xref: /linux-6.15/include/linux/usb.h (revision eb2bce7f)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 
24 struct usb_device;
25 struct usb_driver;
26 
27 /*-------------------------------------------------------------------------*/
28 
29 /*
30  * Host-side wrappers for standard USB descriptors ... these are parsed
31  * from the data provided by devices.  Parsing turns them from a flat
32  * sequence of descriptors into a hierarchy:
33  *
34  *  - devices have one (usually) or more configs;
35  *  - configs have one (often) or more interfaces;
36  *  - interfaces have one (usually) or more settings;
37  *  - each interface setting has zero or (usually) more endpoints.
38  *
39  * And there might be other descriptors mixed in with those.
40  *
41  * Devices may also have class-specific or vendor-specific descriptors.
42  */
43 
44 struct ep_device;
45 
46 /**
47  * struct usb_host_endpoint - host-side endpoint descriptor and queue
48  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49  * @urb_list: urbs queued to this endpoint; maintained by usbcore
50  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51  *	with one or more transfer descriptors (TDs) per urb
52  * @ep_dev: ep_device for sysfs info
53  * @extra: descriptors following this endpoint in the configuration
54  * @extralen: how many bytes of "extra" are valid
55  *
56  * USB requests are always queued to a given endpoint, identified by a
57  * descriptor within an active interface in a given USB configuration.
58  */
59 struct usb_host_endpoint {
60 	struct usb_endpoint_descriptor	desc;
61 	struct list_head		urb_list;
62 	void				*hcpriv;
63 	struct ep_device 		*ep_dev;	/* For sysfs info */
64 
65 	unsigned char *extra;   /* Extra descriptors */
66 	int extralen;
67 };
68 
69 /* host-side wrapper for one interface setting's parsed descriptors */
70 struct usb_host_interface {
71 	struct usb_interface_descriptor	desc;
72 
73 	/* array of desc.bNumEndpoint endpoints associated with this
74 	 * interface setting.  these will be in no particular order.
75 	 */
76 	struct usb_host_endpoint *endpoint;
77 
78 	char *string;		/* iInterface string, if present */
79 	unsigned char *extra;   /* Extra descriptors */
80 	int extralen;
81 };
82 
83 enum usb_interface_condition {
84 	USB_INTERFACE_UNBOUND = 0,
85 	USB_INTERFACE_BINDING,
86 	USB_INTERFACE_BOUND,
87 	USB_INTERFACE_UNBINDING,
88 };
89 
90 /**
91  * struct usb_interface - what usb device drivers talk to
92  * @altsetting: array of interface structures, one for each alternate
93  * 	setting that may be selected.  Each one includes a set of
94  * 	endpoint configurations.  They will be in no particular order.
95  * @num_altsetting: number of altsettings defined.
96  * @cur_altsetting: the current altsetting.
97  * @driver: the USB driver that is bound to this interface.
98  * @minor: the minor number assigned to this interface, if this
99  *	interface is bound to a driver that uses the USB major number.
100  *	If this interface does not use the USB major, this field should
101  *	be unused.  The driver should set this value in the probe()
102  *	function of the driver, after it has been assigned a minor
103  *	number from the USB core by calling usb_register_dev().
104  * @condition: binding state of the interface: not bound, binding
105  *	(in probe()), bound to a driver, or unbinding (in disconnect())
106  * @is_active: flag set when the interface is bound and not suspended.
107  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
108  *	capability during autosuspend.
109  * @dev: driver model's view of this device
110  * @usb_dev: if an interface is bound to the USB major, this will point
111  *	to the sysfs representation for that device.
112  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
113  *	allowed unless the counter is 0.
114  *
115  * USB device drivers attach to interfaces on a physical device.  Each
116  * interface encapsulates a single high level function, such as feeding
117  * an audio stream to a speaker or reporting a change in a volume control.
118  * Many USB devices only have one interface.  The protocol used to talk to
119  * an interface's endpoints can be defined in a usb "class" specification,
120  * or by a product's vendor.  The (default) control endpoint is part of
121  * every interface, but is never listed among the interface's descriptors.
122  *
123  * The driver that is bound to the interface can use standard driver model
124  * calls such as dev_get_drvdata() on the dev member of this structure.
125  *
126  * Each interface may have alternate settings.  The initial configuration
127  * of a device sets altsetting 0, but the device driver can change
128  * that setting using usb_set_interface().  Alternate settings are often
129  * used to control the the use of periodic endpoints, such as by having
130  * different endpoints use different amounts of reserved USB bandwidth.
131  * All standards-conformant USB devices that use isochronous endpoints
132  * will use them in non-default settings.
133  *
134  * The USB specification says that alternate setting numbers must run from
135  * 0 to one less than the total number of alternate settings.  But some
136  * devices manage to mess this up, and the structures aren't necessarily
137  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
138  * look up an alternate setting in the altsetting array based on its number.
139  */
140 struct usb_interface {
141 	/* array of alternate settings for this interface,
142 	 * stored in no particular order */
143 	struct usb_host_interface *altsetting;
144 
145 	struct usb_host_interface *cur_altsetting;	/* the currently
146 					 * active alternate setting */
147 	unsigned num_altsetting;	/* number of alternate settings */
148 
149 	int minor;			/* minor number this interface is
150 					 * bound to */
151 	enum usb_interface_condition condition;		/* state of binding */
152 	unsigned is_active:1;		/* the interface is not suspended */
153 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
154 
155 	struct device dev;		/* interface specific device info */
156 	struct device *usb_dev;		/* pointer to the usb class's device, if any */
157 	int pm_usage_cnt;		/* usage counter for autosuspend */
158 };
159 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
160 #define	interface_to_usbdev(intf) \
161 	container_of(intf->dev.parent, struct usb_device, dev)
162 
163 static inline void *usb_get_intfdata (struct usb_interface *intf)
164 {
165 	return dev_get_drvdata (&intf->dev);
166 }
167 
168 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
169 {
170 	dev_set_drvdata(&intf->dev, data);
171 }
172 
173 struct usb_interface *usb_get_intf(struct usb_interface *intf);
174 void usb_put_intf(struct usb_interface *intf);
175 
176 /* this maximum is arbitrary */
177 #define USB_MAXINTERFACES	32
178 
179 /**
180  * struct usb_interface_cache - long-term representation of a device interface
181  * @num_altsetting: number of altsettings defined.
182  * @ref: reference counter.
183  * @altsetting: variable-length array of interface structures, one for
184  *	each alternate setting that may be selected.  Each one includes a
185  *	set of endpoint configurations.  They will be in no particular order.
186  *
187  * These structures persist for the lifetime of a usb_device, unlike
188  * struct usb_interface (which persists only as long as its configuration
189  * is installed).  The altsetting arrays can be accessed through these
190  * structures at any time, permitting comparison of configurations and
191  * providing support for the /proc/bus/usb/devices pseudo-file.
192  */
193 struct usb_interface_cache {
194 	unsigned num_altsetting;	/* number of alternate settings */
195 	struct kref ref;		/* reference counter */
196 
197 	/* variable-length array of alternate settings for this interface,
198 	 * stored in no particular order */
199 	struct usb_host_interface altsetting[0];
200 };
201 #define	ref_to_usb_interface_cache(r) \
202 		container_of(r, struct usb_interface_cache, ref)
203 #define	altsetting_to_usb_interface_cache(a) \
204 		container_of(a, struct usb_interface_cache, altsetting[0])
205 
206 /**
207  * struct usb_host_config - representation of a device's configuration
208  * @desc: the device's configuration descriptor.
209  * @string: pointer to the cached version of the iConfiguration string, if
210  *	present for this configuration.
211  * @interface: array of pointers to usb_interface structures, one for each
212  *	interface in the configuration.  The number of interfaces is stored
213  *	in desc.bNumInterfaces.  These pointers are valid only while the
214  *	the configuration is active.
215  * @intf_cache: array of pointers to usb_interface_cache structures, one
216  *	for each interface in the configuration.  These structures exist
217  *	for the entire life of the device.
218  * @extra: pointer to buffer containing all extra descriptors associated
219  *	with this configuration (those preceding the first interface
220  *	descriptor).
221  * @extralen: length of the extra descriptors buffer.
222  *
223  * USB devices may have multiple configurations, but only one can be active
224  * at any time.  Each encapsulates a different operational environment;
225  * for example, a dual-speed device would have separate configurations for
226  * full-speed and high-speed operation.  The number of configurations
227  * available is stored in the device descriptor as bNumConfigurations.
228  *
229  * A configuration can contain multiple interfaces.  Each corresponds to
230  * a different function of the USB device, and all are available whenever
231  * the configuration is active.  The USB standard says that interfaces
232  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
233  * of devices get this wrong.  In addition, the interface array is not
234  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
235  * look up an interface entry based on its number.
236  *
237  * Device drivers should not attempt to activate configurations.  The choice
238  * of which configuration to install is a policy decision based on such
239  * considerations as available power, functionality provided, and the user's
240  * desires (expressed through userspace tools).  However, drivers can call
241  * usb_reset_configuration() to reinitialize the current configuration and
242  * all its interfaces.
243  */
244 struct usb_host_config {
245 	struct usb_config_descriptor	desc;
246 
247 	char *string;		/* iConfiguration string, if present */
248 	/* the interfaces associated with this configuration,
249 	 * stored in no particular order */
250 	struct usb_interface *interface[USB_MAXINTERFACES];
251 
252 	/* Interface information available even when this is not the
253 	 * active configuration */
254 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
255 
256 	unsigned char *extra;   /* Extra descriptors */
257 	int extralen;
258 };
259 
260 int __usb_get_extra_descriptor(char *buffer, unsigned size,
261 	unsigned char type, void **ptr);
262 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
263 	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
264 		type,(void**)ptr)
265 
266 /* ----------------------------------------------------------------------- */
267 
268 /* USB device number allocation bitmap */
269 struct usb_devmap {
270 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
271 };
272 
273 /*
274  * Allocated per bus (tree of devices) we have:
275  */
276 struct usb_bus {
277 	struct device *controller;	/* host/master side hardware */
278 	int busnum;			/* Bus number (in order of reg) */
279 	char *bus_name;			/* stable id (PCI slot_name etc) */
280 	u8 uses_dma;			/* Does the host controller use DMA? */
281 	u8 otg_port;			/* 0, or number of OTG/HNP port */
282 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
283 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
284 
285 	int devnum_next;		/* Next open device number in
286 					 * round-robin allocation */
287 
288 	struct usb_devmap devmap;	/* device address allocation map */
289 	struct usb_device *root_hub;	/* Root hub */
290 	struct list_head bus_list;	/* list of busses */
291 
292 	int bandwidth_allocated;	/* on this bus: how much of the time
293 					 * reserved for periodic (intr/iso)
294 					 * requests is used, on average?
295 					 * Units: microseconds/frame.
296 					 * Limits: Full/low speed reserve 90%,
297 					 * while high speed reserves 80%.
298 					 */
299 	int bandwidth_int_reqs;		/* number of Interrupt requests */
300 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
301 
302 #ifdef CONFIG_USB_DEVICEFS
303 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
304 #endif
305 	struct class_device *class_dev;	/* class device for this bus */
306 
307 #if defined(CONFIG_USB_MON)
308 	struct mon_bus *mon_bus;	/* non-null when associated */
309 	int monitored;			/* non-zero when monitored */
310 #endif
311 };
312 
313 /* ----------------------------------------------------------------------- */
314 
315 /* This is arbitrary.
316  * From USB 2.0 spec Table 11-13, offset 7, a hub can
317  * have up to 255 ports. The most yet reported is 10.
318  *
319  * Current Wireless USB host hardware (Intel i1480 for example) allows
320  * up to 22 devices to connect. Upcoming hardware might raise that
321  * limit. Because the arrays need to add a bit for hub status data, we
322  * do 31, so plus one evens out to four bytes.
323  */
324 #define USB_MAXCHILDREN		(31)
325 
326 struct usb_tt;
327 
328 /*
329  * struct usb_device - kernel's representation of a USB device
330  *
331  * FIXME: Write the kerneldoc!
332  *
333  * Usbcore drivers should not set usbdev->state directly.  Instead use
334  * usb_set_device_state().
335  */
336 struct usb_device {
337 	int		devnum;		/* Address on USB bus */
338 	char		devpath [16];	/* Use in messages: /port/port/... */
339 	enum usb_device_state	state;	/* configured, not attached, etc */
340 	enum usb_device_speed	speed;	/* high/full/low (or error) */
341 
342 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
343 	int		ttport;		/* device port on that tt hub */
344 
345 	unsigned int toggle[2];		/* one bit for each endpoint
346 					 * ([0] = IN, [1] = OUT) */
347 
348 	struct usb_device *parent;	/* our hub, unless we're the root */
349 	struct usb_bus *bus;		/* Bus we're part of */
350 	struct usb_host_endpoint ep0;
351 
352 	struct device dev;		/* Generic device interface */
353 
354 	struct usb_device_descriptor descriptor;/* Descriptor */
355 	struct usb_host_config *config;	/* All of the configs */
356 
357 	struct usb_host_config *actconfig;/* the active configuration */
358 	struct usb_host_endpoint *ep_in[16];
359 	struct usb_host_endpoint *ep_out[16];
360 
361 	char **rawdescriptors;		/* Raw descriptors for each config */
362 
363 	unsigned short bus_mA;		/* Current available from the bus */
364 	u8 portnum;			/* Parent port number (origin 1) */
365 	u8 level;			/* Number of USB hub ancestors */
366 
367 	unsigned discon_suspended:1;	/* Disconnected while suspended */
368 	unsigned have_langid:1;		/* whether string_langid is valid */
369 	int string_langid;		/* language ID for strings */
370 
371 	/* static strings from the device */
372 	char *product;			/* iProduct string, if present */
373 	char *manufacturer;		/* iManufacturer string, if present */
374 	char *serial;			/* iSerialNumber string, if present */
375 
376 	struct list_head filelist;
377 #ifdef CONFIG_USB_DEVICE_CLASS
378 	struct device *usb_classdev;
379 #endif
380 #ifdef CONFIG_USB_DEVICEFS
381 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
382 #endif
383 	/*
384 	 * Child devices - these can be either new devices
385 	 * (if this is a hub device), or different instances
386 	 * of this same device.
387 	 *
388 	 * Each instance needs its own set of data structures.
389 	 */
390 
391 	int maxchild;			/* Number of ports if hub */
392 	struct usb_device *children[USB_MAXCHILDREN];
393 
394 	int pm_usage_cnt;		/* usage counter for autosuspend */
395 	u32 quirks;			/* quirks of the whole device */
396 
397 #ifdef CONFIG_PM
398 	struct delayed_work autosuspend; /* for delayed autosuspends */
399 	struct mutex pm_mutex;		/* protects PM operations */
400 
401 	unsigned long last_busy;	/* time of last use */
402 	int autosuspend_delay;		/* in jiffies */
403 
404 	unsigned auto_pm:1;		/* autosuspend/resume in progress */
405 	unsigned do_remote_wakeup:1;	/* remote wakeup should be enabled */
406 	unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
407 	unsigned autoresume_disabled:1;  /*  disabled by the user */
408 #endif
409 };
410 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
411 
412 extern struct usb_device *usb_get_dev(struct usb_device *dev);
413 extern void usb_put_dev(struct usb_device *dev);
414 
415 /* USB device locking */
416 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
417 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
418 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
419 extern int usb_lock_device_for_reset(struct usb_device *udev,
420 				     const struct usb_interface *iface);
421 
422 /* USB port reset for device reinitialization */
423 extern int usb_reset_device(struct usb_device *dev);
424 extern int usb_reset_composite_device(struct usb_device *dev,
425 		struct usb_interface *iface);
426 
427 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
428 
429 /* USB autosuspend and autoresume */
430 #ifdef CONFIG_USB_SUSPEND
431 extern int usb_autopm_set_interface(struct usb_interface *intf);
432 extern int usb_autopm_get_interface(struct usb_interface *intf);
433 extern void usb_autopm_put_interface(struct usb_interface *intf);
434 
435 static inline void usb_autopm_enable(struct usb_interface *intf)
436 {
437 	intf->pm_usage_cnt = 0;
438 	usb_autopm_set_interface(intf);
439 }
440 
441 static inline void usb_autopm_disable(struct usb_interface *intf)
442 {
443 	intf->pm_usage_cnt = 1;
444 	usb_autopm_set_interface(intf);
445 }
446 
447 static inline void usb_mark_last_busy(struct usb_device *udev)
448 {
449 	udev->last_busy = jiffies;
450 }
451 
452 #else
453 
454 static inline int usb_autopm_set_interface(struct usb_interface *intf)
455 { return 0; }
456 
457 static inline int usb_autopm_get_interface(struct usb_interface *intf)
458 { return 0; }
459 
460 static inline void usb_autopm_put_interface(struct usb_interface *intf)
461 { }
462 static inline void usb_autopm_enable(struct usb_interface *intf)
463 { }
464 static inline void usb_autopm_disable(struct usb_interface *intf)
465 { }
466 static inline void usb_mark_last_busy(struct usb_device *udev)
467 { }
468 #endif
469 
470 /*-------------------------------------------------------------------------*/
471 
472 /* for drivers using iso endpoints */
473 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
474 
475 /* used these for multi-interface device registration */
476 extern int usb_driver_claim_interface(struct usb_driver *driver,
477 			struct usb_interface *iface, void* priv);
478 
479 /**
480  * usb_interface_claimed - returns true iff an interface is claimed
481  * @iface: the interface being checked
482  *
483  * Returns true (nonzero) iff the interface is claimed, else false (zero).
484  * Callers must own the driver model's usb bus readlock.  So driver
485  * probe() entries don't need extra locking, but other call contexts
486  * may need to explicitly claim that lock.
487  *
488  */
489 static inline int usb_interface_claimed(struct usb_interface *iface) {
490 	return (iface->dev.driver != NULL);
491 }
492 
493 extern void usb_driver_release_interface(struct usb_driver *driver,
494 			struct usb_interface *iface);
495 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
496 					 const struct usb_device_id *id);
497 extern int usb_match_one_id(struct usb_interface *interface,
498 			    const struct usb_device_id *id);
499 
500 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
501 		int minor);
502 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
503 		unsigned ifnum);
504 extern struct usb_host_interface *usb_altnum_to_altsetting(
505 		const struct usb_interface *intf, unsigned int altnum);
506 
507 
508 /**
509  * usb_make_path - returns stable device path in the usb tree
510  * @dev: the device whose path is being constructed
511  * @buf: where to put the string
512  * @size: how big is "buf"?
513  *
514  * Returns length of the string (> 0) or negative if size was too small.
515  *
516  * This identifier is intended to be "stable", reflecting physical paths in
517  * hardware such as physical bus addresses for host controllers or ports on
518  * USB hubs.  That makes it stay the same until systems are physically
519  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
520  * controllers.  Adding and removing devices, including virtual root hubs
521  * in host controller driver modules, does not change these path identifers;
522  * neither does rebooting or re-enumerating.  These are more useful identifiers
523  * than changeable ("unstable") ones like bus numbers or device addresses.
524  *
525  * With a partial exception for devices connected to USB 2.0 root hubs, these
526  * identifiers are also predictable.  So long as the device tree isn't changed,
527  * plugging any USB device into a given hub port always gives it the same path.
528  * Because of the use of "companion" controllers, devices connected to ports on
529  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
530  * high speed, and a different one if they are full or low speed.
531  */
532 static inline int usb_make_path (struct usb_device *dev, char *buf,
533 		size_t size)
534 {
535 	int actual;
536 	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
537 			dev->devpath);
538 	return (actual >= (int)size) ? -1 : actual;
539 }
540 
541 /*-------------------------------------------------------------------------*/
542 
543 /**
544  * usb_endpoint_dir_in - check if the endpoint has IN direction
545  * @epd: endpoint to be checked
546  *
547  * Returns true if the endpoint is of type IN, otherwise it returns false.
548  */
549 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
550 {
551 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
552 }
553 
554 /**
555  * usb_endpoint_dir_out - check if the endpoint has OUT direction
556  * @epd: endpoint to be checked
557  *
558  * Returns true if the endpoint is of type OUT, otherwise it returns false.
559  */
560 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
561 {
562 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
563 }
564 
565 /**
566  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
567  * @epd: endpoint to be checked
568  *
569  * Returns true if the endpoint is of type bulk, otherwise it returns false.
570  */
571 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
572 {
573 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
574 		USB_ENDPOINT_XFER_BULK);
575 }
576 
577 /**
578  * usb_endpoint_xfer_control - check if the endpoint has control transfer type
579  * @epd: endpoint to be checked
580  *
581  * Returns true if the endpoint is of type control, otherwise it returns false.
582  */
583 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
584 {
585 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
586 		USB_ENDPOINT_XFER_CONTROL);
587 }
588 
589 /**
590  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
591  * @epd: endpoint to be checked
592  *
593  * Returns true if the endpoint is of type interrupt, otherwise it returns
594  * false.
595  */
596 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
597 {
598 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
599 		USB_ENDPOINT_XFER_INT);
600 }
601 
602 /**
603  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
604  * @epd: endpoint to be checked
605  *
606  * Returns true if the endpoint is of type isochronous, otherwise it returns
607  * false.
608  */
609 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
610 {
611 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
612 		USB_ENDPOINT_XFER_ISOC);
613 }
614 
615 /**
616  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
617  * @epd: endpoint to be checked
618  *
619  * Returns true if the endpoint has bulk transfer type and IN direction,
620  * otherwise it returns false.
621  */
622 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
623 {
624 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
625 }
626 
627 /**
628  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
629  * @epd: endpoint to be checked
630  *
631  * Returns true if the endpoint has bulk transfer type and OUT direction,
632  * otherwise it returns false.
633  */
634 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
635 {
636 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
637 }
638 
639 /**
640  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
641  * @epd: endpoint to be checked
642  *
643  * Returns true if the endpoint has interrupt transfer type and IN direction,
644  * otherwise it returns false.
645  */
646 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
647 {
648 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
649 }
650 
651 /**
652  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
653  * @epd: endpoint to be checked
654  *
655  * Returns true if the endpoint has interrupt transfer type and OUT direction,
656  * otherwise it returns false.
657  */
658 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
659 {
660 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
661 }
662 
663 /**
664  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
665  * @epd: endpoint to be checked
666  *
667  * Returns true if the endpoint has isochronous transfer type and IN direction,
668  * otherwise it returns false.
669  */
670 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
671 {
672 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
673 }
674 
675 /**
676  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
677  * @epd: endpoint to be checked
678  *
679  * Returns true if the endpoint has isochronous transfer type and OUT direction,
680  * otherwise it returns false.
681  */
682 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
683 {
684 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
685 }
686 
687 /*-------------------------------------------------------------------------*/
688 
689 #define USB_DEVICE_ID_MATCH_DEVICE \
690 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
691 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
692 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
693 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
694 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
695 #define USB_DEVICE_ID_MATCH_DEV_INFO \
696 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
697 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
698 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
699 #define USB_DEVICE_ID_MATCH_INT_INFO \
700 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
701 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
702 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
703 
704 /**
705  * USB_DEVICE - macro used to describe a specific usb device
706  * @vend: the 16 bit USB Vendor ID
707  * @prod: the 16 bit USB Product ID
708  *
709  * This macro is used to create a struct usb_device_id that matches a
710  * specific device.
711  */
712 #define USB_DEVICE(vend,prod) \
713 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
714 			.idProduct = (prod)
715 /**
716  * USB_DEVICE_VER - macro used to describe a specific usb device with a
717  *		version range
718  * @vend: the 16 bit USB Vendor ID
719  * @prod: the 16 bit USB Product ID
720  * @lo: the bcdDevice_lo value
721  * @hi: the bcdDevice_hi value
722  *
723  * This macro is used to create a struct usb_device_id that matches a
724  * specific device, with a version range.
725  */
726 #define USB_DEVICE_VER(vend,prod,lo,hi) \
727 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
728 	.idVendor = (vend), .idProduct = (prod), \
729 	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
730 
731 /**
732  * USB_DEVICE_INFO - macro used to describe a class of usb devices
733  * @cl: bDeviceClass value
734  * @sc: bDeviceSubClass value
735  * @pr: bDeviceProtocol value
736  *
737  * This macro is used to create a struct usb_device_id that matches a
738  * specific class of devices.
739  */
740 #define USB_DEVICE_INFO(cl,sc,pr) \
741 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
742 	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
743 
744 /**
745  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
746  * @cl: bInterfaceClass value
747  * @sc: bInterfaceSubClass value
748  * @pr: bInterfaceProtocol value
749  *
750  * This macro is used to create a struct usb_device_id that matches a
751  * specific class of interfaces.
752  */
753 #define USB_INTERFACE_INFO(cl,sc,pr) \
754 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
755 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
756 
757 /* ----------------------------------------------------------------------- */
758 
759 /* Stuff for dynamic usb ids */
760 struct usb_dynids {
761 	spinlock_t lock;
762 	struct list_head list;
763 };
764 
765 struct usb_dynid {
766 	struct list_head node;
767 	struct usb_device_id id;
768 };
769 
770 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
771 				struct device_driver *driver,
772 				const char *buf, size_t count);
773 
774 /**
775  * struct usbdrv_wrap - wrapper for driver-model structure
776  * @driver: The driver-model core driver structure.
777  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
778  */
779 struct usbdrv_wrap {
780 	struct device_driver driver;
781 	int for_devices;
782 };
783 
784 /**
785  * struct usb_driver - identifies USB interface driver to usbcore
786  * @name: The driver name should be unique among USB drivers,
787  *	and should normally be the same as the module name.
788  * @probe: Called to see if the driver is willing to manage a particular
789  *	interface on a device.  If it is, probe returns zero and uses
790  *	dev_set_drvdata() to associate driver-specific data with the
791  *	interface.  It may also use usb_set_interface() to specify the
792  *	appropriate altsetting.  If unwilling to manage the interface,
793  *	return a negative errno value.
794  * @disconnect: Called when the interface is no longer accessible, usually
795  *	because its device has been (or is being) disconnected or the
796  *	driver module is being unloaded.
797  * @ioctl: Used for drivers that want to talk to userspace through
798  *	the "usbfs" filesystem.  This lets devices provide ways to
799  *	expose information to user space regardless of where they
800  *	do (or don't) show up otherwise in the filesystem.
801  * @suspend: Called when the device is going to be suspended by the system.
802  * @resume: Called when the device is being resumed by the system.
803  * @pre_reset: Called by usb_reset_composite_device() when the device
804  *	is about to be reset.
805  * @post_reset: Called by usb_reset_composite_device() after the device
806  *	has been reset.
807  * @id_table: USB drivers use ID table to support hotplugging.
808  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
809  *	or your driver's probe function will never get called.
810  * @dynids: used internally to hold the list of dynamically added device
811  *	ids for this driver.
812  * @drvwrap: Driver-model core structure wrapper.
813  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
814  *	added to this driver by preventing the sysfs file from being created.
815  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
816  *	for interfaces bound to this driver.
817  *
818  * USB interface drivers must provide a name, probe() and disconnect()
819  * methods, and an id_table.  Other driver fields are optional.
820  *
821  * The id_table is used in hotplugging.  It holds a set of descriptors,
822  * and specialized data may be associated with each entry.  That table
823  * is used by both user and kernel mode hotplugging support.
824  *
825  * The probe() and disconnect() methods are called in a context where
826  * they can sleep, but they should avoid abusing the privilege.  Most
827  * work to connect to a device should be done when the device is opened,
828  * and undone at the last close.  The disconnect code needs to address
829  * concurrency issues with respect to open() and close() methods, as
830  * well as forcing all pending I/O requests to complete (by unlinking
831  * them as necessary, and blocking until the unlinks complete).
832  */
833 struct usb_driver {
834 	const char *name;
835 
836 	int (*probe) (struct usb_interface *intf,
837 		      const struct usb_device_id *id);
838 
839 	void (*disconnect) (struct usb_interface *intf);
840 
841 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
842 			void *buf);
843 
844 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
845 	int (*resume) (struct usb_interface *intf);
846 
847 	void (*pre_reset) (struct usb_interface *intf);
848 	void (*post_reset) (struct usb_interface *intf);
849 
850 	const struct usb_device_id *id_table;
851 
852 	struct usb_dynids dynids;
853 	struct usbdrv_wrap drvwrap;
854 	unsigned int no_dynamic_id:1;
855 	unsigned int supports_autosuspend:1;
856 };
857 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
858 
859 /**
860  * struct usb_device_driver - identifies USB device driver to usbcore
861  * @name: The driver name should be unique among USB drivers,
862  *	and should normally be the same as the module name.
863  * @probe: Called to see if the driver is willing to manage a particular
864  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
865  *	to associate driver-specific data with the device.  If unwilling
866  *	to manage the device, return a negative errno value.
867  * @disconnect: Called when the device is no longer accessible, usually
868  *	because it has been (or is being) disconnected or the driver's
869  *	module is being unloaded.
870  * @suspend: Called when the device is going to be suspended by the system.
871  * @resume: Called when the device is being resumed by the system.
872  * @drvwrap: Driver-model core structure wrapper.
873  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
874  *	for devices bound to this driver.
875  *
876  * USB drivers must provide all the fields listed above except drvwrap.
877  */
878 struct usb_device_driver {
879 	const char *name;
880 
881 	int (*probe) (struct usb_device *udev);
882 	void (*disconnect) (struct usb_device *udev);
883 
884 	int (*suspend) (struct usb_device *udev, pm_message_t message);
885 	int (*resume) (struct usb_device *udev);
886 	struct usbdrv_wrap drvwrap;
887 	unsigned int supports_autosuspend:1;
888 };
889 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
890 		drvwrap.driver)
891 
892 extern struct bus_type usb_bus_type;
893 
894 /**
895  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
896  * @name: the usb class device name for this driver.  Will show up in sysfs.
897  * @fops: pointer to the struct file_operations of this driver.
898  * @minor_base: the start of the minor range for this driver.
899  *
900  * This structure is used for the usb_register_dev() and
901  * usb_unregister_dev() functions, to consolidate a number of the
902  * parameters used for them.
903  */
904 struct usb_class_driver {
905 	char *name;
906 	const struct file_operations *fops;
907 	int minor_base;
908 };
909 
910 /*
911  * use these in module_init()/module_exit()
912  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
913  */
914 extern int usb_register_driver(struct usb_driver *, struct module *,
915 			       const char *);
916 static inline int usb_register(struct usb_driver *driver)
917 {
918 	return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
919 }
920 extern void usb_deregister(struct usb_driver *);
921 
922 extern int usb_register_device_driver(struct usb_device_driver *,
923 			struct module *);
924 extern void usb_deregister_device_driver(struct usb_device_driver *);
925 
926 extern int usb_register_dev(struct usb_interface *intf,
927 			    struct usb_class_driver *class_driver);
928 extern void usb_deregister_dev(struct usb_interface *intf,
929 			       struct usb_class_driver *class_driver);
930 
931 extern int usb_disabled(void);
932 
933 /* ----------------------------------------------------------------------- */
934 
935 /*
936  * URB support, for asynchronous request completions
937  */
938 
939 /*
940  * urb->transfer_flags:
941  */
942 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
943 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
944 					 * ignored */
945 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
946 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
947 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
948 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
949 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
950 					 * needed */
951 
952 struct usb_iso_packet_descriptor {
953 	unsigned int offset;
954 	unsigned int length;		/* expected length */
955 	unsigned int actual_length;
956 	int status;
957 };
958 
959 struct urb;
960 
961 typedef void (*usb_complete_t)(struct urb *);
962 
963 /**
964  * struct urb - USB Request Block
965  * @urb_list: For use by current owner of the URB.
966  * @pipe: Holds endpoint number, direction, type, and more.
967  *	Create these values with the eight macros available;
968  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
969  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
970  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
971  *	numbers range from zero to fifteen.  Note that "in" endpoint two
972  *	is a different endpoint (and pipe) from "out" endpoint two.
973  *	The current configuration controls the existence, type, and
974  *	maximum packet size of any given endpoint.
975  * @dev: Identifies the USB device to perform the request.
976  * @status: This is read in non-iso completion functions to get the
977  *	status of the particular request.  ISO requests only use it
978  *	to tell whether the URB was unlinked; detailed status for
979  *	each frame is in the fields of the iso_frame-desc.
980  * @transfer_flags: A variety of flags may be used to affect how URB
981  *	submission, unlinking, or operation are handled.  Different
982  *	kinds of URB can use different flags.
983  * @transfer_buffer:  This identifies the buffer to (or from) which
984  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
985  *	is set).  This buffer must be suitable for DMA; allocate it with
986  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
987  *	of this buffer will be modified.  This buffer is used for the data
988  *	stage of control transfers.
989  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
990  *	the device driver is saying that it provided this DMA address,
991  *	which the host controller driver should use in preference to the
992  *	transfer_buffer.
993  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
994  *	be broken up into chunks according to the current maximum packet
995  *	size for the endpoint, which is a function of the configuration
996  *	and is encoded in the pipe.  When the length is zero, neither
997  *	transfer_buffer nor transfer_dma is used.
998  * @actual_length: This is read in non-iso completion functions, and
999  *	it tells how many bytes (out of transfer_buffer_length) were
1000  *	transferred.  It will normally be the same as requested, unless
1001  *	either an error was reported or a short read was performed.
1002  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1003  *	short reads be reported as errors.
1004  * @setup_packet: Only used for control transfers, this points to eight bytes
1005  *	of setup data.  Control transfers always start by sending this data
1006  *	to the device.  Then transfer_buffer is read or written, if needed.
1007  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1008  *	device driver has provided this DMA address for the setup packet.
1009  *	The host controller driver should use this in preference to
1010  *	setup_packet.
1011  * @start_frame: Returns the initial frame for isochronous transfers.
1012  * @number_of_packets: Lists the number of ISO transfer buffers.
1013  * @interval: Specifies the polling interval for interrupt or isochronous
1014  *	transfers.  The units are frames (milliseconds) for for full and low
1015  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
1016  * @error_count: Returns the number of ISO transfers that reported errors.
1017  * @context: For use in completion functions.  This normally points to
1018  *	request-specific driver context.
1019  * @complete: Completion handler. This URB is passed as the parameter to the
1020  *	completion function.  The completion function may then do what
1021  *	it likes with the URB, including resubmitting or freeing it.
1022  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1023  *	collect the transfer status for each buffer.
1024  *
1025  * This structure identifies USB transfer requests.  URBs must be allocated by
1026  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1027  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1028  * are submitted using usb_submit_urb(), and pending requests may be canceled
1029  * using usb_unlink_urb() or usb_kill_urb().
1030  *
1031  * Data Transfer Buffers:
1032  *
1033  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1034  * taken from the general page pool.  That is provided by transfer_buffer
1035  * (control requests also use setup_packet), and host controller drivers
1036  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1037  * mapping operations can be expensive on some platforms (perhaps using a dma
1038  * bounce buffer or talking to an IOMMU),
1039  * although they're cheap on commodity x86 and ppc hardware.
1040  *
1041  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1042  * which tell the host controller driver that no such mapping is needed since
1043  * the device driver is DMA-aware.  For example, a device driver might
1044  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1045  * When these transfer flags are provided, host controller drivers will
1046  * attempt to use the dma addresses found in the transfer_dma and/or
1047  * setup_dma fields rather than determining a dma address themselves.  (Note
1048  * that transfer_buffer and setup_packet must still be set because not all
1049  * host controllers use DMA, nor do virtual root hubs).
1050  *
1051  * Initialization:
1052  *
1053  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1054  * zero), and complete fields.  All URBs must also initialize
1055  * transfer_buffer and transfer_buffer_length.  They may provide the
1056  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1057  * to be treated as errors; that flag is invalid for write requests.
1058  *
1059  * Bulk URBs may
1060  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1061  * should always terminate with a short packet, even if it means adding an
1062  * extra zero length packet.
1063  *
1064  * Control URBs must provide a setup_packet.  The setup_packet and
1065  * transfer_buffer may each be mapped for DMA or not, independently of
1066  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1067  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1068  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1069  *
1070  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1071  * or, for highspeed devices, 125 microsecond units)
1072  * to poll for transfers.  After the URB has been submitted, the interval
1073  * field reflects how the transfer was actually scheduled.
1074  * The polling interval may be more frequent than requested.
1075  * For example, some controllers have a maximum interval of 32 milliseconds,
1076  * while others support intervals of up to 1024 milliseconds.
1077  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1078  * endpoints, as well as high speed interrupt endpoints, the encoding of
1079  * the transfer interval in the endpoint descriptor is logarithmic.
1080  * Device drivers must convert that value to linear units themselves.)
1081  *
1082  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1083  * the host controller to schedule the transfer as soon as bandwidth
1084  * utilization allows, and then set start_frame to reflect the actual frame
1085  * selected during submission.  Otherwise drivers must specify the start_frame
1086  * and handle the case where the transfer can't begin then.  However, drivers
1087  * won't know how bandwidth is currently allocated, and while they can
1088  * find the current frame using usb_get_current_frame_number () they can't
1089  * know the range for that frame number.  (Ranges for frame counter values
1090  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1091  *
1092  * Isochronous URBs have a different data transfer model, in part because
1093  * the quality of service is only "best effort".  Callers provide specially
1094  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1095  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1096  * URBs are normally queued, submitted by drivers to arrange that
1097  * transfers are at least double buffered, and then explicitly resubmitted
1098  * in completion handlers, so
1099  * that data (such as audio or video) streams at as constant a rate as the
1100  * host controller scheduler can support.
1101  *
1102  * Completion Callbacks:
1103  *
1104  * The completion callback is made in_interrupt(), and one of the first
1105  * things that a completion handler should do is check the status field.
1106  * The status field is provided for all URBs.  It is used to report
1107  * unlinked URBs, and status for all non-ISO transfers.  It should not
1108  * be examined before the URB is returned to the completion handler.
1109  *
1110  * The context field is normally used to link URBs back to the relevant
1111  * driver or request state.
1112  *
1113  * When the completion callback is invoked for non-isochronous URBs, the
1114  * actual_length field tells how many bytes were transferred.  This field
1115  * is updated even when the URB terminated with an error or was unlinked.
1116  *
1117  * ISO transfer status is reported in the status and actual_length fields
1118  * of the iso_frame_desc array, and the number of errors is reported in
1119  * error_count.  Completion callbacks for ISO transfers will normally
1120  * (re)submit URBs to ensure a constant transfer rate.
1121  *
1122  * Note that even fields marked "public" should not be touched by the driver
1123  * when the urb is owned by the hcd, that is, since the call to
1124  * usb_submit_urb() till the entry into the completion routine.
1125  */
1126 struct urb
1127 {
1128 	/* private: usb core and host controller only fields in the urb */
1129 	struct kref kref;		/* reference count of the URB */
1130 	spinlock_t lock;		/* lock for the URB */
1131 	void *hcpriv;			/* private data for host controller */
1132 	atomic_t use_count;		/* concurrent submissions counter */
1133 	u8 reject;			/* submissions will fail */
1134 
1135 	/* public: documented fields in the urb that can be used by drivers */
1136 	struct list_head urb_list;	/* list head for use by the urb's
1137 					 * current owner */
1138 	struct usb_device *dev; 	/* (in) pointer to associated device */
1139 	unsigned int pipe;		/* (in) pipe information */
1140 	int status;			/* (return) non-ISO status */
1141 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1142 	void *transfer_buffer;		/* (in) associated data buffer */
1143 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1144 	int transfer_buffer_length;	/* (in) data buffer length */
1145 	int actual_length;		/* (return) actual transfer length */
1146 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1147 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1148 	int start_frame;		/* (modify) start frame (ISO) */
1149 	int number_of_packets;		/* (in) number of ISO packets */
1150 	int interval;			/* (modify) transfer interval
1151 					 * (INT/ISO) */
1152 	int error_count;		/* (return) number of ISO errors */
1153 	void *context;			/* (in) context for completion */
1154 	usb_complete_t complete;	/* (in) completion routine */
1155 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1156 					/* (in) ISO ONLY */
1157 };
1158 
1159 /* ----------------------------------------------------------------------- */
1160 
1161 /**
1162  * usb_fill_control_urb - initializes a control urb
1163  * @urb: pointer to the urb to initialize.
1164  * @dev: pointer to the struct usb_device for this urb.
1165  * @pipe: the endpoint pipe
1166  * @setup_packet: pointer to the setup_packet buffer
1167  * @transfer_buffer: pointer to the transfer buffer
1168  * @buffer_length: length of the transfer buffer
1169  * @complete_fn: pointer to the usb_complete_t function
1170  * @context: what to set the urb context to.
1171  *
1172  * Initializes a control urb with the proper information needed to submit
1173  * it to a device.
1174  */
1175 static inline void usb_fill_control_urb (struct urb *urb,
1176 					 struct usb_device *dev,
1177 					 unsigned int pipe,
1178 					 unsigned char *setup_packet,
1179 					 void *transfer_buffer,
1180 					 int buffer_length,
1181 					 usb_complete_t complete_fn,
1182 					 void *context)
1183 {
1184 	spin_lock_init(&urb->lock);
1185 	urb->dev = dev;
1186 	urb->pipe = pipe;
1187 	urb->setup_packet = setup_packet;
1188 	urb->transfer_buffer = transfer_buffer;
1189 	urb->transfer_buffer_length = buffer_length;
1190 	urb->complete = complete_fn;
1191 	urb->context = context;
1192 }
1193 
1194 /**
1195  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1196  * @urb: pointer to the urb to initialize.
1197  * @dev: pointer to the struct usb_device for this urb.
1198  * @pipe: the endpoint pipe
1199  * @transfer_buffer: pointer to the transfer buffer
1200  * @buffer_length: length of the transfer buffer
1201  * @complete_fn: pointer to the usb_complete_t function
1202  * @context: what to set the urb context to.
1203  *
1204  * Initializes a bulk urb with the proper information needed to submit it
1205  * to a device.
1206  */
1207 static inline void usb_fill_bulk_urb (struct urb *urb,
1208 				      struct usb_device *dev,
1209 				      unsigned int pipe,
1210 				      void *transfer_buffer,
1211 				      int buffer_length,
1212 				      usb_complete_t complete_fn,
1213 				      void *context)
1214 {
1215 	spin_lock_init(&urb->lock);
1216 	urb->dev = dev;
1217 	urb->pipe = pipe;
1218 	urb->transfer_buffer = transfer_buffer;
1219 	urb->transfer_buffer_length = buffer_length;
1220 	urb->complete = complete_fn;
1221 	urb->context = context;
1222 }
1223 
1224 /**
1225  * usb_fill_int_urb - macro to help initialize a interrupt urb
1226  * @urb: pointer to the urb to initialize.
1227  * @dev: pointer to the struct usb_device for this urb.
1228  * @pipe: the endpoint pipe
1229  * @transfer_buffer: pointer to the transfer buffer
1230  * @buffer_length: length of the transfer buffer
1231  * @complete_fn: pointer to the usb_complete_t function
1232  * @context: what to set the urb context to.
1233  * @interval: what to set the urb interval to, encoded like
1234  *	the endpoint descriptor's bInterval value.
1235  *
1236  * Initializes a interrupt urb with the proper information needed to submit
1237  * it to a device.
1238  * Note that high speed interrupt endpoints use a logarithmic encoding of
1239  * the endpoint interval, and express polling intervals in microframes
1240  * (eight per millisecond) rather than in frames (one per millisecond).
1241  */
1242 static inline void usb_fill_int_urb (struct urb *urb,
1243 				     struct usb_device *dev,
1244 				     unsigned int pipe,
1245 				     void *transfer_buffer,
1246 				     int buffer_length,
1247 				     usb_complete_t complete_fn,
1248 				     void *context,
1249 				     int interval)
1250 {
1251 	spin_lock_init(&urb->lock);
1252 	urb->dev = dev;
1253 	urb->pipe = pipe;
1254 	urb->transfer_buffer = transfer_buffer;
1255 	urb->transfer_buffer_length = buffer_length;
1256 	urb->complete = complete_fn;
1257 	urb->context = context;
1258 	if (dev->speed == USB_SPEED_HIGH)
1259 		urb->interval = 1 << (interval - 1);
1260 	else
1261 		urb->interval = interval;
1262 	urb->start_frame = -1;
1263 }
1264 
1265 extern void usb_init_urb(struct urb *urb);
1266 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1267 extern void usb_free_urb(struct urb *urb);
1268 #define usb_put_urb usb_free_urb
1269 extern struct urb *usb_get_urb(struct urb *urb);
1270 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1271 extern int usb_unlink_urb(struct urb *urb);
1272 extern void usb_kill_urb(struct urb *urb);
1273 
1274 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1275 	gfp_t mem_flags, dma_addr_t *dma);
1276 void usb_buffer_free (struct usb_device *dev, size_t size,
1277 	void *addr, dma_addr_t dma);
1278 
1279 #if 0
1280 struct urb *usb_buffer_map (struct urb *urb);
1281 void usb_buffer_dmasync (struct urb *urb);
1282 void usb_buffer_unmap (struct urb *urb);
1283 #endif
1284 
1285 struct scatterlist;
1286 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1287 		      struct scatterlist *sg, int nents);
1288 #if 0
1289 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1290 			   struct scatterlist *sg, int n_hw_ents);
1291 #endif
1292 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1293 			 struct scatterlist *sg, int n_hw_ents);
1294 
1295 /*-------------------------------------------------------------------*
1296  *                         SYNCHRONOUS CALL SUPPORT                  *
1297  *-------------------------------------------------------------------*/
1298 
1299 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1300 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1301 	void *data, __u16 size, int timeout);
1302 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1303 	void *data, int len, int *actual_length, int timeout);
1304 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1305 	void *data, int len, int *actual_length,
1306 	int timeout);
1307 
1308 /* wrappers around usb_control_msg() for the most common standard requests */
1309 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1310 	unsigned char descindex, void *buf, int size);
1311 extern int usb_get_status(struct usb_device *dev,
1312 	int type, int target, void *data);
1313 extern int usb_string(struct usb_device *dev, int index,
1314 	char *buf, size_t size);
1315 
1316 /* wrappers that also update important state inside usbcore */
1317 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1318 extern int usb_reset_configuration(struct usb_device *dev);
1319 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1320 
1321 /* this request isn't really synchronous, but it belongs with the others */
1322 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1323 
1324 /*
1325  * timeouts, in milliseconds, used for sending/receiving control messages
1326  * they typically complete within a few frames (msec) after they're issued
1327  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1328  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1329  */
1330 #define USB_CTRL_GET_TIMEOUT	5000
1331 #define USB_CTRL_SET_TIMEOUT	5000
1332 
1333 
1334 /**
1335  * struct usb_sg_request - support for scatter/gather I/O
1336  * @status: zero indicates success, else negative errno
1337  * @bytes: counts bytes transferred.
1338  *
1339  * These requests are initialized using usb_sg_init(), and then are used
1340  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1341  * members of the request object aren't for driver access.
1342  *
1343  * The status and bytecount values are valid only after usb_sg_wait()
1344  * returns.  If the status is zero, then the bytecount matches the total
1345  * from the request.
1346  *
1347  * After an error completion, drivers may need to clear a halt condition
1348  * on the endpoint.
1349  */
1350 struct usb_sg_request {
1351 	int			status;
1352 	size_t			bytes;
1353 
1354 	/*
1355 	 * members below are private: to usbcore,
1356 	 * and are not provided for driver access!
1357 	 */
1358 	spinlock_t		lock;
1359 
1360 	struct usb_device	*dev;
1361 	int			pipe;
1362 	struct scatterlist	*sg;
1363 	int			nents;
1364 
1365 	int			entries;
1366 	struct urb		**urbs;
1367 
1368 	int			count;
1369 	struct completion	complete;
1370 };
1371 
1372 int usb_sg_init (
1373 	struct usb_sg_request	*io,
1374 	struct usb_device	*dev,
1375 	unsigned		pipe,
1376 	unsigned		period,
1377 	struct scatterlist	*sg,
1378 	int			nents,
1379 	size_t			length,
1380 	gfp_t			mem_flags
1381 );
1382 void usb_sg_cancel (struct usb_sg_request *io);
1383 void usb_sg_wait (struct usb_sg_request *io);
1384 
1385 
1386 /* ----------------------------------------------------------------------- */
1387 
1388 /*
1389  * For various legacy reasons, Linux has a small cookie that's paired with
1390  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1391  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1392  * an unsigned int encoded as:
1393  *
1394  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1395  *					 1 = Device-to-Host [In] ...
1396  *					like endpoint bEndpointAddress)
1397  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1398  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1399  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1400  *					 10 = control, 11 = bulk)
1401  *
1402  * Given the device address and endpoint descriptor, pipes are redundant.
1403  */
1404 
1405 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1406 /* (yet ... they're the values used by usbfs) */
1407 #define PIPE_ISOCHRONOUS		0
1408 #define PIPE_INTERRUPT			1
1409 #define PIPE_CONTROL			2
1410 #define PIPE_BULK			3
1411 
1412 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1413 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1414 
1415 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1416 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1417 
1418 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1419 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1420 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1421 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1422 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1423 
1424 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1425 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1426 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1427 #define usb_settoggle(dev, ep, out, bit) \
1428 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1429 		 ((bit) << (ep)))
1430 
1431 
1432 static inline unsigned int __create_pipe(struct usb_device *dev,
1433 		unsigned int endpoint)
1434 {
1435 	return (dev->devnum << 8) | (endpoint << 15);
1436 }
1437 
1438 /* Create various pipes... */
1439 #define usb_sndctrlpipe(dev,endpoint)	\
1440 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1441 #define usb_rcvctrlpipe(dev,endpoint)	\
1442 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1443 #define usb_sndisocpipe(dev,endpoint)	\
1444 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1445 #define usb_rcvisocpipe(dev,endpoint)	\
1446 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1447 #define usb_sndbulkpipe(dev,endpoint)	\
1448 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1449 #define usb_rcvbulkpipe(dev,endpoint)	\
1450 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1451 #define usb_sndintpipe(dev,endpoint)	\
1452 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1453 #define usb_rcvintpipe(dev,endpoint)	\
1454 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1455 
1456 /*-------------------------------------------------------------------------*/
1457 
1458 static inline __u16
1459 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1460 {
1461 	struct usb_host_endpoint	*ep;
1462 	unsigned			epnum = usb_pipeendpoint(pipe);
1463 
1464 	if (is_out) {
1465 		WARN_ON(usb_pipein(pipe));
1466 		ep = udev->ep_out[epnum];
1467 	} else {
1468 		WARN_ON(usb_pipeout(pipe));
1469 		ep = udev->ep_in[epnum];
1470 	}
1471 	if (!ep)
1472 		return 0;
1473 
1474 	/* NOTE:  only 0x07ff bits are for packet size... */
1475 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1476 }
1477 
1478 /* ----------------------------------------------------------------------- */
1479 
1480 /* Events from the usb core */
1481 #define USB_DEVICE_ADD		0x0001
1482 #define USB_DEVICE_REMOVE	0x0002
1483 #define USB_BUS_ADD		0x0003
1484 #define USB_BUS_REMOVE		0x0004
1485 extern void usb_register_notify(struct notifier_block *nb);
1486 extern void usb_unregister_notify(struct notifier_block *nb);
1487 
1488 #ifdef DEBUG
1489 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1490 	__FILE__ , ## arg)
1491 #else
1492 #define dbg(format, arg...) do {} while (0)
1493 #endif
1494 
1495 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1496 	__FILE__ , ## arg)
1497 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1498 	__FILE__ , ## arg)
1499 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1500 	__FILE__ , ## arg)
1501 
1502 
1503 #endif  /* __KERNEL__ */
1504 
1505 #endif
1506