xref: /linux-6.15/include/linux/usb/gadget.h (revision 56d06fa2)
1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  */
14 
15 #ifndef __LINUX_USB_GADGET_H
16 #define __LINUX_USB_GADGET_H
17 
18 #include <linux/device.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
22 #include <linux/slab.h>
23 #include <linux/scatterlist.h>
24 #include <linux/types.h>
25 #include <linux/workqueue.h>
26 #include <linux/usb/ch9.h>
27 
28 struct usb_ep;
29 
30 /**
31  * struct usb_request - describes one i/o request
32  * @buf: Buffer used for data.  Always provide this; some controllers
33  *	only use PIO, or don't use DMA for some endpoints.
34  * @dma: DMA address corresponding to 'buf'.  If you don't set this
35  *	field, and the usb controller needs one, it is responsible
36  *	for mapping and unmapping the buffer.
37  * @sg: a scatterlist for SG-capable controllers.
38  * @num_sgs: number of SG entries
39  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
40  * @length: Length of that data
41  * @stream_id: The stream id, when USB3.0 bulk streams are being used
42  * @no_interrupt: If true, hints that no completion irq is needed.
43  *	Helpful sometimes with deep request queues that are handled
44  *	directly by DMA controllers.
45  * @zero: If true, when writing data, makes the last packet be "short"
46  *     by adding a zero length packet as needed;
47  * @short_not_ok: When reading data, makes short packets be
48  *     treated as errors (queue stops advancing till cleanup).
49  * @complete: Function called when request completes, so this request and
50  *	its buffer may be re-used.  The function will always be called with
51  *	interrupts disabled, and it must not sleep.
52  *	Reads terminate with a short packet, or when the buffer fills,
53  *	whichever comes first.  When writes terminate, some data bytes
54  *	will usually still be in flight (often in a hardware fifo).
55  *	Errors (for reads or writes) stop the queue from advancing
56  *	until the completion function returns, so that any transfers
57  *	invalidated by the error may first be dequeued.
58  * @context: For use by the completion callback
59  * @list: For use by the gadget driver.
60  * @status: Reports completion code, zero or a negative errno.
61  *	Normally, faults block the transfer queue from advancing until
62  *	the completion callback returns.
63  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
64  *	or when the driver disabled the endpoint.
65  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
66  *	transfers) this may be less than the requested length.  If the
67  *	short_not_ok flag is set, short reads are treated as errors
68  *	even when status otherwise indicates successful completion.
69  *	Note that for writes (IN transfers) some data bytes may still
70  *	reside in a device-side FIFO when the request is reported as
71  *	complete.
72  *
73  * These are allocated/freed through the endpoint they're used with.  The
74  * hardware's driver can add extra per-request data to the memory it returns,
75  * which often avoids separate memory allocations (potential failures),
76  * later when the request is queued.
77  *
78  * Request flags affect request handling, such as whether a zero length
79  * packet is written (the "zero" flag), whether a short read should be
80  * treated as an error (blocking request queue advance, the "short_not_ok"
81  * flag), or hinting that an interrupt is not required (the "no_interrupt"
82  * flag, for use with deep request queues).
83  *
84  * Bulk endpoints can use any size buffers, and can also be used for interrupt
85  * transfers. interrupt-only endpoints can be much less functional.
86  *
87  * NOTE:  this is analogous to 'struct urb' on the host side, except that
88  * it's thinner and promotes more pre-allocation.
89  */
90 
91 struct usb_request {
92 	void			*buf;
93 	unsigned		length;
94 	dma_addr_t		dma;
95 
96 	struct scatterlist	*sg;
97 	unsigned		num_sgs;
98 	unsigned		num_mapped_sgs;
99 
100 	unsigned		stream_id:16;
101 	unsigned		no_interrupt:1;
102 	unsigned		zero:1;
103 	unsigned		short_not_ok:1;
104 
105 	void			(*complete)(struct usb_ep *ep,
106 					struct usb_request *req);
107 	void			*context;
108 	struct list_head	list;
109 
110 	int			status;
111 	unsigned		actual;
112 };
113 
114 /*-------------------------------------------------------------------------*/
115 
116 /* endpoint-specific parts of the api to the usb controller hardware.
117  * unlike the urb model, (de)multiplexing layers are not required.
118  * (so this api could slash overhead if used on the host side...)
119  *
120  * note that device side usb controllers commonly differ in how many
121  * endpoints they support, as well as their capabilities.
122  */
123 struct usb_ep_ops {
124 	int (*enable) (struct usb_ep *ep,
125 		const struct usb_endpoint_descriptor *desc);
126 	int (*disable) (struct usb_ep *ep);
127 
128 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
129 		gfp_t gfp_flags);
130 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
131 
132 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
133 		gfp_t gfp_flags);
134 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
135 
136 	int (*set_halt) (struct usb_ep *ep, int value);
137 	int (*set_wedge) (struct usb_ep *ep);
138 
139 	int (*fifo_status) (struct usb_ep *ep);
140 	void (*fifo_flush) (struct usb_ep *ep);
141 };
142 
143 /**
144  * struct usb_ep_caps - endpoint capabilities description
145  * @type_control:Endpoint supports control type (reserved for ep0).
146  * @type_iso:Endpoint supports isochronous transfers.
147  * @type_bulk:Endpoint supports bulk transfers.
148  * @type_int:Endpoint supports interrupt transfers.
149  * @dir_in:Endpoint supports IN direction.
150  * @dir_out:Endpoint supports OUT direction.
151  */
152 struct usb_ep_caps {
153 	unsigned type_control:1;
154 	unsigned type_iso:1;
155 	unsigned type_bulk:1;
156 	unsigned type_int:1;
157 	unsigned dir_in:1;
158 	unsigned dir_out:1;
159 };
160 
161 #define USB_EP_CAPS_TYPE_CONTROL     0x01
162 #define USB_EP_CAPS_TYPE_ISO         0x02
163 #define USB_EP_CAPS_TYPE_BULK        0x04
164 #define USB_EP_CAPS_TYPE_INT         0x08
165 #define USB_EP_CAPS_TYPE_ALL \
166 	(USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
167 #define USB_EP_CAPS_DIR_IN           0x01
168 #define USB_EP_CAPS_DIR_OUT          0x02
169 #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
170 
171 #define USB_EP_CAPS(_type, _dir) \
172 	{ \
173 		.type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
174 		.type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
175 		.type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
176 		.type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
177 		.dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
178 		.dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
179 	}
180 
181 /**
182  * struct usb_ep - device side representation of USB endpoint
183  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
184  * @ops: Function pointers used to access hardware-specific operations.
185  * @ep_list:the gadget's ep_list holds all of its endpoints
186  * @caps:The structure describing types and directions supported by endoint.
187  * @maxpacket:The maximum packet size used on this endpoint.  The initial
188  *	value can sometimes be reduced (hardware allowing), according to
189  *      the endpoint descriptor used to configure the endpoint.
190  * @maxpacket_limit:The maximum packet size value which can be handled by this
191  *	endpoint. It's set once by UDC driver when endpoint is initialized, and
192  *	should not be changed. Should not be confused with maxpacket.
193  * @max_streams: The maximum number of streams supported
194  *	by this EP (0 - 16, actual number is 2^n)
195  * @mult: multiplier, 'mult' value for SS Isoc EPs
196  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
197  * @driver_data:for use by the gadget driver.
198  * @address: used to identify the endpoint when finding descriptor that
199  *	matches connection speed
200  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
201  *	enabled and remains valid until the endpoint is disabled.
202  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
203  *	descriptor that is used to configure the endpoint
204  *
205  * the bus controller driver lists all the general purpose endpoints in
206  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
207  * and is accessed only in response to a driver setup() callback.
208  */
209 
210 struct usb_ep {
211 	void			*driver_data;
212 
213 	const char		*name;
214 	const struct usb_ep_ops	*ops;
215 	struct list_head	ep_list;
216 	struct usb_ep_caps	caps;
217 	bool			claimed;
218 	bool			enabled;
219 	unsigned		maxpacket:16;
220 	unsigned		maxpacket_limit:16;
221 	unsigned		max_streams:16;
222 	unsigned		mult:2;
223 	unsigned		maxburst:5;
224 	u8			address;
225 	const struct usb_endpoint_descriptor	*desc;
226 	const struct usb_ss_ep_comp_descriptor	*comp_desc;
227 };
228 
229 /*-------------------------------------------------------------------------*/
230 
231 /**
232  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
233  * @ep:the endpoint being configured
234  * @maxpacket_limit:value of maximum packet size limit
235  *
236  * This function should be used only in UDC drivers to initialize endpoint
237  * (usually in probe function).
238  */
239 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
240 					      unsigned maxpacket_limit)
241 {
242 	ep->maxpacket_limit = maxpacket_limit;
243 	ep->maxpacket = maxpacket_limit;
244 }
245 
246 /**
247  * usb_ep_enable - configure endpoint, making it usable
248  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
249  *	drivers discover endpoints through the ep_list of a usb_gadget.
250  *
251  * When configurations are set, or when interface settings change, the driver
252  * will enable or disable the relevant endpoints.  while it is enabled, an
253  * endpoint may be used for i/o until the driver receives a disconnect() from
254  * the host or until the endpoint is disabled.
255  *
256  * the ep0 implementation (which calls this routine) must ensure that the
257  * hardware capabilities of each endpoint match the descriptor provided
258  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
259  * for interrupt transfers as well as bulk, but it likely couldn't be used
260  * for iso transfers or for endpoint 14.  some endpoints are fully
261  * configurable, with more generic names like "ep-a".  (remember that for
262  * USB, "in" means "towards the USB master".)
263  *
264  * returns zero, or a negative error code.
265  */
266 static inline int usb_ep_enable(struct usb_ep *ep)
267 {
268 	int ret;
269 
270 	if (ep->enabled)
271 		return 0;
272 
273 	ret = ep->ops->enable(ep, ep->desc);
274 	if (ret)
275 		return ret;
276 
277 	ep->enabled = true;
278 
279 	return 0;
280 }
281 
282 /**
283  * usb_ep_disable - endpoint is no longer usable
284  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
285  *
286  * no other task may be using this endpoint when this is called.
287  * any pending and uncompleted requests will complete with status
288  * indicating disconnect (-ESHUTDOWN) before this call returns.
289  * gadget drivers must call usb_ep_enable() again before queueing
290  * requests to the endpoint.
291  *
292  * returns zero, or a negative error code.
293  */
294 static inline int usb_ep_disable(struct usb_ep *ep)
295 {
296 	int ret;
297 
298 	if (!ep->enabled)
299 		return 0;
300 
301 	ret = ep->ops->disable(ep);
302 	if (ret)
303 		return ret;
304 
305 	ep->enabled = false;
306 
307 	return 0;
308 }
309 
310 /**
311  * usb_ep_alloc_request - allocate a request object to use with this endpoint
312  * @ep:the endpoint to be used with with the request
313  * @gfp_flags:GFP_* flags to use
314  *
315  * Request objects must be allocated with this call, since they normally
316  * need controller-specific setup and may even need endpoint-specific
317  * resources such as allocation of DMA descriptors.
318  * Requests may be submitted with usb_ep_queue(), and receive a single
319  * completion callback.  Free requests with usb_ep_free_request(), when
320  * they are no longer needed.
321  *
322  * Returns the request, or null if one could not be allocated.
323  */
324 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
325 						       gfp_t gfp_flags)
326 {
327 	return ep->ops->alloc_request(ep, gfp_flags);
328 }
329 
330 /**
331  * usb_ep_free_request - frees a request object
332  * @ep:the endpoint associated with the request
333  * @req:the request being freed
334  *
335  * Reverses the effect of usb_ep_alloc_request().
336  * Caller guarantees the request is not queued, and that it will
337  * no longer be requeued (or otherwise used).
338  */
339 static inline void usb_ep_free_request(struct usb_ep *ep,
340 				       struct usb_request *req)
341 {
342 	ep->ops->free_request(ep, req);
343 }
344 
345 /**
346  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
347  * @ep:the endpoint associated with the request
348  * @req:the request being submitted
349  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
350  *	pre-allocate all necessary memory with the request.
351  *
352  * This tells the device controller to perform the specified request through
353  * that endpoint (reading or writing a buffer).  When the request completes,
354  * including being canceled by usb_ep_dequeue(), the request's completion
355  * routine is called to return the request to the driver.  Any endpoint
356  * (except control endpoints like ep0) may have more than one transfer
357  * request queued; they complete in FIFO order.  Once a gadget driver
358  * submits a request, that request may not be examined or modified until it
359  * is given back to that driver through the completion callback.
360  *
361  * Each request is turned into one or more packets.  The controller driver
362  * never merges adjacent requests into the same packet.  OUT transfers
363  * will sometimes use data that's already buffered in the hardware.
364  * Drivers can rely on the fact that the first byte of the request's buffer
365  * always corresponds to the first byte of some USB packet, for both
366  * IN and OUT transfers.
367  *
368  * Bulk endpoints can queue any amount of data; the transfer is packetized
369  * automatically.  The last packet will be short if the request doesn't fill it
370  * out completely.  Zero length packets (ZLPs) should be avoided in portable
371  * protocols since not all usb hardware can successfully handle zero length
372  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
373  * the request 'zero' flag is set.)  Bulk endpoints may also be used
374  * for interrupt transfers; but the reverse is not true, and some endpoints
375  * won't support every interrupt transfer.  (Such as 768 byte packets.)
376  *
377  * Interrupt-only endpoints are less functional than bulk endpoints, for
378  * example by not supporting queueing or not handling buffers that are
379  * larger than the endpoint's maxpacket size.  They may also treat data
380  * toggle differently.
381  *
382  * Control endpoints ... after getting a setup() callback, the driver queues
383  * one response (even if it would be zero length).  That enables the
384  * status ack, after transferring data as specified in the response.  Setup
385  * functions may return negative error codes to generate protocol stalls.
386  * (Note that some USB device controllers disallow protocol stall responses
387  * in some cases.)  When control responses are deferred (the response is
388  * written after the setup callback returns), then usb_ep_set_halt() may be
389  * used on ep0 to trigger protocol stalls.  Depending on the controller,
390  * it may not be possible to trigger a status-stage protocol stall when the
391  * data stage is over, that is, from within the response's completion
392  * routine.
393  *
394  * For periodic endpoints, like interrupt or isochronous ones, the usb host
395  * arranges to poll once per interval, and the gadget driver usually will
396  * have queued some data to transfer at that time.
397  *
398  * Returns zero, or a negative error code.  Endpoints that are not enabled
399  * report errors; errors will also be
400  * reported when the usb peripheral is disconnected.
401  */
402 static inline int usb_ep_queue(struct usb_ep *ep,
403 			       struct usb_request *req, gfp_t gfp_flags)
404 {
405 	if (WARN_ON_ONCE(!ep->enabled && ep->address))
406 		return -ESHUTDOWN;
407 
408 	return ep->ops->queue(ep, req, gfp_flags);
409 }
410 
411 /**
412  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
413  * @ep:the endpoint associated with the request
414  * @req:the request being canceled
415  *
416  * If the request is still active on the endpoint, it is dequeued and its
417  * completion routine is called (with status -ECONNRESET); else a negative
418  * error code is returned. This is guaranteed to happen before the call to
419  * usb_ep_dequeue() returns.
420  *
421  * Note that some hardware can't clear out write fifos (to unlink the request
422  * at the head of the queue) except as part of disconnecting from usb. Such
423  * restrictions prevent drivers from supporting configuration changes,
424  * even to configuration zero (a "chapter 9" requirement).
425  */
426 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
427 {
428 	return ep->ops->dequeue(ep, req);
429 }
430 
431 /**
432  * usb_ep_set_halt - sets the endpoint halt feature.
433  * @ep: the non-isochronous endpoint being stalled
434  *
435  * Use this to stall an endpoint, perhaps as an error report.
436  * Except for control endpoints,
437  * the endpoint stays halted (will not stream any data) until the host
438  * clears this feature; drivers may need to empty the endpoint's request
439  * queue first, to make sure no inappropriate transfers happen.
440  *
441  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
442  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
443  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
444  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
445  *
446  * Returns zero, or a negative error code.  On success, this call sets
447  * underlying hardware state that blocks data transfers.
448  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
449  * transfer requests are still queued, or if the controller hardware
450  * (usually a FIFO) still holds bytes that the host hasn't collected.
451  */
452 static inline int usb_ep_set_halt(struct usb_ep *ep)
453 {
454 	return ep->ops->set_halt(ep, 1);
455 }
456 
457 /**
458  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
459  * @ep:the bulk or interrupt endpoint being reset
460  *
461  * Use this when responding to the standard usb "set interface" request,
462  * for endpoints that aren't reconfigured, after clearing any other state
463  * in the endpoint's i/o queue.
464  *
465  * Returns zero, or a negative error code.  On success, this call clears
466  * the underlying hardware state reflecting endpoint halt and data toggle.
467  * Note that some hardware can't support this request (like pxa2xx_udc),
468  * and accordingly can't correctly implement interface altsettings.
469  */
470 static inline int usb_ep_clear_halt(struct usb_ep *ep)
471 {
472 	return ep->ops->set_halt(ep, 0);
473 }
474 
475 /**
476  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
477  * @ep: the endpoint being wedged
478  *
479  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
480  * requests. If the gadget driver clears the halt status, it will
481  * automatically unwedge the endpoint.
482  *
483  * Returns zero on success, else negative errno.
484  */
485 static inline int
486 usb_ep_set_wedge(struct usb_ep *ep)
487 {
488 	if (ep->ops->set_wedge)
489 		return ep->ops->set_wedge(ep);
490 	else
491 		return ep->ops->set_halt(ep, 1);
492 }
493 
494 /**
495  * usb_ep_fifo_status - returns number of bytes in fifo, or error
496  * @ep: the endpoint whose fifo status is being checked.
497  *
498  * FIFO endpoints may have "unclaimed data" in them in certain cases,
499  * such as after aborted transfers.  Hosts may not have collected all
500  * the IN data written by the gadget driver (and reported by a request
501  * completion).  The gadget driver may not have collected all the data
502  * written OUT to it by the host.  Drivers that need precise handling for
503  * fault reporting or recovery may need to use this call.
504  *
505  * This returns the number of such bytes in the fifo, or a negative
506  * errno if the endpoint doesn't use a FIFO or doesn't support such
507  * precise handling.
508  */
509 static inline int usb_ep_fifo_status(struct usb_ep *ep)
510 {
511 	if (ep->ops->fifo_status)
512 		return ep->ops->fifo_status(ep);
513 	else
514 		return -EOPNOTSUPP;
515 }
516 
517 /**
518  * usb_ep_fifo_flush - flushes contents of a fifo
519  * @ep: the endpoint whose fifo is being flushed.
520  *
521  * This call may be used to flush the "unclaimed data" that may exist in
522  * an endpoint fifo after abnormal transaction terminations.  The call
523  * must never be used except when endpoint is not being used for any
524  * protocol translation.
525  */
526 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
527 {
528 	if (ep->ops->fifo_flush)
529 		ep->ops->fifo_flush(ep);
530 }
531 
532 
533 /*-------------------------------------------------------------------------*/
534 
535 struct usb_dcd_config_params {
536 	__u8  bU1devExitLat;	/* U1 Device exit Latency */
537 #define USB_DEFAULT_U1_DEV_EXIT_LAT	0x01	/* Less then 1 microsec */
538 	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
539 #define USB_DEFAULT_U2_DEV_EXIT_LAT	0x1F4	/* Less then 500 microsec */
540 };
541 
542 
543 struct usb_gadget;
544 struct usb_gadget_driver;
545 struct usb_udc;
546 
547 /* the rest of the api to the controller hardware: device operations,
548  * which don't involve endpoints (or i/o).
549  */
550 struct usb_gadget_ops {
551 	int	(*get_frame)(struct usb_gadget *);
552 	int	(*wakeup)(struct usb_gadget *);
553 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
554 	int	(*vbus_session) (struct usb_gadget *, int is_active);
555 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
556 	int	(*pullup) (struct usb_gadget *, int is_on);
557 	int	(*ioctl)(struct usb_gadget *,
558 				unsigned code, unsigned long param);
559 	void	(*get_config_params)(struct usb_dcd_config_params *);
560 	int	(*udc_start)(struct usb_gadget *,
561 			struct usb_gadget_driver *);
562 	int	(*udc_stop)(struct usb_gadget *);
563 	struct usb_ep *(*match_ep)(struct usb_gadget *,
564 			struct usb_endpoint_descriptor *,
565 			struct usb_ss_ep_comp_descriptor *);
566 };
567 
568 /**
569  * struct usb_gadget - represents a usb slave device
570  * @work: (internal use) Workqueue to be used for sysfs_notify()
571  * @udc: struct usb_udc pointer for this gadget
572  * @ops: Function pointers used to access hardware-specific operations.
573  * @ep0: Endpoint zero, used when reading or writing responses to
574  *	driver setup() requests
575  * @ep_list: List of other endpoints supported by the device.
576  * @speed: Speed of current connection to USB host.
577  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
578  *      and all slower speeds.
579  * @state: the state we are now (attached, suspended, configured, etc)
580  * @name: Identifies the controller hardware type.  Used in diagnostics
581  *	and sometimes configuration.
582  * @dev: Driver model state for this abstract device.
583  * @out_epnum: last used out ep number
584  * @in_epnum: last used in ep number
585  * @otg_caps: OTG capabilities of this gadget.
586  * @sg_supported: true if we can handle scatter-gather
587  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
588  *	gadget driver must provide a USB OTG descriptor.
589  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
590  *	is in the Mini-AB jack, and HNP has been used to switch roles
591  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
592  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
593  *	supports HNP at this port.
594  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
595  *	only supports HNP on a different root port.
596  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
597  *	enabled HNP support.
598  * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
599  *	in peripheral mode can support HNP polling.
600  * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
601  *	or B-Peripheral wants to take host role.
602  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
603  *	MaxPacketSize.
604  * @is_selfpowered: if the gadget is self-powered.
605  * @deactivated: True if gadget is deactivated - in deactivated state it cannot
606  *	be connected.
607  * @connected: True if gadget is connected.
608  *
609  * Gadgets have a mostly-portable "gadget driver" implementing device
610  * functions, handling all usb configurations and interfaces.  Gadget
611  * drivers talk to hardware-specific code indirectly, through ops vectors.
612  * That insulates the gadget driver from hardware details, and packages
613  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
614  * and "usb_ep" interfaces provide that insulation from the hardware.
615  *
616  * Except for the driver data, all fields in this structure are
617  * read-only to the gadget driver.  That driver data is part of the
618  * "driver model" infrastructure in 2.6 (and later) kernels, and for
619  * earlier systems is grouped in a similar structure that's not known
620  * to the rest of the kernel.
621  *
622  * Values of the three OTG device feature flags are updated before the
623  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
624  * driver suspend() calls.  They are valid only when is_otg, and when the
625  * device is acting as a B-Peripheral (so is_a_peripheral is false).
626  */
627 struct usb_gadget {
628 	struct work_struct		work;
629 	struct usb_udc			*udc;
630 	/* readonly to gadget driver */
631 	const struct usb_gadget_ops	*ops;
632 	struct usb_ep			*ep0;
633 	struct list_head		ep_list;	/* of usb_ep */
634 	enum usb_device_speed		speed;
635 	enum usb_device_speed		max_speed;
636 	enum usb_device_state		state;
637 	const char			*name;
638 	struct device			dev;
639 	unsigned			out_epnum;
640 	unsigned			in_epnum;
641 	struct usb_otg_caps		*otg_caps;
642 
643 	unsigned			sg_supported:1;
644 	unsigned			is_otg:1;
645 	unsigned			is_a_peripheral:1;
646 	unsigned			b_hnp_enable:1;
647 	unsigned			a_hnp_support:1;
648 	unsigned			a_alt_hnp_support:1;
649 	unsigned			hnp_polling_support:1;
650 	unsigned			host_request_flag:1;
651 	unsigned			quirk_ep_out_aligned_size:1;
652 	unsigned			quirk_altset_not_supp:1;
653 	unsigned			quirk_stall_not_supp:1;
654 	unsigned			quirk_zlp_not_supp:1;
655 	unsigned			is_selfpowered:1;
656 	unsigned			deactivated:1;
657 	unsigned			connected:1;
658 };
659 #define work_to_gadget(w)	(container_of((w), struct usb_gadget, work))
660 
661 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
662 	{ dev_set_drvdata(&gadget->dev, data); }
663 static inline void *get_gadget_data(struct usb_gadget *gadget)
664 	{ return dev_get_drvdata(&gadget->dev); }
665 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
666 {
667 	return container_of(dev, struct usb_gadget, dev);
668 }
669 
670 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
671 #define gadget_for_each_ep(tmp, gadget) \
672 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
673 
674 /**
675  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
676  *	requires quirk_ep_out_aligned_size, otherwise reguens len.
677  * @g: controller to check for quirk
678  * @ep: the endpoint whose maxpacketsize is used to align @len
679  * @len: buffer size's length to align to @ep's maxpacketsize
680  *
681  * This helper is used in case it's required for any reason to check and maybe
682  * align buffer's size to an ep's maxpacketsize.
683  */
684 static inline size_t
685 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
686 {
687 	return !g->quirk_ep_out_aligned_size ? len :
688 			round_up(len, (size_t)ep->desc->wMaxPacketSize);
689 }
690 
691 /**
692  * gadget_is_altset_supported - return true iff the hardware supports
693  *	altsettings
694  * @g: controller to check for quirk
695  */
696 static inline int gadget_is_altset_supported(struct usb_gadget *g)
697 {
698 	return !g->quirk_altset_not_supp;
699 }
700 
701 /**
702  * gadget_is_stall_supported - return true iff the hardware supports stalling
703  * @g: controller to check for quirk
704  */
705 static inline int gadget_is_stall_supported(struct usb_gadget *g)
706 {
707 	return !g->quirk_stall_not_supp;
708 }
709 
710 /**
711  * gadget_is_zlp_supported - return true iff the hardware supports zlp
712  * @g: controller to check for quirk
713  */
714 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
715 {
716 	return !g->quirk_zlp_not_supp;
717 }
718 
719 /**
720  * gadget_is_dualspeed - return true iff the hardware handles high speed
721  * @g: controller that might support both high and full speeds
722  */
723 static inline int gadget_is_dualspeed(struct usb_gadget *g)
724 {
725 	return g->max_speed >= USB_SPEED_HIGH;
726 }
727 
728 /**
729  * gadget_is_superspeed() - return true if the hardware handles superspeed
730  * @g: controller that might support superspeed
731  */
732 static inline int gadget_is_superspeed(struct usb_gadget *g)
733 {
734 	return g->max_speed >= USB_SPEED_SUPER;
735 }
736 
737 /**
738  * gadget_is_superspeed_plus() - return true if the hardware handles
739  *	superspeed plus
740  * @g: controller that might support superspeed plus
741  */
742 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
743 {
744 	return g->max_speed >= USB_SPEED_SUPER_PLUS;
745 }
746 
747 /**
748  * gadget_is_otg - return true iff the hardware is OTG-ready
749  * @g: controller that might have a Mini-AB connector
750  *
751  * This is a runtime test, since kernels with a USB-OTG stack sometimes
752  * run on boards which only have a Mini-B (or Mini-A) connector.
753  */
754 static inline int gadget_is_otg(struct usb_gadget *g)
755 {
756 #ifdef CONFIG_USB_OTG
757 	return g->is_otg;
758 #else
759 	return 0;
760 #endif
761 }
762 
763 /**
764  * usb_gadget_frame_number - returns the current frame number
765  * @gadget: controller that reports the frame number
766  *
767  * Returns the usb frame number, normally eleven bits from a SOF packet,
768  * or negative errno if this device doesn't support this capability.
769  */
770 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
771 {
772 	return gadget->ops->get_frame(gadget);
773 }
774 
775 /**
776  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
777  * @gadget: controller used to wake up the host
778  *
779  * Returns zero on success, else negative error code if the hardware
780  * doesn't support such attempts, or its support has not been enabled
781  * by the usb host.  Drivers must return device descriptors that report
782  * their ability to support this, or hosts won't enable it.
783  *
784  * This may also try to use SRP to wake the host and start enumeration,
785  * even if OTG isn't otherwise in use.  OTG devices may also start
786  * remote wakeup even when hosts don't explicitly enable it.
787  */
788 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
789 {
790 	if (!gadget->ops->wakeup)
791 		return -EOPNOTSUPP;
792 	return gadget->ops->wakeup(gadget);
793 }
794 
795 /**
796  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
797  * @gadget:the device being declared as self-powered
798  *
799  * this affects the device status reported by the hardware driver
800  * to reflect that it now has a local power supply.
801  *
802  * returns zero on success, else negative errno.
803  */
804 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
805 {
806 	if (!gadget->ops->set_selfpowered)
807 		return -EOPNOTSUPP;
808 	return gadget->ops->set_selfpowered(gadget, 1);
809 }
810 
811 /**
812  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
813  * @gadget:the device being declared as bus-powered
814  *
815  * this affects the device status reported by the hardware driver.
816  * some hardware may not support bus-powered operation, in which
817  * case this feature's value can never change.
818  *
819  * returns zero on success, else negative errno.
820  */
821 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
822 {
823 	if (!gadget->ops->set_selfpowered)
824 		return -EOPNOTSUPP;
825 	return gadget->ops->set_selfpowered(gadget, 0);
826 }
827 
828 /**
829  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
830  * @gadget:The device which now has VBUS power.
831  * Context: can sleep
832  *
833  * This call is used by a driver for an external transceiver (or GPIO)
834  * that detects a VBUS power session starting.  Common responses include
835  * resuming the controller, activating the D+ (or D-) pullup to let the
836  * host detect that a USB device is attached, and starting to draw power
837  * (8mA or possibly more, especially after SET_CONFIGURATION).
838  *
839  * Returns zero on success, else negative errno.
840  */
841 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
842 {
843 	if (!gadget->ops->vbus_session)
844 		return -EOPNOTSUPP;
845 	return gadget->ops->vbus_session(gadget, 1);
846 }
847 
848 /**
849  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
850  * @gadget:The device whose VBUS usage is being described
851  * @mA:How much current to draw, in milliAmperes.  This should be twice
852  *	the value listed in the configuration descriptor bMaxPower field.
853  *
854  * This call is used by gadget drivers during SET_CONFIGURATION calls,
855  * reporting how much power the device may consume.  For example, this
856  * could affect how quickly batteries are recharged.
857  *
858  * Returns zero on success, else negative errno.
859  */
860 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
861 {
862 	if (!gadget->ops->vbus_draw)
863 		return -EOPNOTSUPP;
864 	return gadget->ops->vbus_draw(gadget, mA);
865 }
866 
867 /**
868  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
869  * @gadget:the device whose VBUS supply is being described
870  * Context: can sleep
871  *
872  * This call is used by a driver for an external transceiver (or GPIO)
873  * that detects a VBUS power session ending.  Common responses include
874  * reversing everything done in usb_gadget_vbus_connect().
875  *
876  * Returns zero on success, else negative errno.
877  */
878 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
879 {
880 	if (!gadget->ops->vbus_session)
881 		return -EOPNOTSUPP;
882 	return gadget->ops->vbus_session(gadget, 0);
883 }
884 
885 /**
886  * usb_gadget_connect - software-controlled connect to USB host
887  * @gadget:the peripheral being connected
888  *
889  * Enables the D+ (or potentially D-) pullup.  The host will start
890  * enumerating this gadget when the pullup is active and a VBUS session
891  * is active (the link is powered).  This pullup is always enabled unless
892  * usb_gadget_disconnect() has been used to disable it.
893  *
894  * Returns zero on success, else negative errno.
895  */
896 static inline int usb_gadget_connect(struct usb_gadget *gadget)
897 {
898 	int ret;
899 
900 	if (!gadget->ops->pullup)
901 		return -EOPNOTSUPP;
902 
903 	if (gadget->deactivated) {
904 		/*
905 		 * If gadget is deactivated we only save new state.
906 		 * Gadget will be connected automatically after activation.
907 		 */
908 		gadget->connected = true;
909 		return 0;
910 	}
911 
912 	ret = gadget->ops->pullup(gadget, 1);
913 	if (!ret)
914 		gadget->connected = 1;
915 	return ret;
916 }
917 
918 /**
919  * usb_gadget_disconnect - software-controlled disconnect from USB host
920  * @gadget:the peripheral being disconnected
921  *
922  * Disables the D+ (or potentially D-) pullup, which the host may see
923  * as a disconnect (when a VBUS session is active).  Not all systems
924  * support software pullup controls.
925  *
926  * Returns zero on success, else negative errno.
927  */
928 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
929 {
930 	int ret;
931 
932 	if (!gadget->ops->pullup)
933 		return -EOPNOTSUPP;
934 
935 	if (gadget->deactivated) {
936 		/*
937 		 * If gadget is deactivated we only save new state.
938 		 * Gadget will stay disconnected after activation.
939 		 */
940 		gadget->connected = false;
941 		return 0;
942 	}
943 
944 	ret = gadget->ops->pullup(gadget, 0);
945 	if (!ret)
946 		gadget->connected = 0;
947 	return ret;
948 }
949 
950 /**
951  * usb_gadget_deactivate - deactivate function which is not ready to work
952  * @gadget: the peripheral being deactivated
953  *
954  * This routine may be used during the gadget driver bind() call to prevent
955  * the peripheral from ever being visible to the USB host, unless later
956  * usb_gadget_activate() is called.  For example, user mode components may
957  * need to be activated before the system can talk to hosts.
958  *
959  * Returns zero on success, else negative errno.
960  */
961 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
962 {
963 	int ret;
964 
965 	if (gadget->deactivated)
966 		return 0;
967 
968 	if (gadget->connected) {
969 		ret = usb_gadget_disconnect(gadget);
970 		if (ret)
971 			return ret;
972 		/*
973 		 * If gadget was being connected before deactivation, we want
974 		 * to reconnect it in usb_gadget_activate().
975 		 */
976 		gadget->connected = true;
977 	}
978 	gadget->deactivated = true;
979 
980 	return 0;
981 }
982 
983 /**
984  * usb_gadget_activate - activate function which is not ready to work
985  * @gadget: the peripheral being activated
986  *
987  * This routine activates gadget which was previously deactivated with
988  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
989  *
990  * Returns zero on success, else negative errno.
991  */
992 static inline int usb_gadget_activate(struct usb_gadget *gadget)
993 {
994 	if (!gadget->deactivated)
995 		return 0;
996 
997 	gadget->deactivated = false;
998 
999 	/*
1000 	 * If gadget has been connected before deactivation, or became connected
1001 	 * while it was being deactivated, we call usb_gadget_connect().
1002 	 */
1003 	if (gadget->connected)
1004 		return usb_gadget_connect(gadget);
1005 
1006 	return 0;
1007 }
1008 
1009 /*-------------------------------------------------------------------------*/
1010 
1011 /**
1012  * struct usb_gadget_driver - driver for usb 'slave' devices
1013  * @function: String describing the gadget's function
1014  * @max_speed: Highest speed the driver handles.
1015  * @setup: Invoked for ep0 control requests that aren't handled by
1016  *	the hardware level driver. Most calls must be handled by
1017  *	the gadget driver, including descriptor and configuration
1018  *	management.  The 16 bit members of the setup data are in
1019  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
1020  *	queues a response to ep0, or returns negative to stall.
1021  * @disconnect: Invoked after all transfers have been stopped,
1022  *	when the host is disconnected.  May be called in_interrupt; this
1023  *	may not sleep.  Some devices can't detect disconnect, so this might
1024  *	not be called except as part of controller shutdown.
1025  * @bind: the driver's bind callback
1026  * @unbind: Invoked when the driver is unbound from a gadget,
1027  *	usually from rmmod (after a disconnect is reported).
1028  *	Called in a context that permits sleeping.
1029  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
1030  * @resume: Invoked on USB resume.  May be called in_interrupt.
1031  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
1032  *	and should be called in_interrupt.
1033  * @driver: Driver model state for this driver.
1034  * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
1035  *	this driver will be bound to any available UDC.
1036  * @pending: UDC core private data used for deferred probe of this driver.
1037  *
1038  * Devices are disabled till a gadget driver successfully bind()s, which
1039  * means the driver will handle setup() requests needed to enumerate (and
1040  * meet "chapter 9" requirements) then do some useful work.
1041  *
1042  * If gadget->is_otg is true, the gadget driver must provide an OTG
1043  * descriptor during enumeration, or else fail the bind() call.  In such
1044  * cases, no USB traffic may flow until both bind() returns without
1045  * having called usb_gadget_disconnect(), and the USB host stack has
1046  * initialized.
1047  *
1048  * Drivers use hardware-specific knowledge to configure the usb hardware.
1049  * endpoint addressing is only one of several hardware characteristics that
1050  * are in descriptors the ep0 implementation returns from setup() calls.
1051  *
1052  * Except for ep0 implementation, most driver code shouldn't need change to
1053  * run on top of different usb controllers.  It'll use endpoints set up by
1054  * that ep0 implementation.
1055  *
1056  * The usb controller driver handles a few standard usb requests.  Those
1057  * include set_address, and feature flags for devices, interfaces, and
1058  * endpoints (the get_status, set_feature, and clear_feature requests).
1059  *
1060  * Accordingly, the driver's setup() callback must always implement all
1061  * get_descriptor requests, returning at least a device descriptor and
1062  * a configuration descriptor.  Drivers must make sure the endpoint
1063  * descriptors match any hardware constraints. Some hardware also constrains
1064  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
1065  *
1066  * The driver's setup() callback must also implement set_configuration,
1067  * and should also implement set_interface, get_configuration, and
1068  * get_interface.  Setting a configuration (or interface) is where
1069  * endpoints should be activated or (config 0) shut down.
1070  *
1071  * (Note that only the default control endpoint is supported.  Neither
1072  * hosts nor devices generally support control traffic except to ep0.)
1073  *
1074  * Most devices will ignore USB suspend/resume operations, and so will
1075  * not provide those callbacks.  However, some may need to change modes
1076  * when the host is not longer directing those activities.  For example,
1077  * local controls (buttons, dials, etc) may need to be re-enabled since
1078  * the (remote) host can't do that any longer; or an error state might
1079  * be cleared, to make the device behave identically whether or not
1080  * power is maintained.
1081  */
1082 struct usb_gadget_driver {
1083 	char			*function;
1084 	enum usb_device_speed	max_speed;
1085 	int			(*bind)(struct usb_gadget *gadget,
1086 					struct usb_gadget_driver *driver);
1087 	void			(*unbind)(struct usb_gadget *);
1088 	int			(*setup)(struct usb_gadget *,
1089 					const struct usb_ctrlrequest *);
1090 	void			(*disconnect)(struct usb_gadget *);
1091 	void			(*suspend)(struct usb_gadget *);
1092 	void			(*resume)(struct usb_gadget *);
1093 	void			(*reset)(struct usb_gadget *);
1094 
1095 	/* FIXME support safe rmmod */
1096 	struct device_driver	driver;
1097 
1098 	char			*udc_name;
1099 	struct list_head	pending;
1100 };
1101 
1102 
1103 
1104 /*-------------------------------------------------------------------------*/
1105 
1106 /* driver modules register and unregister, as usual.
1107  * these calls must be made in a context that can sleep.
1108  *
1109  * these will usually be implemented directly by the hardware-dependent
1110  * usb bus interface driver, which will only support a single driver.
1111  */
1112 
1113 /**
1114  * usb_gadget_probe_driver - probe a gadget driver
1115  * @driver: the driver being registered
1116  * Context: can sleep
1117  *
1118  * Call this in your gadget driver's module initialization function,
1119  * to tell the underlying usb controller driver about your driver.
1120  * The @bind() function will be called to bind it to a gadget before this
1121  * registration call returns.  It's expected that the @bind() function will
1122  * be in init sections.
1123  */
1124 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
1125 
1126 /**
1127  * usb_gadget_unregister_driver - unregister a gadget driver
1128  * @driver:the driver being unregistered
1129  * Context: can sleep
1130  *
1131  * Call this in your gadget driver's module cleanup function,
1132  * to tell the underlying usb controller that your driver is
1133  * going away.  If the controller is connected to a USB host,
1134  * it will first disconnect().  The driver is also requested
1135  * to unbind() and clean up any device state, before this procedure
1136  * finally returns.  It's expected that the unbind() functions
1137  * will in in exit sections, so may not be linked in some kernels.
1138  */
1139 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
1140 
1141 extern int usb_add_gadget_udc_release(struct device *parent,
1142 		struct usb_gadget *gadget, void (*release)(struct device *dev));
1143 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
1144 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
1145 extern char *usb_get_gadget_udc_name(void);
1146 
1147 /*-------------------------------------------------------------------------*/
1148 
1149 /* utility to simplify dealing with string descriptors */
1150 
1151 /**
1152  * struct usb_string - wraps a C string and its USB id
1153  * @id:the (nonzero) ID for this string
1154  * @s:the string, in UTF-8 encoding
1155  *
1156  * If you're using usb_gadget_get_string(), use this to wrap a string
1157  * together with its ID.
1158  */
1159 struct usb_string {
1160 	u8			id;
1161 	const char		*s;
1162 };
1163 
1164 /**
1165  * struct usb_gadget_strings - a set of USB strings in a given language
1166  * @language:identifies the strings' language (0x0409 for en-us)
1167  * @strings:array of strings with their ids
1168  *
1169  * If you're using usb_gadget_get_string(), use this to wrap all the
1170  * strings for a given language.
1171  */
1172 struct usb_gadget_strings {
1173 	u16			language;	/* 0x0409 for en-us */
1174 	struct usb_string	*strings;
1175 };
1176 
1177 struct usb_gadget_string_container {
1178 	struct list_head        list;
1179 	u8                      *stash[0];
1180 };
1181 
1182 /* put descriptor for string with that id into buf (buflen >= 256) */
1183 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
1184 
1185 /*-------------------------------------------------------------------------*/
1186 
1187 /* utility to simplify managing config descriptors */
1188 
1189 /* write vector of descriptors into buffer */
1190 int usb_descriptor_fillbuf(void *, unsigned,
1191 		const struct usb_descriptor_header **);
1192 
1193 /* build config descriptor from single descriptor vector */
1194 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
1195 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
1196 
1197 /* copy a NULL-terminated vector of descriptors */
1198 struct usb_descriptor_header **usb_copy_descriptors(
1199 		struct usb_descriptor_header **);
1200 
1201 /**
1202  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
1203  * @v: vector of descriptors
1204  */
1205 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
1206 {
1207 	kfree(v);
1208 }
1209 
1210 struct usb_function;
1211 int usb_assign_descriptors(struct usb_function *f,
1212 		struct usb_descriptor_header **fs,
1213 		struct usb_descriptor_header **hs,
1214 		struct usb_descriptor_header **ss,
1215 		struct usb_descriptor_header **ssp);
1216 void usb_free_all_descriptors(struct usb_function *f);
1217 
1218 struct usb_descriptor_header *usb_otg_descriptor_alloc(
1219 				struct usb_gadget *gadget);
1220 int usb_otg_descriptor_init(struct usb_gadget *gadget,
1221 		struct usb_descriptor_header *otg_desc);
1222 /*-------------------------------------------------------------------------*/
1223 
1224 /* utility to simplify map/unmap of usb_requests to/from DMA */
1225 
1226 extern int usb_gadget_map_request(struct usb_gadget *gadget,
1227 		struct usb_request *req, int is_in);
1228 
1229 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
1230 		struct usb_request *req, int is_in);
1231 
1232 /*-------------------------------------------------------------------------*/
1233 
1234 /* utility to set gadget state properly */
1235 
1236 extern void usb_gadget_set_state(struct usb_gadget *gadget,
1237 		enum usb_device_state state);
1238 
1239 /*-------------------------------------------------------------------------*/
1240 
1241 /* utility to tell udc core that the bus reset occurs */
1242 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
1243 		struct usb_gadget_driver *driver);
1244 
1245 /*-------------------------------------------------------------------------*/
1246 
1247 /* utility to give requests back to the gadget layer */
1248 
1249 extern void usb_gadget_giveback_request(struct usb_ep *ep,
1250 		struct usb_request *req);
1251 
1252 /*-------------------------------------------------------------------------*/
1253 
1254 /* utility to find endpoint by name */
1255 
1256 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
1257 		const char *name);
1258 
1259 /*-------------------------------------------------------------------------*/
1260 
1261 /* utility to check if endpoint caps match descriptor needs */
1262 
1263 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1264 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1265 		struct usb_ss_ep_comp_descriptor *ep_comp);
1266 
1267 /*-------------------------------------------------------------------------*/
1268 
1269 /* utility to update vbus status for udc core, it may be scheduled */
1270 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
1271 
1272 /*-------------------------------------------------------------------------*/
1273 
1274 /* utility wrapping a simple endpoint selection policy */
1275 
1276 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
1277 			struct usb_endpoint_descriptor *);
1278 
1279 
1280 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
1281 			struct usb_endpoint_descriptor *,
1282 			struct usb_ss_ep_comp_descriptor *);
1283 
1284 extern void usb_ep_autoconfig_release(struct usb_ep *);
1285 
1286 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
1287 
1288 #endif /* __LINUX_USB_GADGET_H */
1289