.
673  *
674  * The lock is locked/unlocked using spin_lock()/spin_unlock()
675  * functions which must match the way they are locked/unlocked outside
676  * of this macro.
677  *
678  * wake_up_locked() has to be called after changing any variable that could
679  * change the result of the wait condition.
680  *
681  * The function will return -ERESTARTSYS if it was interrupted by a
682  * signal and 0 if @condition evaluated to true.
683  */
684 #define wait_event_interruptible_locked(wq, condition)			\
685 	((condition)							\
686 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
687 
688 /**
689  * wait_event_interruptible_locked_irq - sleep until a condition gets true
690  * @wq: the waitqueue to wait on
691  * @condition: a C expression for the event to wait for
692  *
693  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
694  * @condition evaluates to true or a signal is received.
695  * The @condition is checked each time the waitqueue @wq is woken up.
696  *
697  * It must be called with wq.lock being held.  This spinlock is
698  * unlocked while sleeping but @condition testing is done while lock
699  * is held and when this macro exits the lock is held.
700  *
701  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
702  * functions which must match the way they are locked/unlocked outside
703  * of this macro.
704  *
705  * wake_up_locked() has to be called after changing any variable that could
706  * change the result of the wait condition.
707  *
708  * The function will return -ERESTARTSYS if it was interrupted by a
709  * signal and 0 if @condition evaluated to true.
710  */
711 #define wait_event_interruptible_locked_irq(wq, condition)		\
712 	((condition)							\
713 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
714 
715 /**
716  * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
717  * @wq: the waitqueue to wait on
718  * @condition: a C expression for the event to wait for
719  *
720  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
721  * @condition evaluates to true or a signal is received.
722  * The @condition is checked each time the waitqueue @wq is woken up.
723  *
724  * It must be called with wq.lock being held.  This spinlock is
725  * unlocked while sleeping but @condition testing is done while lock
726  * is held and when this macro exits the lock is held.
727  *
728  * The lock is locked/unlocked using spin_lock()/spin_unlock()
729  * functions which must match the way they are locked/unlocked outside
730  * of this macro.
731  *
732  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
733  * set thus when other process waits process on the list if this
734  * process is awaken further processes are not considered.
735  *
736  * wake_up_locked() has to be called after changing any variable that could
737  * change the result of the wait condition.
738  *
739  * The function will return -ERESTARTSYS if it was interrupted by a
740  * signal and 0 if @condition evaluated to true.
741  */
742 #define wait_event_interruptible_exclusive_locked(wq, condition)	\
743 	((condition)							\
744 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
745 
746 /**
747  * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
748  * @wq: the waitqueue to wait on
749  * @condition: a C expression for the event to wait for
750  *
751  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
752  * @condition evaluates to true or a signal is received.
753  * The @condition is checked each time the waitqueue @wq is woken up.
754  *
755  * It must be called with wq.lock being held.  This spinlock is
756  * unlocked while sleeping but @condition testing is done while lock
757  * is held and when this macro exits the lock is held.
758  *
759  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
760  * functions which must match the way they are locked/unlocked outside
761  * of this macro.
762  *
763  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
764  * set thus when other process waits process on the list if this
765  * process is awaken further processes are not considered.
766  *
767  * wake_up_locked() has to be called after changing any variable that could
768  * change the result of the wait condition.
769  *
770  * The function will return -ERESTARTSYS if it was interrupted by a
771  * signal and 0 if @condition evaluated to true.
772  */
773 #define wait_event_interruptible_exclusive_locked_irq(wq, condition)	\
774 	((condition)							\
775 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
776 
777 
778 #define __wait_event_killable(wq, condition)				\
779 	___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
780 
781 /**
782  * wait_event_killable - sleep until a condition gets true
783  * @wq: the waitqueue to wait on
784  * @condition: a C expression for the event to wait for
785  *
786  * The process is put to sleep (TASK_KILLABLE) until the
787  * @condition evaluates to true or a signal is received.
788  * The @condition is checked each time the waitqueue @wq is woken up.
789  *
790  * wake_up() has to be called after changing any variable that could
791  * change the result of the wait condition.
792  *
793  * The function will return -ERESTARTSYS if it was interrupted by a
794  * signal and 0 if @condition evaluated to true.
795  */
796 #define wait_event_killable(wq, condition)				\
797 ({									\
798 	int __ret = 0;							\
799 	might_sleep();							\
800 	if (!(condition))						\
801 		__ret = __wait_event_killable(wq, condition);		\
802 	__ret;								\
803 })
804 
805 
806 #define __wait_event_lock_irq(wq, condition, lock, cmd)			\
807 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
808 			    spin_unlock_irq(&lock);			\
809 			    cmd;					\
810 			    schedule();					\
811 			    spin_lock_irq(&lock))
812 
813 /**
814  * wait_event_lock_irq_cmd - sleep until a condition gets true. The
815  *			     condition is checked under the lock. This
816  *			     is expected to be called with the lock
817  *			     taken.
818  * @wq: the waitqueue to wait on
819  * @condition: a C expression for the event to wait for
820  * @lock: a locked spinlock_t, which will be released before cmd
821  *	  and schedule() and reacquired afterwards.
822  * @cmd: a command which is invoked outside the critical section before
823  *	 sleep
824  *
825  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
826  * @condition evaluates to true. The @condition is checked each time
827  * the waitqueue @wq is woken up.
828  *
829  * wake_up() has to be called after changing any variable that could
830  * change the result of the wait condition.
831  *
832  * This is supposed to be called while holding the lock. The lock is
833  * dropped before invoking the cmd and going to sleep and is reacquired
834  * afterwards.
835  */
836 #define wait_event_lock_irq_cmd(wq, condition, lock, cmd)		\
837 do {									\
838 	if (condition)							\
839 		break;							\
840 	__wait_event_lock_irq(wq, condition, lock, cmd);		\
841 } while (0)
842 
843 /**
844  * wait_event_lock_irq - sleep until a condition gets true. The
845  *			 condition is checked under the lock. This
846  *			 is expected to be called with the lock
847  *			 taken.
848  * @wq: the waitqueue to wait on
849  * @condition: a C expression for the event to wait for
850  * @lock: a locked spinlock_t, which will be released before schedule()
851  *	  and reacquired afterwards.
852  *
853  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
854  * @condition evaluates to true. The @condition is checked each time
855  * the waitqueue @wq is woken up.
856  *
857  * wake_up() has to be called after changing any variable that could
858  * change the result of the wait condition.
859  *
860  * This is supposed to be called while holding the lock. The lock is
861  * dropped before going to sleep and is reacquired afterwards.
862  */
863 #define wait_event_lock_irq(wq, condition, lock)			\
864 do {									\
865 	if (condition)							\
866 		break;							\
867 	__wait_event_lock_irq(wq, condition, lock, );			\
868 } while (0)
869 
870 
871 #define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd)	\
872 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
873 		      spin_unlock_irq(&lock);				\
874 		      cmd;						\
875 		      schedule();					\
876 		      spin_lock_irq(&lock))
877 
878 /**
879  * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
880  *		The condition is checked under the lock. This is expected to
881  *		be called with the lock taken.
882  * @wq: the waitqueue to wait on
883  * @condition: a C expression for the event to wait for
884  * @lock: a locked spinlock_t, which will be released before cmd and
885  *	  schedule() and reacquired afterwards.
886  * @cmd: a command which is invoked outside the critical section before
887  *	 sleep
888  *
889  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
890  * @condition evaluates to true or a signal is received. The @condition is
891  * checked each time the waitqueue @wq is woken up.
892  *
893  * wake_up() has to be called after changing any variable that could
894  * change the result of the wait condition.
895  *
896  * This is supposed to be called while holding the lock. The lock is
897  * dropped before invoking the cmd and going to sleep and is reacquired
898  * afterwards.
899  *
900  * The macro will return -ERESTARTSYS if it was interrupted by a signal
901  * and 0 if @condition evaluated to true.
902  */
903 #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd)	\
904 ({									\
905 	int __ret = 0;							\
906 	if (!(condition))						\
907 		__ret = __wait_event_interruptible_lock_irq(wq,		\
908 						condition, lock, cmd);	\
909 	__ret;								\
910 })
911 
912 /**
913  * wait_event_interruptible_lock_irq - sleep until a condition gets true.
914  *		The condition is checked under the lock. This is expected
915  *		to be called with the lock taken.
916  * @wq: the waitqueue to wait on
917  * @condition: a C expression for the event to wait for
918  * @lock: a locked spinlock_t, which will be released before schedule()
919  *	  and reacquired afterwards.
920  *
921  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
922  * @condition evaluates to true or signal is received. The @condition is
923  * checked each time the waitqueue @wq is woken up.
924  *
925  * wake_up() has to be called after changing any variable that could
926  * change the result of the wait condition.
927  *
928  * This is supposed to be called while holding the lock. The lock is
929  * dropped before going to sleep and is reacquired afterwards.
930  *
931  * The macro will return -ERESTARTSYS if it was interrupted by a signal
932  * and 0 if @condition evaluated to true.
933  */
934 #define wait_event_interruptible_lock_irq(wq, condition, lock)		\
935 ({									\
936 	int __ret = 0;							\
937 	if (!(condition))						\
938 		__ret = __wait_event_interruptible_lock_irq(wq,		\
939 						condition, lock,);	\
940 	__ret;								\
941 })
942 
943 #define __wait_event_interruptible_lock_irq_timeout(wq, condition,	\
944 						    lock, timeout)	\
945 	___wait_event(wq, ___wait_cond_timeout(condition),		\
946 		      TASK_INTERRUPTIBLE, 0, timeout,			\
947 		      spin_unlock_irq(&lock);				\
948 		      __ret = schedule_timeout(__ret);			\
949 		      spin_lock_irq(&lock));
950 
951 /**
952  * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
953  *		true or a timeout elapses. The condition is checked under
954  *		the lock. This is expected to be called with the lock taken.
955  * @wq: the waitqueue to wait on
956  * @condition: a C expression for the event to wait for
957  * @lock: a locked spinlock_t, which will be released before schedule()
958  *	  and reacquired afterwards.
959  * @timeout: timeout, in jiffies
960  *
961  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
962  * @condition evaluates to true or signal is received. The @condition is
963  * checked each time the waitqueue @wq is woken up.
964  *
965  * wake_up() has to be called after changing any variable that could
966  * change the result of the wait condition.
967  *
968  * This is supposed to be called while holding the lock. The lock is
969  * dropped before going to sleep and is reacquired afterwards.
970  *
971  * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
972  * was interrupted by a signal, and the remaining jiffies otherwise
973  * if the condition evaluated to true before the timeout elapsed.
974  */
975 #define wait_event_interruptible_lock_irq_timeout(wq, condition, lock,	\
976 						  timeout)		\
977 ({									\
978 	long __ret = timeout;						\
979 	if (!___wait_cond_timeout(condition))				\
980 		__ret = __wait_event_interruptible_lock_irq_timeout(	\
981 					wq, condition, lock, timeout);	\
982 	__ret;								\
983 })
984 
985 /*
986  * Waitqueues which are removed from the waitqueue_head at wakeup time
987  */
988 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
989 void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
990 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
991 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
992 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
993 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
994 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
995 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
996 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
997 
998 #define DEFINE_WAIT_FUNC(name, function)				\
999 	wait_queue_t name = {						\
1000 		.private	= current,				\
1001 		.func		= function,				\
1002 		.task_list	= LIST_HEAD_INIT((name).task_list),	\
1003 	}
1004 
1005 #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
1006 
1007 #define DEFINE_WAIT_BIT(name, word, bit)				\
1008 	struct wait_bit_queue name = {					\
1009 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),		\
1010 		.wait	= {						\
1011 			.private	= current,			\
1012 			.func		= wake_bit_function,		\
1013 			.task_list	=				\
1014 				LIST_HEAD_INIT((name).wait.task_list),	\
1015 		},							\
1016 	}
1017 
1018 #define init_wait(wait)							\
1019 	do {								\
1020 		(wait)->private = current;				\
1021 		(wait)->func = autoremove_wake_function;		\
1022 		INIT_LIST_HEAD(&(wait)->task_list);			\
1023 		(wait)->flags = 0;					\
1024 	} while (0)
1025 
1026 
1027 extern int bit_wait(struct wait_bit_key *, int);
1028 extern int bit_wait_io(struct wait_bit_key *, int);
1029 extern int bit_wait_timeout(struct wait_bit_key *, int);
1030 extern int bit_wait_io_timeout(struct wait_bit_key *, int);
1031 
1032 /**
1033  * wait_on_bit - wait for a bit to be cleared
1034  * @word: the word being waited on, a kernel virtual address
1035  * @bit: the bit of the word being waited on
1036  * @mode: the task state to sleep in
1037  *
1038  * There is a standard hashed waitqueue table for generic use. This
1039  * is the part of the hashtable's accessor API that waits on a bit.
1040  * For instance, if one were to have waiters on a bitflag, one would
1041  * call wait_on_bit() in threads waiting for the bit to clear.
1042  * One uses wait_on_bit() where one is waiting for the bit to clear,
1043  * but has no intention of setting it.
1044  * Returned value will be zero if the bit was cleared, or non-zero
1045  * if the process received a signal and the mode permitted wakeup
1046  * on that signal.
1047  */
1048 static inline int
1049 wait_on_bit(unsigned long *word, int bit, unsigned mode)
1050 {
1051 	might_sleep();
1052 	if (!test_bit(bit, word))
1053 		return 0;
1054 	return out_of_line_wait_on_bit(word, bit,
1055 				       bit_wait,
1056 				       mode);
1057 }
1058 
1059 /**
1060  * wait_on_bit_io - wait for a bit to be cleared
1061  * @word: the word being waited on, a kernel virtual address
1062  * @bit: the bit of the word being waited on
1063  * @mode: the task state to sleep in
1064  *
1065  * Use the standard hashed waitqueue table to wait for a bit
1066  * to be cleared.  This is similar to wait_on_bit(), but calls
1067  * io_schedule() instead of schedule() for the actual waiting.
1068  *
1069  * Returned value will be zero if the bit was cleared, or non-zero
1070  * if the process received a signal and the mode permitted wakeup
1071  * on that signal.
1072  */
1073 static inline int
1074 wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
1075 {
1076 	might_sleep();
1077 	if (!test_bit(bit, word))
1078 		return 0;
1079 	return out_of_line_wait_on_bit(word, bit,
1080 				       bit_wait_io,
1081 				       mode);
1082 }
1083 
1084 /**
1085  * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
1086  * @word: the word being waited on, a kernel virtual address
1087  * @bit: the bit of the word being waited on
1088  * @mode: the task state to sleep in
1089  * @timeout: timeout, in jiffies
1090  *
1091  * Use the standard hashed waitqueue table to wait for a bit
1092  * to be cleared. This is similar to wait_on_bit(), except also takes a
1093  * timeout parameter.
1094  *
1095  * Returned value will be zero if the bit was cleared before the
1096  * @timeout elapsed, or non-zero if the @timeout elapsed or process
1097  * received a signal and the mode permitted wakeup on that signal.
1098  */
1099 static inline int
1100 wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
1101 		    unsigned long timeout)
1102 {
1103 	might_sleep();
1104 	if (!test_bit(bit, word))
1105 		return 0;
1106 	return out_of_line_wait_on_bit_timeout(word, bit,
1107 					       bit_wait_timeout,
1108 					       mode, timeout);
1109 }
1110 
1111 /**
1112  * wait_on_bit_action - wait for a bit to be cleared
1113  * @word: the word being waited on, a kernel virtual address
1114  * @bit: the bit of the word being waited on
1115  * @action: the function used to sleep, which may take special actions
1116  * @mode: the task state to sleep in
1117  *
1118  * Use the standard hashed waitqueue table to wait for a bit
1119  * to be cleared, and allow the waiting action to be specified.
1120  * This is like wait_on_bit() but allows fine control of how the waiting
1121  * is done.
1122  *
1123  * Returned value will be zero if the bit was cleared, or non-zero
1124  * if the process received a signal and the mode permitted wakeup
1125  * on that signal.
1126  */
1127 static inline int
1128 wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
1129 		   unsigned mode)
1130 {
1131 	might_sleep();
1132 	if (!test_bit(bit, word))
1133 		return 0;
1134 	return out_of_line_wait_on_bit(word, bit, action, mode);
1135 }
1136 
1137 /**
1138  * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
1139  * @word: the word being waited on, a kernel virtual address
1140  * @bit: the bit of the word being waited on
1141  * @mode: the task state to sleep in
1142  *
1143  * There is a standard hashed waitqueue table for generic use. This
1144  * is the part of the hashtable's accessor API that waits on a bit
1145  * when one intends to set it, for instance, trying to lock bitflags.
1146  * For instance, if one were to have waiters trying to set bitflag
1147  * and waiting for it to clear before setting it, one would call
1148  * wait_on_bit() in threads waiting to be able to set the bit.
1149  * One uses wait_on_bit_lock() where one is waiting for the bit to
1150  * clear with the intention of setting it, and when done, clearing it.
1151  *
1152  * Returns zero if the bit was (eventually) found to be clear and was
1153  * set.  Returns non-zero if a signal was delivered to the process and
1154  * the @mode allows that signal to wake the process.
1155  */
1156 static inline int
1157 wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
1158 {
1159 	might_sleep();
1160 	if (!test_and_set_bit(bit, word))
1161 		return 0;
1162 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
1163 }
1164 
1165 /**
1166  * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
1167  * @word: the word being waited on, a kernel virtual address
1168  * @bit: the bit of the word being waited on
1169  * @mode: the task state to sleep in
1170  *
1171  * Use the standard hashed waitqueue table to wait for a bit
1172  * to be cleared and then to atomically set it.  This is similar
1173  * to wait_on_bit(), but calls io_schedule() instead of schedule()
1174  * for the actual waiting.
1175  *
1176  * Returns zero if the bit was (eventually) found to be clear and was
1177  * set.  Returns non-zero if a signal was delivered to the process and
1178  * the @mode allows that signal to wake the process.
1179  */
1180 static inline int
1181 wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
1182 {
1183 	might_sleep();
1184 	if (!test_and_set_bit(bit, word))
1185 		return 0;
1186 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
1187 }
1188 
1189 /**
1190  * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
1191  * @word: the word being waited on, a kernel virtual address
1192  * @bit: the bit of the word being waited on
1193  * @action: the function used to sleep, which may take special actions
1194  * @mode: the task state to sleep in
1195  *
1196  * Use the standard hashed waitqueue table to wait for a bit
1197  * to be cleared and then to set it, and allow the waiting action
1198  * to be specified.
1199  * This is like wait_on_bit() but allows fine control of how the waiting
1200  * is done.
1201  *
1202  * Returns zero if the bit was (eventually) found to be clear and was
1203  * set.  Returns non-zero if a signal was delivered to the process and
1204  * the @mode allows that signal to wake the process.
1205  */
1206 static inline int
1207 wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
1208 			unsigned mode)
1209 {
1210 	might_sleep();
1211 	if (!test_and_set_bit(bit, word))
1212 		return 0;
1213 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
1214 }
1215 
1216 /**
1217  * wait_on_atomic_t - Wait for an atomic_t to become 0
1218  * @val: The atomic value being waited on, a kernel virtual address
1219  * @action: the function used to sleep, which may take special actions
1220  * @mode: the task state to sleep in
1221  *
1222  * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
1223  * the purpose of getting a waitqueue, but we set the key to a bit number
1224  * outside of the target 'word'.
1225  */
1226 static inline
1227 int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
1228 {
1229 	might_sleep();
1230 	if (atomic_read(val) == 0)
1231 		return 0;
1232 	return out_of_line_wait_on_atomic_t(val, action, mode);
1233 }
1234 
1235 #endif /* _LINUX_WAIT_H */
1236