xref: /linux-6.15/include/linux/usb.h (revision f98e0640)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29 
30 /*-------------------------------------------------------------------------*/
31 
32 /*
33  * Host-side wrappers for standard USB descriptors ... these are parsed
34  * from the data provided by devices.  Parsing turns them from a flat
35  * sequence of descriptors into a hierarchy:
36  *
37  *  - devices have one (usually) or more configs;
38  *  - configs have one (often) or more interfaces;
39  *  - interfaces have one (usually) or more settings;
40  *  - each interface setting has zero or (usually) more endpoints.
41  *  - a SuperSpeed endpoint has a companion descriptor
42  *
43  * And there might be other descriptors mixed in with those.
44  *
45  * Devices may also have class-specific or vendor-specific descriptors.
46  */
47 
48 struct ep_device;
49 
50 /**
51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor		desc;
69 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
71 	struct list_head		urb_list;
72 	void				*hcpriv;
73 	struct ep_device		*ep_dev;	/* For sysfs info */
74 
75 	unsigned char *extra;   /* Extra descriptors */
76 	int extralen;
77 	int enabled;
78 	int streams;
79 };
80 
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 	struct usb_interface_descriptor	desc;
84 
85 	int extralen;
86 	unsigned char *extra;   /* Extra descriptors */
87 
88 	/* array of desc.bNumEndpoints endpoints associated with this
89 	 * interface setting.  these will be in no particular order.
90 	 */
91 	struct usb_host_endpoint *endpoint;
92 
93 	char *string;		/* iInterface string, if present */
94 };
95 
96 enum usb_interface_condition {
97 	USB_INTERFACE_UNBOUND = 0,
98 	USB_INTERFACE_BINDING,
99 	USB_INTERFACE_BOUND,
100 	USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 		struct usb_endpoint_descriptor **bulk_in,
106 		struct usb_endpoint_descriptor **bulk_out,
107 		struct usb_endpoint_descriptor **int_in,
108 		struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 		struct usb_endpoint_descriptor **bulk_in,
113 		struct usb_endpoint_descriptor **bulk_out,
114 		struct usb_endpoint_descriptor **int_in,
115 		struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 		struct usb_endpoint_descriptor **bulk_in)
120 {
121 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 		struct usb_endpoint_descriptor **bulk_out)
127 {
128 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 		struct usb_endpoint_descriptor **int_in)
134 {
135 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 		struct usb_endpoint_descriptor **bulk_in)
148 {
149 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 		struct usb_endpoint_descriptor **bulk_out)
155 {
156 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 		struct usb_endpoint_descriptor **int_in)
162 {
163 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 		struct usb_endpoint_descriptor **int_out)
169 {
170 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 enum usb_wireless_status {
174 	USB_WIRELESS_STATUS_NA = 0,
175 	USB_WIRELESS_STATUS_DISCONNECTED,
176 	USB_WIRELESS_STATUS_CONNECTED,
177 };
178 
179 /**
180  * struct usb_interface - what usb device drivers talk to
181  * @altsetting: array of interface structures, one for each alternate
182  *	setting that may be selected.  Each one includes a set of
183  *	endpoint configurations.  They will be in no particular order.
184  * @cur_altsetting: the current altsetting.
185  * @num_altsetting: number of altsettings defined.
186  * @intf_assoc: interface association descriptor
187  * @minor: the minor number assigned to this interface, if this
188  *	interface is bound to a driver that uses the USB major number.
189  *	If this interface does not use the USB major, this field should
190  *	be unused.  The driver should set this value in the probe()
191  *	function of the driver, after it has been assigned a minor
192  *	number from the USB core by calling usb_register_dev().
193  * @condition: binding state of the interface: not bound, binding
194  *	(in probe()), bound to a driver, or unbinding (in disconnect())
195  * @sysfs_files_created: sysfs attributes exist
196  * @ep_devs_created: endpoint child pseudo-devices exist
197  * @unregistering: flag set when the interface is being unregistered
198  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
199  *	capability during autosuspend.
200  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
201  *	has been deferred.
202  * @needs_binding: flag set when the driver should be re-probed or unbound
203  *	following a reset or suspend operation it doesn't support.
204  * @authorized: This allows to (de)authorize individual interfaces instead
205  *	a whole device in contrast to the device authorization.
206  * @dev: driver model's view of this device
207  * @usb_dev: if an interface is bound to the USB major, this will point
208  *	to the sysfs representation for that device.
209  * @reset_ws: Used for scheduling resets from atomic context.
210  * @resetting_device: USB core reset the device, so use alt setting 0 as
211  *	current; needs bandwidth alloc after reset.
212  * @wireless_status: if the USB device uses a receiver/emitter combo, whether
213  *	the emitter is connected.
214  *
215  * USB device drivers attach to interfaces on a physical device.  Each
216  * interface encapsulates a single high level function, such as feeding
217  * an audio stream to a speaker or reporting a change in a volume control.
218  * Many USB devices only have one interface.  The protocol used to talk to
219  * an interface's endpoints can be defined in a usb "class" specification,
220  * or by a product's vendor.  The (default) control endpoint is part of
221  * every interface, but is never listed among the interface's descriptors.
222  *
223  * The driver that is bound to the interface can use standard driver model
224  * calls such as dev_get_drvdata() on the dev member of this structure.
225  *
226  * Each interface may have alternate settings.  The initial configuration
227  * of a device sets altsetting 0, but the device driver can change
228  * that setting using usb_set_interface().  Alternate settings are often
229  * used to control the use of periodic endpoints, such as by having
230  * different endpoints use different amounts of reserved USB bandwidth.
231  * All standards-conformant USB devices that use isochronous endpoints
232  * will use them in non-default settings.
233  *
234  * The USB specification says that alternate setting numbers must run from
235  * 0 to one less than the total number of alternate settings.  But some
236  * devices manage to mess this up, and the structures aren't necessarily
237  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
238  * look up an alternate setting in the altsetting array based on its number.
239  */
240 struct usb_interface {
241 	/* array of alternate settings for this interface,
242 	 * stored in no particular order */
243 	struct usb_host_interface *altsetting;
244 
245 	struct usb_host_interface *cur_altsetting;	/* the currently
246 					 * active alternate setting */
247 	unsigned num_altsetting;	/* number of alternate settings */
248 
249 	/* If there is an interface association descriptor then it will list
250 	 * the associated interfaces */
251 	struct usb_interface_assoc_descriptor *intf_assoc;
252 
253 	int minor;			/* minor number this interface is
254 					 * bound to */
255 	enum usb_interface_condition condition;		/* state of binding */
256 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
257 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
258 	unsigned unregistering:1;	/* unregistration is in progress */
259 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
260 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
261 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
262 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
263 	unsigned authorized:1;		/* used for interface authorization */
264 	enum usb_wireless_status wireless_status;
265 
266 	struct device dev;		/* interface specific device info */
267 	struct device *usb_dev;
268 	struct work_struct reset_ws;	/* for resets in atomic context */
269 };
270 
271 #define to_usb_interface(__dev)	container_of_const(__dev, struct usb_interface, dev)
272 
273 static inline void *usb_get_intfdata(struct usb_interface *intf)
274 {
275 	return dev_get_drvdata(&intf->dev);
276 }
277 
278 /**
279  * usb_set_intfdata() - associate driver-specific data with an interface
280  * @intf: USB interface
281  * @data: driver data
282  *
283  * Drivers can use this function in their probe() callbacks to associate
284  * driver-specific data with an interface.
285  *
286  * Note that there is generally no need to clear the driver-data pointer even
287  * if some drivers do so for historical or implementation-specific reasons.
288  */
289 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
290 {
291 	dev_set_drvdata(&intf->dev, data);
292 }
293 
294 struct usb_interface *usb_get_intf(struct usb_interface *intf);
295 void usb_put_intf(struct usb_interface *intf);
296 
297 /* Hard limit */
298 #define USB_MAXENDPOINTS	30
299 /* this maximum is arbitrary */
300 #define USB_MAXINTERFACES	32
301 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
302 
303 /*
304  * USB Resume Timer: Every Host controller driver should drive the resume
305  * signalling on the bus for the amount of time defined by this macro.
306  *
307  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
308  *
309  * Note that the USB Specification states we should drive resume for *at least*
310  * 20 ms, but it doesn't give an upper bound. This creates two possible
311  * situations which we want to avoid:
312  *
313  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
314  * us to fail USB Electrical Tests, thus failing Certification
315  *
316  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
317  * and while we can argue that's against the USB Specification, we don't have
318  * control over which devices a certification laboratory will be using for
319  * certification. If CertLab uses a device which was tested against Windows and
320  * that happens to have relaxed resume signalling rules, we might fall into
321  * situations where we fail interoperability and electrical tests.
322  *
323  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
324  * should cope with both LPJ calibration errors and devices not following every
325  * detail of the USB Specification.
326  */
327 #define USB_RESUME_TIMEOUT	40 /* ms */
328 
329 /**
330  * struct usb_interface_cache - long-term representation of a device interface
331  * @num_altsetting: number of altsettings defined.
332  * @ref: reference counter.
333  * @altsetting: variable-length array of interface structures, one for
334  *	each alternate setting that may be selected.  Each one includes a
335  *	set of endpoint configurations.  They will be in no particular order.
336  *
337  * These structures persist for the lifetime of a usb_device, unlike
338  * struct usb_interface (which persists only as long as its configuration
339  * is installed).  The altsetting arrays can be accessed through these
340  * structures at any time, permitting comparison of configurations and
341  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
342  */
343 struct usb_interface_cache {
344 	unsigned num_altsetting;	/* number of alternate settings */
345 	struct kref ref;		/* reference counter */
346 
347 	/* variable-length array of alternate settings for this interface,
348 	 * stored in no particular order */
349 	struct usb_host_interface altsetting[];
350 };
351 #define	ref_to_usb_interface_cache(r) \
352 		container_of(r, struct usb_interface_cache, ref)
353 #define	altsetting_to_usb_interface_cache(a) \
354 		container_of(a, struct usb_interface_cache, altsetting[0])
355 
356 /**
357  * struct usb_host_config - representation of a device's configuration
358  * @desc: the device's configuration descriptor.
359  * @string: pointer to the cached version of the iConfiguration string, if
360  *	present for this configuration.
361  * @intf_assoc: list of any interface association descriptors in this config
362  * @interface: array of pointers to usb_interface structures, one for each
363  *	interface in the configuration.  The number of interfaces is stored
364  *	in desc.bNumInterfaces.  These pointers are valid only while the
365  *	configuration is active.
366  * @intf_cache: array of pointers to usb_interface_cache structures, one
367  *	for each interface in the configuration.  These structures exist
368  *	for the entire life of the device.
369  * @extra: pointer to buffer containing all extra descriptors associated
370  *	with this configuration (those preceding the first interface
371  *	descriptor).
372  * @extralen: length of the extra descriptors buffer.
373  *
374  * USB devices may have multiple configurations, but only one can be active
375  * at any time.  Each encapsulates a different operational environment;
376  * for example, a dual-speed device would have separate configurations for
377  * full-speed and high-speed operation.  The number of configurations
378  * available is stored in the device descriptor as bNumConfigurations.
379  *
380  * A configuration can contain multiple interfaces.  Each corresponds to
381  * a different function of the USB device, and all are available whenever
382  * the configuration is active.  The USB standard says that interfaces
383  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
384  * of devices get this wrong.  In addition, the interface array is not
385  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
386  * look up an interface entry based on its number.
387  *
388  * Device drivers should not attempt to activate configurations.  The choice
389  * of which configuration to install is a policy decision based on such
390  * considerations as available power, functionality provided, and the user's
391  * desires (expressed through userspace tools).  However, drivers can call
392  * usb_reset_configuration() to reinitialize the current configuration and
393  * all its interfaces.
394  */
395 struct usb_host_config {
396 	struct usb_config_descriptor	desc;
397 
398 	char *string;		/* iConfiguration string, if present */
399 
400 	/* List of any Interface Association Descriptors in this
401 	 * configuration. */
402 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
403 
404 	/* the interfaces associated with this configuration,
405 	 * stored in no particular order */
406 	struct usb_interface *interface[USB_MAXINTERFACES];
407 
408 	/* Interface information available even when this is not the
409 	 * active configuration */
410 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
411 
412 	unsigned char *extra;   /* Extra descriptors */
413 	int extralen;
414 };
415 
416 /* USB2.0 and USB3.0 device BOS descriptor set */
417 struct usb_host_bos {
418 	struct usb_bos_descriptor	*desc;
419 
420 	/* wireless cap descriptor is handled by wusb */
421 	struct usb_ext_cap_descriptor	*ext_cap;
422 	struct usb_ss_cap_descriptor	*ss_cap;
423 	struct usb_ssp_cap_descriptor	*ssp_cap;
424 	struct usb_ss_container_id_descriptor	*ss_id;
425 	struct usb_ptm_cap_descriptor	*ptm_cap;
426 };
427 
428 int __usb_get_extra_descriptor(char *buffer, unsigned size,
429 	unsigned char type, void **ptr, size_t min);
430 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
431 				__usb_get_extra_descriptor((ifpoint)->extra, \
432 				(ifpoint)->extralen, \
433 				type, (void **)ptr, sizeof(**(ptr)))
434 
435 /* ----------------------------------------------------------------------- */
436 
437 /* USB device number allocation bitmap */
438 struct usb_devmap {
439 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
440 };
441 
442 /*
443  * Allocated per bus (tree of devices) we have:
444  */
445 struct usb_bus {
446 	struct device *controller;	/* host side hardware */
447 	struct device *sysdev;		/* as seen from firmware or bus */
448 	int busnum;			/* Bus number (in order of reg) */
449 	const char *bus_name;		/* stable id (PCI slot_name etc) */
450 	u8 uses_pio_for_control;	/*
451 					 * Does the host controller use PIO
452 					 * for control transfers?
453 					 */
454 	u8 otg_port;			/* 0, or number of OTG/HNP port */
455 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
456 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
457 	unsigned no_stop_on_short:1;    /*
458 					 * Quirk: some controllers don't stop
459 					 * the ep queue on a short transfer
460 					 * with the URB_SHORT_NOT_OK flag set.
461 					 */
462 	unsigned no_sg_constraint:1;	/* no sg constraint */
463 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
464 
465 	int devnum_next;		/* Next open device number in
466 					 * round-robin allocation */
467 	struct mutex devnum_next_mutex; /* devnum_next mutex */
468 
469 	struct usb_devmap devmap;	/* device address allocation map */
470 	struct usb_device *root_hub;	/* Root hub */
471 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
472 
473 	int bandwidth_allocated;	/* on this bus: how much of the time
474 					 * reserved for periodic (intr/iso)
475 					 * requests is used, on average?
476 					 * Units: microseconds/frame.
477 					 * Limits: Full/low speed reserve 90%,
478 					 * while high speed reserves 80%.
479 					 */
480 	int bandwidth_int_reqs;		/* number of Interrupt requests */
481 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
482 
483 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
484 
485 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
486 	struct mon_bus *mon_bus;	/* non-null when associated */
487 	int monitored;			/* non-zero when monitored */
488 #endif
489 };
490 
491 struct usb_dev_state;
492 
493 /* ----------------------------------------------------------------------- */
494 
495 struct usb_tt;
496 
497 enum usb_port_connect_type {
498 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
499 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
500 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
501 	USB_PORT_NOT_USED,
502 };
503 
504 /*
505  * USB port quirks.
506  */
507 
508 /* For the given port, prefer the old (faster) enumeration scheme. */
509 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
510 
511 /* Decrease TRSTRCY to 10ms during device enumeration. */
512 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
513 
514 /*
515  * USB 2.0 Link Power Management (LPM) parameters.
516  */
517 struct usb2_lpm_parameters {
518 	/* Best effort service latency indicate how long the host will drive
519 	 * resume on an exit from L1.
520 	 */
521 	unsigned int besl;
522 
523 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
524 	 * When the timer counts to zero, the parent hub will initiate a LPM
525 	 * transition to L1.
526 	 */
527 	int timeout;
528 };
529 
530 /*
531  * USB 3.0 Link Power Management (LPM) parameters.
532  *
533  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
534  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
535  * All three are stored in nanoseconds.
536  */
537 struct usb3_lpm_parameters {
538 	/*
539 	 * Maximum exit latency (MEL) for the host to send a packet to the
540 	 * device (either a Ping for isoc endpoints, or a data packet for
541 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
542 	 * in the path to transition the links to U0.
543 	 */
544 	unsigned int mel;
545 	/*
546 	 * Maximum exit latency for a device-initiated LPM transition to bring
547 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
548 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
549 	 */
550 	unsigned int pel;
551 
552 	/*
553 	 * The System Exit Latency (SEL) includes PEL, and three other
554 	 * latencies.  After a device initiates a U0 transition, it will take
555 	 * some time from when the device sends the ERDY to when it will finally
556 	 * receive the data packet.  Basically, SEL should be the worse-case
557 	 * latency from when a device starts initiating a U0 transition to when
558 	 * it will get data.
559 	 */
560 	unsigned int sel;
561 	/*
562 	 * The idle timeout value that is currently programmed into the parent
563 	 * hub for this device.  When the timer counts to zero, the parent hub
564 	 * will initiate an LPM transition to either U1 or U2.
565 	 */
566 	int timeout;
567 };
568 
569 /**
570  * struct usb_device - kernel's representation of a USB device
571  * @devnum: device number; address on a USB bus
572  * @devpath: device ID string for use in messages (e.g., /port/...)
573  * @route: tree topology hex string for use with xHCI
574  * @state: device state: configured, not attached, etc.
575  * @speed: device speed: high/full/low (or error)
576  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
577  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
578  * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
579  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
580  * @ttport: device port on that tt hub
581  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
582  * @parent: our hub, unless we're the root
583  * @bus: bus we're part of
584  * @ep0: endpoint 0 data (default control pipe)
585  * @dev: generic device interface
586  * @descriptor: USB device descriptor
587  * @bos: USB device BOS descriptor set
588  * @config: all of the device's configs
589  * @actconfig: the active configuration
590  * @ep_in: array of IN endpoints
591  * @ep_out: array of OUT endpoints
592  * @rawdescriptors: raw descriptors for each config
593  * @bus_mA: Current available from the bus
594  * @portnum: parent port number (origin 1)
595  * @level: number of USB hub ancestors
596  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
597  * @can_submit: URBs may be submitted
598  * @persist_enabled:  USB_PERSIST enabled for this device
599  * @reset_in_progress: the device is being reset
600  * @have_langid: whether string_langid is valid
601  * @authorized: policy has said we can use it;
602  *	(user space) policy determines if we authorize this device to be
603  *	used or not. By default, wired USB devices are authorized.
604  *	WUSB devices are not, until we authorize them from user space.
605  *	FIXME -- complete doc
606  * @authenticated: Crypto authentication passed
607  * @wusb: device is Wireless USB
608  * @lpm_capable: device supports LPM
609  * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
610  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
611  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
612  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
613  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
614  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
615  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
616  * @string_langid: language ID for strings
617  * @product: iProduct string, if present (static)
618  * @manufacturer: iManufacturer string, if present (static)
619  * @serial: iSerialNumber string, if present (static)
620  * @filelist: usbfs files that are open to this device
621  * @maxchild: number of ports if hub
622  * @quirks: quirks of the whole device
623  * @urbnum: number of URBs submitted for the whole device
624  * @active_duration: total time device is not suspended
625  * @connect_time: time device was first connected
626  * @do_remote_wakeup:  remote wakeup should be enabled
627  * @reset_resume: needs reset instead of resume
628  * @port_is_suspended: the upstream port is suspended (L2 or U3)
629  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
630  *	specific data for the device.
631  * @slot_id: Slot ID assigned by xHCI
632  * @removable: Device can be physically removed from this port
633  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
634  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
635  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
636  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
637  *	to keep track of the number of functions that require USB 3.0 Link Power
638  *	Management to be disabled for this usb_device.  This count should only
639  *	be manipulated by those functions, with the bandwidth_mutex is held.
640  * @hub_delay: cached value consisting of:
641  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
642  *	Will be used as wValue for SetIsochDelay requests.
643  * @use_generic_driver: ask driver core to reprobe using the generic driver.
644  *
645  * Notes:
646  * Usbcore drivers should not set usbdev->state directly.  Instead use
647  * usb_set_device_state().
648  */
649 struct usb_device {
650 	int		devnum;
651 	char		devpath[16];
652 	u32		route;
653 	enum usb_device_state	state;
654 	enum usb_device_speed	speed;
655 	unsigned int		rx_lanes;
656 	unsigned int		tx_lanes;
657 	enum usb_ssp_rate	ssp_rate;
658 
659 	struct usb_tt	*tt;
660 	int		ttport;
661 
662 	unsigned int toggle[2];
663 
664 	struct usb_device *parent;
665 	struct usb_bus *bus;
666 	struct usb_host_endpoint ep0;
667 
668 	struct device dev;
669 
670 	struct usb_device_descriptor descriptor;
671 	struct usb_host_bos *bos;
672 	struct usb_host_config *config;
673 
674 	struct usb_host_config *actconfig;
675 	struct usb_host_endpoint *ep_in[16];
676 	struct usb_host_endpoint *ep_out[16];
677 
678 	char **rawdescriptors;
679 
680 	unsigned short bus_mA;
681 	u8 portnum;
682 	u8 level;
683 	u8 devaddr;
684 
685 	unsigned can_submit:1;
686 	unsigned persist_enabled:1;
687 	unsigned reset_in_progress:1;
688 	unsigned have_langid:1;
689 	unsigned authorized:1;
690 	unsigned authenticated:1;
691 	unsigned wusb:1;
692 	unsigned lpm_capable:1;
693 	unsigned lpm_devinit_allow:1;
694 	unsigned usb2_hw_lpm_capable:1;
695 	unsigned usb2_hw_lpm_besl_capable:1;
696 	unsigned usb2_hw_lpm_enabled:1;
697 	unsigned usb2_hw_lpm_allowed:1;
698 	unsigned usb3_lpm_u1_enabled:1;
699 	unsigned usb3_lpm_u2_enabled:1;
700 	int string_langid;
701 
702 	/* static strings from the device */
703 	char *product;
704 	char *manufacturer;
705 	char *serial;
706 
707 	struct list_head filelist;
708 
709 	int maxchild;
710 
711 	u32 quirks;
712 	atomic_t urbnum;
713 
714 	unsigned long active_duration;
715 
716 #ifdef CONFIG_PM
717 	unsigned long connect_time;
718 
719 	unsigned do_remote_wakeup:1;
720 	unsigned reset_resume:1;
721 	unsigned port_is_suspended:1;
722 #endif
723 	struct wusb_dev *wusb_dev;
724 	int slot_id;
725 	struct usb2_lpm_parameters l1_params;
726 	struct usb3_lpm_parameters u1_params;
727 	struct usb3_lpm_parameters u2_params;
728 	unsigned lpm_disable_count;
729 
730 	u16 hub_delay;
731 	unsigned use_generic_driver:1;
732 };
733 
734 #define to_usb_device(__dev)	container_of_const(__dev, struct usb_device, dev)
735 
736 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
737 {
738 	return to_usb_device(intf->dev.parent);
739 }
740 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
741 {
742 	return to_usb_device((const struct device *)intf->dev.parent);
743 }
744 
745 #define interface_to_usbdev(intf)					\
746 	_Generic((intf),						\
747 		 const struct usb_interface *: __intf_to_usbdev_const,	\
748 		 struct usb_interface *: __intf_to_usbdev)(intf)
749 
750 extern struct usb_device *usb_get_dev(struct usb_device *dev);
751 extern void usb_put_dev(struct usb_device *dev);
752 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
753 	int port1);
754 
755 /**
756  * usb_hub_for_each_child - iterate over all child devices on the hub
757  * @hdev:  USB device belonging to the usb hub
758  * @port1: portnum associated with child device
759  * @child: child device pointer
760  */
761 #define usb_hub_for_each_child(hdev, port1, child) \
762 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
763 			port1 <= hdev->maxchild; \
764 			child = usb_hub_find_child(hdev, ++port1)) \
765 		if (!child) continue; else
766 
767 /* USB device locking */
768 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
769 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
770 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
771 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
772 extern int usb_lock_device_for_reset(struct usb_device *udev,
773 				     const struct usb_interface *iface);
774 
775 /* USB port reset for device reinitialization */
776 extern int usb_reset_device(struct usb_device *dev);
777 extern void usb_queue_reset_device(struct usb_interface *dev);
778 
779 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
780 
781 #ifdef CONFIG_ACPI
782 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
783 	bool enable);
784 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
785 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
786 #else
787 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
788 	bool enable) { return 0; }
789 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
790 	{ return true; }
791 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
792 	{ return 0; }
793 #endif
794 
795 /* USB autosuspend and autoresume */
796 #ifdef CONFIG_PM
797 extern void usb_enable_autosuspend(struct usb_device *udev);
798 extern void usb_disable_autosuspend(struct usb_device *udev);
799 
800 extern int usb_autopm_get_interface(struct usb_interface *intf);
801 extern void usb_autopm_put_interface(struct usb_interface *intf);
802 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
803 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
804 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
805 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
806 
807 static inline void usb_mark_last_busy(struct usb_device *udev)
808 {
809 	pm_runtime_mark_last_busy(&udev->dev);
810 }
811 
812 #else
813 
814 static inline int usb_enable_autosuspend(struct usb_device *udev)
815 { return 0; }
816 static inline int usb_disable_autosuspend(struct usb_device *udev)
817 { return 0; }
818 
819 static inline int usb_autopm_get_interface(struct usb_interface *intf)
820 { return 0; }
821 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
822 { return 0; }
823 
824 static inline void usb_autopm_put_interface(struct usb_interface *intf)
825 { }
826 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
827 { }
828 static inline void usb_autopm_get_interface_no_resume(
829 		struct usb_interface *intf)
830 { }
831 static inline void usb_autopm_put_interface_no_suspend(
832 		struct usb_interface *intf)
833 { }
834 static inline void usb_mark_last_busy(struct usb_device *udev)
835 { }
836 #endif
837 
838 extern int usb_disable_lpm(struct usb_device *udev);
839 extern void usb_enable_lpm(struct usb_device *udev);
840 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
841 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
842 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
843 
844 extern int usb_disable_ltm(struct usb_device *udev);
845 extern void usb_enable_ltm(struct usb_device *udev);
846 
847 static inline bool usb_device_supports_ltm(struct usb_device *udev)
848 {
849 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
850 		return false;
851 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
852 }
853 
854 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
855 {
856 	return udev && udev->bus && udev->bus->no_sg_constraint;
857 }
858 
859 
860 /*-------------------------------------------------------------------------*/
861 
862 /* for drivers using iso endpoints */
863 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
864 
865 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
866 extern int usb_alloc_streams(struct usb_interface *interface,
867 		struct usb_host_endpoint **eps, unsigned int num_eps,
868 		unsigned int num_streams, gfp_t mem_flags);
869 
870 /* Reverts a group of bulk endpoints back to not using stream IDs. */
871 extern int usb_free_streams(struct usb_interface *interface,
872 		struct usb_host_endpoint **eps, unsigned int num_eps,
873 		gfp_t mem_flags);
874 
875 /* used these for multi-interface device registration */
876 extern int usb_driver_claim_interface(struct usb_driver *driver,
877 			struct usb_interface *iface, void *data);
878 
879 /**
880  * usb_interface_claimed - returns true iff an interface is claimed
881  * @iface: the interface being checked
882  *
883  * Return: %true (nonzero) iff the interface is claimed, else %false
884  * (zero).
885  *
886  * Note:
887  * Callers must own the driver model's usb bus readlock.  So driver
888  * probe() entries don't need extra locking, but other call contexts
889  * may need to explicitly claim that lock.
890  *
891  */
892 static inline int usb_interface_claimed(struct usb_interface *iface)
893 {
894 	return (iface->dev.driver != NULL);
895 }
896 
897 extern void usb_driver_release_interface(struct usb_driver *driver,
898 			struct usb_interface *iface);
899 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
900 					 const struct usb_device_id *id);
901 extern int usb_match_one_id(struct usb_interface *interface,
902 			    const struct usb_device_id *id);
903 
904 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
905 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
906 		int minor);
907 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
908 		unsigned ifnum);
909 extern struct usb_host_interface *usb_altnum_to_altsetting(
910 		const struct usb_interface *intf, unsigned int altnum);
911 extern struct usb_host_interface *usb_find_alt_setting(
912 		struct usb_host_config *config,
913 		unsigned int iface_num,
914 		unsigned int alt_num);
915 
916 /* port claiming functions */
917 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
918 		struct usb_dev_state *owner);
919 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
920 		struct usb_dev_state *owner);
921 
922 /**
923  * usb_make_path - returns stable device path in the usb tree
924  * @dev: the device whose path is being constructed
925  * @buf: where to put the string
926  * @size: how big is "buf"?
927  *
928  * Return: Length of the string (> 0) or negative if size was too small.
929  *
930  * Note:
931  * This identifier is intended to be "stable", reflecting physical paths in
932  * hardware such as physical bus addresses for host controllers or ports on
933  * USB hubs.  That makes it stay the same until systems are physically
934  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
935  * controllers.  Adding and removing devices, including virtual root hubs
936  * in host controller driver modules, does not change these path identifiers;
937  * neither does rebooting or re-enumerating.  These are more useful identifiers
938  * than changeable ("unstable") ones like bus numbers or device addresses.
939  *
940  * With a partial exception for devices connected to USB 2.0 root hubs, these
941  * identifiers are also predictable.  So long as the device tree isn't changed,
942  * plugging any USB device into a given hub port always gives it the same path.
943  * Because of the use of "companion" controllers, devices connected to ports on
944  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
945  * high speed, and a different one if they are full or low speed.
946  */
947 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
948 {
949 	int actual;
950 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
951 			  dev->devpath);
952 	return (actual >= (int)size) ? -1 : actual;
953 }
954 
955 /*-------------------------------------------------------------------------*/
956 
957 #define USB_DEVICE_ID_MATCH_DEVICE \
958 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
959 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
960 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
961 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
962 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
963 #define USB_DEVICE_ID_MATCH_DEV_INFO \
964 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
965 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
966 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
967 #define USB_DEVICE_ID_MATCH_INT_INFO \
968 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
969 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
970 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
971 
972 /**
973  * USB_DEVICE - macro used to describe a specific usb device
974  * @vend: the 16 bit USB Vendor ID
975  * @prod: the 16 bit USB Product ID
976  *
977  * This macro is used to create a struct usb_device_id that matches a
978  * specific device.
979  */
980 #define USB_DEVICE(vend, prod) \
981 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
982 	.idVendor = (vend), \
983 	.idProduct = (prod)
984 /**
985  * USB_DEVICE_VER - describe a specific usb device with a version range
986  * @vend: the 16 bit USB Vendor ID
987  * @prod: the 16 bit USB Product ID
988  * @lo: the bcdDevice_lo value
989  * @hi: the bcdDevice_hi value
990  *
991  * This macro is used to create a struct usb_device_id that matches a
992  * specific device, with a version range.
993  */
994 #define USB_DEVICE_VER(vend, prod, lo, hi) \
995 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
996 	.idVendor = (vend), \
997 	.idProduct = (prod), \
998 	.bcdDevice_lo = (lo), \
999 	.bcdDevice_hi = (hi)
1000 
1001 /**
1002  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1003  * @vend: the 16 bit USB Vendor ID
1004  * @prod: the 16 bit USB Product ID
1005  * @cl: bInterfaceClass value
1006  *
1007  * This macro is used to create a struct usb_device_id that matches a
1008  * specific interface class of devices.
1009  */
1010 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1011 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1012 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1013 	.idVendor = (vend), \
1014 	.idProduct = (prod), \
1015 	.bInterfaceClass = (cl)
1016 
1017 /**
1018  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1019  * @vend: the 16 bit USB Vendor ID
1020  * @prod: the 16 bit USB Product ID
1021  * @pr: bInterfaceProtocol value
1022  *
1023  * This macro is used to create a struct usb_device_id that matches a
1024  * specific interface protocol of devices.
1025  */
1026 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1027 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1028 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1029 	.idVendor = (vend), \
1030 	.idProduct = (prod), \
1031 	.bInterfaceProtocol = (pr)
1032 
1033 /**
1034  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1035  * @vend: the 16 bit USB Vendor ID
1036  * @prod: the 16 bit USB Product ID
1037  * @num: bInterfaceNumber value
1038  *
1039  * This macro is used to create a struct usb_device_id that matches a
1040  * specific interface number of devices.
1041  */
1042 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1043 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1044 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1045 	.idVendor = (vend), \
1046 	.idProduct = (prod), \
1047 	.bInterfaceNumber = (num)
1048 
1049 /**
1050  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1051  * @cl: bDeviceClass value
1052  * @sc: bDeviceSubClass value
1053  * @pr: bDeviceProtocol value
1054  *
1055  * This macro is used to create a struct usb_device_id that matches a
1056  * specific class of devices.
1057  */
1058 #define USB_DEVICE_INFO(cl, sc, pr) \
1059 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1060 	.bDeviceClass = (cl), \
1061 	.bDeviceSubClass = (sc), \
1062 	.bDeviceProtocol = (pr)
1063 
1064 /**
1065  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1066  * @cl: bInterfaceClass value
1067  * @sc: bInterfaceSubClass value
1068  * @pr: bInterfaceProtocol value
1069  *
1070  * This macro is used to create a struct usb_device_id that matches a
1071  * specific class of interfaces.
1072  */
1073 #define USB_INTERFACE_INFO(cl, sc, pr) \
1074 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1075 	.bInterfaceClass = (cl), \
1076 	.bInterfaceSubClass = (sc), \
1077 	.bInterfaceProtocol = (pr)
1078 
1079 /**
1080  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1081  * @vend: the 16 bit USB Vendor ID
1082  * @prod: the 16 bit USB Product ID
1083  * @cl: bInterfaceClass value
1084  * @sc: bInterfaceSubClass value
1085  * @pr: bInterfaceProtocol value
1086  *
1087  * This macro is used to create a struct usb_device_id that matches a
1088  * specific device with a specific class of interfaces.
1089  *
1090  * This is especially useful when explicitly matching devices that have
1091  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1092  */
1093 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1094 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1095 		| USB_DEVICE_ID_MATCH_DEVICE, \
1096 	.idVendor = (vend), \
1097 	.idProduct = (prod), \
1098 	.bInterfaceClass = (cl), \
1099 	.bInterfaceSubClass = (sc), \
1100 	.bInterfaceProtocol = (pr)
1101 
1102 /**
1103  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1104  * @vend: the 16 bit USB Vendor ID
1105  * @cl: bInterfaceClass value
1106  * @sc: bInterfaceSubClass value
1107  * @pr: bInterfaceProtocol value
1108  *
1109  * This macro is used to create a struct usb_device_id that matches a
1110  * specific vendor with a specific class of interfaces.
1111  *
1112  * This is especially useful when explicitly matching devices that have
1113  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1114  */
1115 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1116 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1117 		| USB_DEVICE_ID_MATCH_VENDOR, \
1118 	.idVendor = (vend), \
1119 	.bInterfaceClass = (cl), \
1120 	.bInterfaceSubClass = (sc), \
1121 	.bInterfaceProtocol = (pr)
1122 
1123 /* ----------------------------------------------------------------------- */
1124 
1125 /* Stuff for dynamic usb ids */
1126 struct usb_dynids {
1127 	spinlock_t lock;
1128 	struct list_head list;
1129 };
1130 
1131 struct usb_dynid {
1132 	struct list_head node;
1133 	struct usb_device_id id;
1134 };
1135 
1136 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1137 				const struct usb_device_id *id_table,
1138 				struct device_driver *driver,
1139 				const char *buf, size_t count);
1140 
1141 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1142 
1143 /**
1144  * struct usbdrv_wrap - wrapper for driver-model structure
1145  * @driver: The driver-model core driver structure.
1146  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1147  */
1148 struct usbdrv_wrap {
1149 	struct device_driver driver;
1150 	int for_devices;
1151 };
1152 
1153 /**
1154  * struct usb_driver - identifies USB interface driver to usbcore
1155  * @name: The driver name should be unique among USB drivers,
1156  *	and should normally be the same as the module name.
1157  * @probe: Called to see if the driver is willing to manage a particular
1158  *	interface on a device.  If it is, probe returns zero and uses
1159  *	usb_set_intfdata() to associate driver-specific data with the
1160  *	interface.  It may also use usb_set_interface() to specify the
1161  *	appropriate altsetting.  If unwilling to manage the interface,
1162  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1163  *	negative errno value.
1164  * @disconnect: Called when the interface is no longer accessible, usually
1165  *	because its device has been (or is being) disconnected or the
1166  *	driver module is being unloaded.
1167  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1168  *	the "usbfs" filesystem.  This lets devices provide ways to
1169  *	expose information to user space regardless of where they
1170  *	do (or don't) show up otherwise in the filesystem.
1171  * @suspend: Called when the device is going to be suspended by the
1172  *	system either from system sleep or runtime suspend context. The
1173  *	return value will be ignored in system sleep context, so do NOT
1174  *	try to continue using the device if suspend fails in this case.
1175  *	Instead, let the resume or reset-resume routine recover from
1176  *	the failure.
1177  * @resume: Called when the device is being resumed by the system.
1178  * @reset_resume: Called when the suspended device has been reset instead
1179  *	of being resumed.
1180  * @pre_reset: Called by usb_reset_device() when the device is about to be
1181  *	reset.  This routine must not return until the driver has no active
1182  *	URBs for the device, and no more URBs may be submitted until the
1183  *	post_reset method is called.
1184  * @post_reset: Called by usb_reset_device() after the device
1185  *	has been reset
1186  * @id_table: USB drivers use ID table to support hotplugging.
1187  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1188  *	or your driver's probe function will never get called.
1189  * @dev_groups: Attributes attached to the device that will be created once it
1190  *	is bound to the driver.
1191  * @dynids: used internally to hold the list of dynamically added device
1192  *	ids for this driver.
1193  * @drvwrap: Driver-model core structure wrapper.
1194  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1195  *	added to this driver by preventing the sysfs file from being created.
1196  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1197  *	for interfaces bound to this driver.
1198  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1199  *	endpoints before calling the driver's disconnect method.
1200  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1201  *	to initiate lower power link state transitions when an idle timeout
1202  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1203  *
1204  * USB interface drivers must provide a name, probe() and disconnect()
1205  * methods, and an id_table.  Other driver fields are optional.
1206  *
1207  * The id_table is used in hotplugging.  It holds a set of descriptors,
1208  * and specialized data may be associated with each entry.  That table
1209  * is used by both user and kernel mode hotplugging support.
1210  *
1211  * The probe() and disconnect() methods are called in a context where
1212  * they can sleep, but they should avoid abusing the privilege.  Most
1213  * work to connect to a device should be done when the device is opened,
1214  * and undone at the last close.  The disconnect code needs to address
1215  * concurrency issues with respect to open() and close() methods, as
1216  * well as forcing all pending I/O requests to complete (by unlinking
1217  * them as necessary, and blocking until the unlinks complete).
1218  */
1219 struct usb_driver {
1220 	const char *name;
1221 
1222 	int (*probe) (struct usb_interface *intf,
1223 		      const struct usb_device_id *id);
1224 
1225 	void (*disconnect) (struct usb_interface *intf);
1226 
1227 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1228 			void *buf);
1229 
1230 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1231 	int (*resume) (struct usb_interface *intf);
1232 	int (*reset_resume)(struct usb_interface *intf);
1233 
1234 	int (*pre_reset)(struct usb_interface *intf);
1235 	int (*post_reset)(struct usb_interface *intf);
1236 
1237 	const struct usb_device_id *id_table;
1238 	const struct attribute_group **dev_groups;
1239 
1240 	struct usb_dynids dynids;
1241 	struct usbdrv_wrap drvwrap;
1242 	unsigned int no_dynamic_id:1;
1243 	unsigned int supports_autosuspend:1;
1244 	unsigned int disable_hub_initiated_lpm:1;
1245 	unsigned int soft_unbind:1;
1246 };
1247 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1248 
1249 /**
1250  * struct usb_device_driver - identifies USB device driver to usbcore
1251  * @name: The driver name should be unique among USB drivers,
1252  *	and should normally be the same as the module name.
1253  * @match: If set, used for better device/driver matching.
1254  * @probe: Called to see if the driver is willing to manage a particular
1255  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1256  *	to associate driver-specific data with the device.  If unwilling
1257  *	to manage the device, return a negative errno value.
1258  * @disconnect: Called when the device is no longer accessible, usually
1259  *	because it has been (or is being) disconnected or the driver's
1260  *	module is being unloaded.
1261  * @suspend: Called when the device is going to be suspended by the system.
1262  * @resume: Called when the device is being resumed by the system.
1263  * @dev_groups: Attributes attached to the device that will be created once it
1264  *	is bound to the driver.
1265  * @drvwrap: Driver-model core structure wrapper.
1266  * @id_table: used with @match() to select better matching driver at
1267  * 	probe() time.
1268  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1269  *	for devices bound to this driver.
1270  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1271  *	resume and suspend functions will be called in addition to the driver's
1272  *	own, so this part of the setup does not need to be replicated.
1273  *
1274  * USB drivers must provide all the fields listed above except drvwrap,
1275  * match, and id_table.
1276  */
1277 struct usb_device_driver {
1278 	const char *name;
1279 
1280 	bool (*match) (struct usb_device *udev);
1281 	int (*probe) (struct usb_device *udev);
1282 	void (*disconnect) (struct usb_device *udev);
1283 
1284 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1285 	int (*resume) (struct usb_device *udev, pm_message_t message);
1286 	const struct attribute_group **dev_groups;
1287 	struct usbdrv_wrap drvwrap;
1288 	const struct usb_device_id *id_table;
1289 	unsigned int supports_autosuspend:1;
1290 	unsigned int generic_subclass:1;
1291 };
1292 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1293 		drvwrap.driver)
1294 
1295 /**
1296  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1297  * @name: the usb class device name for this driver.  Will show up in sysfs.
1298  * @devnode: Callback to provide a naming hint for a possible
1299  *	device node to create.
1300  * @fops: pointer to the struct file_operations of this driver.
1301  * @minor_base: the start of the minor range for this driver.
1302  *
1303  * This structure is used for the usb_register_dev() and
1304  * usb_deregister_dev() functions, to consolidate a number of the
1305  * parameters used for them.
1306  */
1307 struct usb_class_driver {
1308 	char *name;
1309 	char *(*devnode)(const struct device *dev, umode_t *mode);
1310 	const struct file_operations *fops;
1311 	int minor_base;
1312 };
1313 
1314 /*
1315  * use these in module_init()/module_exit()
1316  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1317  */
1318 extern int usb_register_driver(struct usb_driver *, struct module *,
1319 			       const char *);
1320 
1321 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1322 #define usb_register(driver) \
1323 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1324 
1325 extern void usb_deregister(struct usb_driver *);
1326 
1327 /**
1328  * module_usb_driver() - Helper macro for registering a USB driver
1329  * @__usb_driver: usb_driver struct
1330  *
1331  * Helper macro for USB drivers which do not do anything special in module
1332  * init/exit. This eliminates a lot of boilerplate. Each module may only
1333  * use this macro once, and calling it replaces module_init() and module_exit()
1334  */
1335 #define module_usb_driver(__usb_driver) \
1336 	module_driver(__usb_driver, usb_register, \
1337 		       usb_deregister)
1338 
1339 extern int usb_register_device_driver(struct usb_device_driver *,
1340 			struct module *);
1341 extern void usb_deregister_device_driver(struct usb_device_driver *);
1342 
1343 extern int usb_register_dev(struct usb_interface *intf,
1344 			    struct usb_class_driver *class_driver);
1345 extern void usb_deregister_dev(struct usb_interface *intf,
1346 			       struct usb_class_driver *class_driver);
1347 
1348 extern int usb_disabled(void);
1349 
1350 /* ----------------------------------------------------------------------- */
1351 
1352 /*
1353  * URB support, for asynchronous request completions
1354  */
1355 
1356 /*
1357  * urb->transfer_flags:
1358  *
1359  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1360  */
1361 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1362 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1363 					 * slot in the schedule */
1364 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1365 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1366 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1367 					 * needed */
1368 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1369 
1370 /* The following flags are used internally by usbcore and HCDs */
1371 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1372 #define URB_DIR_OUT		0
1373 #define URB_DIR_MASK		URB_DIR_IN
1374 
1375 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1376 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1377 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1378 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1379 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1380 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1381 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1382 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1383 
1384 struct usb_iso_packet_descriptor {
1385 	unsigned int offset;
1386 	unsigned int length;		/* expected length */
1387 	unsigned int actual_length;
1388 	int status;
1389 };
1390 
1391 struct urb;
1392 
1393 struct usb_anchor {
1394 	struct list_head urb_list;
1395 	wait_queue_head_t wait;
1396 	spinlock_t lock;
1397 	atomic_t suspend_wakeups;
1398 	unsigned int poisoned:1;
1399 };
1400 
1401 static inline void init_usb_anchor(struct usb_anchor *anchor)
1402 {
1403 	memset(anchor, 0, sizeof(*anchor));
1404 	INIT_LIST_HEAD(&anchor->urb_list);
1405 	init_waitqueue_head(&anchor->wait);
1406 	spin_lock_init(&anchor->lock);
1407 }
1408 
1409 typedef void (*usb_complete_t)(struct urb *);
1410 
1411 /**
1412  * struct urb - USB Request Block
1413  * @urb_list: For use by current owner of the URB.
1414  * @anchor_list: membership in the list of an anchor
1415  * @anchor: to anchor URBs to a common mooring
1416  * @ep: Points to the endpoint's data structure.  Will eventually
1417  *	replace @pipe.
1418  * @pipe: Holds endpoint number, direction, type, and more.
1419  *	Create these values with the eight macros available;
1420  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1421  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1422  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1423  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1424  *	is a different endpoint (and pipe) from "out" endpoint two.
1425  *	The current configuration controls the existence, type, and
1426  *	maximum packet size of any given endpoint.
1427  * @stream_id: the endpoint's stream ID for bulk streams
1428  * @dev: Identifies the USB device to perform the request.
1429  * @status: This is read in non-iso completion functions to get the
1430  *	status of the particular request.  ISO requests only use it
1431  *	to tell whether the URB was unlinked; detailed status for
1432  *	each frame is in the fields of the iso_frame-desc.
1433  * @transfer_flags: A variety of flags may be used to affect how URB
1434  *	submission, unlinking, or operation are handled.  Different
1435  *	kinds of URB can use different flags.
1436  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1437  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1438  *	(however, do not leave garbage in transfer_buffer even then).
1439  *	This buffer must be suitable for DMA; allocate it with
1440  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1441  *	of this buffer will be modified.  This buffer is used for the data
1442  *	stage of control transfers.
1443  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1444  *	the device driver is saying that it provided this DMA address,
1445  *	which the host controller driver should use in preference to the
1446  *	transfer_buffer.
1447  * @sg: scatter gather buffer list, the buffer size of each element in
1448  * 	the list (except the last) must be divisible by the endpoint's
1449  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1450  * @num_mapped_sgs: (internal) number of mapped sg entries
1451  * @num_sgs: number of entries in the sg list
1452  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1453  *	be broken up into chunks according to the current maximum packet
1454  *	size for the endpoint, which is a function of the configuration
1455  *	and is encoded in the pipe.  When the length is zero, neither
1456  *	transfer_buffer nor transfer_dma is used.
1457  * @actual_length: This is read in non-iso completion functions, and
1458  *	it tells how many bytes (out of transfer_buffer_length) were
1459  *	transferred.  It will normally be the same as requested, unless
1460  *	either an error was reported or a short read was performed.
1461  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1462  *	short reads be reported as errors.
1463  * @setup_packet: Only used for control transfers, this points to eight bytes
1464  *	of setup data.  Control transfers always start by sending this data
1465  *	to the device.  Then transfer_buffer is read or written, if needed.
1466  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1467  *	this field; setup_packet must point to a valid buffer.
1468  * @start_frame: Returns the initial frame for isochronous transfers.
1469  * @number_of_packets: Lists the number of ISO transfer buffers.
1470  * @interval: Specifies the polling interval for interrupt or isochronous
1471  *	transfers.  The units are frames (milliseconds) for full and low
1472  *	speed devices, and microframes (1/8 millisecond) for highspeed
1473  *	and SuperSpeed devices.
1474  * @error_count: Returns the number of ISO transfers that reported errors.
1475  * @context: For use in completion functions.  This normally points to
1476  *	request-specific driver context.
1477  * @complete: Completion handler. This URB is passed as the parameter to the
1478  *	completion function.  The completion function may then do what
1479  *	it likes with the URB, including resubmitting or freeing it.
1480  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1481  *	collect the transfer status for each buffer.
1482  *
1483  * This structure identifies USB transfer requests.  URBs must be allocated by
1484  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1485  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1486  * are submitted using usb_submit_urb(), and pending requests may be canceled
1487  * using usb_unlink_urb() or usb_kill_urb().
1488  *
1489  * Data Transfer Buffers:
1490  *
1491  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1492  * taken from the general page pool.  That is provided by transfer_buffer
1493  * (control requests also use setup_packet), and host controller drivers
1494  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1495  * mapping operations can be expensive on some platforms (perhaps using a dma
1496  * bounce buffer or talking to an IOMMU),
1497  * although they're cheap on commodity x86 and ppc hardware.
1498  *
1499  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1500  * which tells the host controller driver that no such mapping is needed for
1501  * the transfer_buffer since
1502  * the device driver is DMA-aware.  For example, a device driver might
1503  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1504  * When this transfer flag is provided, host controller drivers will
1505  * attempt to use the dma address found in the transfer_dma
1506  * field rather than determining a dma address themselves.
1507  *
1508  * Note that transfer_buffer must still be set if the controller
1509  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1510  * to root hub. If you have to transfer between highmem zone and the device
1511  * on such controller, create a bounce buffer or bail out with an error.
1512  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1513  * capable, assign NULL to it, so that usbmon knows not to use the value.
1514  * The setup_packet must always be set, so it cannot be located in highmem.
1515  *
1516  * Initialization:
1517  *
1518  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1519  * zero), and complete fields.  All URBs must also initialize
1520  * transfer_buffer and transfer_buffer_length.  They may provide the
1521  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1522  * to be treated as errors; that flag is invalid for write requests.
1523  *
1524  * Bulk URBs may
1525  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1526  * should always terminate with a short packet, even if it means adding an
1527  * extra zero length packet.
1528  *
1529  * Control URBs must provide a valid pointer in the setup_packet field.
1530  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1531  * beforehand.
1532  *
1533  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1534  * or, for highspeed devices, 125 microsecond units)
1535  * to poll for transfers.  After the URB has been submitted, the interval
1536  * field reflects how the transfer was actually scheduled.
1537  * The polling interval may be more frequent than requested.
1538  * For example, some controllers have a maximum interval of 32 milliseconds,
1539  * while others support intervals of up to 1024 milliseconds.
1540  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1541  * endpoints, as well as high speed interrupt endpoints, the encoding of
1542  * the transfer interval in the endpoint descriptor is logarithmic.
1543  * Device drivers must convert that value to linear units themselves.)
1544  *
1545  * If an isochronous endpoint queue isn't already running, the host
1546  * controller will schedule a new URB to start as soon as bandwidth
1547  * utilization allows.  If the queue is running then a new URB will be
1548  * scheduled to start in the first transfer slot following the end of the
1549  * preceding URB, if that slot has not already expired.  If the slot has
1550  * expired (which can happen when IRQ delivery is delayed for a long time),
1551  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1552  * is clear then the URB will be scheduled to start in the expired slot,
1553  * implying that some of its packets will not be transferred; if the flag
1554  * is set then the URB will be scheduled in the first unexpired slot,
1555  * breaking the queue's synchronization.  Upon URB completion, the
1556  * start_frame field will be set to the (micro)frame number in which the
1557  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1558  * and can go from as low as 256 to as high as 65536 frames.
1559  *
1560  * Isochronous URBs have a different data transfer model, in part because
1561  * the quality of service is only "best effort".  Callers provide specially
1562  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1563  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1564  * URBs are normally queued, submitted by drivers to arrange that
1565  * transfers are at least double buffered, and then explicitly resubmitted
1566  * in completion handlers, so
1567  * that data (such as audio or video) streams at as constant a rate as the
1568  * host controller scheduler can support.
1569  *
1570  * Completion Callbacks:
1571  *
1572  * The completion callback is made in_interrupt(), and one of the first
1573  * things that a completion handler should do is check the status field.
1574  * The status field is provided for all URBs.  It is used to report
1575  * unlinked URBs, and status for all non-ISO transfers.  It should not
1576  * be examined before the URB is returned to the completion handler.
1577  *
1578  * The context field is normally used to link URBs back to the relevant
1579  * driver or request state.
1580  *
1581  * When the completion callback is invoked for non-isochronous URBs, the
1582  * actual_length field tells how many bytes were transferred.  This field
1583  * is updated even when the URB terminated with an error or was unlinked.
1584  *
1585  * ISO transfer status is reported in the status and actual_length fields
1586  * of the iso_frame_desc array, and the number of errors is reported in
1587  * error_count.  Completion callbacks for ISO transfers will normally
1588  * (re)submit URBs to ensure a constant transfer rate.
1589  *
1590  * Note that even fields marked "public" should not be touched by the driver
1591  * when the urb is owned by the hcd, that is, since the call to
1592  * usb_submit_urb() till the entry into the completion routine.
1593  */
1594 struct urb {
1595 	/* private: usb core and host controller only fields in the urb */
1596 	struct kref kref;		/* reference count of the URB */
1597 	int unlinked;			/* unlink error code */
1598 	void *hcpriv;			/* private data for host controller */
1599 	atomic_t use_count;		/* concurrent submissions counter */
1600 	atomic_t reject;		/* submissions will fail */
1601 
1602 	/* public: documented fields in the urb that can be used by drivers */
1603 	struct list_head urb_list;	/* list head for use by the urb's
1604 					 * current owner */
1605 	struct list_head anchor_list;	/* the URB may be anchored */
1606 	struct usb_anchor *anchor;
1607 	struct usb_device *dev;		/* (in) pointer to associated device */
1608 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1609 	unsigned int pipe;		/* (in) pipe information */
1610 	unsigned int stream_id;		/* (in) stream ID */
1611 	int status;			/* (return) non-ISO status */
1612 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1613 	void *transfer_buffer;		/* (in) associated data buffer */
1614 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1615 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1616 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1617 	int num_sgs;			/* (in) number of entries in the sg list */
1618 	u32 transfer_buffer_length;	/* (in) data buffer length */
1619 	u32 actual_length;		/* (return) actual transfer length */
1620 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1621 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1622 	int start_frame;		/* (modify) start frame (ISO) */
1623 	int number_of_packets;		/* (in) number of ISO packets */
1624 	int interval;			/* (modify) transfer interval
1625 					 * (INT/ISO) */
1626 	int error_count;		/* (return) number of ISO errors */
1627 	void *context;			/* (in) context for completion */
1628 	usb_complete_t complete;	/* (in) completion routine */
1629 	struct usb_iso_packet_descriptor iso_frame_desc[];
1630 					/* (in) ISO ONLY */
1631 };
1632 
1633 /* ----------------------------------------------------------------------- */
1634 
1635 /**
1636  * usb_fill_control_urb - initializes a control urb
1637  * @urb: pointer to the urb to initialize.
1638  * @dev: pointer to the struct usb_device for this urb.
1639  * @pipe: the endpoint pipe
1640  * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1641  *	suitable for DMA.
1642  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1643  *	suitable for DMA.
1644  * @buffer_length: length of the transfer buffer
1645  * @complete_fn: pointer to the usb_complete_t function
1646  * @context: what to set the urb context to.
1647  *
1648  * Initializes a control urb with the proper information needed to submit
1649  * it to a device.
1650  *
1651  * The transfer buffer and the setup_packet buffer will most likely be filled
1652  * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1653  * allocating it via kmalloc() or equivalent, even for very small buffers.
1654  * If the buffers are embedded in a bigger structure, there is a risk that
1655  * the buffer itself, the previous fields and/or the next fields are corrupted
1656  * due to cache incoherencies; or slowed down if they are evicted from the
1657  * cache. For more information, check &struct urb.
1658  *
1659  */
1660 static inline void usb_fill_control_urb(struct urb *urb,
1661 					struct usb_device *dev,
1662 					unsigned int pipe,
1663 					unsigned char *setup_packet,
1664 					void *transfer_buffer,
1665 					int buffer_length,
1666 					usb_complete_t complete_fn,
1667 					void *context)
1668 {
1669 	urb->dev = dev;
1670 	urb->pipe = pipe;
1671 	urb->setup_packet = setup_packet;
1672 	urb->transfer_buffer = transfer_buffer;
1673 	urb->transfer_buffer_length = buffer_length;
1674 	urb->complete = complete_fn;
1675 	urb->context = context;
1676 }
1677 
1678 /**
1679  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1680  * @urb: pointer to the urb to initialize.
1681  * @dev: pointer to the struct usb_device for this urb.
1682  * @pipe: the endpoint pipe
1683  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1684  *	suitable for DMA.
1685  * @buffer_length: length of the transfer buffer
1686  * @complete_fn: pointer to the usb_complete_t function
1687  * @context: what to set the urb context to.
1688  *
1689  * Initializes a bulk urb with the proper information needed to submit it
1690  * to a device.
1691  *
1692  * Refer to usb_fill_control_urb() for a description of the requirements for
1693  * transfer_buffer.
1694  */
1695 static inline void usb_fill_bulk_urb(struct urb *urb,
1696 				     struct usb_device *dev,
1697 				     unsigned int pipe,
1698 				     void *transfer_buffer,
1699 				     int buffer_length,
1700 				     usb_complete_t complete_fn,
1701 				     void *context)
1702 {
1703 	urb->dev = dev;
1704 	urb->pipe = pipe;
1705 	urb->transfer_buffer = transfer_buffer;
1706 	urb->transfer_buffer_length = buffer_length;
1707 	urb->complete = complete_fn;
1708 	urb->context = context;
1709 }
1710 
1711 /**
1712  * usb_fill_int_urb - macro to help initialize a interrupt urb
1713  * @urb: pointer to the urb to initialize.
1714  * @dev: pointer to the struct usb_device for this urb.
1715  * @pipe: the endpoint pipe
1716  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1717  *	suitable for DMA.
1718  * @buffer_length: length of the transfer buffer
1719  * @complete_fn: pointer to the usb_complete_t function
1720  * @context: what to set the urb context to.
1721  * @interval: what to set the urb interval to, encoded like
1722  *	the endpoint descriptor's bInterval value.
1723  *
1724  * Initializes a interrupt urb with the proper information needed to submit
1725  * it to a device.
1726  *
1727  * Refer to usb_fill_control_urb() for a description of the requirements for
1728  * transfer_buffer.
1729  *
1730  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1731  * encoding of the endpoint interval, and express polling intervals in
1732  * microframes (eight per millisecond) rather than in frames (one per
1733  * millisecond).
1734  *
1735  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1736  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1737  * through to the host controller, rather than being translated into microframe
1738  * units.
1739  */
1740 static inline void usb_fill_int_urb(struct urb *urb,
1741 				    struct usb_device *dev,
1742 				    unsigned int pipe,
1743 				    void *transfer_buffer,
1744 				    int buffer_length,
1745 				    usb_complete_t complete_fn,
1746 				    void *context,
1747 				    int interval)
1748 {
1749 	urb->dev = dev;
1750 	urb->pipe = pipe;
1751 	urb->transfer_buffer = transfer_buffer;
1752 	urb->transfer_buffer_length = buffer_length;
1753 	urb->complete = complete_fn;
1754 	urb->context = context;
1755 
1756 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1757 		/* make sure interval is within allowed range */
1758 		interval = clamp(interval, 1, 16);
1759 
1760 		urb->interval = 1 << (interval - 1);
1761 	} else {
1762 		urb->interval = interval;
1763 	}
1764 
1765 	urb->start_frame = -1;
1766 }
1767 
1768 extern void usb_init_urb(struct urb *urb);
1769 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1770 extern void usb_free_urb(struct urb *urb);
1771 #define usb_put_urb usb_free_urb
1772 extern struct urb *usb_get_urb(struct urb *urb);
1773 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1774 extern int usb_unlink_urb(struct urb *urb);
1775 extern void usb_kill_urb(struct urb *urb);
1776 extern void usb_poison_urb(struct urb *urb);
1777 extern void usb_unpoison_urb(struct urb *urb);
1778 extern void usb_block_urb(struct urb *urb);
1779 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1780 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1781 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1782 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1783 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1784 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1785 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1786 extern void usb_unanchor_urb(struct urb *urb);
1787 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1788 					 unsigned int timeout);
1789 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1790 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1791 extern int usb_anchor_empty(struct usb_anchor *anchor);
1792 
1793 #define usb_unblock_urb	usb_unpoison_urb
1794 
1795 /**
1796  * usb_urb_dir_in - check if an URB describes an IN transfer
1797  * @urb: URB to be checked
1798  *
1799  * Return: 1 if @urb describes an IN transfer (device-to-host),
1800  * otherwise 0.
1801  */
1802 static inline int usb_urb_dir_in(struct urb *urb)
1803 {
1804 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1805 }
1806 
1807 /**
1808  * usb_urb_dir_out - check if an URB describes an OUT transfer
1809  * @urb: URB to be checked
1810  *
1811  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1812  * otherwise 0.
1813  */
1814 static inline int usb_urb_dir_out(struct urb *urb)
1815 {
1816 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1817 }
1818 
1819 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1820 int usb_urb_ep_type_check(const struct urb *urb);
1821 
1822 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1823 	gfp_t mem_flags, dma_addr_t *dma);
1824 void usb_free_coherent(struct usb_device *dev, size_t size,
1825 	void *addr, dma_addr_t dma);
1826 
1827 #if 0
1828 struct urb *usb_buffer_map(struct urb *urb);
1829 void usb_buffer_dmasync(struct urb *urb);
1830 void usb_buffer_unmap(struct urb *urb);
1831 #endif
1832 
1833 struct scatterlist;
1834 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1835 		      struct scatterlist *sg, int nents);
1836 #if 0
1837 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1838 			   struct scatterlist *sg, int n_hw_ents);
1839 #endif
1840 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1841 			 struct scatterlist *sg, int n_hw_ents);
1842 
1843 /*-------------------------------------------------------------------*
1844  *                         SYNCHRONOUS CALL SUPPORT                  *
1845  *-------------------------------------------------------------------*/
1846 
1847 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1848 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1849 	void *data, __u16 size, int timeout);
1850 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1851 	void *data, int len, int *actual_length, int timeout);
1852 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1853 	void *data, int len, int *actual_length,
1854 	int timeout);
1855 
1856 /* wrappers around usb_control_msg() for the most common standard requests */
1857 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1858 			 __u8 requesttype, __u16 value, __u16 index,
1859 			 const void *data, __u16 size, int timeout,
1860 			 gfp_t memflags);
1861 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1862 			 __u8 requesttype, __u16 value, __u16 index,
1863 			 void *data, __u16 size, int timeout,
1864 			 gfp_t memflags);
1865 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1866 	unsigned char descindex, void *buf, int size);
1867 extern int usb_get_status(struct usb_device *dev,
1868 	int recip, int type, int target, void *data);
1869 
1870 static inline int usb_get_std_status(struct usb_device *dev,
1871 	int recip, int target, void *data)
1872 {
1873 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1874 		data);
1875 }
1876 
1877 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1878 {
1879 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1880 		0, data);
1881 }
1882 
1883 extern int usb_string(struct usb_device *dev, int index,
1884 	char *buf, size_t size);
1885 extern char *usb_cache_string(struct usb_device *udev, int index);
1886 
1887 /* wrappers that also update important state inside usbcore */
1888 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1889 extern int usb_reset_configuration(struct usb_device *dev);
1890 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1891 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1892 
1893 /* this request isn't really synchronous, but it belongs with the others */
1894 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1895 
1896 /* choose and set configuration for device */
1897 extern int usb_choose_configuration(struct usb_device *udev);
1898 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1899 
1900 /*
1901  * timeouts, in milliseconds, used for sending/receiving control messages
1902  * they typically complete within a few frames (msec) after they're issued
1903  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1904  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1905  */
1906 #define USB_CTRL_GET_TIMEOUT	5000
1907 #define USB_CTRL_SET_TIMEOUT	5000
1908 
1909 
1910 /**
1911  * struct usb_sg_request - support for scatter/gather I/O
1912  * @status: zero indicates success, else negative errno
1913  * @bytes: counts bytes transferred.
1914  *
1915  * These requests are initialized using usb_sg_init(), and then are used
1916  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1917  * members of the request object aren't for driver access.
1918  *
1919  * The status and bytecount values are valid only after usb_sg_wait()
1920  * returns.  If the status is zero, then the bytecount matches the total
1921  * from the request.
1922  *
1923  * After an error completion, drivers may need to clear a halt condition
1924  * on the endpoint.
1925  */
1926 struct usb_sg_request {
1927 	int			status;
1928 	size_t			bytes;
1929 
1930 	/* private:
1931 	 * members below are private to usbcore,
1932 	 * and are not provided for driver access!
1933 	 */
1934 	spinlock_t		lock;
1935 
1936 	struct usb_device	*dev;
1937 	int			pipe;
1938 
1939 	int			entries;
1940 	struct urb		**urbs;
1941 
1942 	int			count;
1943 	struct completion	complete;
1944 };
1945 
1946 int usb_sg_init(
1947 	struct usb_sg_request	*io,
1948 	struct usb_device	*dev,
1949 	unsigned		pipe,
1950 	unsigned		period,
1951 	struct scatterlist	*sg,
1952 	int			nents,
1953 	size_t			length,
1954 	gfp_t			mem_flags
1955 );
1956 void usb_sg_cancel(struct usb_sg_request *io);
1957 void usb_sg_wait(struct usb_sg_request *io);
1958 
1959 
1960 /* ----------------------------------------------------------------------- */
1961 
1962 /*
1963  * For various legacy reasons, Linux has a small cookie that's paired with
1964  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1965  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1966  * an unsigned int encoded as:
1967  *
1968  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1969  *					 1 = Device-to-Host [In] ...
1970  *					like endpoint bEndpointAddress)
1971  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1972  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1973  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1974  *					 10 = control, 11 = bulk)
1975  *
1976  * Given the device address and endpoint descriptor, pipes are redundant.
1977  */
1978 
1979 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1980 /* (yet ... they're the values used by usbfs) */
1981 #define PIPE_ISOCHRONOUS		0
1982 #define PIPE_INTERRUPT			1
1983 #define PIPE_CONTROL			2
1984 #define PIPE_BULK			3
1985 
1986 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1987 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1988 
1989 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1990 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1991 
1992 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1993 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1994 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1995 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1996 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1997 
1998 static inline unsigned int __create_pipe(struct usb_device *dev,
1999 		unsigned int endpoint)
2000 {
2001 	return (dev->devnum << 8) | (endpoint << 15);
2002 }
2003 
2004 /* Create various pipes... */
2005 #define usb_sndctrlpipe(dev, endpoint)	\
2006 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
2007 #define usb_rcvctrlpipe(dev, endpoint)	\
2008 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2009 #define usb_sndisocpipe(dev, endpoint)	\
2010 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2011 #define usb_rcvisocpipe(dev, endpoint)	\
2012 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2013 #define usb_sndbulkpipe(dev, endpoint)	\
2014 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2015 #define usb_rcvbulkpipe(dev, endpoint)	\
2016 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2017 #define usb_sndintpipe(dev, endpoint)	\
2018 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2019 #define usb_rcvintpipe(dev, endpoint)	\
2020 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2021 
2022 static inline struct usb_host_endpoint *
2023 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2024 {
2025 	struct usb_host_endpoint **eps;
2026 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2027 	return eps[usb_pipeendpoint(pipe)];
2028 }
2029 
2030 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2031 {
2032 	struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2033 
2034 	if (!ep)
2035 		return 0;
2036 
2037 	/* NOTE:  only 0x07ff bits are for packet size... */
2038 	return usb_endpoint_maxp(&ep->desc);
2039 }
2040 
2041 /* translate USB error codes to codes user space understands */
2042 static inline int usb_translate_errors(int error_code)
2043 {
2044 	switch (error_code) {
2045 	case 0:
2046 	case -ENOMEM:
2047 	case -ENODEV:
2048 	case -EOPNOTSUPP:
2049 		return error_code;
2050 	default:
2051 		return -EIO;
2052 	}
2053 }
2054 
2055 /* Events from the usb core */
2056 #define USB_DEVICE_ADD		0x0001
2057 #define USB_DEVICE_REMOVE	0x0002
2058 #define USB_BUS_ADD		0x0003
2059 #define USB_BUS_REMOVE		0x0004
2060 extern void usb_register_notify(struct notifier_block *nb);
2061 extern void usb_unregister_notify(struct notifier_block *nb);
2062 
2063 /* debugfs stuff */
2064 extern struct dentry *usb_debug_root;
2065 
2066 /* LED triggers */
2067 enum usb_led_event {
2068 	USB_LED_EVENT_HOST = 0,
2069 	USB_LED_EVENT_GADGET = 1,
2070 };
2071 
2072 #ifdef CONFIG_USB_LED_TRIG
2073 extern void usb_led_activity(enum usb_led_event ev);
2074 #else
2075 static inline void usb_led_activity(enum usb_led_event ev) {}
2076 #endif
2077 
2078 #endif  /* __KERNEL__ */
2079 
2080 #endif
2081