xref: /linux-6.15/include/linux/usb/gadget.h (revision b4e382ca)
1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  */
14 
15 #ifndef __LINUX_USB_GADGET_H
16 #define __LINUX_USB_GADGET_H
17 
18 #include <linux/device.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
22 #include <linux/slab.h>
23 #include <linux/scatterlist.h>
24 #include <linux/types.h>
25 #include <linux/workqueue.h>
26 #include <linux/usb/ch9.h>
27 
28 #define UDC_TRACE_STR_MAX	512
29 
30 struct usb_ep;
31 
32 /**
33  * struct usb_request - describes one i/o request
34  * @buf: Buffer used for data.  Always provide this; some controllers
35  *	only use PIO, or don't use DMA for some endpoints.
36  * @dma: DMA address corresponding to 'buf'.  If you don't set this
37  *	field, and the usb controller needs one, it is responsible
38  *	for mapping and unmapping the buffer.
39  * @sg: a scatterlist for SG-capable controllers.
40  * @num_sgs: number of SG entries
41  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
42  * @length: Length of that data
43  * @stream_id: The stream id, when USB3.0 bulk streams are being used
44  * @no_interrupt: If true, hints that no completion irq is needed.
45  *	Helpful sometimes with deep request queues that are handled
46  *	directly by DMA controllers.
47  * @zero: If true, when writing data, makes the last packet be "short"
48  *     by adding a zero length packet as needed;
49  * @short_not_ok: When reading data, makes short packets be
50  *     treated as errors (queue stops advancing till cleanup).
51  * @complete: Function called when request completes, so this request and
52  *	its buffer may be re-used.  The function will always be called with
53  *	interrupts disabled, and it must not sleep.
54  *	Reads terminate with a short packet, or when the buffer fills,
55  *	whichever comes first.  When writes terminate, some data bytes
56  *	will usually still be in flight (often in a hardware fifo).
57  *	Errors (for reads or writes) stop the queue from advancing
58  *	until the completion function returns, so that any transfers
59  *	invalidated by the error may first be dequeued.
60  * @context: For use by the completion callback
61  * @list: For use by the gadget driver.
62  * @status: Reports completion code, zero or a negative errno.
63  *	Normally, faults block the transfer queue from advancing until
64  *	the completion callback returns.
65  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
66  *	or when the driver disabled the endpoint.
67  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
68  *	transfers) this may be less than the requested length.  If the
69  *	short_not_ok flag is set, short reads are treated as errors
70  *	even when status otherwise indicates successful completion.
71  *	Note that for writes (IN transfers) some data bytes may still
72  *	reside in a device-side FIFO when the request is reported as
73  *	complete.
74  *
75  * These are allocated/freed through the endpoint they're used with.  The
76  * hardware's driver can add extra per-request data to the memory it returns,
77  * which often avoids separate memory allocations (potential failures),
78  * later when the request is queued.
79  *
80  * Request flags affect request handling, such as whether a zero length
81  * packet is written (the "zero" flag), whether a short read should be
82  * treated as an error (blocking request queue advance, the "short_not_ok"
83  * flag), or hinting that an interrupt is not required (the "no_interrupt"
84  * flag, for use with deep request queues).
85  *
86  * Bulk endpoints can use any size buffers, and can also be used for interrupt
87  * transfers. interrupt-only endpoints can be much less functional.
88  *
89  * NOTE:  this is analogous to 'struct urb' on the host side, except that
90  * it's thinner and promotes more pre-allocation.
91  */
92 
93 struct usb_request {
94 	void			*buf;
95 	unsigned		length;
96 	dma_addr_t		dma;
97 
98 	struct scatterlist	*sg;
99 	unsigned		num_sgs;
100 	unsigned		num_mapped_sgs;
101 
102 	unsigned		stream_id:16;
103 	unsigned		no_interrupt:1;
104 	unsigned		zero:1;
105 	unsigned		short_not_ok:1;
106 
107 	void			(*complete)(struct usb_ep *ep,
108 					struct usb_request *req);
109 	void			*context;
110 	struct list_head	list;
111 
112 	int			status;
113 	unsigned		actual;
114 };
115 
116 /*-------------------------------------------------------------------------*/
117 
118 /* endpoint-specific parts of the api to the usb controller hardware.
119  * unlike the urb model, (de)multiplexing layers are not required.
120  * (so this api could slash overhead if used on the host side...)
121  *
122  * note that device side usb controllers commonly differ in how many
123  * endpoints they support, as well as their capabilities.
124  */
125 struct usb_ep_ops {
126 	int (*enable) (struct usb_ep *ep,
127 		const struct usb_endpoint_descriptor *desc);
128 	int (*disable) (struct usb_ep *ep);
129 
130 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
131 		gfp_t gfp_flags);
132 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
133 
134 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
135 		gfp_t gfp_flags);
136 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
137 
138 	int (*set_halt) (struct usb_ep *ep, int value);
139 	int (*set_wedge) (struct usb_ep *ep);
140 
141 	int (*fifo_status) (struct usb_ep *ep);
142 	void (*fifo_flush) (struct usb_ep *ep);
143 };
144 
145 /**
146  * struct usb_ep_caps - endpoint capabilities description
147  * @type_control:Endpoint supports control type (reserved for ep0).
148  * @type_iso:Endpoint supports isochronous transfers.
149  * @type_bulk:Endpoint supports bulk transfers.
150  * @type_int:Endpoint supports interrupt transfers.
151  * @dir_in:Endpoint supports IN direction.
152  * @dir_out:Endpoint supports OUT direction.
153  */
154 struct usb_ep_caps {
155 	unsigned type_control:1;
156 	unsigned type_iso:1;
157 	unsigned type_bulk:1;
158 	unsigned type_int:1;
159 	unsigned dir_in:1;
160 	unsigned dir_out:1;
161 };
162 
163 #define USB_EP_CAPS_TYPE_CONTROL     0x01
164 #define USB_EP_CAPS_TYPE_ISO         0x02
165 #define USB_EP_CAPS_TYPE_BULK        0x04
166 #define USB_EP_CAPS_TYPE_INT         0x08
167 #define USB_EP_CAPS_TYPE_ALL \
168 	(USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
169 #define USB_EP_CAPS_DIR_IN           0x01
170 #define USB_EP_CAPS_DIR_OUT          0x02
171 #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
172 
173 #define USB_EP_CAPS(_type, _dir) \
174 	{ \
175 		.type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
176 		.type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
177 		.type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
178 		.type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
179 		.dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
180 		.dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
181 	}
182 
183 /**
184  * struct usb_ep - device side representation of USB endpoint
185  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
186  * @ops: Function pointers used to access hardware-specific operations.
187  * @ep_list:the gadget's ep_list holds all of its endpoints
188  * @caps:The structure describing types and directions supported by endoint.
189  * @maxpacket:The maximum packet size used on this endpoint.  The initial
190  *	value can sometimes be reduced (hardware allowing), according to
191  *	the endpoint descriptor used to configure the endpoint.
192  * @maxpacket_limit:The maximum packet size value which can be handled by this
193  *	endpoint. It's set once by UDC driver when endpoint is initialized, and
194  *	should not be changed. Should not be confused with maxpacket.
195  * @max_streams: The maximum number of streams supported
196  *	by this EP (0 - 16, actual number is 2^n)
197  * @mult: multiplier, 'mult' value for SS Isoc EPs
198  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
199  * @driver_data:for use by the gadget driver.
200  * @address: used to identify the endpoint when finding descriptor that
201  *	matches connection speed
202  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
203  *	enabled and remains valid until the endpoint is disabled.
204  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
205  *	descriptor that is used to configure the endpoint
206  *
207  * the bus controller driver lists all the general purpose endpoints in
208  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
209  * and is accessed only in response to a driver setup() callback.
210  */
211 
212 struct usb_ep {
213 	void			*driver_data;
214 
215 	const char		*name;
216 	const struct usb_ep_ops	*ops;
217 	struct list_head	ep_list;
218 	struct usb_ep_caps	caps;
219 	bool			claimed;
220 	bool			enabled;
221 	unsigned		maxpacket:16;
222 	unsigned		maxpacket_limit:16;
223 	unsigned		max_streams:16;
224 	unsigned		mult:2;
225 	unsigned		maxburst:5;
226 	u8			address;
227 	const struct usb_endpoint_descriptor	*desc;
228 	const struct usb_ss_ep_comp_descriptor	*comp_desc;
229 };
230 
231 /*-------------------------------------------------------------------------*/
232 
233 #if IS_ENABLED(CONFIG_USB_GADGET)
234 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
235 int usb_ep_enable(struct usb_ep *ep);
236 int usb_ep_disable(struct usb_ep *ep);
237 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
238 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
239 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
240 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
241 int usb_ep_set_halt(struct usb_ep *ep);
242 int usb_ep_clear_halt(struct usb_ep *ep);
243 int usb_ep_set_wedge(struct usb_ep *ep);
244 int usb_ep_fifo_status(struct usb_ep *ep);
245 void usb_ep_fifo_flush(struct usb_ep *ep);
246 #else
247 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
248 		unsigned maxpacket_limit)
249 { }
250 static inline int usb_ep_enable(struct usb_ep *ep)
251 { return 0; }
252 static inline int usb_ep_disable(struct usb_ep *ep)
253 { return 0; }
254 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
255 		gfp_t gfp_flags)
256 { return NULL; }
257 static inline void usb_ep_free_request(struct usb_ep *ep,
258 		struct usb_request *req)
259 { }
260 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
261 		gfp_t gfp_flags)
262 { return 0; }
263 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
264 { return 0; }
265 static inline int usb_ep_set_halt(struct usb_ep *ep)
266 { return 0; }
267 static inline int usb_ep_clear_halt(struct usb_ep *ep)
268 { return 0; }
269 static inline int usb_ep_set_wedge(struct usb_ep *ep)
270 { return 0; }
271 static inline int usb_ep_fifo_status(struct usb_ep *ep)
272 { return 0; }
273 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
274 { }
275 #endif /* USB_GADGET */
276 
277 /*-------------------------------------------------------------------------*/
278 
279 struct usb_dcd_config_params {
280 	__u8  bU1devExitLat;	/* U1 Device exit Latency */
281 #define USB_DEFAULT_U1_DEV_EXIT_LAT	0x01	/* Less then 1 microsec */
282 	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
283 #define USB_DEFAULT_U2_DEV_EXIT_LAT	0x1F4	/* Less then 500 microsec */
284 };
285 
286 
287 struct usb_gadget;
288 struct usb_gadget_driver;
289 struct usb_udc;
290 
291 /* the rest of the api to the controller hardware: device operations,
292  * which don't involve endpoints (or i/o).
293  */
294 struct usb_gadget_ops {
295 	int	(*get_frame)(struct usb_gadget *);
296 	int	(*wakeup)(struct usb_gadget *);
297 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
298 	int	(*vbus_session) (struct usb_gadget *, int is_active);
299 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
300 	int	(*pullup) (struct usb_gadget *, int is_on);
301 	int	(*ioctl)(struct usb_gadget *,
302 				unsigned code, unsigned long param);
303 	void	(*get_config_params)(struct usb_dcd_config_params *);
304 	int	(*udc_start)(struct usb_gadget *,
305 			struct usb_gadget_driver *);
306 	int	(*udc_stop)(struct usb_gadget *);
307 	struct usb_ep *(*match_ep)(struct usb_gadget *,
308 			struct usb_endpoint_descriptor *,
309 			struct usb_ss_ep_comp_descriptor *);
310 };
311 
312 /**
313  * struct usb_gadget - represents a usb slave device
314  * @work: (internal use) Workqueue to be used for sysfs_notify()
315  * @udc: struct usb_udc pointer for this gadget
316  * @ops: Function pointers used to access hardware-specific operations.
317  * @ep0: Endpoint zero, used when reading or writing responses to
318  *	driver setup() requests
319  * @ep_list: List of other endpoints supported by the device.
320  * @speed: Speed of current connection to USB host.
321  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
322  *      and all slower speeds.
323  * @state: the state we are now (attached, suspended, configured, etc)
324  * @name: Identifies the controller hardware type.  Used in diagnostics
325  *	and sometimes configuration.
326  * @dev: Driver model state for this abstract device.
327  * @out_epnum: last used out ep number
328  * @in_epnum: last used in ep number
329  * @mA: last set mA value
330  * @otg_caps: OTG capabilities of this gadget.
331  * @sg_supported: true if we can handle scatter-gather
332  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
333  *	gadget driver must provide a USB OTG descriptor.
334  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
335  *	is in the Mini-AB jack, and HNP has been used to switch roles
336  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
337  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
338  *	supports HNP at this port.
339  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
340  *	only supports HNP on a different root port.
341  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
342  *	enabled HNP support.
343  * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
344  *	in peripheral mode can support HNP polling.
345  * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
346  *	or B-Peripheral wants to take host role.
347  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
348  *	MaxPacketSize.
349  * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
350  *	u_ether.c to improve performance.
351  * @is_selfpowered: if the gadget is self-powered.
352  * @deactivated: True if gadget is deactivated - in deactivated state it cannot
353  *	be connected.
354  * @connected: True if gadget is connected.
355  *
356  * Gadgets have a mostly-portable "gadget driver" implementing device
357  * functions, handling all usb configurations and interfaces.  Gadget
358  * drivers talk to hardware-specific code indirectly, through ops vectors.
359  * That insulates the gadget driver from hardware details, and packages
360  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
361  * and "usb_ep" interfaces provide that insulation from the hardware.
362  *
363  * Except for the driver data, all fields in this structure are
364  * read-only to the gadget driver.  That driver data is part of the
365  * "driver model" infrastructure in 2.6 (and later) kernels, and for
366  * earlier systems is grouped in a similar structure that's not known
367  * to the rest of the kernel.
368  *
369  * Values of the three OTG device feature flags are updated before the
370  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
371  * driver suspend() calls.  They are valid only when is_otg, and when the
372  * device is acting as a B-Peripheral (so is_a_peripheral is false).
373  */
374 struct usb_gadget {
375 	struct work_struct		work;
376 	struct usb_udc			*udc;
377 	/* readonly to gadget driver */
378 	const struct usb_gadget_ops	*ops;
379 	struct usb_ep			*ep0;
380 	struct list_head		ep_list;	/* of usb_ep */
381 	enum usb_device_speed		speed;
382 	enum usb_device_speed		max_speed;
383 	enum usb_device_state		state;
384 	const char			*name;
385 	struct device			dev;
386 	unsigned			out_epnum;
387 	unsigned			in_epnum;
388 	unsigned			mA;
389 	struct usb_otg_caps		*otg_caps;
390 
391 	unsigned			sg_supported:1;
392 	unsigned			is_otg:1;
393 	unsigned			is_a_peripheral:1;
394 	unsigned			b_hnp_enable:1;
395 	unsigned			a_hnp_support:1;
396 	unsigned			a_alt_hnp_support:1;
397 	unsigned			hnp_polling_support:1;
398 	unsigned			host_request_flag:1;
399 	unsigned			quirk_ep_out_aligned_size:1;
400 	unsigned			quirk_altset_not_supp:1;
401 	unsigned			quirk_stall_not_supp:1;
402 	unsigned			quirk_zlp_not_supp:1;
403 	unsigned			quirk_avoids_skb_reserve:1;
404 	unsigned			is_selfpowered:1;
405 	unsigned			deactivated:1;
406 	unsigned			connected:1;
407 };
408 #define work_to_gadget(w)	(container_of((w), struct usb_gadget, work))
409 
410 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
411 	{ dev_set_drvdata(&gadget->dev, data); }
412 static inline void *get_gadget_data(struct usb_gadget *gadget)
413 	{ return dev_get_drvdata(&gadget->dev); }
414 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
415 {
416 	return container_of(dev, struct usb_gadget, dev);
417 }
418 
419 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
420 #define gadget_for_each_ep(tmp, gadget) \
421 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
422 
423 /**
424  * usb_ep_align - returns @len aligned to ep's maxpacketsize.
425  * @ep: the endpoint whose maxpacketsize is used to align @len
426  * @len: buffer size's length to align to @ep's maxpacketsize
427  *
428  * This helper is used to align buffer's size to an ep's maxpacketsize.
429  */
430 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
431 {
432 	int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc) & 0x7ff;
433 
434 	return round_up(len, max_packet_size);
435 }
436 
437 /**
438  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
439  *	requires quirk_ep_out_aligned_size, otherwise returns len.
440  * @g: controller to check for quirk
441  * @ep: the endpoint whose maxpacketsize is used to align @len
442  * @len: buffer size's length to align to @ep's maxpacketsize
443  *
444  * This helper is used in case it's required for any reason to check and maybe
445  * align buffer's size to an ep's maxpacketsize.
446  */
447 static inline size_t
448 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
449 {
450 	return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
451 }
452 
453 /**
454  * gadget_is_altset_supported - return true iff the hardware supports
455  *	altsettings
456  * @g: controller to check for quirk
457  */
458 static inline int gadget_is_altset_supported(struct usb_gadget *g)
459 {
460 	return !g->quirk_altset_not_supp;
461 }
462 
463 /**
464  * gadget_is_stall_supported - return true iff the hardware supports stalling
465  * @g: controller to check for quirk
466  */
467 static inline int gadget_is_stall_supported(struct usb_gadget *g)
468 {
469 	return !g->quirk_stall_not_supp;
470 }
471 
472 /**
473  * gadget_is_zlp_supported - return true iff the hardware supports zlp
474  * @g: controller to check for quirk
475  */
476 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
477 {
478 	return !g->quirk_zlp_not_supp;
479 }
480 
481 /**
482  * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
483  *	skb_reserve to improve performance.
484  * @g: controller to check for quirk
485  */
486 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
487 {
488 	return g->quirk_avoids_skb_reserve;
489 }
490 
491 /**
492  * gadget_is_dualspeed - return true iff the hardware handles high speed
493  * @g: controller that might support both high and full speeds
494  */
495 static inline int gadget_is_dualspeed(struct usb_gadget *g)
496 {
497 	return g->max_speed >= USB_SPEED_HIGH;
498 }
499 
500 /**
501  * gadget_is_superspeed() - return true if the hardware handles superspeed
502  * @g: controller that might support superspeed
503  */
504 static inline int gadget_is_superspeed(struct usb_gadget *g)
505 {
506 	return g->max_speed >= USB_SPEED_SUPER;
507 }
508 
509 /**
510  * gadget_is_superspeed_plus() - return true if the hardware handles
511  *	superspeed plus
512  * @g: controller that might support superspeed plus
513  */
514 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
515 {
516 	return g->max_speed >= USB_SPEED_SUPER_PLUS;
517 }
518 
519 /**
520  * gadget_is_otg - return true iff the hardware is OTG-ready
521  * @g: controller that might have a Mini-AB connector
522  *
523  * This is a runtime test, since kernels with a USB-OTG stack sometimes
524  * run on boards which only have a Mini-B (or Mini-A) connector.
525  */
526 static inline int gadget_is_otg(struct usb_gadget *g)
527 {
528 #ifdef CONFIG_USB_OTG
529 	return g->is_otg;
530 #else
531 	return 0;
532 #endif
533 }
534 
535 /*-------------------------------------------------------------------------*/
536 
537 #if IS_ENABLED(CONFIG_USB_GADGET)
538 int usb_gadget_frame_number(struct usb_gadget *gadget);
539 int usb_gadget_wakeup(struct usb_gadget *gadget);
540 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
541 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
542 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
543 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
544 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
545 int usb_gadget_connect(struct usb_gadget *gadget);
546 int usb_gadget_disconnect(struct usb_gadget *gadget);
547 int usb_gadget_deactivate(struct usb_gadget *gadget);
548 int usb_gadget_activate(struct usb_gadget *gadget);
549 #else
550 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
551 { return 0; }
552 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
553 { return 0; }
554 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
555 { return 0; }
556 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
557 { return 0; }
558 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
559 { return 0; }
560 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
561 { return 0; }
562 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
563 { return 0; }
564 static inline int usb_gadget_connect(struct usb_gadget *gadget)
565 { return 0; }
566 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
567 { return 0; }
568 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
569 { return 0; }
570 static inline int usb_gadget_activate(struct usb_gadget *gadget)
571 { return 0; }
572 #endif /* CONFIG_USB_GADGET */
573 
574 /*-------------------------------------------------------------------------*/
575 
576 /**
577  * struct usb_gadget_driver - driver for usb 'slave' devices
578  * @function: String describing the gadget's function
579  * @max_speed: Highest speed the driver handles.
580  * @setup: Invoked for ep0 control requests that aren't handled by
581  *	the hardware level driver. Most calls must be handled by
582  *	the gadget driver, including descriptor and configuration
583  *	management.  The 16 bit members of the setup data are in
584  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
585  *	queues a response to ep0, or returns negative to stall.
586  * @disconnect: Invoked after all transfers have been stopped,
587  *	when the host is disconnected.  May be called in_interrupt; this
588  *	may not sleep.  Some devices can't detect disconnect, so this might
589  *	not be called except as part of controller shutdown.
590  * @bind: the driver's bind callback
591  * @unbind: Invoked when the driver is unbound from a gadget,
592  *	usually from rmmod (after a disconnect is reported).
593  *	Called in a context that permits sleeping.
594  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
595  * @resume: Invoked on USB resume.  May be called in_interrupt.
596  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
597  *	and should be called in_interrupt.
598  * @driver: Driver model state for this driver.
599  * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
600  *	this driver will be bound to any available UDC.
601  * @pending: UDC core private data used for deferred probe of this driver.
602  * @match_existing_only: If udc is not found, return an error and don't add this
603  *      gadget driver to list of pending driver
604  *
605  * Devices are disabled till a gadget driver successfully bind()s, which
606  * means the driver will handle setup() requests needed to enumerate (and
607  * meet "chapter 9" requirements) then do some useful work.
608  *
609  * If gadget->is_otg is true, the gadget driver must provide an OTG
610  * descriptor during enumeration, or else fail the bind() call.  In such
611  * cases, no USB traffic may flow until both bind() returns without
612  * having called usb_gadget_disconnect(), and the USB host stack has
613  * initialized.
614  *
615  * Drivers use hardware-specific knowledge to configure the usb hardware.
616  * endpoint addressing is only one of several hardware characteristics that
617  * are in descriptors the ep0 implementation returns from setup() calls.
618  *
619  * Except for ep0 implementation, most driver code shouldn't need change to
620  * run on top of different usb controllers.  It'll use endpoints set up by
621  * that ep0 implementation.
622  *
623  * The usb controller driver handles a few standard usb requests.  Those
624  * include set_address, and feature flags for devices, interfaces, and
625  * endpoints (the get_status, set_feature, and clear_feature requests).
626  *
627  * Accordingly, the driver's setup() callback must always implement all
628  * get_descriptor requests, returning at least a device descriptor and
629  * a configuration descriptor.  Drivers must make sure the endpoint
630  * descriptors match any hardware constraints. Some hardware also constrains
631  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
632  *
633  * The driver's setup() callback must also implement set_configuration,
634  * and should also implement set_interface, get_configuration, and
635  * get_interface.  Setting a configuration (or interface) is where
636  * endpoints should be activated or (config 0) shut down.
637  *
638  * (Note that only the default control endpoint is supported.  Neither
639  * hosts nor devices generally support control traffic except to ep0.)
640  *
641  * Most devices will ignore USB suspend/resume operations, and so will
642  * not provide those callbacks.  However, some may need to change modes
643  * when the host is not longer directing those activities.  For example,
644  * local controls (buttons, dials, etc) may need to be re-enabled since
645  * the (remote) host can't do that any longer; or an error state might
646  * be cleared, to make the device behave identically whether or not
647  * power is maintained.
648  */
649 struct usb_gadget_driver {
650 	char			*function;
651 	enum usb_device_speed	max_speed;
652 	int			(*bind)(struct usb_gadget *gadget,
653 					struct usb_gadget_driver *driver);
654 	void			(*unbind)(struct usb_gadget *);
655 	int			(*setup)(struct usb_gadget *,
656 					const struct usb_ctrlrequest *);
657 	void			(*disconnect)(struct usb_gadget *);
658 	void			(*suspend)(struct usb_gadget *);
659 	void			(*resume)(struct usb_gadget *);
660 	void			(*reset)(struct usb_gadget *);
661 
662 	/* FIXME support safe rmmod */
663 	struct device_driver	driver;
664 
665 	char			*udc_name;
666 	struct list_head	pending;
667 	unsigned                match_existing_only:1;
668 };
669 
670 
671 
672 /*-------------------------------------------------------------------------*/
673 
674 /* driver modules register and unregister, as usual.
675  * these calls must be made in a context that can sleep.
676  *
677  * these will usually be implemented directly by the hardware-dependent
678  * usb bus interface driver, which will only support a single driver.
679  */
680 
681 /**
682  * usb_gadget_probe_driver - probe a gadget driver
683  * @driver: the driver being registered
684  * Context: can sleep
685  *
686  * Call this in your gadget driver's module initialization function,
687  * to tell the underlying usb controller driver about your driver.
688  * The @bind() function will be called to bind it to a gadget before this
689  * registration call returns.  It's expected that the @bind() function will
690  * be in init sections.
691  */
692 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
693 
694 /**
695  * usb_gadget_unregister_driver - unregister a gadget driver
696  * @driver:the driver being unregistered
697  * Context: can sleep
698  *
699  * Call this in your gadget driver's module cleanup function,
700  * to tell the underlying usb controller that your driver is
701  * going away.  If the controller is connected to a USB host,
702  * it will first disconnect().  The driver is also requested
703  * to unbind() and clean up any device state, before this procedure
704  * finally returns.  It's expected that the unbind() functions
705  * will in in exit sections, so may not be linked in some kernels.
706  */
707 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
708 
709 extern int usb_add_gadget_udc_release(struct device *parent,
710 		struct usb_gadget *gadget, void (*release)(struct device *dev));
711 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
712 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
713 extern char *usb_get_gadget_udc_name(void);
714 
715 /*-------------------------------------------------------------------------*/
716 
717 /* utility to simplify dealing with string descriptors */
718 
719 /**
720  * struct usb_string - wraps a C string and its USB id
721  * @id:the (nonzero) ID for this string
722  * @s:the string, in UTF-8 encoding
723  *
724  * If you're using usb_gadget_get_string(), use this to wrap a string
725  * together with its ID.
726  */
727 struct usb_string {
728 	u8			id;
729 	const char		*s;
730 };
731 
732 /**
733  * struct usb_gadget_strings - a set of USB strings in a given language
734  * @language:identifies the strings' language (0x0409 for en-us)
735  * @strings:array of strings with their ids
736  *
737  * If you're using usb_gadget_get_string(), use this to wrap all the
738  * strings for a given language.
739  */
740 struct usb_gadget_strings {
741 	u16			language;	/* 0x0409 for en-us */
742 	struct usb_string	*strings;
743 };
744 
745 struct usb_gadget_string_container {
746 	struct list_head        list;
747 	u8                      *stash[0];
748 };
749 
750 /* put descriptor for string with that id into buf (buflen >= 256) */
751 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
752 
753 /*-------------------------------------------------------------------------*/
754 
755 /* utility to simplify managing config descriptors */
756 
757 /* write vector of descriptors into buffer */
758 int usb_descriptor_fillbuf(void *, unsigned,
759 		const struct usb_descriptor_header **);
760 
761 /* build config descriptor from single descriptor vector */
762 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
763 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
764 
765 /* copy a NULL-terminated vector of descriptors */
766 struct usb_descriptor_header **usb_copy_descriptors(
767 		struct usb_descriptor_header **);
768 
769 /**
770  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
771  * @v: vector of descriptors
772  */
773 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
774 {
775 	kfree(v);
776 }
777 
778 struct usb_function;
779 int usb_assign_descriptors(struct usb_function *f,
780 		struct usb_descriptor_header **fs,
781 		struct usb_descriptor_header **hs,
782 		struct usb_descriptor_header **ss,
783 		struct usb_descriptor_header **ssp);
784 void usb_free_all_descriptors(struct usb_function *f);
785 
786 struct usb_descriptor_header *usb_otg_descriptor_alloc(
787 				struct usb_gadget *gadget);
788 int usb_otg_descriptor_init(struct usb_gadget *gadget,
789 		struct usb_descriptor_header *otg_desc);
790 /*-------------------------------------------------------------------------*/
791 
792 /* utility to simplify map/unmap of usb_requests to/from DMA */
793 
794 extern int usb_gadget_map_request_by_dev(struct device *dev,
795 		struct usb_request *req, int is_in);
796 extern int usb_gadget_map_request(struct usb_gadget *gadget,
797 		struct usb_request *req, int is_in);
798 
799 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
800 		struct usb_request *req, int is_in);
801 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
802 		struct usb_request *req, int is_in);
803 
804 /*-------------------------------------------------------------------------*/
805 
806 /* utility to set gadget state properly */
807 
808 extern void usb_gadget_set_state(struct usb_gadget *gadget,
809 		enum usb_device_state state);
810 
811 /*-------------------------------------------------------------------------*/
812 
813 /* utility to tell udc core that the bus reset occurs */
814 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
815 		struct usb_gadget_driver *driver);
816 
817 /*-------------------------------------------------------------------------*/
818 
819 /* utility to give requests back to the gadget layer */
820 
821 extern void usb_gadget_giveback_request(struct usb_ep *ep,
822 		struct usb_request *req);
823 
824 /*-------------------------------------------------------------------------*/
825 
826 /* utility to find endpoint by name */
827 
828 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
829 		const char *name);
830 
831 /*-------------------------------------------------------------------------*/
832 
833 /* utility to check if endpoint caps match descriptor needs */
834 
835 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
836 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
837 		struct usb_ss_ep_comp_descriptor *ep_comp);
838 
839 /*-------------------------------------------------------------------------*/
840 
841 /* utility to update vbus status for udc core, it may be scheduled */
842 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
843 
844 /*-------------------------------------------------------------------------*/
845 
846 /* utility wrapping a simple endpoint selection policy */
847 
848 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
849 			struct usb_endpoint_descriptor *);
850 
851 
852 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
853 			struct usb_endpoint_descriptor *,
854 			struct usb_ss_ep_comp_descriptor *);
855 
856 extern void usb_ep_autoconfig_release(struct usb_ep *);
857 
858 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
859 
860 #endif /* __LINUX_USB_GADGET_H */
861