xref: /linux-6.15/include/linux/usb.h (revision e8fa600e)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *	with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  *
61  * USB requests are always queued to a given endpoint, identified by a
62  * descriptor within an active interface in a given USB configuration.
63  */
64 struct usb_host_endpoint {
65 	struct usb_endpoint_descriptor		desc;
66 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
67 	struct list_head		urb_list;
68 	void				*hcpriv;
69 	struct ep_device		*ep_dev;	/* For sysfs info */
70 
71 	unsigned char *extra;   /* Extra descriptors */
72 	int extralen;
73 	int enabled;
74 };
75 
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 	struct usb_interface_descriptor	desc;
79 
80 	int extralen;
81 	unsigned char *extra;   /* Extra descriptors */
82 
83 	/* array of desc.bNumEndpoint endpoints associated with this
84 	 * interface setting.  these will be in no particular order.
85 	 */
86 	struct usb_host_endpoint *endpoint;
87 
88 	char *string;		/* iInterface string, if present */
89 };
90 
91 enum usb_interface_condition {
92 	USB_INTERFACE_UNBOUND = 0,
93 	USB_INTERFACE_BINDING,
94 	USB_INTERFACE_BOUND,
95 	USB_INTERFACE_UNBINDING,
96 };
97 
98 /**
99  * struct usb_interface - what usb device drivers talk to
100  * @altsetting: array of interface structures, one for each alternate
101  *	setting that may be selected.  Each one includes a set of
102  *	endpoint configurations.  They will be in no particular order.
103  * @cur_altsetting: the current altsetting.
104  * @num_altsetting: number of altsettings defined.
105  * @intf_assoc: interface association descriptor
106  * @minor: the minor number assigned to this interface, if this
107  *	interface is bound to a driver that uses the USB major number.
108  *	If this interface does not use the USB major, this field should
109  *	be unused.  The driver should set this value in the probe()
110  *	function of the driver, after it has been assigned a minor
111  *	number from the USB core by calling usb_register_dev().
112  * @condition: binding state of the interface: not bound, binding
113  *	(in probe()), bound to a driver, or unbinding (in disconnect())
114  * @sysfs_files_created: sysfs attributes exist
115  * @ep_devs_created: endpoint child pseudo-devices exist
116  * @unregistering: flag set when the interface is being unregistered
117  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118  *	capability during autosuspend.
119  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120  *	has been deferred.
121  * @needs_binding: flag set when the driver should be re-probed or unbound
122  *	following a reset or suspend operation it doesn't support.
123  * @dev: driver model's view of this device
124  * @usb_dev: if an interface is bound to the USB major, this will point
125  *	to the sysfs representation for that device.
126  * @pm_usage_cnt: PM usage counter for this interface
127  * @reset_ws: Used for scheduling resets from atomic context.
128  * @reset_running: set to 1 if the interface is currently running a
129  *      queued reset so that usb_cancel_queued_reset() doesn't try to
130  *      remove from the workqueue when running inside the worker
131  *      thread. See __usb_queue_reset_device().
132  * @resetting_device: USB core reset the device, so use alt setting 0 as
133  *	current; needs bandwidth alloc after reset.
134  *
135  * USB device drivers attach to interfaces on a physical device.  Each
136  * interface encapsulates a single high level function, such as feeding
137  * an audio stream to a speaker or reporting a change in a volume control.
138  * Many USB devices only have one interface.  The protocol used to talk to
139  * an interface's endpoints can be defined in a usb "class" specification,
140  * or by a product's vendor.  The (default) control endpoint is part of
141  * every interface, but is never listed among the interface's descriptors.
142  *
143  * The driver that is bound to the interface can use standard driver model
144  * calls such as dev_get_drvdata() on the dev member of this structure.
145  *
146  * Each interface may have alternate settings.  The initial configuration
147  * of a device sets altsetting 0, but the device driver can change
148  * that setting using usb_set_interface().  Alternate settings are often
149  * used to control the use of periodic endpoints, such as by having
150  * different endpoints use different amounts of reserved USB bandwidth.
151  * All standards-conformant USB devices that use isochronous endpoints
152  * will use them in non-default settings.
153  *
154  * The USB specification says that alternate setting numbers must run from
155  * 0 to one less than the total number of alternate settings.  But some
156  * devices manage to mess this up, and the structures aren't necessarily
157  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
158  * look up an alternate setting in the altsetting array based on its number.
159  */
160 struct usb_interface {
161 	/* array of alternate settings for this interface,
162 	 * stored in no particular order */
163 	struct usb_host_interface *altsetting;
164 
165 	struct usb_host_interface *cur_altsetting;	/* the currently
166 					 * active alternate setting */
167 	unsigned num_altsetting;	/* number of alternate settings */
168 
169 	/* If there is an interface association descriptor then it will list
170 	 * the associated interfaces */
171 	struct usb_interface_assoc_descriptor *intf_assoc;
172 
173 	int minor;			/* minor number this interface is
174 					 * bound to */
175 	enum usb_interface_condition condition;		/* state of binding */
176 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
177 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
178 	unsigned unregistering:1;	/* unregistration is in progress */
179 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
180 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
181 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
182 	unsigned reset_running:1;
183 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
184 
185 	struct device dev;		/* interface specific device info */
186 	struct device *usb_dev;
187 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
188 	struct work_struct reset_ws;	/* for resets in atomic context */
189 };
190 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
191 
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 	return dev_get_drvdata(&intf->dev);
195 }
196 
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 	dev_set_drvdata(&intf->dev, data);
200 }
201 
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204 
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES	32
207 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
208 
209 /**
210  * struct usb_interface_cache - long-term representation of a device interface
211  * @num_altsetting: number of altsettings defined.
212  * @ref: reference counter.
213  * @altsetting: variable-length array of interface structures, one for
214  *	each alternate setting that may be selected.  Each one includes a
215  *	set of endpoint configurations.  They will be in no particular order.
216  *
217  * These structures persist for the lifetime of a usb_device, unlike
218  * struct usb_interface (which persists only as long as its configuration
219  * is installed).  The altsetting arrays can be accessed through these
220  * structures at any time, permitting comparison of configurations and
221  * providing support for the /proc/bus/usb/devices pseudo-file.
222  */
223 struct usb_interface_cache {
224 	unsigned num_altsetting;	/* number of alternate settings */
225 	struct kref ref;		/* reference counter */
226 
227 	/* variable-length array of alternate settings for this interface,
228 	 * stored in no particular order */
229 	struct usb_host_interface altsetting[0];
230 };
231 #define	ref_to_usb_interface_cache(r) \
232 		container_of(r, struct usb_interface_cache, ref)
233 #define	altsetting_to_usb_interface_cache(a) \
234 		container_of(a, struct usb_interface_cache, altsetting[0])
235 
236 /**
237  * struct usb_host_config - representation of a device's configuration
238  * @desc: the device's configuration descriptor.
239  * @string: pointer to the cached version of the iConfiguration string, if
240  *	present for this configuration.
241  * @intf_assoc: list of any interface association descriptors in this config
242  * @interface: array of pointers to usb_interface structures, one for each
243  *	interface in the configuration.  The number of interfaces is stored
244  *	in desc.bNumInterfaces.  These pointers are valid only while the
245  *	the configuration is active.
246  * @intf_cache: array of pointers to usb_interface_cache structures, one
247  *	for each interface in the configuration.  These structures exist
248  *	for the entire life of the device.
249  * @extra: pointer to buffer containing all extra descriptors associated
250  *	with this configuration (those preceding the first interface
251  *	descriptor).
252  * @extralen: length of the extra descriptors buffer.
253  *
254  * USB devices may have multiple configurations, but only one can be active
255  * at any time.  Each encapsulates a different operational environment;
256  * for example, a dual-speed device would have separate configurations for
257  * full-speed and high-speed operation.  The number of configurations
258  * available is stored in the device descriptor as bNumConfigurations.
259  *
260  * A configuration can contain multiple interfaces.  Each corresponds to
261  * a different function of the USB device, and all are available whenever
262  * the configuration is active.  The USB standard says that interfaces
263  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
264  * of devices get this wrong.  In addition, the interface array is not
265  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
266  * look up an interface entry based on its number.
267  *
268  * Device drivers should not attempt to activate configurations.  The choice
269  * of which configuration to install is a policy decision based on such
270  * considerations as available power, functionality provided, and the user's
271  * desires (expressed through userspace tools).  However, drivers can call
272  * usb_reset_configuration() to reinitialize the current configuration and
273  * all its interfaces.
274  */
275 struct usb_host_config {
276 	struct usb_config_descriptor	desc;
277 
278 	char *string;		/* iConfiguration string, if present */
279 
280 	/* List of any Interface Association Descriptors in this
281 	 * configuration. */
282 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283 
284 	/* the interfaces associated with this configuration,
285 	 * stored in no particular order */
286 	struct usb_interface *interface[USB_MAXINTERFACES];
287 
288 	/* Interface information available even when this is not the
289 	 * active configuration */
290 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291 
292 	unsigned char *extra;   /* Extra descriptors */
293 	int extralen;
294 };
295 
296 /* USB2.0 and USB3.0 device BOS descriptor set */
297 struct usb_host_bos {
298 	struct usb_bos_descriptor	*desc;
299 
300 	/* wireless cap descriptor is handled by wusb */
301 	struct usb_ext_cap_descriptor	*ext_cap;
302 	struct usb_ss_cap_descriptor	*ss_cap;
303 	struct usb_ss_container_id_descriptor	*ss_id;
304 };
305 
306 int __usb_get_extra_descriptor(char *buffer, unsigned size,
307 	unsigned char type, void **ptr);
308 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
309 				__usb_get_extra_descriptor((ifpoint)->extra, \
310 				(ifpoint)->extralen, \
311 				type, (void **)ptr)
312 
313 /* ----------------------------------------------------------------------- */
314 
315 /* USB device number allocation bitmap */
316 struct usb_devmap {
317 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
318 };
319 
320 /*
321  * Allocated per bus (tree of devices) we have:
322  */
323 struct usb_bus {
324 	struct device *controller;	/* host/master side hardware */
325 	int busnum;			/* Bus number (in order of reg) */
326 	const char *bus_name;		/* stable id (PCI slot_name etc) */
327 	u8 uses_dma;			/* Does the host controller use DMA? */
328 	u8 uses_pio_for_control;	/*
329 					 * Does the host controller use PIO
330 					 * for control transfers?
331 					 */
332 	u8 otg_port;			/* 0, or number of OTG/HNP port */
333 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
334 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
335 	unsigned no_stop_on_short:1;    /*
336 					 * Quirk: some controllers don't stop
337 					 * the ep queue on a short transfer
338 					 * with the URB_SHORT_NOT_OK flag set.
339 					 */
340 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
341 
342 	int devnum_next;		/* Next open device number in
343 					 * round-robin allocation */
344 
345 	struct usb_devmap devmap;	/* device address allocation map */
346 	struct usb_device *root_hub;	/* Root hub */
347 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
348 	struct list_head bus_list;	/* list of busses */
349 
350 	int bandwidth_allocated;	/* on this bus: how much of the time
351 					 * reserved for periodic (intr/iso)
352 					 * requests is used, on average?
353 					 * Units: microseconds/frame.
354 					 * Limits: Full/low speed reserve 90%,
355 					 * while high speed reserves 80%.
356 					 */
357 	int bandwidth_int_reqs;		/* number of Interrupt requests */
358 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
359 
360 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
361 	struct mon_bus *mon_bus;	/* non-null when associated */
362 	int monitored;			/* non-zero when monitored */
363 #endif
364 };
365 
366 /* ----------------------------------------------------------------------- */
367 
368 /* This is arbitrary.
369  * From USB 2.0 spec Table 11-13, offset 7, a hub can
370  * have up to 255 ports. The most yet reported is 10.
371  *
372  * Current Wireless USB host hardware (Intel i1480 for example) allows
373  * up to 22 devices to connect. Upcoming hardware might raise that
374  * limit. Because the arrays need to add a bit for hub status data, we
375  * do 31, so plus one evens out to four bytes.
376  */
377 #define USB_MAXCHILDREN		(31)
378 
379 struct usb_tt;
380 
381 enum usb_device_removable {
382 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
383 	USB_DEVICE_REMOVABLE,
384 	USB_DEVICE_FIXED,
385 };
386 
387 /*
388  * USB 3.0 Link Power Management (LPM) parameters.
389  *
390  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
391  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
392  * All three are stored in nanoseconds.
393  */
394 struct usb3_lpm_parameters {
395 	/*
396 	 * Maximum exit latency (MEL) for the host to send a packet to the
397 	 * device (either a Ping for isoc endpoints, or a data packet for
398 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
399 	 * in the path to transition the links to U0.
400 	 */
401 	unsigned int mel;
402 	/*
403 	 * Maximum exit latency for a device-initiated LPM transition to bring
404 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
405 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
406 	 */
407 	unsigned int pel;
408 
409 	/*
410 	 * The System Exit Latency (SEL) includes PEL, and three other
411 	 * latencies.  After a device initiates a U0 transition, it will take
412 	 * some time from when the device sends the ERDY to when it will finally
413 	 * receive the data packet.  Basically, SEL should be the worse-case
414 	 * latency from when a device starts initiating a U0 transition to when
415 	 * it will get data.
416 	 */
417 	unsigned int sel;
418 	/*
419 	 * The idle timeout value that is currently programmed into the parent
420 	 * hub for this device.  When the timer counts to zero, the parent hub
421 	 * will initiate an LPM transition to either U1 or U2.
422 	 */
423 	int timeout;
424 };
425 
426 /**
427  * struct usb_device - kernel's representation of a USB device
428  * @devnum: device number; address on a USB bus
429  * @devpath: device ID string for use in messages (e.g., /port/...)
430  * @route: tree topology hex string for use with xHCI
431  * @state: device state: configured, not attached, etc.
432  * @speed: device speed: high/full/low (or error)
433  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
434  * @ttport: device port on that tt hub
435  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
436  * @parent: our hub, unless we're the root
437  * @bus: bus we're part of
438  * @ep0: endpoint 0 data (default control pipe)
439  * @dev: generic device interface
440  * @descriptor: USB device descriptor
441  * @bos: USB device BOS descriptor set
442  * @config: all of the device's configs
443  * @actconfig: the active configuration
444  * @ep_in: array of IN endpoints
445  * @ep_out: array of OUT endpoints
446  * @rawdescriptors: raw descriptors for each config
447  * @bus_mA: Current available from the bus
448  * @portnum: parent port number (origin 1)
449  * @level: number of USB hub ancestors
450  * @can_submit: URBs may be submitted
451  * @persist_enabled:  USB_PERSIST enabled for this device
452  * @have_langid: whether string_langid is valid
453  * @authorized: policy has said we can use it;
454  *	(user space) policy determines if we authorize this device to be
455  *	used or not. By default, wired USB devices are authorized.
456  *	WUSB devices are not, until we authorize them from user space.
457  *	FIXME -- complete doc
458  * @authenticated: Crypto authentication passed
459  * @wusb: device is Wireless USB
460  * @lpm_capable: device supports LPM
461  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
462  * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
463  * @string_langid: language ID for strings
464  * @product: iProduct string, if present (static)
465  * @manufacturer: iManufacturer string, if present (static)
466  * @serial: iSerialNumber string, if present (static)
467  * @filelist: usbfs files that are open to this device
468  * @usb_classdev: USB class device that was created for usbfs device
469  *	access from userspace
470  * @usbfs_dentry: usbfs dentry entry for the device
471  * @maxchild: number of ports if hub
472  * @children: child devices - USB devices that are attached to this hub
473  * @quirks: quirks of the whole device
474  * @urbnum: number of URBs submitted for the whole device
475  * @active_duration: total time device is not suspended
476  * @connect_time: time device was first connected
477  * @do_remote_wakeup:  remote wakeup should be enabled
478  * @reset_resume: needs reset instead of resume
479  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
480  *	specific data for the device.
481  * @slot_id: Slot ID assigned by xHCI
482  * @removable: Device can be physically removed from this port
483  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
484  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
485  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
486  *	to keep track of the number of functions that require USB 3.0 Link Power
487  *	Management to be disabled for this usb_device.  This count should only
488  *	be manipulated by those functions, with the bandwidth_mutex is held.
489  *
490  * Notes:
491  * Usbcore drivers should not set usbdev->state directly.  Instead use
492  * usb_set_device_state().
493  */
494 struct usb_device {
495 	int		devnum;
496 	char		devpath[16];
497 	u32		route;
498 	enum usb_device_state	state;
499 	enum usb_device_speed	speed;
500 
501 	struct usb_tt	*tt;
502 	int		ttport;
503 
504 	unsigned int toggle[2];
505 
506 	struct usb_device *parent;
507 	struct usb_bus *bus;
508 	struct usb_host_endpoint ep0;
509 
510 	struct device dev;
511 
512 	struct usb_device_descriptor descriptor;
513 	struct usb_host_bos *bos;
514 	struct usb_host_config *config;
515 
516 	struct usb_host_config *actconfig;
517 	struct usb_host_endpoint *ep_in[16];
518 	struct usb_host_endpoint *ep_out[16];
519 
520 	char **rawdescriptors;
521 
522 	unsigned short bus_mA;
523 	u8 portnum;
524 	u8 level;
525 
526 	unsigned can_submit:1;
527 	unsigned persist_enabled:1;
528 	unsigned have_langid:1;
529 	unsigned authorized:1;
530 	unsigned authenticated:1;
531 	unsigned wusb:1;
532 	unsigned lpm_capable:1;
533 	unsigned usb2_hw_lpm_capable:1;
534 	unsigned usb2_hw_lpm_enabled:1;
535 	unsigned usb3_lpm_enabled:1;
536 	int string_langid;
537 
538 	/* static strings from the device */
539 	char *product;
540 	char *manufacturer;
541 	char *serial;
542 
543 	struct list_head filelist;
544 
545 	int maxchild;
546 	struct usb_device **children;
547 
548 	u32 quirks;
549 	atomic_t urbnum;
550 
551 	unsigned long active_duration;
552 
553 #ifdef CONFIG_PM
554 	unsigned long connect_time;
555 
556 	unsigned do_remote_wakeup:1;
557 	unsigned reset_resume:1;
558 #endif
559 	struct wusb_dev *wusb_dev;
560 	int slot_id;
561 	enum usb_device_removable removable;
562 	struct usb3_lpm_parameters u1_params;
563 	struct usb3_lpm_parameters u2_params;
564 	unsigned lpm_disable_count;
565 };
566 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
567 
568 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
569 {
570 	return to_usb_device(intf->dev.parent);
571 }
572 
573 extern struct usb_device *usb_get_dev(struct usb_device *dev);
574 extern void usb_put_dev(struct usb_device *dev);
575 
576 /* USB device locking */
577 #define usb_lock_device(udev)		device_lock(&(udev)->dev)
578 #define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
579 #define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
580 extern int usb_lock_device_for_reset(struct usb_device *udev,
581 				     const struct usb_interface *iface);
582 
583 /* USB port reset for device reinitialization */
584 extern int usb_reset_device(struct usb_device *dev);
585 extern void usb_queue_reset_device(struct usb_interface *dev);
586 
587 
588 /* USB autosuspend and autoresume */
589 #ifdef CONFIG_USB_SUSPEND
590 extern void usb_enable_autosuspend(struct usb_device *udev);
591 extern void usb_disable_autosuspend(struct usb_device *udev);
592 
593 extern int usb_autopm_get_interface(struct usb_interface *intf);
594 extern void usb_autopm_put_interface(struct usb_interface *intf);
595 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
596 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
597 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
598 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
599 
600 static inline void usb_mark_last_busy(struct usb_device *udev)
601 {
602 	pm_runtime_mark_last_busy(&udev->dev);
603 }
604 
605 #else
606 
607 static inline int usb_enable_autosuspend(struct usb_device *udev)
608 { return 0; }
609 static inline int usb_disable_autosuspend(struct usb_device *udev)
610 { return 0; }
611 
612 static inline int usb_autopm_get_interface(struct usb_interface *intf)
613 { return 0; }
614 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
615 { return 0; }
616 
617 static inline void usb_autopm_put_interface(struct usb_interface *intf)
618 { }
619 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
620 { }
621 static inline void usb_autopm_get_interface_no_resume(
622 		struct usb_interface *intf)
623 { }
624 static inline void usb_autopm_put_interface_no_suspend(
625 		struct usb_interface *intf)
626 { }
627 static inline void usb_mark_last_busy(struct usb_device *udev)
628 { }
629 #endif
630 
631 extern int usb_disable_lpm(struct usb_device *udev);
632 extern void usb_enable_lpm(struct usb_device *udev);
633 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
634 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
635 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
636 
637 extern int usb_disable_ltm(struct usb_device *udev);
638 extern void usb_enable_ltm(struct usb_device *udev);
639 
640 static inline bool usb_device_supports_ltm(struct usb_device *udev)
641 {
642 	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
643 		return false;
644 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
645 }
646 
647 
648 /*-------------------------------------------------------------------------*/
649 
650 /* for drivers using iso endpoints */
651 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
652 
653 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
654 extern int usb_alloc_streams(struct usb_interface *interface,
655 		struct usb_host_endpoint **eps, unsigned int num_eps,
656 		unsigned int num_streams, gfp_t mem_flags);
657 
658 /* Reverts a group of bulk endpoints back to not using stream IDs. */
659 extern void usb_free_streams(struct usb_interface *interface,
660 		struct usb_host_endpoint **eps, unsigned int num_eps,
661 		gfp_t mem_flags);
662 
663 /* used these for multi-interface device registration */
664 extern int usb_driver_claim_interface(struct usb_driver *driver,
665 			struct usb_interface *iface, void *priv);
666 
667 /**
668  * usb_interface_claimed - returns true iff an interface is claimed
669  * @iface: the interface being checked
670  *
671  * Returns true (nonzero) iff the interface is claimed, else false (zero).
672  * Callers must own the driver model's usb bus readlock.  So driver
673  * probe() entries don't need extra locking, but other call contexts
674  * may need to explicitly claim that lock.
675  *
676  */
677 static inline int usb_interface_claimed(struct usb_interface *iface)
678 {
679 	return (iface->dev.driver != NULL);
680 }
681 
682 extern void usb_driver_release_interface(struct usb_driver *driver,
683 			struct usb_interface *iface);
684 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
685 					 const struct usb_device_id *id);
686 extern int usb_match_one_id(struct usb_interface *interface,
687 			    const struct usb_device_id *id);
688 
689 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
690 		int minor);
691 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
692 		unsigned ifnum);
693 extern struct usb_host_interface *usb_altnum_to_altsetting(
694 		const struct usb_interface *intf, unsigned int altnum);
695 extern struct usb_host_interface *usb_find_alt_setting(
696 		struct usb_host_config *config,
697 		unsigned int iface_num,
698 		unsigned int alt_num);
699 
700 
701 /**
702  * usb_make_path - returns stable device path in the usb tree
703  * @dev: the device whose path is being constructed
704  * @buf: where to put the string
705  * @size: how big is "buf"?
706  *
707  * Returns length of the string (> 0) or negative if size was too small.
708  *
709  * This identifier is intended to be "stable", reflecting physical paths in
710  * hardware such as physical bus addresses for host controllers or ports on
711  * USB hubs.  That makes it stay the same until systems are physically
712  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
713  * controllers.  Adding and removing devices, including virtual root hubs
714  * in host controller driver modules, does not change these path identifiers;
715  * neither does rebooting or re-enumerating.  These are more useful identifiers
716  * than changeable ("unstable") ones like bus numbers or device addresses.
717  *
718  * With a partial exception for devices connected to USB 2.0 root hubs, these
719  * identifiers are also predictable.  So long as the device tree isn't changed,
720  * plugging any USB device into a given hub port always gives it the same path.
721  * Because of the use of "companion" controllers, devices connected to ports on
722  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
723  * high speed, and a different one if they are full or low speed.
724  */
725 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
726 {
727 	int actual;
728 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
729 			  dev->devpath);
730 	return (actual >= (int)size) ? -1 : actual;
731 }
732 
733 /*-------------------------------------------------------------------------*/
734 
735 #define USB_DEVICE_ID_MATCH_DEVICE \
736 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
737 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
738 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
739 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
740 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
741 #define USB_DEVICE_ID_MATCH_DEV_INFO \
742 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
743 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
744 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
745 #define USB_DEVICE_ID_MATCH_INT_INFO \
746 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
747 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
748 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
749 
750 /**
751  * USB_DEVICE - macro used to describe a specific usb device
752  * @vend: the 16 bit USB Vendor ID
753  * @prod: the 16 bit USB Product ID
754  *
755  * This macro is used to create a struct usb_device_id that matches a
756  * specific device.
757  */
758 #define USB_DEVICE(vend, prod) \
759 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
760 	.idVendor = (vend), \
761 	.idProduct = (prod)
762 /**
763  * USB_DEVICE_VER - describe a specific usb device with a version range
764  * @vend: the 16 bit USB Vendor ID
765  * @prod: the 16 bit USB Product ID
766  * @lo: the bcdDevice_lo value
767  * @hi: the bcdDevice_hi value
768  *
769  * This macro is used to create a struct usb_device_id that matches a
770  * specific device, with a version range.
771  */
772 #define USB_DEVICE_VER(vend, prod, lo, hi) \
773 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
774 	.idVendor = (vend), \
775 	.idProduct = (prod), \
776 	.bcdDevice_lo = (lo), \
777 	.bcdDevice_hi = (hi)
778 
779 /**
780  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
781  * @vend: the 16 bit USB Vendor ID
782  * @prod: the 16 bit USB Product ID
783  * @pr: bInterfaceProtocol value
784  *
785  * This macro is used to create a struct usb_device_id that matches a
786  * specific interface protocol of devices.
787  */
788 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
789 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
790 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
791 	.idVendor = (vend), \
792 	.idProduct = (prod), \
793 	.bInterfaceProtocol = (pr)
794 
795 /**
796  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
797  * @vend: the 16 bit USB Vendor ID
798  * @prod: the 16 bit USB Product ID
799  * @num: bInterfaceNumber value
800  *
801  * This macro is used to create a struct usb_device_id that matches a
802  * specific interface number of devices.
803  */
804 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
805 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
806 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
807 	.idVendor = (vend), \
808 	.idProduct = (prod), \
809 	.bInterfaceNumber = (num)
810 
811 /**
812  * USB_DEVICE_INFO - macro used to describe a class of usb devices
813  * @cl: bDeviceClass value
814  * @sc: bDeviceSubClass value
815  * @pr: bDeviceProtocol value
816  *
817  * This macro is used to create a struct usb_device_id that matches a
818  * specific class of devices.
819  */
820 #define USB_DEVICE_INFO(cl, sc, pr) \
821 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
822 	.bDeviceClass = (cl), \
823 	.bDeviceSubClass = (sc), \
824 	.bDeviceProtocol = (pr)
825 
826 /**
827  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
828  * @cl: bInterfaceClass value
829  * @sc: bInterfaceSubClass value
830  * @pr: bInterfaceProtocol value
831  *
832  * This macro is used to create a struct usb_device_id that matches a
833  * specific class of interfaces.
834  */
835 #define USB_INTERFACE_INFO(cl, sc, pr) \
836 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
837 	.bInterfaceClass = (cl), \
838 	.bInterfaceSubClass = (sc), \
839 	.bInterfaceProtocol = (pr)
840 
841 /**
842  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
843  * @vend: the 16 bit USB Vendor ID
844  * @prod: the 16 bit USB Product ID
845  * @cl: bInterfaceClass value
846  * @sc: bInterfaceSubClass value
847  * @pr: bInterfaceProtocol value
848  *
849  * This macro is used to create a struct usb_device_id that matches a
850  * specific device with a specific class of interfaces.
851  *
852  * This is especially useful when explicitly matching devices that have
853  * vendor specific bDeviceClass values, but standards-compliant interfaces.
854  */
855 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
856 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
857 		| USB_DEVICE_ID_MATCH_DEVICE, \
858 	.idVendor = (vend), \
859 	.idProduct = (prod), \
860 	.bInterfaceClass = (cl), \
861 	.bInterfaceSubClass = (sc), \
862 	.bInterfaceProtocol = (pr)
863 
864 /**
865  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
866  * @vend: the 16 bit USB Vendor ID
867  * @cl: bInterfaceClass value
868  * @sc: bInterfaceSubClass value
869  * @pr: bInterfaceProtocol value
870  *
871  * This macro is used to create a struct usb_device_id that matches a
872  * specific vendor with a specific class of interfaces.
873  *
874  * This is especially useful when explicitly matching devices that have
875  * vendor specific bDeviceClass values, but standards-compliant interfaces.
876  */
877 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
878 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
879 		| USB_DEVICE_ID_MATCH_VENDOR, \
880 	.idVendor = (vend), \
881 	.bInterfaceClass = (cl), \
882 	.bInterfaceSubClass = (sc), \
883 	.bInterfaceProtocol = (pr)
884 
885 /* ----------------------------------------------------------------------- */
886 
887 /* Stuff for dynamic usb ids */
888 struct usb_dynids {
889 	spinlock_t lock;
890 	struct list_head list;
891 };
892 
893 struct usb_dynid {
894 	struct list_head node;
895 	struct usb_device_id id;
896 };
897 
898 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
899 				struct device_driver *driver,
900 				const char *buf, size_t count);
901 
902 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
903 
904 /**
905  * struct usbdrv_wrap - wrapper for driver-model structure
906  * @driver: The driver-model core driver structure.
907  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
908  */
909 struct usbdrv_wrap {
910 	struct device_driver driver;
911 	int for_devices;
912 };
913 
914 /**
915  * struct usb_driver - identifies USB interface driver to usbcore
916  * @name: The driver name should be unique among USB drivers,
917  *	and should normally be the same as the module name.
918  * @probe: Called to see if the driver is willing to manage a particular
919  *	interface on a device.  If it is, probe returns zero and uses
920  *	usb_set_intfdata() to associate driver-specific data with the
921  *	interface.  It may also use usb_set_interface() to specify the
922  *	appropriate altsetting.  If unwilling to manage the interface,
923  *	return -ENODEV, if genuine IO errors occurred, an appropriate
924  *	negative errno value.
925  * @disconnect: Called when the interface is no longer accessible, usually
926  *	because its device has been (or is being) disconnected or the
927  *	driver module is being unloaded.
928  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
929  *	the "usbfs" filesystem.  This lets devices provide ways to
930  *	expose information to user space regardless of where they
931  *	do (or don't) show up otherwise in the filesystem.
932  * @suspend: Called when the device is going to be suspended by the system.
933  * @resume: Called when the device is being resumed by the system.
934  * @reset_resume: Called when the suspended device has been reset instead
935  *	of being resumed.
936  * @pre_reset: Called by usb_reset_device() when the device is about to be
937  *	reset.  This routine must not return until the driver has no active
938  *	URBs for the device, and no more URBs may be submitted until the
939  *	post_reset method is called.
940  * @post_reset: Called by usb_reset_device() after the device
941  *	has been reset
942  * @id_table: USB drivers use ID table to support hotplugging.
943  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
944  *	or your driver's probe function will never get called.
945  * @dynids: used internally to hold the list of dynamically added device
946  *	ids for this driver.
947  * @drvwrap: Driver-model core structure wrapper.
948  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
949  *	added to this driver by preventing the sysfs file from being created.
950  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
951  *	for interfaces bound to this driver.
952  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
953  *	endpoints before calling the driver's disconnect method.
954  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
955  *	to initiate lower power link state transitions when an idle timeout
956  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
957  *
958  * USB interface drivers must provide a name, probe() and disconnect()
959  * methods, and an id_table.  Other driver fields are optional.
960  *
961  * The id_table is used in hotplugging.  It holds a set of descriptors,
962  * and specialized data may be associated with each entry.  That table
963  * is used by both user and kernel mode hotplugging support.
964  *
965  * The probe() and disconnect() methods are called in a context where
966  * they can sleep, but they should avoid abusing the privilege.  Most
967  * work to connect to a device should be done when the device is opened,
968  * and undone at the last close.  The disconnect code needs to address
969  * concurrency issues with respect to open() and close() methods, as
970  * well as forcing all pending I/O requests to complete (by unlinking
971  * them as necessary, and blocking until the unlinks complete).
972  */
973 struct usb_driver {
974 	const char *name;
975 
976 	int (*probe) (struct usb_interface *intf,
977 		      const struct usb_device_id *id);
978 
979 	void (*disconnect) (struct usb_interface *intf);
980 
981 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
982 			void *buf);
983 
984 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
985 	int (*resume) (struct usb_interface *intf);
986 	int (*reset_resume)(struct usb_interface *intf);
987 
988 	int (*pre_reset)(struct usb_interface *intf);
989 	int (*post_reset)(struct usb_interface *intf);
990 
991 	const struct usb_device_id *id_table;
992 
993 	struct usb_dynids dynids;
994 	struct usbdrv_wrap drvwrap;
995 	unsigned int no_dynamic_id:1;
996 	unsigned int supports_autosuspend:1;
997 	unsigned int disable_hub_initiated_lpm:1;
998 	unsigned int soft_unbind:1;
999 };
1000 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1001 
1002 /**
1003  * struct usb_device_driver - identifies USB device driver to usbcore
1004  * @name: The driver name should be unique among USB drivers,
1005  *	and should normally be the same as the module name.
1006  * @probe: Called to see if the driver is willing to manage a particular
1007  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1008  *	to associate driver-specific data with the device.  If unwilling
1009  *	to manage the device, return a negative errno value.
1010  * @disconnect: Called when the device is no longer accessible, usually
1011  *	because it has been (or is being) disconnected or the driver's
1012  *	module is being unloaded.
1013  * @suspend: Called when the device is going to be suspended by the system.
1014  * @resume: Called when the device is being resumed by the system.
1015  * @drvwrap: Driver-model core structure wrapper.
1016  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1017  *	for devices bound to this driver.
1018  *
1019  * USB drivers must provide all the fields listed above except drvwrap.
1020  */
1021 struct usb_device_driver {
1022 	const char *name;
1023 
1024 	int (*probe) (struct usb_device *udev);
1025 	void (*disconnect) (struct usb_device *udev);
1026 
1027 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1028 	int (*resume) (struct usb_device *udev, pm_message_t message);
1029 	struct usbdrv_wrap drvwrap;
1030 	unsigned int supports_autosuspend:1;
1031 };
1032 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1033 		drvwrap.driver)
1034 
1035 extern struct bus_type usb_bus_type;
1036 
1037 /**
1038  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1039  * @name: the usb class device name for this driver.  Will show up in sysfs.
1040  * @devnode: Callback to provide a naming hint for a possible
1041  *	device node to create.
1042  * @fops: pointer to the struct file_operations of this driver.
1043  * @minor_base: the start of the minor range for this driver.
1044  *
1045  * This structure is used for the usb_register_dev() and
1046  * usb_unregister_dev() functions, to consolidate a number of the
1047  * parameters used for them.
1048  */
1049 struct usb_class_driver {
1050 	char *name;
1051 	char *(*devnode)(struct device *dev, umode_t *mode);
1052 	const struct file_operations *fops;
1053 	int minor_base;
1054 };
1055 
1056 /*
1057  * use these in module_init()/module_exit()
1058  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1059  */
1060 extern int usb_register_driver(struct usb_driver *, struct module *,
1061 			       const char *);
1062 
1063 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1064 #define usb_register(driver) \
1065 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1066 
1067 extern void usb_deregister(struct usb_driver *);
1068 
1069 /**
1070  * module_usb_driver() - Helper macro for registering a USB driver
1071  * @__usb_driver: usb_driver struct
1072  *
1073  * Helper macro for USB drivers which do not do anything special in module
1074  * init/exit. This eliminates a lot of boilerplate. Each module may only
1075  * use this macro once, and calling it replaces module_init() and module_exit()
1076  */
1077 #define module_usb_driver(__usb_driver) \
1078 	module_driver(__usb_driver, usb_register, \
1079 		       usb_deregister)
1080 
1081 extern int usb_register_device_driver(struct usb_device_driver *,
1082 			struct module *);
1083 extern void usb_deregister_device_driver(struct usb_device_driver *);
1084 
1085 extern int usb_register_dev(struct usb_interface *intf,
1086 			    struct usb_class_driver *class_driver);
1087 extern void usb_deregister_dev(struct usb_interface *intf,
1088 			       struct usb_class_driver *class_driver);
1089 
1090 extern int usb_disabled(void);
1091 
1092 /* ----------------------------------------------------------------------- */
1093 
1094 /*
1095  * URB support, for asynchronous request completions
1096  */
1097 
1098 /*
1099  * urb->transfer_flags:
1100  *
1101  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1102  */
1103 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1104 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
1105 					 * ignored */
1106 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1107 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1108 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1109 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1110 					 * needed */
1111 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1112 
1113 /* The following flags are used internally by usbcore and HCDs */
1114 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1115 #define URB_DIR_OUT		0
1116 #define URB_DIR_MASK		URB_DIR_IN
1117 
1118 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1119 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1120 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1121 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1122 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1123 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1124 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1125 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1126 
1127 struct usb_iso_packet_descriptor {
1128 	unsigned int offset;
1129 	unsigned int length;		/* expected length */
1130 	unsigned int actual_length;
1131 	int status;
1132 };
1133 
1134 struct urb;
1135 
1136 struct usb_anchor {
1137 	struct list_head urb_list;
1138 	wait_queue_head_t wait;
1139 	spinlock_t lock;
1140 	unsigned int poisoned:1;
1141 };
1142 
1143 static inline void init_usb_anchor(struct usb_anchor *anchor)
1144 {
1145 	INIT_LIST_HEAD(&anchor->urb_list);
1146 	init_waitqueue_head(&anchor->wait);
1147 	spin_lock_init(&anchor->lock);
1148 }
1149 
1150 typedef void (*usb_complete_t)(struct urb *);
1151 
1152 /**
1153  * struct urb - USB Request Block
1154  * @urb_list: For use by current owner of the URB.
1155  * @anchor_list: membership in the list of an anchor
1156  * @anchor: to anchor URBs to a common mooring
1157  * @ep: Points to the endpoint's data structure.  Will eventually
1158  *	replace @pipe.
1159  * @pipe: Holds endpoint number, direction, type, and more.
1160  *	Create these values with the eight macros available;
1161  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1162  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1163  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1164  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1165  *	is a different endpoint (and pipe) from "out" endpoint two.
1166  *	The current configuration controls the existence, type, and
1167  *	maximum packet size of any given endpoint.
1168  * @stream_id: the endpoint's stream ID for bulk streams
1169  * @dev: Identifies the USB device to perform the request.
1170  * @status: This is read in non-iso completion functions to get the
1171  *	status of the particular request.  ISO requests only use it
1172  *	to tell whether the URB was unlinked; detailed status for
1173  *	each frame is in the fields of the iso_frame-desc.
1174  * @transfer_flags: A variety of flags may be used to affect how URB
1175  *	submission, unlinking, or operation are handled.  Different
1176  *	kinds of URB can use different flags.
1177  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1178  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1179  *	(however, do not leave garbage in transfer_buffer even then).
1180  *	This buffer must be suitable for DMA; allocate it with
1181  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1182  *	of this buffer will be modified.  This buffer is used for the data
1183  *	stage of control transfers.
1184  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1185  *	the device driver is saying that it provided this DMA address,
1186  *	which the host controller driver should use in preference to the
1187  *	transfer_buffer.
1188  * @sg: scatter gather buffer list
1189  * @num_mapped_sgs: (internal) number of mapped sg entries
1190  * @num_sgs: number of entries in the sg list
1191  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1192  *	be broken up into chunks according to the current maximum packet
1193  *	size for the endpoint, which is a function of the configuration
1194  *	and is encoded in the pipe.  When the length is zero, neither
1195  *	transfer_buffer nor transfer_dma is used.
1196  * @actual_length: This is read in non-iso completion functions, and
1197  *	it tells how many bytes (out of transfer_buffer_length) were
1198  *	transferred.  It will normally be the same as requested, unless
1199  *	either an error was reported or a short read was performed.
1200  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1201  *	short reads be reported as errors.
1202  * @setup_packet: Only used for control transfers, this points to eight bytes
1203  *	of setup data.  Control transfers always start by sending this data
1204  *	to the device.  Then transfer_buffer is read or written, if needed.
1205  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1206  *	this field; setup_packet must point to a valid buffer.
1207  * @start_frame: Returns the initial frame for isochronous transfers.
1208  * @number_of_packets: Lists the number of ISO transfer buffers.
1209  * @interval: Specifies the polling interval for interrupt or isochronous
1210  *	transfers.  The units are frames (milliseconds) for full and low
1211  *	speed devices, and microframes (1/8 millisecond) for highspeed
1212  *	and SuperSpeed devices.
1213  * @error_count: Returns the number of ISO transfers that reported errors.
1214  * @context: For use in completion functions.  This normally points to
1215  *	request-specific driver context.
1216  * @complete: Completion handler. This URB is passed as the parameter to the
1217  *	completion function.  The completion function may then do what
1218  *	it likes with the URB, including resubmitting or freeing it.
1219  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1220  *	collect the transfer status for each buffer.
1221  *
1222  * This structure identifies USB transfer requests.  URBs must be allocated by
1223  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1224  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1225  * are submitted using usb_submit_urb(), and pending requests may be canceled
1226  * using usb_unlink_urb() or usb_kill_urb().
1227  *
1228  * Data Transfer Buffers:
1229  *
1230  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1231  * taken from the general page pool.  That is provided by transfer_buffer
1232  * (control requests also use setup_packet), and host controller drivers
1233  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1234  * mapping operations can be expensive on some platforms (perhaps using a dma
1235  * bounce buffer or talking to an IOMMU),
1236  * although they're cheap on commodity x86 and ppc hardware.
1237  *
1238  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1239  * which tells the host controller driver that no such mapping is needed for
1240  * the transfer_buffer since
1241  * the device driver is DMA-aware.  For example, a device driver might
1242  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1243  * When this transfer flag is provided, host controller drivers will
1244  * attempt to use the dma address found in the transfer_dma
1245  * field rather than determining a dma address themselves.
1246  *
1247  * Note that transfer_buffer must still be set if the controller
1248  * does not support DMA (as indicated by bus.uses_dma) and when talking
1249  * to root hub. If you have to trasfer between highmem zone and the device
1250  * on such controller, create a bounce buffer or bail out with an error.
1251  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1252  * capable, assign NULL to it, so that usbmon knows not to use the value.
1253  * The setup_packet must always be set, so it cannot be located in highmem.
1254  *
1255  * Initialization:
1256  *
1257  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1258  * zero), and complete fields.  All URBs must also initialize
1259  * transfer_buffer and transfer_buffer_length.  They may provide the
1260  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1261  * to be treated as errors; that flag is invalid for write requests.
1262  *
1263  * Bulk URBs may
1264  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1265  * should always terminate with a short packet, even if it means adding an
1266  * extra zero length packet.
1267  *
1268  * Control URBs must provide a valid pointer in the setup_packet field.
1269  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1270  * beforehand.
1271  *
1272  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1273  * or, for highspeed devices, 125 microsecond units)
1274  * to poll for transfers.  After the URB has been submitted, the interval
1275  * field reflects how the transfer was actually scheduled.
1276  * The polling interval may be more frequent than requested.
1277  * For example, some controllers have a maximum interval of 32 milliseconds,
1278  * while others support intervals of up to 1024 milliseconds.
1279  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1280  * endpoints, as well as high speed interrupt endpoints, the encoding of
1281  * the transfer interval in the endpoint descriptor is logarithmic.
1282  * Device drivers must convert that value to linear units themselves.)
1283  *
1284  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1285  * the host controller to schedule the transfer as soon as bandwidth
1286  * utilization allows, and then set start_frame to reflect the actual frame
1287  * selected during submission.  Otherwise drivers must specify the start_frame
1288  * and handle the case where the transfer can't begin then.  However, drivers
1289  * won't know how bandwidth is currently allocated, and while they can
1290  * find the current frame using usb_get_current_frame_number () they can't
1291  * know the range for that frame number.  (Ranges for frame counter values
1292  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1293  *
1294  * Isochronous URBs have a different data transfer model, in part because
1295  * the quality of service is only "best effort".  Callers provide specially
1296  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1297  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1298  * URBs are normally queued, submitted by drivers to arrange that
1299  * transfers are at least double buffered, and then explicitly resubmitted
1300  * in completion handlers, so
1301  * that data (such as audio or video) streams at as constant a rate as the
1302  * host controller scheduler can support.
1303  *
1304  * Completion Callbacks:
1305  *
1306  * The completion callback is made in_interrupt(), and one of the first
1307  * things that a completion handler should do is check the status field.
1308  * The status field is provided for all URBs.  It is used to report
1309  * unlinked URBs, and status for all non-ISO transfers.  It should not
1310  * be examined before the URB is returned to the completion handler.
1311  *
1312  * The context field is normally used to link URBs back to the relevant
1313  * driver or request state.
1314  *
1315  * When the completion callback is invoked for non-isochronous URBs, the
1316  * actual_length field tells how many bytes were transferred.  This field
1317  * is updated even when the URB terminated with an error or was unlinked.
1318  *
1319  * ISO transfer status is reported in the status and actual_length fields
1320  * of the iso_frame_desc array, and the number of errors is reported in
1321  * error_count.  Completion callbacks for ISO transfers will normally
1322  * (re)submit URBs to ensure a constant transfer rate.
1323  *
1324  * Note that even fields marked "public" should not be touched by the driver
1325  * when the urb is owned by the hcd, that is, since the call to
1326  * usb_submit_urb() till the entry into the completion routine.
1327  */
1328 struct urb {
1329 	/* private: usb core and host controller only fields in the urb */
1330 	struct kref kref;		/* reference count of the URB */
1331 	void *hcpriv;			/* private data for host controller */
1332 	atomic_t use_count;		/* concurrent submissions counter */
1333 	atomic_t reject;		/* submissions will fail */
1334 	int unlinked;			/* unlink error code */
1335 
1336 	/* public: documented fields in the urb that can be used by drivers */
1337 	struct list_head urb_list;	/* list head for use by the urb's
1338 					 * current owner */
1339 	struct list_head anchor_list;	/* the URB may be anchored */
1340 	struct usb_anchor *anchor;
1341 	struct usb_device *dev;		/* (in) pointer to associated device */
1342 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1343 	unsigned int pipe;		/* (in) pipe information */
1344 	unsigned int stream_id;		/* (in) stream ID */
1345 	int status;			/* (return) non-ISO status */
1346 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1347 	void *transfer_buffer;		/* (in) associated data buffer */
1348 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1349 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1350 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1351 	int num_sgs;			/* (in) number of entries in the sg list */
1352 	u32 transfer_buffer_length;	/* (in) data buffer length */
1353 	u32 actual_length;		/* (return) actual transfer length */
1354 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1355 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1356 	int start_frame;		/* (modify) start frame (ISO) */
1357 	int number_of_packets;		/* (in) number of ISO packets */
1358 	int interval;			/* (modify) transfer interval
1359 					 * (INT/ISO) */
1360 	int error_count;		/* (return) number of ISO errors */
1361 	void *context;			/* (in) context for completion */
1362 	usb_complete_t complete;	/* (in) completion routine */
1363 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1364 					/* (in) ISO ONLY */
1365 };
1366 
1367 /* ----------------------------------------------------------------------- */
1368 
1369 /**
1370  * usb_fill_control_urb - initializes a control urb
1371  * @urb: pointer to the urb to initialize.
1372  * @dev: pointer to the struct usb_device for this urb.
1373  * @pipe: the endpoint pipe
1374  * @setup_packet: pointer to the setup_packet buffer
1375  * @transfer_buffer: pointer to the transfer buffer
1376  * @buffer_length: length of the transfer buffer
1377  * @complete_fn: pointer to the usb_complete_t function
1378  * @context: what to set the urb context to.
1379  *
1380  * Initializes a control urb with the proper information needed to submit
1381  * it to a device.
1382  */
1383 static inline void usb_fill_control_urb(struct urb *urb,
1384 					struct usb_device *dev,
1385 					unsigned int pipe,
1386 					unsigned char *setup_packet,
1387 					void *transfer_buffer,
1388 					int buffer_length,
1389 					usb_complete_t complete_fn,
1390 					void *context)
1391 {
1392 	urb->dev = dev;
1393 	urb->pipe = pipe;
1394 	urb->setup_packet = setup_packet;
1395 	urb->transfer_buffer = transfer_buffer;
1396 	urb->transfer_buffer_length = buffer_length;
1397 	urb->complete = complete_fn;
1398 	urb->context = context;
1399 }
1400 
1401 /**
1402  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1403  * @urb: pointer to the urb to initialize.
1404  * @dev: pointer to the struct usb_device for this urb.
1405  * @pipe: the endpoint pipe
1406  * @transfer_buffer: pointer to the transfer buffer
1407  * @buffer_length: length of the transfer buffer
1408  * @complete_fn: pointer to the usb_complete_t function
1409  * @context: what to set the urb context to.
1410  *
1411  * Initializes a bulk urb with the proper information needed to submit it
1412  * to a device.
1413  */
1414 static inline void usb_fill_bulk_urb(struct urb *urb,
1415 				     struct usb_device *dev,
1416 				     unsigned int pipe,
1417 				     void *transfer_buffer,
1418 				     int buffer_length,
1419 				     usb_complete_t complete_fn,
1420 				     void *context)
1421 {
1422 	urb->dev = dev;
1423 	urb->pipe = pipe;
1424 	urb->transfer_buffer = transfer_buffer;
1425 	urb->transfer_buffer_length = buffer_length;
1426 	urb->complete = complete_fn;
1427 	urb->context = context;
1428 }
1429 
1430 /**
1431  * usb_fill_int_urb - macro to help initialize a interrupt urb
1432  * @urb: pointer to the urb to initialize.
1433  * @dev: pointer to the struct usb_device for this urb.
1434  * @pipe: the endpoint pipe
1435  * @transfer_buffer: pointer to the transfer buffer
1436  * @buffer_length: length of the transfer buffer
1437  * @complete_fn: pointer to the usb_complete_t function
1438  * @context: what to set the urb context to.
1439  * @interval: what to set the urb interval to, encoded like
1440  *	the endpoint descriptor's bInterval value.
1441  *
1442  * Initializes a interrupt urb with the proper information needed to submit
1443  * it to a device.
1444  *
1445  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1446  * encoding of the endpoint interval, and express polling intervals in
1447  * microframes (eight per millisecond) rather than in frames (one per
1448  * millisecond).
1449  *
1450  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1451  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1452  * through to the host controller, rather than being translated into microframe
1453  * units.
1454  */
1455 static inline void usb_fill_int_urb(struct urb *urb,
1456 				    struct usb_device *dev,
1457 				    unsigned int pipe,
1458 				    void *transfer_buffer,
1459 				    int buffer_length,
1460 				    usb_complete_t complete_fn,
1461 				    void *context,
1462 				    int interval)
1463 {
1464 	urb->dev = dev;
1465 	urb->pipe = pipe;
1466 	urb->transfer_buffer = transfer_buffer;
1467 	urb->transfer_buffer_length = buffer_length;
1468 	urb->complete = complete_fn;
1469 	urb->context = context;
1470 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1471 		urb->interval = 1 << (interval - 1);
1472 	else
1473 		urb->interval = interval;
1474 	urb->start_frame = -1;
1475 }
1476 
1477 extern void usb_init_urb(struct urb *urb);
1478 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1479 extern void usb_free_urb(struct urb *urb);
1480 #define usb_put_urb usb_free_urb
1481 extern struct urb *usb_get_urb(struct urb *urb);
1482 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1483 extern int usb_unlink_urb(struct urb *urb);
1484 extern void usb_kill_urb(struct urb *urb);
1485 extern void usb_poison_urb(struct urb *urb);
1486 extern void usb_unpoison_urb(struct urb *urb);
1487 extern void usb_block_urb(struct urb *urb);
1488 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1489 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1490 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1491 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1492 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1493 extern void usb_unanchor_urb(struct urb *urb);
1494 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1495 					 unsigned int timeout);
1496 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1497 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1498 extern int usb_anchor_empty(struct usb_anchor *anchor);
1499 
1500 #define usb_unblock_urb	usb_unpoison_urb
1501 
1502 /**
1503  * usb_urb_dir_in - check if an URB describes an IN transfer
1504  * @urb: URB to be checked
1505  *
1506  * Returns 1 if @urb describes an IN transfer (device-to-host),
1507  * otherwise 0.
1508  */
1509 static inline int usb_urb_dir_in(struct urb *urb)
1510 {
1511 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1512 }
1513 
1514 /**
1515  * usb_urb_dir_out - check if an URB describes an OUT transfer
1516  * @urb: URB to be checked
1517  *
1518  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1519  * otherwise 0.
1520  */
1521 static inline int usb_urb_dir_out(struct urb *urb)
1522 {
1523 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1524 }
1525 
1526 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1527 	gfp_t mem_flags, dma_addr_t *dma);
1528 void usb_free_coherent(struct usb_device *dev, size_t size,
1529 	void *addr, dma_addr_t dma);
1530 
1531 #if 0
1532 struct urb *usb_buffer_map(struct urb *urb);
1533 void usb_buffer_dmasync(struct urb *urb);
1534 void usb_buffer_unmap(struct urb *urb);
1535 #endif
1536 
1537 struct scatterlist;
1538 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1539 		      struct scatterlist *sg, int nents);
1540 #if 0
1541 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1542 			   struct scatterlist *sg, int n_hw_ents);
1543 #endif
1544 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1545 			 struct scatterlist *sg, int n_hw_ents);
1546 
1547 /*-------------------------------------------------------------------*
1548  *                         SYNCHRONOUS CALL SUPPORT                  *
1549  *-------------------------------------------------------------------*/
1550 
1551 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1552 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1553 	void *data, __u16 size, int timeout);
1554 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1555 	void *data, int len, int *actual_length, int timeout);
1556 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1557 	void *data, int len, int *actual_length,
1558 	int timeout);
1559 
1560 /* wrappers around usb_control_msg() for the most common standard requests */
1561 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1562 	unsigned char descindex, void *buf, int size);
1563 extern int usb_get_status(struct usb_device *dev,
1564 	int type, int target, void *data);
1565 extern int usb_string(struct usb_device *dev, int index,
1566 	char *buf, size_t size);
1567 
1568 /* wrappers that also update important state inside usbcore */
1569 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1570 extern int usb_reset_configuration(struct usb_device *dev);
1571 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1572 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1573 
1574 /* this request isn't really synchronous, but it belongs with the others */
1575 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1576 
1577 /*
1578  * timeouts, in milliseconds, used for sending/receiving control messages
1579  * they typically complete within a few frames (msec) after they're issued
1580  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1581  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1582  */
1583 #define USB_CTRL_GET_TIMEOUT	5000
1584 #define USB_CTRL_SET_TIMEOUT	5000
1585 
1586 
1587 /**
1588  * struct usb_sg_request - support for scatter/gather I/O
1589  * @status: zero indicates success, else negative errno
1590  * @bytes: counts bytes transferred.
1591  *
1592  * These requests are initialized using usb_sg_init(), and then are used
1593  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1594  * members of the request object aren't for driver access.
1595  *
1596  * The status and bytecount values are valid only after usb_sg_wait()
1597  * returns.  If the status is zero, then the bytecount matches the total
1598  * from the request.
1599  *
1600  * After an error completion, drivers may need to clear a halt condition
1601  * on the endpoint.
1602  */
1603 struct usb_sg_request {
1604 	int			status;
1605 	size_t			bytes;
1606 
1607 	/* private:
1608 	 * members below are private to usbcore,
1609 	 * and are not provided for driver access!
1610 	 */
1611 	spinlock_t		lock;
1612 
1613 	struct usb_device	*dev;
1614 	int			pipe;
1615 
1616 	int			entries;
1617 	struct urb		**urbs;
1618 
1619 	int			count;
1620 	struct completion	complete;
1621 };
1622 
1623 int usb_sg_init(
1624 	struct usb_sg_request	*io,
1625 	struct usb_device	*dev,
1626 	unsigned		pipe,
1627 	unsigned		period,
1628 	struct scatterlist	*sg,
1629 	int			nents,
1630 	size_t			length,
1631 	gfp_t			mem_flags
1632 );
1633 void usb_sg_cancel(struct usb_sg_request *io);
1634 void usb_sg_wait(struct usb_sg_request *io);
1635 
1636 
1637 /* ----------------------------------------------------------------------- */
1638 
1639 /*
1640  * For various legacy reasons, Linux has a small cookie that's paired with
1641  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1642  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1643  * an unsigned int encoded as:
1644  *
1645  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1646  *					 1 = Device-to-Host [In] ...
1647  *					like endpoint bEndpointAddress)
1648  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1649  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1650  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1651  *					 10 = control, 11 = bulk)
1652  *
1653  * Given the device address and endpoint descriptor, pipes are redundant.
1654  */
1655 
1656 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1657 /* (yet ... they're the values used by usbfs) */
1658 #define PIPE_ISOCHRONOUS		0
1659 #define PIPE_INTERRUPT			1
1660 #define PIPE_CONTROL			2
1661 #define PIPE_BULK			3
1662 
1663 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1664 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1665 
1666 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1667 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1668 
1669 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1670 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1671 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1672 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1673 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1674 
1675 static inline unsigned int __create_pipe(struct usb_device *dev,
1676 		unsigned int endpoint)
1677 {
1678 	return (dev->devnum << 8) | (endpoint << 15);
1679 }
1680 
1681 /* Create various pipes... */
1682 #define usb_sndctrlpipe(dev, endpoint)	\
1683 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1684 #define usb_rcvctrlpipe(dev, endpoint)	\
1685 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1686 #define usb_sndisocpipe(dev, endpoint)	\
1687 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1688 #define usb_rcvisocpipe(dev, endpoint)	\
1689 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1690 #define usb_sndbulkpipe(dev, endpoint)	\
1691 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1692 #define usb_rcvbulkpipe(dev, endpoint)	\
1693 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1694 #define usb_sndintpipe(dev, endpoint)	\
1695 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1696 #define usb_rcvintpipe(dev, endpoint)	\
1697 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1698 
1699 static inline struct usb_host_endpoint *
1700 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1701 {
1702 	struct usb_host_endpoint **eps;
1703 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1704 	return eps[usb_pipeendpoint(pipe)];
1705 }
1706 
1707 /*-------------------------------------------------------------------------*/
1708 
1709 static inline __u16
1710 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1711 {
1712 	struct usb_host_endpoint	*ep;
1713 	unsigned			epnum = usb_pipeendpoint(pipe);
1714 
1715 	if (is_out) {
1716 		WARN_ON(usb_pipein(pipe));
1717 		ep = udev->ep_out[epnum];
1718 	} else {
1719 		WARN_ON(usb_pipeout(pipe));
1720 		ep = udev->ep_in[epnum];
1721 	}
1722 	if (!ep)
1723 		return 0;
1724 
1725 	/* NOTE:  only 0x07ff bits are for packet size... */
1726 	return usb_endpoint_maxp(&ep->desc);
1727 }
1728 
1729 /* ----------------------------------------------------------------------- */
1730 
1731 /* translate USB error codes to codes user space understands */
1732 static inline int usb_translate_errors(int error_code)
1733 {
1734 	switch (error_code) {
1735 	case 0:
1736 	case -ENOMEM:
1737 	case -ENODEV:
1738 	case -EOPNOTSUPP:
1739 		return error_code;
1740 	default:
1741 		return -EIO;
1742 	}
1743 }
1744 
1745 /* Events from the usb core */
1746 #define USB_DEVICE_ADD		0x0001
1747 #define USB_DEVICE_REMOVE	0x0002
1748 #define USB_BUS_ADD		0x0003
1749 #define USB_BUS_REMOVE		0x0004
1750 extern void usb_register_notify(struct notifier_block *nb);
1751 extern void usb_unregister_notify(struct notifier_block *nb);
1752 
1753 #ifdef DEBUG
1754 #define dbg(format, arg...)						\
1755 	printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1756 #else
1757 #define dbg(format, arg...)						\
1758 do {									\
1759 	if (0)								\
1760 		printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1761 } while (0)
1762 #endif
1763 
1764 /* debugfs stuff */
1765 extern struct dentry *usb_debug_root;
1766 
1767 #endif  /* __KERNEL__ */
1768 
1769 #endif
1770