1 /* 2 * VMware VMCI Driver 3 * 4 * Copyright (C) 2012 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the 8 * Free Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but 11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * for more details. 14 */ 15 16 #ifndef _VMW_VMCI_DEF_H_ 17 #define _VMW_VMCI_DEF_H_ 18 19 #include <linux/atomic.h> 20 21 /* Register offsets. */ 22 #define VMCI_STATUS_ADDR 0x00 23 #define VMCI_CONTROL_ADDR 0x04 24 #define VMCI_ICR_ADDR 0x08 25 #define VMCI_IMR_ADDR 0x0c 26 #define VMCI_DATA_OUT_ADDR 0x10 27 #define VMCI_DATA_IN_ADDR 0x14 28 #define VMCI_CAPS_ADDR 0x18 29 #define VMCI_RESULT_LOW_ADDR 0x1c 30 #define VMCI_RESULT_HIGH_ADDR 0x20 31 32 /* Max number of devices. */ 33 #define VMCI_MAX_DEVICES 1 34 35 /* Status register bits. */ 36 #define VMCI_STATUS_INT_ON 0x1 37 38 /* Control register bits. */ 39 #define VMCI_CONTROL_RESET 0x1 40 #define VMCI_CONTROL_INT_ENABLE 0x2 41 #define VMCI_CONTROL_INT_DISABLE 0x4 42 43 /* Capabilities register bits. */ 44 #define VMCI_CAPS_HYPERCALL 0x1 45 #define VMCI_CAPS_GUESTCALL 0x2 46 #define VMCI_CAPS_DATAGRAM 0x4 47 #define VMCI_CAPS_NOTIFICATIONS 0x8 48 49 /* Interrupt Cause register bits. */ 50 #define VMCI_ICR_DATAGRAM 0x1 51 #define VMCI_ICR_NOTIFICATION 0x2 52 53 /* Interrupt Mask register bits. */ 54 #define VMCI_IMR_DATAGRAM 0x1 55 #define VMCI_IMR_NOTIFICATION 0x2 56 57 /* Maximum MSI/MSI-X interrupt vectors in the device. */ 58 #define VMCI_MAX_INTRS 2 59 60 /* 61 * Supported interrupt vectors. There is one for each ICR value above, 62 * but here they indicate the position in the vector array/message ID. 63 */ 64 enum { 65 VMCI_INTR_DATAGRAM = 0, 66 VMCI_INTR_NOTIFICATION = 1, 67 }; 68 69 /* 70 * A single VMCI device has an upper limit of 128MB on the amount of 71 * memory that can be used for queue pairs. 72 */ 73 #define VMCI_MAX_GUEST_QP_MEMORY (128 * 1024 * 1024) 74 75 /* 76 * Queues with pre-mapped data pages must be small, so that we don't pin 77 * too much kernel memory (especially on vmkernel). We limit a queuepair to 78 * 32 KB, or 16 KB per queue for symmetrical pairs. 79 */ 80 #define VMCI_MAX_PINNED_QP_MEMORY (32 * 1024) 81 82 /* 83 * We have a fixed set of resource IDs available in the VMX. 84 * This allows us to have a very simple implementation since we statically 85 * know how many will create datagram handles. If a new caller arrives and 86 * we have run out of slots we can manually increment the maximum size of 87 * available resource IDs. 88 * 89 * VMCI reserved hypervisor datagram resource IDs. 90 */ 91 enum { 92 VMCI_RESOURCES_QUERY = 0, 93 VMCI_GET_CONTEXT_ID = 1, 94 VMCI_SET_NOTIFY_BITMAP = 2, 95 VMCI_DOORBELL_LINK = 3, 96 VMCI_DOORBELL_UNLINK = 4, 97 VMCI_DOORBELL_NOTIFY = 5, 98 /* 99 * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are 100 * obsoleted by the removal of VM to VM communication. 101 */ 102 VMCI_DATAGRAM_REQUEST_MAP = 6, 103 VMCI_DATAGRAM_REMOVE_MAP = 7, 104 VMCI_EVENT_SUBSCRIBE = 8, 105 VMCI_EVENT_UNSUBSCRIBE = 9, 106 VMCI_QUEUEPAIR_ALLOC = 10, 107 VMCI_QUEUEPAIR_DETACH = 11, 108 109 /* 110 * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1, 111 * WS 7.0/7.1 and ESX 4.1 112 */ 113 VMCI_HGFS_TRANSPORT = 13, 114 VMCI_UNITY_PBRPC_REGISTER = 14, 115 VMCI_RPC_PRIVILEGED = 15, 116 VMCI_RPC_UNPRIVILEGED = 16, 117 VMCI_RESOURCE_MAX = 17, 118 }; 119 120 /* 121 * struct vmci_handle - Ownership information structure 122 * @context: The VMX context ID. 123 * @resource: The resource ID (used for locating in resource hash). 124 * 125 * The vmci_handle structure is used to track resources used within 126 * vmw_vmci. 127 */ 128 struct vmci_handle { 129 u32 context; 130 u32 resource; 131 }; 132 133 #define vmci_make_handle(_cid, _rid) \ 134 (struct vmci_handle){ .context = _cid, .resource = _rid } 135 136 static inline bool vmci_handle_is_equal(struct vmci_handle h1, 137 struct vmci_handle h2) 138 { 139 return h1.context == h2.context && h1.resource == h2.resource; 140 } 141 142 #define VMCI_INVALID_ID ~0 143 static const struct vmci_handle VMCI_INVALID_HANDLE = { 144 .context = VMCI_INVALID_ID, 145 .resource = VMCI_INVALID_ID 146 }; 147 148 static inline bool vmci_handle_is_invalid(struct vmci_handle h) 149 { 150 return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE); 151 } 152 153 /* 154 * The below defines can be used to send anonymous requests. 155 * This also indicates that no response is expected. 156 */ 157 #define VMCI_ANON_SRC_CONTEXT_ID VMCI_INVALID_ID 158 #define VMCI_ANON_SRC_RESOURCE_ID VMCI_INVALID_ID 159 static const struct vmci_handle VMCI_ANON_SRC_HANDLE = { 160 .context = VMCI_ANON_SRC_CONTEXT_ID, 161 .resource = VMCI_ANON_SRC_RESOURCE_ID 162 }; 163 164 /* The lowest 16 context ids are reserved for internal use. */ 165 #define VMCI_RESERVED_CID_LIMIT ((u32) 16) 166 167 /* 168 * Hypervisor context id, used for calling into hypervisor 169 * supplied services from the VM. 170 */ 171 #define VMCI_HYPERVISOR_CONTEXT_ID 0 172 173 /* 174 * Well-known context id, a logical context that contains a set of 175 * well-known services. This context ID is now obsolete. 176 */ 177 #define VMCI_WELL_KNOWN_CONTEXT_ID 1 178 179 /* 180 * Context ID used by host endpoints. 181 */ 182 #define VMCI_HOST_CONTEXT_ID 2 183 184 #define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) && \ 185 (_cid) > VMCI_HOST_CONTEXT_ID) 186 187 /* 188 * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make 189 * handles that refer to a specific context. 190 */ 191 #define VMCI_CONTEXT_RESOURCE_ID 0 192 193 /* 194 * VMCI error codes. 195 */ 196 enum { 197 VMCI_SUCCESS_QUEUEPAIR_ATTACH = 5, 198 VMCI_SUCCESS_QUEUEPAIR_CREATE = 4, 199 VMCI_SUCCESS_LAST_DETACH = 3, 200 VMCI_SUCCESS_ACCESS_GRANTED = 2, 201 VMCI_SUCCESS_ENTRY_DEAD = 1, 202 VMCI_SUCCESS = 0, 203 VMCI_ERROR_INVALID_RESOURCE = (-1), 204 VMCI_ERROR_INVALID_ARGS = (-2), 205 VMCI_ERROR_NO_MEM = (-3), 206 VMCI_ERROR_DATAGRAM_FAILED = (-4), 207 VMCI_ERROR_MORE_DATA = (-5), 208 VMCI_ERROR_NO_MORE_DATAGRAMS = (-6), 209 VMCI_ERROR_NO_ACCESS = (-7), 210 VMCI_ERROR_NO_HANDLE = (-8), 211 VMCI_ERROR_DUPLICATE_ENTRY = (-9), 212 VMCI_ERROR_DST_UNREACHABLE = (-10), 213 VMCI_ERROR_PAYLOAD_TOO_LARGE = (-11), 214 VMCI_ERROR_INVALID_PRIV = (-12), 215 VMCI_ERROR_GENERIC = (-13), 216 VMCI_ERROR_PAGE_ALREADY_SHARED = (-14), 217 VMCI_ERROR_CANNOT_SHARE_PAGE = (-15), 218 VMCI_ERROR_CANNOT_UNSHARE_PAGE = (-16), 219 VMCI_ERROR_NO_PROCESS = (-17), 220 VMCI_ERROR_NO_DATAGRAM = (-18), 221 VMCI_ERROR_NO_RESOURCES = (-19), 222 VMCI_ERROR_UNAVAILABLE = (-20), 223 VMCI_ERROR_NOT_FOUND = (-21), 224 VMCI_ERROR_ALREADY_EXISTS = (-22), 225 VMCI_ERROR_NOT_PAGE_ALIGNED = (-23), 226 VMCI_ERROR_INVALID_SIZE = (-24), 227 VMCI_ERROR_REGION_ALREADY_SHARED = (-25), 228 VMCI_ERROR_TIMEOUT = (-26), 229 VMCI_ERROR_DATAGRAM_INCOMPLETE = (-27), 230 VMCI_ERROR_INCORRECT_IRQL = (-28), 231 VMCI_ERROR_EVENT_UNKNOWN = (-29), 232 VMCI_ERROR_OBSOLETE = (-30), 233 VMCI_ERROR_QUEUEPAIR_MISMATCH = (-31), 234 VMCI_ERROR_QUEUEPAIR_NOTSET = (-32), 235 VMCI_ERROR_QUEUEPAIR_NOTOWNER = (-33), 236 VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34), 237 VMCI_ERROR_QUEUEPAIR_NOSPACE = (-35), 238 VMCI_ERROR_QUEUEPAIR_NODATA = (-36), 239 VMCI_ERROR_BUSMEM_INVALIDATION = (-37), 240 VMCI_ERROR_MODULE_NOT_LOADED = (-38), 241 VMCI_ERROR_DEVICE_NOT_FOUND = (-39), 242 VMCI_ERROR_QUEUEPAIR_NOT_READY = (-40), 243 VMCI_ERROR_WOULD_BLOCK = (-41), 244 245 /* VMCI clients should return error code within this range */ 246 VMCI_ERROR_CLIENT_MIN = (-500), 247 VMCI_ERROR_CLIENT_MAX = (-550), 248 249 /* Internal error codes. */ 250 VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000), 251 }; 252 253 /* VMCI reserved events. */ 254 enum { 255 /* Only applicable to guest endpoints */ 256 VMCI_EVENT_CTX_ID_UPDATE = 0, 257 258 /* Applicable to guest and host */ 259 VMCI_EVENT_CTX_REMOVED = 1, 260 261 /* Only applicable to guest endpoints */ 262 VMCI_EVENT_QP_RESUMED = 2, 263 264 /* Applicable to guest and host */ 265 VMCI_EVENT_QP_PEER_ATTACH = 3, 266 267 /* Applicable to guest and host */ 268 VMCI_EVENT_QP_PEER_DETACH = 4, 269 270 /* 271 * Applicable to VMX and vmk. On vmk, 272 * this event has the Context payload type. 273 */ 274 VMCI_EVENT_MEM_ACCESS_ON = 5, 275 276 /* 277 * Applicable to VMX and vmk. Same as 278 * above for the payload type. 279 */ 280 VMCI_EVENT_MEM_ACCESS_OFF = 6, 281 VMCI_EVENT_MAX = 7, 282 }; 283 284 /* 285 * Of the above events, a few are reserved for use in the VMX, and 286 * other endpoints (guest and host kernel) should not use them. For 287 * the rest of the events, we allow both host and guest endpoints to 288 * subscribe to them, to maintain the same API for host and guest 289 * endpoints. 290 */ 291 #define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \ 292 (_event) == VMCI_EVENT_MEM_ACCESS_OFF) 293 294 #define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX && \ 295 !VMCI_EVENT_VALID_VMX(_event)) 296 297 /* Reserved guest datagram resource ids. */ 298 #define VMCI_EVENT_HANDLER 0 299 300 /* 301 * VMCI coarse-grained privileges (per context or host 302 * process/endpoint. An entity with the restricted flag is only 303 * allowed to interact with the hypervisor and trusted entities. 304 */ 305 enum { 306 VMCI_NO_PRIVILEGE_FLAGS = 0, 307 VMCI_PRIVILEGE_FLAG_RESTRICTED = 1, 308 VMCI_PRIVILEGE_FLAG_TRUSTED = 2, 309 VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED | 310 VMCI_PRIVILEGE_FLAG_TRUSTED), 311 VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS, 312 VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED, 313 VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED, 314 }; 315 316 /* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */ 317 #define VMCI_RESERVED_RESOURCE_ID_MAX 1023 318 319 /* 320 * Driver version. 321 * 322 * Increment major version when you make an incompatible change. 323 * Compatibility goes both ways (old driver with new executable 324 * as well as new driver with old executable). 325 */ 326 327 /* Never change VMCI_VERSION_SHIFT_WIDTH */ 328 #define VMCI_VERSION_SHIFT_WIDTH 16 329 #define VMCI_MAKE_VERSION(_major, _minor) \ 330 ((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor)) 331 332 #define VMCI_VERSION_MAJOR(v) ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH) 333 #define VMCI_VERSION_MINOR(v) ((u16) (v)) 334 335 /* 336 * VMCI_VERSION is always the current version. Subsequently listed 337 * versions are ways of detecting previous versions of the connecting 338 * application (i.e., VMX). 339 * 340 * VMCI_VERSION_NOVMVM: This version removed support for VM to VM 341 * communication. 342 * 343 * VMCI_VERSION_NOTIFY: This version introduced doorbell notification 344 * support. 345 * 346 * VMCI_VERSION_HOSTQP: This version introduced host end point support 347 * for hosted products. 348 * 349 * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of 350 * support for host end-points. 351 * 352 * VMCI_VERSION_PREVERS2: This fictional version number is intended to 353 * represent the version of a VMX which doesn't call into the driver 354 * with ioctl VERSION2 and thus doesn't establish its version with the 355 * driver. 356 */ 357 358 #define VMCI_VERSION VMCI_VERSION_NOVMVM 359 #define VMCI_VERSION_NOVMVM VMCI_MAKE_VERSION(11, 0) 360 #define VMCI_VERSION_NOTIFY VMCI_MAKE_VERSION(10, 0) 361 #define VMCI_VERSION_HOSTQP VMCI_MAKE_VERSION(9, 0) 362 #define VMCI_VERSION_PREHOSTQP VMCI_MAKE_VERSION(8, 0) 363 #define VMCI_VERSION_PREVERS2 VMCI_MAKE_VERSION(1, 0) 364 365 #define VMCI_SOCKETS_MAKE_VERSION(_p) \ 366 ((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2])) 367 368 /* 369 * The VMCI IOCTLs. We use identity code 7, as noted in ioctl-number.h, and 370 * we start at sequence 9f. This gives us the same values that our shipping 371 * products use, starting at 1951, provided we leave out the direction and 372 * structure size. Note that VMMon occupies the block following us, starting 373 * at 2001. 374 */ 375 #define IOCTL_VMCI_VERSION _IO(7, 0x9f) /* 1951 */ 376 #define IOCTL_VMCI_INIT_CONTEXT _IO(7, 0xa0) 377 #define IOCTL_VMCI_QUEUEPAIR_SETVA _IO(7, 0xa4) 378 #define IOCTL_VMCI_NOTIFY_RESOURCE _IO(7, 0xa5) 379 #define IOCTL_VMCI_NOTIFICATIONS_RECEIVE _IO(7, 0xa6) 380 #define IOCTL_VMCI_VERSION2 _IO(7, 0xa7) 381 #define IOCTL_VMCI_QUEUEPAIR_ALLOC _IO(7, 0xa8) 382 #define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE _IO(7, 0xa9) 383 #define IOCTL_VMCI_QUEUEPAIR_DETACH _IO(7, 0xaa) 384 #define IOCTL_VMCI_DATAGRAM_SEND _IO(7, 0xab) 385 #define IOCTL_VMCI_DATAGRAM_RECEIVE _IO(7, 0xac) 386 #define IOCTL_VMCI_CTX_ADD_NOTIFICATION _IO(7, 0xaf) 387 #define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION _IO(7, 0xb0) 388 #define IOCTL_VMCI_CTX_GET_CPT_STATE _IO(7, 0xb1) 389 #define IOCTL_VMCI_CTX_SET_CPT_STATE _IO(7, 0xb2) 390 #define IOCTL_VMCI_GET_CONTEXT_ID _IO(7, 0xb3) 391 #define IOCTL_VMCI_SOCKETS_VERSION _IO(7, 0xb4) 392 #define IOCTL_VMCI_SOCKETS_GET_AF_VALUE _IO(7, 0xb8) 393 #define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID _IO(7, 0xb9) 394 #define IOCTL_VMCI_SET_NOTIFY _IO(7, 0xcb) /* 1995 */ 395 /*IOCTL_VMMON_START _IO(7, 0xd1)*/ /* 2001 */ 396 397 /* 398 * struct vmci_queue_header - VMCI Queue Header information. 399 * 400 * A Queue cannot stand by itself as designed. Each Queue's header 401 * contains a pointer into itself (the producer_tail) and into its peer 402 * (consumer_head). The reason for the separation is one of 403 * accessibility: Each end-point can modify two things: where the next 404 * location to enqueue is within its produce_q (producer_tail); and 405 * where the next dequeue location is in its consume_q (consumer_head). 406 * 407 * An end-point cannot modify the pointers of its peer (guest to 408 * guest; NOTE that in the host both queue headers are mapped r/w). 409 * But, each end-point needs read access to both Queue header 410 * structures in order to determine how much space is used (or left) 411 * in the Queue. This is because for an end-point to know how full 412 * its produce_q is, it needs to use the consumer_head that points into 413 * the produce_q but -that- consumer_head is in the Queue header for 414 * that end-points consume_q. 415 * 416 * Thoroughly confused? Sorry. 417 * 418 * producer_tail: the point to enqueue new entrants. When you approach 419 * a line in a store, for example, you walk up to the tail. 420 * 421 * consumer_head: the point in the queue from which the next element is 422 * dequeued. In other words, who is next in line is he who is at the 423 * head of the line. 424 * 425 * Also, producer_tail points to an empty byte in the Queue, whereas 426 * consumer_head points to a valid byte of data (unless producer_tail == 427 * consumer_head in which case consumer_head does not point to a valid 428 * byte of data). 429 * 430 * For a queue of buffer 'size' bytes, the tail and head pointers will be in 431 * the range [0, size-1]. 432 * 433 * If produce_q_header->producer_tail == consume_q_header->consumer_head 434 * then the produce_q is empty. 435 */ 436 struct vmci_queue_header { 437 /* All fields are 64bit and aligned. */ 438 struct vmci_handle handle; /* Identifier. */ 439 atomic64_t producer_tail; /* Offset in this queue. */ 440 atomic64_t consumer_head; /* Offset in peer queue. */ 441 }; 442 443 /* 444 * struct vmci_datagram - Base struct for vmci datagrams. 445 * @dst: A vmci_handle that tracks the destination of the datagram. 446 * @src: A vmci_handle that tracks the source of the datagram. 447 * @payload_size: The size of the payload. 448 * 449 * vmci_datagram structs are used when sending vmci datagrams. They include 450 * the necessary source and destination information to properly route 451 * the information along with the size of the package. 452 */ 453 struct vmci_datagram { 454 struct vmci_handle dst; 455 struct vmci_handle src; 456 u64 payload_size; 457 }; 458 459 /* 460 * Second flag is for creating a well-known handle instead of a per context 461 * handle. Next flag is for deferring datagram delivery, so that the 462 * datagram callback is invoked in a delayed context (not interrupt context). 463 */ 464 #define VMCI_FLAG_DG_NONE 0 465 #define VMCI_FLAG_WELLKNOWN_DG_HND 0x1 466 #define VMCI_FLAG_ANYCID_DG_HND 0x2 467 #define VMCI_FLAG_DG_DELAYED_CB 0x4 468 469 /* 470 * Maximum supported size of a VMCI datagram for routable datagrams. 471 * Datagrams going to the hypervisor are allowed to be larger. 472 */ 473 #define VMCI_MAX_DG_SIZE (17 * 4096) 474 #define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \ 475 sizeof(struct vmci_datagram)) 476 #define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) + \ 477 sizeof(struct vmci_datagram)) 478 #define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram) 479 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size) 480 #define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7))) 481 #define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2) 482 483 struct vmci_event_payload_qp { 484 struct vmci_handle handle; /* queue_pair handle. */ 485 u32 peer_id; /* Context id of attaching/detaching VM. */ 486 u32 _pad; 487 }; 488 489 /* Flags for VMCI queue_pair API. */ 490 enum { 491 /* Fail alloc if QP not created by peer. */ 492 VMCI_QPFLAG_ATTACH_ONLY = 1 << 0, 493 494 /* Only allow attaches from local context. */ 495 VMCI_QPFLAG_LOCAL = 1 << 1, 496 497 /* Host won't block when guest is quiesced. */ 498 VMCI_QPFLAG_NONBLOCK = 1 << 2, 499 500 /* Pin data pages in ESX. Used with NONBLOCK */ 501 VMCI_QPFLAG_PINNED = 1 << 3, 502 503 /* Update the following flag when adding new flags. */ 504 VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL | 505 VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED), 506 507 /* Convenience flags */ 508 VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED), 509 VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM), 510 }; 511 512 /* 513 * We allow at least 1024 more event datagrams from the hypervisor past the 514 * normally allowed datagrams pending for a given context. We define this 515 * limit on event datagrams from the hypervisor to guard against DoS attack 516 * from a malicious VM which could repeatedly attach to and detach from a queue 517 * pair, causing events to be queued at the destination VM. However, the rate 518 * at which such events can be generated is small since it requires a VM exit 519 * and handling of queue pair attach/detach call at the hypervisor. Event 520 * datagrams may be queued up at the destination VM if it has interrupts 521 * disabled or if it is not draining events for some other reason. 1024 522 * datagrams is a grossly conservative estimate of the time for which 523 * interrupts may be disabled in the destination VM, but at the same time does 524 * not exacerbate the memory pressure problem on the host by much (size of each 525 * event datagram is small). 526 */ 527 #define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE \ 528 (VMCI_MAX_DATAGRAM_QUEUE_SIZE + \ 529 1024 * (sizeof(struct vmci_datagram) + \ 530 sizeof(struct vmci_event_data_max))) 531 532 /* 533 * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of 534 * hypervisor resources. Struct size is 16 bytes. All fields in struct are 535 * aligned to their natural alignment. 536 */ 537 struct vmci_resource_query_hdr { 538 struct vmci_datagram hdr; 539 u32 num_resources; 540 u32 _padding; 541 }; 542 543 /* 544 * Convenience struct for negotiating vectors. Must match layout of 545 * VMCIResourceQueryHdr minus the struct vmci_datagram header. 546 */ 547 struct vmci_resource_query_msg { 548 u32 num_resources; 549 u32 _padding; 550 u32 resources[1]; 551 }; 552 553 /* 554 * The maximum number of resources that can be queried using 555 * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31 556 * bits of a positive return value. Negative values are reserved for 557 * errors. 558 */ 559 #define VMCI_RESOURCE_QUERY_MAX_NUM 31 560 561 /* Maximum size for the VMCI_RESOURCE_QUERY request. */ 562 #define VMCI_RESOURCE_QUERY_MAX_SIZE \ 563 (sizeof(struct vmci_resource_query_hdr) + \ 564 sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM) 565 566 /* 567 * Struct used for setting the notification bitmap. All fields in 568 * struct are aligned to their natural alignment. 569 */ 570 struct vmci_notify_bm_set_msg { 571 struct vmci_datagram hdr; 572 u32 bitmap_ppn; 573 u32 _pad; 574 }; 575 576 /* 577 * Struct used for linking a doorbell handle with an index in the 578 * notify bitmap. All fields in struct are aligned to their natural 579 * alignment. 580 */ 581 struct vmci_doorbell_link_msg { 582 struct vmci_datagram hdr; 583 struct vmci_handle handle; 584 u64 notify_idx; 585 }; 586 587 /* 588 * Struct used for unlinking a doorbell handle from an index in the 589 * notify bitmap. All fields in struct are aligned to their natural 590 * alignment. 591 */ 592 struct vmci_doorbell_unlink_msg { 593 struct vmci_datagram hdr; 594 struct vmci_handle handle; 595 }; 596 597 /* 598 * Struct used for generating a notification on a doorbell handle. All 599 * fields in struct are aligned to their natural alignment. 600 */ 601 struct vmci_doorbell_notify_msg { 602 struct vmci_datagram hdr; 603 struct vmci_handle handle; 604 }; 605 606 /* 607 * This struct is used to contain data for events. Size of this struct is a 608 * multiple of 8 bytes, and all fields are aligned to their natural alignment. 609 */ 610 struct vmci_event_data { 611 u32 event; /* 4 bytes. */ 612 u32 _pad; 613 /* Event payload is put here. */ 614 }; 615 616 /* 617 * Define the different VMCI_EVENT payload data types here. All structs must 618 * be a multiple of 8 bytes, and fields must be aligned to their natural 619 * alignment. 620 */ 621 struct vmci_event_payld_ctx { 622 u32 context_id; /* 4 bytes. */ 623 u32 _pad; 624 }; 625 626 struct vmci_event_payld_qp { 627 struct vmci_handle handle; /* queue_pair handle. */ 628 u32 peer_id; /* Context id of attaching/detaching VM. */ 629 u32 _pad; 630 }; 631 632 /* 633 * We define the following struct to get the size of the maximum event 634 * data the hypervisor may send to the guest. If adding a new event 635 * payload type above, add it to the following struct too (inside the 636 * union). 637 */ 638 struct vmci_event_data_max { 639 struct vmci_event_data event_data; 640 union { 641 struct vmci_event_payld_ctx context_payload; 642 struct vmci_event_payld_qp qp_payload; 643 } ev_data_payload; 644 }; 645 646 /* 647 * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and 648 * VMCI_EVENT_HANDLER messages. Struct size is 32 bytes. All fields 649 * in struct are aligned to their natural alignment. 650 */ 651 struct vmci_event_msg { 652 struct vmci_datagram hdr; 653 654 /* Has event type and payload. */ 655 struct vmci_event_data event_data; 656 657 /* Payload gets put here. */ 658 }; 659 660 /* Event with context payload. */ 661 struct vmci_event_ctx { 662 struct vmci_event_msg msg; 663 struct vmci_event_payld_ctx payload; 664 }; 665 666 /* Event with QP payload. */ 667 struct vmci_event_qp { 668 struct vmci_event_msg msg; 669 struct vmci_event_payld_qp payload; 670 }; 671 672 /* 673 * Structs used for queue_pair alloc and detach messages. We align fields of 674 * these structs to 64bit boundaries. 675 */ 676 struct vmci_qp_alloc_msg { 677 struct vmci_datagram hdr; 678 struct vmci_handle handle; 679 u32 peer; 680 u32 flags; 681 u64 produce_size; 682 u64 consume_size; 683 u64 num_ppns; 684 685 /* List of PPNs placed here. */ 686 }; 687 688 struct vmci_qp_detach_msg { 689 struct vmci_datagram hdr; 690 struct vmci_handle handle; 691 }; 692 693 /* VMCI Doorbell API. */ 694 #define VMCI_FLAG_DELAYED_CB 0x01 695 696 typedef void (*vmci_callback) (void *client_data); 697 698 /* 699 * struct vmci_qp - A vmw_vmci queue pair handle. 700 * 701 * This structure is used as a handle to a queue pair created by 702 * VMCI. It is intentionally left opaque to clients. 703 */ 704 struct vmci_qp; 705 706 /* Callback needed for correctly waiting on events. */ 707 typedef int (*vmci_datagram_recv_cb) (void *client_data, 708 struct vmci_datagram *msg); 709 710 /* VMCI Event API. */ 711 typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed, 712 void *client_data); 713 714 /* 715 * We use the following inline function to access the payload data 716 * associated with an event data. 717 */ 718 static inline const void * 719 vmci_event_data_const_payload(const struct vmci_event_data *ev_data) 720 { 721 return (const char *)ev_data + sizeof(*ev_data); 722 } 723 724 static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data) 725 { 726 return (void *)vmci_event_data_const_payload(ev_data); 727 } 728 729 /* 730 * Helper to read a value from a head or tail pointer. For X86_32, the 731 * pointer is treated as a 32bit value, since the pointer value 732 * never exceeds a 32bit value in this case. Also, doing an 733 * atomic64_read on X86_32 uniprocessor systems may be implemented 734 * as a non locked cmpxchg8b, that may end up overwriting updates done 735 * by the VMCI device to the memory location. On 32bit SMP, the lock 736 * prefix will be used, so correctness isn't an issue, but using a 737 * 64bit operation still adds unnecessary overhead. 738 */ 739 static inline u64 vmci_q_read_pointer(atomic64_t *var) 740 { 741 #if defined(CONFIG_X86_32) 742 return atomic_read((atomic_t *)var); 743 #else 744 return atomic64_read(var); 745 #endif 746 } 747 748 /* 749 * Helper to set the value of a head or tail pointer. For X86_32, the 750 * pointer is treated as a 32bit value, since the pointer value 751 * never exceeds a 32bit value in this case. On 32bit SMP, using a 752 * locked cmpxchg8b adds unnecessary overhead. 753 */ 754 static inline void vmci_q_set_pointer(atomic64_t *var, 755 u64 new_val) 756 { 757 #if defined(CONFIG_X86_32) 758 return atomic_set((atomic_t *)var, (u32)new_val); 759 #else 760 return atomic64_set(var, new_val); 761 #endif 762 } 763 764 /* 765 * Helper to add a given offset to a head or tail pointer. Wraps the 766 * value of the pointer around the max size of the queue. 767 */ 768 static inline void vmci_qp_add_pointer(atomic64_t *var, 769 size_t add, 770 u64 size) 771 { 772 u64 new_val = vmci_q_read_pointer(var); 773 774 if (new_val >= size - add) 775 new_val -= size; 776 777 new_val += add; 778 779 vmci_q_set_pointer(var, new_val); 780 } 781 782 /* 783 * Helper routine to get the Producer Tail from the supplied queue. 784 */ 785 static inline u64 786 vmci_q_header_producer_tail(const struct vmci_queue_header *q_header) 787 { 788 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header; 789 return vmci_q_read_pointer(&qh->producer_tail); 790 } 791 792 /* 793 * Helper routine to get the Consumer Head from the supplied queue. 794 */ 795 static inline u64 796 vmci_q_header_consumer_head(const struct vmci_queue_header *q_header) 797 { 798 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header; 799 return vmci_q_read_pointer(&qh->consumer_head); 800 } 801 802 /* 803 * Helper routine to increment the Producer Tail. Fundamentally, 804 * vmci_qp_add_pointer() is used to manipulate the tail itself. 805 */ 806 static inline void 807 vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header, 808 size_t add, 809 u64 queue_size) 810 { 811 vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size); 812 } 813 814 /* 815 * Helper routine to increment the Consumer Head. Fundamentally, 816 * vmci_qp_add_pointer() is used to manipulate the head itself. 817 */ 818 static inline void 819 vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header, 820 size_t add, 821 u64 queue_size) 822 { 823 vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size); 824 } 825 826 /* 827 * Helper routine for getting the head and the tail pointer for a queue. 828 * Both the VMCIQueues are needed to get both the pointers for one queue. 829 */ 830 static inline void 831 vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header, 832 const struct vmci_queue_header *consume_q_header, 833 u64 *producer_tail, 834 u64 *consumer_head) 835 { 836 if (producer_tail) 837 *producer_tail = vmci_q_header_producer_tail(produce_q_header); 838 839 if (consumer_head) 840 *consumer_head = vmci_q_header_consumer_head(consume_q_header); 841 } 842 843 static inline void vmci_q_header_init(struct vmci_queue_header *q_header, 844 const struct vmci_handle handle) 845 { 846 q_header->handle = handle; 847 atomic64_set(&q_header->producer_tail, 0); 848 atomic64_set(&q_header->consumer_head, 0); 849 } 850 851 /* 852 * Finds available free space in a produce queue to enqueue more 853 * data or reports an error if queue pair corruption is detected. 854 */ 855 static s64 856 vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header, 857 const struct vmci_queue_header *consume_q_header, 858 const u64 produce_q_size) 859 { 860 u64 tail; 861 u64 head; 862 u64 free_space; 863 864 tail = vmci_q_header_producer_tail(produce_q_header); 865 head = vmci_q_header_consumer_head(consume_q_header); 866 867 if (tail >= produce_q_size || head >= produce_q_size) 868 return VMCI_ERROR_INVALID_SIZE; 869 870 /* 871 * Deduct 1 to avoid tail becoming equal to head which causes 872 * ambiguity. If head and tail are equal it means that the 873 * queue is empty. 874 */ 875 if (tail >= head) 876 free_space = produce_q_size - (tail - head) - 1; 877 else 878 free_space = head - tail - 1; 879 880 return free_space; 881 } 882 883 /* 884 * vmci_q_header_free_space() does all the heavy lifting of 885 * determing the number of free bytes in a Queue. This routine, 886 * then subtracts that size from the full size of the Queue so 887 * the caller knows how many bytes are ready to be dequeued. 888 * Results: 889 * On success, available data size in bytes (up to MAX_INT64). 890 * On failure, appropriate error code. 891 */ 892 static inline s64 893 vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header, 894 const struct vmci_queue_header *produce_q_header, 895 const u64 consume_q_size) 896 { 897 s64 free_space; 898 899 free_space = vmci_q_header_free_space(consume_q_header, 900 produce_q_header, consume_q_size); 901 if (free_space < VMCI_SUCCESS) 902 return free_space; 903 904 return consume_q_size - free_space - 1; 905 } 906 907 908 #endif /* _VMW_VMCI_DEF_H_ */ 909