xref: /linux-6.15/include/linux/wait.h (revision 06ed5c2b)
1 #ifndef _LINUX_WAIT_H
2 #define _LINUX_WAIT_H
3 /*
4  * Linux wait queue related types and methods
5  */
6 #include <linux/list.h>
7 #include <linux/stddef.h>
8 #include <linux/spinlock.h>
9 #include <asm/current.h>
10 #include <uapi/linux/wait.h>
11 
12 typedef struct __wait_queue wait_queue_t;
13 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
14 int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
15 
16 struct __wait_queue {
17 	unsigned int		flags;
18 #define WQ_FLAG_EXCLUSIVE	0x01
19 	void			*private;
20 	wait_queue_func_t	func;
21 	struct list_head	task_list;
22 };
23 
24 struct wait_bit_key {
25 	void			*flags;
26 	int			bit_nr;
27 #define WAIT_ATOMIC_T_BIT_NR	-1
28 	unsigned long		private;
29 };
30 
31 struct wait_bit_queue {
32 	struct wait_bit_key	key;
33 	wait_queue_t		wait;
34 };
35 
36 struct __wait_queue_head {
37 	spinlock_t		lock;
38 	struct list_head	task_list;
39 };
40 typedef struct __wait_queue_head wait_queue_head_t;
41 
42 struct task_struct;
43 
44 /*
45  * Macros for declaration and initialisaton of the datatypes
46  */
47 
48 #define __WAITQUEUE_INITIALIZER(name, tsk) {				\
49 	.private	= tsk,						\
50 	.func		= default_wake_function,			\
51 	.task_list	= { NULL, NULL } }
52 
53 #define DECLARE_WAITQUEUE(name, tsk)					\
54 	wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
55 
56 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {				\
57 	.lock		= __SPIN_LOCK_UNLOCKED(name.lock),		\
58 	.task_list	= { &(name).task_list, &(name).task_list } }
59 
60 #define DECLARE_WAIT_QUEUE_HEAD(name) \
61 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
62 
63 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)				\
64 	{ .flags = word, .bit_nr = bit, }
65 
66 #define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)				\
67 	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
68 
69 extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
70 
71 #define init_waitqueue_head(q)				\
72 	do {						\
73 		static struct lock_class_key __key;	\
74 							\
75 		__init_waitqueue_head((q), #q, &__key);	\
76 	} while (0)
77 
78 #ifdef CONFIG_LOCKDEP
79 # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
80 	({ init_waitqueue_head(&name); name; })
81 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
82 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
83 #else
84 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
85 #endif
86 
87 static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
88 {
89 	q->flags	= 0;
90 	q->private	= p;
91 	q->func		= default_wake_function;
92 }
93 
94 static inline void
95 init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
96 {
97 	q->flags	= 0;
98 	q->private	= NULL;
99 	q->func		= func;
100 }
101 
102 static inline int waitqueue_active(wait_queue_head_t *q)
103 {
104 	return !list_empty(&q->task_list);
105 }
106 
107 extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
108 extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
109 extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
110 
111 static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
112 {
113 	list_add(&new->task_list, &head->task_list);
114 }
115 
116 /*
117  * Used for wake-one threads:
118  */
119 static inline void
120 __add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
121 {
122 	wait->flags |= WQ_FLAG_EXCLUSIVE;
123 	__add_wait_queue(q, wait);
124 }
125 
126 static inline void __add_wait_queue_tail(wait_queue_head_t *head,
127 					 wait_queue_t *new)
128 {
129 	list_add_tail(&new->task_list, &head->task_list);
130 }
131 
132 static inline void
133 __add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
134 {
135 	wait->flags |= WQ_FLAG_EXCLUSIVE;
136 	__add_wait_queue_tail(q, wait);
137 }
138 
139 static inline void
140 __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
141 {
142 	list_del(&old->task_list);
143 }
144 
145 typedef int wait_bit_action_f(struct wait_bit_key *);
146 void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
147 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
148 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
149 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
150 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
151 void __wake_up_bit(wait_queue_head_t *, void *, int);
152 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
153 int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
154 void wake_up_bit(void *, int);
155 void wake_up_atomic_t(atomic_t *);
156 int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
157 int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
158 int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
159 wait_queue_head_t *bit_waitqueue(void *, int);
160 
161 #define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
162 #define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
163 #define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
164 #define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
165 #define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
166 
167 #define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
168 #define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
169 #define wake_up_interruptible_all(x)	__wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
170 #define wake_up_interruptible_sync(x)	__wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
171 
172 /*
173  * Wakeup macros to be used to report events to the targets.
174  */
175 #define wake_up_poll(x, m)						\
176 	__wake_up(x, TASK_NORMAL, 1, (void *) (m))
177 #define wake_up_locked_poll(x, m)					\
178 	__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
179 #define wake_up_interruptible_poll(x, m)				\
180 	__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
181 #define wake_up_interruptible_sync_poll(x, m)				\
182 	__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
183 
184 #define ___wait_cond_timeout(condition)					\
185 ({									\
186 	bool __cond = (condition);					\
187 	if (__cond && !__ret)						\
188 		__ret = 1;						\
189 	__cond || !__ret;						\
190 })
191 
192 #define ___wait_is_interruptible(state)					\
193 	(!__builtin_constant_p(state) ||				\
194 		state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE)	\
195 
196 /*
197  * The below macro ___wait_event() has an explicit shadow of the __ret
198  * variable when used from the wait_event_*() macros.
199  *
200  * This is so that both can use the ___wait_cond_timeout() construct
201  * to wrap the condition.
202  *
203  * The type inconsistency of the wait_event_*() __ret variable is also
204  * on purpose; we use long where we can return timeout values and int
205  * otherwise.
206  */
207 
208 #define ___wait_event(wq, condition, state, exclusive, ret, cmd)	\
209 ({									\
210 	__label__ __out;						\
211 	wait_queue_t __wait;						\
212 	long __ret = ret;	/* explicit shadow */			\
213 									\
214 	INIT_LIST_HEAD(&__wait.task_list);				\
215 	if (exclusive)							\
216 		__wait.flags = WQ_FLAG_EXCLUSIVE;			\
217 	else								\
218 		__wait.flags = 0;					\
219 									\
220 	for (;;) {							\
221 		long __int = prepare_to_wait_event(&wq, &__wait, state);\
222 									\
223 		if (condition)						\
224 			break;						\
225 									\
226 		if (___wait_is_interruptible(state) && __int) {		\
227 			__ret = __int;					\
228 			if (exclusive) {				\
229 				abort_exclusive_wait(&wq, &__wait,	\
230 						     state, NULL);	\
231 				goto __out;				\
232 			}						\
233 			break;						\
234 		}							\
235 									\
236 		cmd;							\
237 	}								\
238 	finish_wait(&wq, &__wait);					\
239 __out:	__ret;								\
240 })
241 
242 #define __wait_event(wq, condition)					\
243 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
244 			    schedule())
245 
246 /**
247  * wait_event - sleep until a condition gets true
248  * @wq: the waitqueue to wait on
249  * @condition: a C expression for the event to wait for
250  *
251  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
252  * @condition evaluates to true. The @condition is checked each time
253  * the waitqueue @wq is woken up.
254  *
255  * wake_up() has to be called after changing any variable that could
256  * change the result of the wait condition.
257  */
258 #define wait_event(wq, condition)					\
259 do {									\
260 	if (condition)							\
261 		break;							\
262 	__wait_event(wq, condition);					\
263 } while (0)
264 
265 #define __wait_event_timeout(wq, condition, timeout)			\
266 	___wait_event(wq, ___wait_cond_timeout(condition),		\
267 		      TASK_UNINTERRUPTIBLE, 0, timeout,			\
268 		      __ret = schedule_timeout(__ret))
269 
270 /**
271  * wait_event_timeout - sleep until a condition gets true or a timeout elapses
272  * @wq: the waitqueue to wait on
273  * @condition: a C expression for the event to wait for
274  * @timeout: timeout, in jiffies
275  *
276  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
277  * @condition evaluates to true. The @condition is checked each time
278  * the waitqueue @wq is woken up.
279  *
280  * wake_up() has to be called after changing any variable that could
281  * change the result of the wait condition.
282  *
283  * The function returns 0 if the @timeout elapsed, or the remaining
284  * jiffies (at least 1) if the @condition evaluated to %true before
285  * the @timeout elapsed.
286  */
287 #define wait_event_timeout(wq, condition, timeout)			\
288 ({									\
289 	long __ret = timeout;						\
290 	if (!___wait_cond_timeout(condition))				\
291 		__ret = __wait_event_timeout(wq, condition, timeout);	\
292 	__ret;								\
293 })
294 
295 #define __wait_event_cmd(wq, condition, cmd1, cmd2)			\
296 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
297 			    cmd1; schedule(); cmd2)
298 
299 /**
300  * wait_event_cmd - sleep until a condition gets true
301  * @wq: the waitqueue to wait on
302  * @condition: a C expression for the event to wait for
303  * @cmd1: the command will be executed before sleep
304  * @cmd2: the command will be executed after sleep
305  *
306  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
307  * @condition evaluates to true. The @condition is checked each time
308  * the waitqueue @wq is woken up.
309  *
310  * wake_up() has to be called after changing any variable that could
311  * change the result of the wait condition.
312  */
313 #define wait_event_cmd(wq, condition, cmd1, cmd2)			\
314 do {									\
315 	if (condition)							\
316 		break;							\
317 	__wait_event_cmd(wq, condition, cmd1, cmd2);			\
318 } while (0)
319 
320 #define __wait_event_interruptible(wq, condition)			\
321 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
322 		      schedule())
323 
324 /**
325  * wait_event_interruptible - sleep until a condition gets true
326  * @wq: the waitqueue to wait on
327  * @condition: a C expression for the event to wait for
328  *
329  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
330  * @condition evaluates to true or a signal is received.
331  * The @condition is checked each time the waitqueue @wq is woken up.
332  *
333  * wake_up() has to be called after changing any variable that could
334  * change the result of the wait condition.
335  *
336  * The function will return -ERESTARTSYS if it was interrupted by a
337  * signal and 0 if @condition evaluated to true.
338  */
339 #define wait_event_interruptible(wq, condition)				\
340 ({									\
341 	int __ret = 0;							\
342 	if (!(condition))						\
343 		__ret = __wait_event_interruptible(wq, condition);	\
344 	__ret;								\
345 })
346 
347 #define __wait_event_interruptible_timeout(wq, condition, timeout)	\
348 	___wait_event(wq, ___wait_cond_timeout(condition),		\
349 		      TASK_INTERRUPTIBLE, 0, timeout,			\
350 		      __ret = schedule_timeout(__ret))
351 
352 /**
353  * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
354  * @wq: the waitqueue to wait on
355  * @condition: a C expression for the event to wait for
356  * @timeout: timeout, in jiffies
357  *
358  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
359  * @condition evaluates to true or a signal is received.
360  * The @condition is checked each time the waitqueue @wq is woken up.
361  *
362  * wake_up() has to be called after changing any variable that could
363  * change the result of the wait condition.
364  *
365  * Returns:
366  * 0 if the @timeout elapsed, -%ERESTARTSYS if it was interrupted by
367  * a signal, or the remaining jiffies (at least 1) if the @condition
368  * evaluated to %true before the @timeout elapsed.
369  */
370 #define wait_event_interruptible_timeout(wq, condition, timeout)	\
371 ({									\
372 	long __ret = timeout;						\
373 	if (!___wait_cond_timeout(condition))				\
374 		__ret = __wait_event_interruptible_timeout(wq,		\
375 						condition, timeout);	\
376 	__ret;								\
377 })
378 
379 #define __wait_event_hrtimeout(wq, condition, timeout, state)		\
380 ({									\
381 	int __ret = 0;							\
382 	struct hrtimer_sleeper __t;					\
383 									\
384 	hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC,		\
385 			      HRTIMER_MODE_REL);			\
386 	hrtimer_init_sleeper(&__t, current);				\
387 	if ((timeout).tv64 != KTIME_MAX)				\
388 		hrtimer_start_range_ns(&__t.timer, timeout,		\
389 				       current->timer_slack_ns,		\
390 				       HRTIMER_MODE_REL);		\
391 									\
392 	__ret = ___wait_event(wq, condition, state, 0, 0,		\
393 		if (!__t.task) {					\
394 			__ret = -ETIME;					\
395 			break;						\
396 		}							\
397 		schedule());						\
398 									\
399 	hrtimer_cancel(&__t.timer);					\
400 	destroy_hrtimer_on_stack(&__t.timer);				\
401 	__ret;								\
402 })
403 
404 /**
405  * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
406  * @wq: the waitqueue to wait on
407  * @condition: a C expression for the event to wait for
408  * @timeout: timeout, as a ktime_t
409  *
410  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
411  * @condition evaluates to true or a signal is received.
412  * The @condition is checked each time the waitqueue @wq is woken up.
413  *
414  * wake_up() has to be called after changing any variable that could
415  * change the result of the wait condition.
416  *
417  * The function returns 0 if @condition became true, or -ETIME if the timeout
418  * elapsed.
419  */
420 #define wait_event_hrtimeout(wq, condition, timeout)			\
421 ({									\
422 	int __ret = 0;							\
423 	if (!(condition))						\
424 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
425 					       TASK_UNINTERRUPTIBLE);	\
426 	__ret;								\
427 })
428 
429 /**
430  * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
431  * @wq: the waitqueue to wait on
432  * @condition: a C expression for the event to wait for
433  * @timeout: timeout, as a ktime_t
434  *
435  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
436  * @condition evaluates to true or a signal is received.
437  * The @condition is checked each time the waitqueue @wq is woken up.
438  *
439  * wake_up() has to be called after changing any variable that could
440  * change the result of the wait condition.
441  *
442  * The function returns 0 if @condition became true, -ERESTARTSYS if it was
443  * interrupted by a signal, or -ETIME if the timeout elapsed.
444  */
445 #define wait_event_interruptible_hrtimeout(wq, condition, timeout)	\
446 ({									\
447 	long __ret = 0;							\
448 	if (!(condition))						\
449 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
450 					       TASK_INTERRUPTIBLE);	\
451 	__ret;								\
452 })
453 
454 #define __wait_event_interruptible_exclusive(wq, condition)		\
455 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
456 		      schedule())
457 
458 #define wait_event_interruptible_exclusive(wq, condition)		\
459 ({									\
460 	int __ret = 0;							\
461 	if (!(condition))						\
462 		__ret = __wait_event_interruptible_exclusive(wq, condition);\
463 	__ret;								\
464 })
465 
466 
467 #define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
468 ({									\
469 	int __ret = 0;							\
470 	DEFINE_WAIT(__wait);						\
471 	if (exclusive)							\
472 		__wait.flags |= WQ_FLAG_EXCLUSIVE;			\
473 	do {								\
474 		if (likely(list_empty(&__wait.task_list)))		\
475 			__add_wait_queue_tail(&(wq), &__wait);		\
476 		set_current_state(TASK_INTERRUPTIBLE);			\
477 		if (signal_pending(current)) {				\
478 			__ret = -ERESTARTSYS;				\
479 			break;						\
480 		}							\
481 		if (irq)						\
482 			spin_unlock_irq(&(wq).lock);			\
483 		else							\
484 			spin_unlock(&(wq).lock);			\
485 		schedule();						\
486 		if (irq)						\
487 			spin_lock_irq(&(wq).lock);			\
488 		else							\
489 			spin_lock(&(wq).lock);				\
490 	} while (!(condition));						\
491 	__remove_wait_queue(&(wq), &__wait);				\
492 	__set_current_state(TASK_RUNNING);				\
493 	__ret;								\
494 })
495 
496 
497 /**
498  * wait_event_interruptible_locked - sleep until a condition gets true
499  * @wq: the waitqueue to wait on
500  * @condition: a C expression for the event to wait for
501  *
502  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
503  * @condition evaluates to true or a signal is received.
504  * The @condition is checked each time the waitqueue @wq is woken up.
505  *
506  * It must be called with wq.lock being held.  This spinlock is
507  * unlocked while sleeping but @condition testing is done while lock
508  * is held and when this macro exits the lock is held.
509  *
510  * The lock is locked/unlocked using spin_lock()/spin_unlock()
511  * functions which must match the way they are locked/unlocked outside
512  * of this macro.
513  *
514  * wake_up_locked() has to be called after changing any variable that could
515  * change the result of the wait condition.
516  *
517  * The function will return -ERESTARTSYS if it was interrupted by a
518  * signal and 0 if @condition evaluated to true.
519  */
520 #define wait_event_interruptible_locked(wq, condition)			\
521 	((condition)							\
522 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
523 
524 /**
525  * wait_event_interruptible_locked_irq - sleep until a condition gets true
526  * @wq: the waitqueue to wait on
527  * @condition: a C expression for the event to wait for
528  *
529  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
530  * @condition evaluates to true or a signal is received.
531  * The @condition is checked each time the waitqueue @wq is woken up.
532  *
533  * It must be called with wq.lock being held.  This spinlock is
534  * unlocked while sleeping but @condition testing is done while lock
535  * is held and when this macro exits the lock is held.
536  *
537  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
538  * functions which must match the way they are locked/unlocked outside
539  * of this macro.
540  *
541  * wake_up_locked() has to be called after changing any variable that could
542  * change the result of the wait condition.
543  *
544  * The function will return -ERESTARTSYS if it was interrupted by a
545  * signal and 0 if @condition evaluated to true.
546  */
547 #define wait_event_interruptible_locked_irq(wq, condition)		\
548 	((condition)							\
549 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
550 
551 /**
552  * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
553  * @wq: the waitqueue to wait on
554  * @condition: a C expression for the event to wait for
555  *
556  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
557  * @condition evaluates to true or a signal is received.
558  * The @condition is checked each time the waitqueue @wq is woken up.
559  *
560  * It must be called with wq.lock being held.  This spinlock is
561  * unlocked while sleeping but @condition testing is done while lock
562  * is held and when this macro exits the lock is held.
563  *
564  * The lock is locked/unlocked using spin_lock()/spin_unlock()
565  * functions which must match the way they are locked/unlocked outside
566  * of this macro.
567  *
568  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
569  * set thus when other process waits process on the list if this
570  * process is awaken further processes are not considered.
571  *
572  * wake_up_locked() has to be called after changing any variable that could
573  * change the result of the wait condition.
574  *
575  * The function will return -ERESTARTSYS if it was interrupted by a
576  * signal and 0 if @condition evaluated to true.
577  */
578 #define wait_event_interruptible_exclusive_locked(wq, condition)	\
579 	((condition)							\
580 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
581 
582 /**
583  * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
584  * @wq: the waitqueue to wait on
585  * @condition: a C expression for the event to wait for
586  *
587  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
588  * @condition evaluates to true or a signal is received.
589  * The @condition is checked each time the waitqueue @wq is woken up.
590  *
591  * It must be called with wq.lock being held.  This spinlock is
592  * unlocked while sleeping but @condition testing is done while lock
593  * is held and when this macro exits the lock is held.
594  *
595  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
596  * functions which must match the way they are locked/unlocked outside
597  * of this macro.
598  *
599  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
600  * set thus when other process waits process on the list if this
601  * process is awaken further processes are not considered.
602  *
603  * wake_up_locked() has to be called after changing any variable that could
604  * change the result of the wait condition.
605  *
606  * The function will return -ERESTARTSYS if it was interrupted by a
607  * signal and 0 if @condition evaluated to true.
608  */
609 #define wait_event_interruptible_exclusive_locked_irq(wq, condition)	\
610 	((condition)							\
611 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
612 
613 
614 #define __wait_event_killable(wq, condition)				\
615 	___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
616 
617 /**
618  * wait_event_killable - sleep until a condition gets true
619  * @wq: the waitqueue to wait on
620  * @condition: a C expression for the event to wait for
621  *
622  * The process is put to sleep (TASK_KILLABLE) until the
623  * @condition evaluates to true or a signal is received.
624  * The @condition is checked each time the waitqueue @wq is woken up.
625  *
626  * wake_up() has to be called after changing any variable that could
627  * change the result of the wait condition.
628  *
629  * The function will return -ERESTARTSYS if it was interrupted by a
630  * signal and 0 if @condition evaluated to true.
631  */
632 #define wait_event_killable(wq, condition)				\
633 ({									\
634 	int __ret = 0;							\
635 	if (!(condition))						\
636 		__ret = __wait_event_killable(wq, condition);		\
637 	__ret;								\
638 })
639 
640 
641 #define __wait_event_lock_irq(wq, condition, lock, cmd)			\
642 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
643 			    spin_unlock_irq(&lock);			\
644 			    cmd;					\
645 			    schedule();					\
646 			    spin_lock_irq(&lock))
647 
648 /**
649  * wait_event_lock_irq_cmd - sleep until a condition gets true. The
650  *			     condition is checked under the lock. This
651  *			     is expected to be called with the lock
652  *			     taken.
653  * @wq: the waitqueue to wait on
654  * @condition: a C expression for the event to wait for
655  * @lock: a locked spinlock_t, which will be released before cmd
656  *	  and schedule() and reacquired afterwards.
657  * @cmd: a command which is invoked outside the critical section before
658  *	 sleep
659  *
660  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
661  * @condition evaluates to true. The @condition is checked each time
662  * the waitqueue @wq is woken up.
663  *
664  * wake_up() has to be called after changing any variable that could
665  * change the result of the wait condition.
666  *
667  * This is supposed to be called while holding the lock. The lock is
668  * dropped before invoking the cmd and going to sleep and is reacquired
669  * afterwards.
670  */
671 #define wait_event_lock_irq_cmd(wq, condition, lock, cmd)		\
672 do {									\
673 	if (condition)							\
674 		break;							\
675 	__wait_event_lock_irq(wq, condition, lock, cmd);		\
676 } while (0)
677 
678 /**
679  * wait_event_lock_irq - sleep until a condition gets true. The
680  *			 condition is checked under the lock. This
681  *			 is expected to be called with the lock
682  *			 taken.
683  * @wq: the waitqueue to wait on
684  * @condition: a C expression for the event to wait for
685  * @lock: a locked spinlock_t, which will be released before schedule()
686  *	  and reacquired afterwards.
687  *
688  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
689  * @condition evaluates to true. The @condition is checked each time
690  * the waitqueue @wq is woken up.
691  *
692  * wake_up() has to be called after changing any variable that could
693  * change the result of the wait condition.
694  *
695  * This is supposed to be called while holding the lock. The lock is
696  * dropped before going to sleep and is reacquired afterwards.
697  */
698 #define wait_event_lock_irq(wq, condition, lock)			\
699 do {									\
700 	if (condition)							\
701 		break;							\
702 	__wait_event_lock_irq(wq, condition, lock, );			\
703 } while (0)
704 
705 
706 #define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd)	\
707 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
708 		      spin_unlock_irq(&lock);				\
709 		      cmd;						\
710 		      schedule();					\
711 		      spin_lock_irq(&lock))
712 
713 /**
714  * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
715  *		The condition is checked under the lock. This is expected to
716  *		be called with the lock taken.
717  * @wq: the waitqueue to wait on
718  * @condition: a C expression for the event to wait for
719  * @lock: a locked spinlock_t, which will be released before cmd and
720  *	  schedule() and reacquired afterwards.
721  * @cmd: a command which is invoked outside the critical section before
722  *	 sleep
723  *
724  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
725  * @condition evaluates to true or a signal is received. The @condition is
726  * checked each time the waitqueue @wq is woken up.
727  *
728  * wake_up() has to be called after changing any variable that could
729  * change the result of the wait condition.
730  *
731  * This is supposed to be called while holding the lock. The lock is
732  * dropped before invoking the cmd and going to sleep and is reacquired
733  * afterwards.
734  *
735  * The macro will return -ERESTARTSYS if it was interrupted by a signal
736  * and 0 if @condition evaluated to true.
737  */
738 #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd)	\
739 ({									\
740 	int __ret = 0;							\
741 	if (!(condition))						\
742 		__ret = __wait_event_interruptible_lock_irq(wq,		\
743 						condition, lock, cmd);	\
744 	__ret;								\
745 })
746 
747 /**
748  * wait_event_interruptible_lock_irq - sleep until a condition gets true.
749  *		The condition is checked under the lock. This is expected
750  *		to be called with the lock taken.
751  * @wq: the waitqueue to wait on
752  * @condition: a C expression for the event to wait for
753  * @lock: a locked spinlock_t, which will be released before schedule()
754  *	  and reacquired afterwards.
755  *
756  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
757  * @condition evaluates to true or signal is received. The @condition is
758  * checked each time the waitqueue @wq is woken up.
759  *
760  * wake_up() has to be called after changing any variable that could
761  * change the result of the wait condition.
762  *
763  * This is supposed to be called while holding the lock. The lock is
764  * dropped before going to sleep and is reacquired afterwards.
765  *
766  * The macro will return -ERESTARTSYS if it was interrupted by a signal
767  * and 0 if @condition evaluated to true.
768  */
769 #define wait_event_interruptible_lock_irq(wq, condition, lock)		\
770 ({									\
771 	int __ret = 0;							\
772 	if (!(condition))						\
773 		__ret = __wait_event_interruptible_lock_irq(wq,		\
774 						condition, lock,);	\
775 	__ret;								\
776 })
777 
778 #define __wait_event_interruptible_lock_irq_timeout(wq, condition,	\
779 						    lock, timeout)	\
780 	___wait_event(wq, ___wait_cond_timeout(condition),		\
781 		      TASK_INTERRUPTIBLE, 0, timeout,			\
782 		      spin_unlock_irq(&lock);				\
783 		      __ret = schedule_timeout(__ret);			\
784 		      spin_lock_irq(&lock));
785 
786 /**
787  * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
788  *		true or a timeout elapses. The condition is checked under
789  *		the lock. This is expected to be called with the lock taken.
790  * @wq: the waitqueue to wait on
791  * @condition: a C expression for the event to wait for
792  * @lock: a locked spinlock_t, which will be released before schedule()
793  *	  and reacquired afterwards.
794  * @timeout: timeout, in jiffies
795  *
796  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
797  * @condition evaluates to true or signal is received. The @condition is
798  * checked each time the waitqueue @wq is woken up.
799  *
800  * wake_up() has to be called after changing any variable that could
801  * change the result of the wait condition.
802  *
803  * This is supposed to be called while holding the lock. The lock is
804  * dropped before going to sleep and is reacquired afterwards.
805  *
806  * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
807  * was interrupted by a signal, and the remaining jiffies otherwise
808  * if the condition evaluated to true before the timeout elapsed.
809  */
810 #define wait_event_interruptible_lock_irq_timeout(wq, condition, lock,	\
811 						  timeout)		\
812 ({									\
813 	long __ret = timeout;						\
814 	if (!___wait_cond_timeout(condition))				\
815 		__ret = __wait_event_interruptible_lock_irq_timeout(	\
816 					wq, condition, lock, timeout);	\
817 	__ret;								\
818 })
819 
820 /*
821  * Waitqueues which are removed from the waitqueue_head at wakeup time
822  */
823 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
824 void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
825 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
826 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
827 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
828 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
829 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
830 
831 #define DEFINE_WAIT_FUNC(name, function)				\
832 	wait_queue_t name = {						\
833 		.private	= current,				\
834 		.func		= function,				\
835 		.task_list	= LIST_HEAD_INIT((name).task_list),	\
836 	}
837 
838 #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
839 
840 #define DEFINE_WAIT_BIT(name, word, bit)				\
841 	struct wait_bit_queue name = {					\
842 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),		\
843 		.wait	= {						\
844 			.private	= current,			\
845 			.func		= wake_bit_function,		\
846 			.task_list	=				\
847 				LIST_HEAD_INIT((name).wait.task_list),	\
848 		},							\
849 	}
850 
851 #define init_wait(wait)							\
852 	do {								\
853 		(wait)->private = current;				\
854 		(wait)->func = autoremove_wake_function;		\
855 		INIT_LIST_HEAD(&(wait)->task_list);			\
856 		(wait)->flags = 0;					\
857 	} while (0)
858 
859 
860 extern int bit_wait(struct wait_bit_key *);
861 extern int bit_wait_io(struct wait_bit_key *);
862 
863 /**
864  * wait_on_bit - wait for a bit to be cleared
865  * @word: the word being waited on, a kernel virtual address
866  * @bit: the bit of the word being waited on
867  * @mode: the task state to sleep in
868  *
869  * There is a standard hashed waitqueue table for generic use. This
870  * is the part of the hashtable's accessor API that waits on a bit.
871  * For instance, if one were to have waiters on a bitflag, one would
872  * call wait_on_bit() in threads waiting for the bit to clear.
873  * One uses wait_on_bit() where one is waiting for the bit to clear,
874  * but has no intention of setting it.
875  * Returned value will be zero if the bit was cleared, or non-zero
876  * if the process received a signal and the mode permitted wakeup
877  * on that signal.
878  */
879 static inline int
880 wait_on_bit(void *word, int bit, unsigned mode)
881 {
882 	if (!test_bit(bit, word))
883 		return 0;
884 	return out_of_line_wait_on_bit(word, bit,
885 				       bit_wait,
886 				       mode);
887 }
888 
889 /**
890  * wait_on_bit_io - wait for a bit to be cleared
891  * @word: the word being waited on, a kernel virtual address
892  * @bit: the bit of the word being waited on
893  * @mode: the task state to sleep in
894  *
895  * Use the standard hashed waitqueue table to wait for a bit
896  * to be cleared.  This is similar to wait_on_bit(), but calls
897  * io_schedule() instead of schedule() for the actual waiting.
898  *
899  * Returned value will be zero if the bit was cleared, or non-zero
900  * if the process received a signal and the mode permitted wakeup
901  * on that signal.
902  */
903 static inline int
904 wait_on_bit_io(void *word, int bit, unsigned mode)
905 {
906 	if (!test_bit(bit, word))
907 		return 0;
908 	return out_of_line_wait_on_bit(word, bit,
909 				       bit_wait_io,
910 				       mode);
911 }
912 
913 /**
914  * wait_on_bit_action - wait for a bit to be cleared
915  * @word: the word being waited on, a kernel virtual address
916  * @bit: the bit of the word being waited on
917  * @action: the function used to sleep, which may take special actions
918  * @mode: the task state to sleep in
919  *
920  * Use the standard hashed waitqueue table to wait for a bit
921  * to be cleared, and allow the waiting action to be specified.
922  * This is like wait_on_bit() but allows fine control of how the waiting
923  * is done.
924  *
925  * Returned value will be zero if the bit was cleared, or non-zero
926  * if the process received a signal and the mode permitted wakeup
927  * on that signal.
928  */
929 static inline int
930 wait_on_bit_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
931 {
932 	if (!test_bit(bit, word))
933 		return 0;
934 	return out_of_line_wait_on_bit(word, bit, action, mode);
935 }
936 
937 /**
938  * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
939  * @word: the word being waited on, a kernel virtual address
940  * @bit: the bit of the word being waited on
941  * @mode: the task state to sleep in
942  *
943  * There is a standard hashed waitqueue table for generic use. This
944  * is the part of the hashtable's accessor API that waits on a bit
945  * when one intends to set it, for instance, trying to lock bitflags.
946  * For instance, if one were to have waiters trying to set bitflag
947  * and waiting for it to clear before setting it, one would call
948  * wait_on_bit() in threads waiting to be able to set the bit.
949  * One uses wait_on_bit_lock() where one is waiting for the bit to
950  * clear with the intention of setting it, and when done, clearing it.
951  *
952  * Returns zero if the bit was (eventually) found to be clear and was
953  * set.  Returns non-zero if a signal was delivered to the process and
954  * the @mode allows that signal to wake the process.
955  */
956 static inline int
957 wait_on_bit_lock(void *word, int bit, unsigned mode)
958 {
959 	if (!test_and_set_bit(bit, word))
960 		return 0;
961 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
962 }
963 
964 /**
965  * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
966  * @word: the word being waited on, a kernel virtual address
967  * @bit: the bit of the word being waited on
968  * @mode: the task state to sleep in
969  *
970  * Use the standard hashed waitqueue table to wait for a bit
971  * to be cleared and then to atomically set it.  This is similar
972  * to wait_on_bit(), but calls io_schedule() instead of schedule()
973  * for the actual waiting.
974  *
975  * Returns zero if the bit was (eventually) found to be clear and was
976  * set.  Returns non-zero if a signal was delivered to the process and
977  * the @mode allows that signal to wake the process.
978  */
979 static inline int
980 wait_on_bit_lock_io(void *word, int bit, unsigned mode)
981 {
982 	if (!test_and_set_bit(bit, word))
983 		return 0;
984 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
985 }
986 
987 /**
988  * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
989  * @word: the word being waited on, a kernel virtual address
990  * @bit: the bit of the word being waited on
991  * @action: the function used to sleep, which may take special actions
992  * @mode: the task state to sleep in
993  *
994  * Use the standard hashed waitqueue table to wait for a bit
995  * to be cleared and then to set it, and allow the waiting action
996  * to be specified.
997  * This is like wait_on_bit() but allows fine control of how the waiting
998  * is done.
999  *
1000  * Returns zero if the bit was (eventually) found to be clear and was
1001  * set.  Returns non-zero if a signal was delivered to the process and
1002  * the @mode allows that signal to wake the process.
1003  */
1004 static inline int
1005 wait_on_bit_lock_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
1006 {
1007 	if (!test_and_set_bit(bit, word))
1008 		return 0;
1009 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
1010 }
1011 
1012 /**
1013  * wait_on_atomic_t - Wait for an atomic_t to become 0
1014  * @val: The atomic value being waited on, a kernel virtual address
1015  * @action: the function used to sleep, which may take special actions
1016  * @mode: the task state to sleep in
1017  *
1018  * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
1019  * the purpose of getting a waitqueue, but we set the key to a bit number
1020  * outside of the target 'word'.
1021  */
1022 static inline
1023 int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
1024 {
1025 	if (atomic_read(val) == 0)
1026 		return 0;
1027 	return out_of_line_wait_on_atomic_t(val, action, mode);
1028 }
1029 
1030 #endif /* _LINUX_WAIT_H */
1031