xref: /linux-6.15/include/linux/usb.h (revision dec102aa)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *	with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  * @streams: number of USB-3 streams allocated on the endpoint
61  *
62  * USB requests are always queued to a given endpoint, identified by a
63  * descriptor within an active interface in a given USB configuration.
64  */
65 struct usb_host_endpoint {
66 	struct usb_endpoint_descriptor		desc;
67 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
68 	struct list_head		urb_list;
69 	void				*hcpriv;
70 	struct ep_device		*ep_dev;	/* For sysfs info */
71 
72 	unsigned char *extra;   /* Extra descriptors */
73 	int extralen;
74 	int enabled;
75 	int streams;
76 };
77 
78 /* host-side wrapper for one interface setting's parsed descriptors */
79 struct usb_host_interface {
80 	struct usb_interface_descriptor	desc;
81 
82 	int extralen;
83 	unsigned char *extra;   /* Extra descriptors */
84 
85 	/* array of desc.bNumEndpoint endpoints associated with this
86 	 * interface setting.  these will be in no particular order.
87 	 */
88 	struct usb_host_endpoint *endpoint;
89 
90 	char *string;		/* iInterface string, if present */
91 };
92 
93 enum usb_interface_condition {
94 	USB_INTERFACE_UNBOUND = 0,
95 	USB_INTERFACE_BINDING,
96 	USB_INTERFACE_BOUND,
97 	USB_INTERFACE_UNBINDING,
98 };
99 
100 /**
101  * struct usb_interface - what usb device drivers talk to
102  * @altsetting: array of interface structures, one for each alternate
103  *	setting that may be selected.  Each one includes a set of
104  *	endpoint configurations.  They will be in no particular order.
105  * @cur_altsetting: the current altsetting.
106  * @num_altsetting: number of altsettings defined.
107  * @intf_assoc: interface association descriptor
108  * @minor: the minor number assigned to this interface, if this
109  *	interface is bound to a driver that uses the USB major number.
110  *	If this interface does not use the USB major, this field should
111  *	be unused.  The driver should set this value in the probe()
112  *	function of the driver, after it has been assigned a minor
113  *	number from the USB core by calling usb_register_dev().
114  * @condition: binding state of the interface: not bound, binding
115  *	(in probe()), bound to a driver, or unbinding (in disconnect())
116  * @sysfs_files_created: sysfs attributes exist
117  * @ep_devs_created: endpoint child pseudo-devices exist
118  * @unregistering: flag set when the interface is being unregistered
119  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120  *	capability during autosuspend.
121  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122  *	has been deferred.
123  * @needs_binding: flag set when the driver should be re-probed or unbound
124  *	following a reset or suspend operation it doesn't support.
125  * @dev: driver model's view of this device
126  * @usb_dev: if an interface is bound to the USB major, this will point
127  *	to the sysfs representation for that device.
128  * @pm_usage_cnt: PM usage counter for this interface
129  * @reset_ws: Used for scheduling resets from atomic context.
130  * @reset_running: set to 1 if the interface is currently running a
131  *      queued reset so that usb_cancel_queued_reset() doesn't try to
132  *      remove from the workqueue when running inside the worker
133  *      thread. See __usb_queue_reset_device().
134  * @resetting_device: USB core reset the device, so use alt setting 0 as
135  *	current; needs bandwidth alloc after reset.
136  *
137  * USB device drivers attach to interfaces on a physical device.  Each
138  * interface encapsulates a single high level function, such as feeding
139  * an audio stream to a speaker or reporting a change in a volume control.
140  * Many USB devices only have one interface.  The protocol used to talk to
141  * an interface's endpoints can be defined in a usb "class" specification,
142  * or by a product's vendor.  The (default) control endpoint is part of
143  * every interface, but is never listed among the interface's descriptors.
144  *
145  * The driver that is bound to the interface can use standard driver model
146  * calls such as dev_get_drvdata() on the dev member of this structure.
147  *
148  * Each interface may have alternate settings.  The initial configuration
149  * of a device sets altsetting 0, but the device driver can change
150  * that setting using usb_set_interface().  Alternate settings are often
151  * used to control the use of periodic endpoints, such as by having
152  * different endpoints use different amounts of reserved USB bandwidth.
153  * All standards-conformant USB devices that use isochronous endpoints
154  * will use them in non-default settings.
155  *
156  * The USB specification says that alternate setting numbers must run from
157  * 0 to one less than the total number of alternate settings.  But some
158  * devices manage to mess this up, and the structures aren't necessarily
159  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
160  * look up an alternate setting in the altsetting array based on its number.
161  */
162 struct usb_interface {
163 	/* array of alternate settings for this interface,
164 	 * stored in no particular order */
165 	struct usb_host_interface *altsetting;
166 
167 	struct usb_host_interface *cur_altsetting;	/* the currently
168 					 * active alternate setting */
169 	unsigned num_altsetting;	/* number of alternate settings */
170 
171 	/* If there is an interface association descriptor then it will list
172 	 * the associated interfaces */
173 	struct usb_interface_assoc_descriptor *intf_assoc;
174 
175 	int minor;			/* minor number this interface is
176 					 * bound to */
177 	enum usb_interface_condition condition;		/* state of binding */
178 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
179 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
180 	unsigned unregistering:1;	/* unregistration is in progress */
181 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
182 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
183 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
184 	unsigned reset_running:1;
185 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
186 
187 	struct device dev;		/* interface specific device info */
188 	struct device *usb_dev;
189 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
190 	struct work_struct reset_ws;	/* for resets in atomic context */
191 };
192 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
193 
194 static inline void *usb_get_intfdata(struct usb_interface *intf)
195 {
196 	return dev_get_drvdata(&intf->dev);
197 }
198 
199 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
200 {
201 	dev_set_drvdata(&intf->dev, data);
202 }
203 
204 struct usb_interface *usb_get_intf(struct usb_interface *intf);
205 void usb_put_intf(struct usb_interface *intf);
206 
207 /* Hard limit */
208 #define USB_MAXENDPOINTS	30
209 /* this maximum is arbitrary */
210 #define USB_MAXINTERFACES	32
211 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
212 
213 /**
214  * struct usb_interface_cache - long-term representation of a device interface
215  * @num_altsetting: number of altsettings defined.
216  * @ref: reference counter.
217  * @altsetting: variable-length array of interface structures, one for
218  *	each alternate setting that may be selected.  Each one includes a
219  *	set of endpoint configurations.  They will be in no particular order.
220  *
221  * These structures persist for the lifetime of a usb_device, unlike
222  * struct usb_interface (which persists only as long as its configuration
223  * is installed).  The altsetting arrays can be accessed through these
224  * structures at any time, permitting comparison of configurations and
225  * providing support for the /proc/bus/usb/devices pseudo-file.
226  */
227 struct usb_interface_cache {
228 	unsigned num_altsetting;	/* number of alternate settings */
229 	struct kref ref;		/* reference counter */
230 
231 	/* variable-length array of alternate settings for this interface,
232 	 * stored in no particular order */
233 	struct usb_host_interface altsetting[0];
234 };
235 #define	ref_to_usb_interface_cache(r) \
236 		container_of(r, struct usb_interface_cache, ref)
237 #define	altsetting_to_usb_interface_cache(a) \
238 		container_of(a, struct usb_interface_cache, altsetting[0])
239 
240 /**
241  * struct usb_host_config - representation of a device's configuration
242  * @desc: the device's configuration descriptor.
243  * @string: pointer to the cached version of the iConfiguration string, if
244  *	present for this configuration.
245  * @intf_assoc: list of any interface association descriptors in this config
246  * @interface: array of pointers to usb_interface structures, one for each
247  *	interface in the configuration.  The number of interfaces is stored
248  *	in desc.bNumInterfaces.  These pointers are valid only while the
249  *	the configuration is active.
250  * @intf_cache: array of pointers to usb_interface_cache structures, one
251  *	for each interface in the configuration.  These structures exist
252  *	for the entire life of the device.
253  * @extra: pointer to buffer containing all extra descriptors associated
254  *	with this configuration (those preceding the first interface
255  *	descriptor).
256  * @extralen: length of the extra descriptors buffer.
257  *
258  * USB devices may have multiple configurations, but only one can be active
259  * at any time.  Each encapsulates a different operational environment;
260  * for example, a dual-speed device would have separate configurations for
261  * full-speed and high-speed operation.  The number of configurations
262  * available is stored in the device descriptor as bNumConfigurations.
263  *
264  * A configuration can contain multiple interfaces.  Each corresponds to
265  * a different function of the USB device, and all are available whenever
266  * the configuration is active.  The USB standard says that interfaces
267  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
268  * of devices get this wrong.  In addition, the interface array is not
269  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
270  * look up an interface entry based on its number.
271  *
272  * Device drivers should not attempt to activate configurations.  The choice
273  * of which configuration to install is a policy decision based on such
274  * considerations as available power, functionality provided, and the user's
275  * desires (expressed through userspace tools).  However, drivers can call
276  * usb_reset_configuration() to reinitialize the current configuration and
277  * all its interfaces.
278  */
279 struct usb_host_config {
280 	struct usb_config_descriptor	desc;
281 
282 	char *string;		/* iConfiguration string, if present */
283 
284 	/* List of any Interface Association Descriptors in this
285 	 * configuration. */
286 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
287 
288 	/* the interfaces associated with this configuration,
289 	 * stored in no particular order */
290 	struct usb_interface *interface[USB_MAXINTERFACES];
291 
292 	/* Interface information available even when this is not the
293 	 * active configuration */
294 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
295 
296 	unsigned char *extra;   /* Extra descriptors */
297 	int extralen;
298 };
299 
300 /* USB2.0 and USB3.0 device BOS descriptor set */
301 struct usb_host_bos {
302 	struct usb_bos_descriptor	*desc;
303 
304 	/* wireless cap descriptor is handled by wusb */
305 	struct usb_ext_cap_descriptor	*ext_cap;
306 	struct usb_ss_cap_descriptor	*ss_cap;
307 	struct usb_ss_container_id_descriptor	*ss_id;
308 };
309 
310 int __usb_get_extra_descriptor(char *buffer, unsigned size,
311 	unsigned char type, void **ptr);
312 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
313 				__usb_get_extra_descriptor((ifpoint)->extra, \
314 				(ifpoint)->extralen, \
315 				type, (void **)ptr)
316 
317 /* ----------------------------------------------------------------------- */
318 
319 /* USB device number allocation bitmap */
320 struct usb_devmap {
321 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
322 };
323 
324 /*
325  * Allocated per bus (tree of devices) we have:
326  */
327 struct usb_bus {
328 	struct device *controller;	/* host/master side hardware */
329 	int busnum;			/* Bus number (in order of reg) */
330 	const char *bus_name;		/* stable id (PCI slot_name etc) */
331 	u8 uses_dma;			/* Does the host controller use DMA? */
332 	u8 uses_pio_for_control;	/*
333 					 * Does the host controller use PIO
334 					 * for control transfers?
335 					 */
336 	u8 otg_port;			/* 0, or number of OTG/HNP port */
337 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
338 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
339 	unsigned no_stop_on_short:1;    /*
340 					 * Quirk: some controllers don't stop
341 					 * the ep queue on a short transfer
342 					 * with the URB_SHORT_NOT_OK flag set.
343 					 */
344 	unsigned no_sg_constraint:1;	/* no sg constraint */
345 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
346 
347 	int devnum_next;		/* Next open device number in
348 					 * round-robin allocation */
349 
350 	struct usb_devmap devmap;	/* device address allocation map */
351 	struct usb_device *root_hub;	/* Root hub */
352 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
353 	struct list_head bus_list;	/* list of busses */
354 
355 	int bandwidth_allocated;	/* on this bus: how much of the time
356 					 * reserved for periodic (intr/iso)
357 					 * requests is used, on average?
358 					 * Units: microseconds/frame.
359 					 * Limits: Full/low speed reserve 90%,
360 					 * while high speed reserves 80%.
361 					 */
362 	int bandwidth_int_reqs;		/* number of Interrupt requests */
363 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
364 
365 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
366 
367 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
368 	struct mon_bus *mon_bus;	/* non-null when associated */
369 	int monitored;			/* non-zero when monitored */
370 #endif
371 };
372 
373 struct usb_dev_state;
374 
375 /* ----------------------------------------------------------------------- */
376 
377 struct usb_tt;
378 
379 enum usb_device_removable {
380 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
381 	USB_DEVICE_REMOVABLE,
382 	USB_DEVICE_FIXED,
383 };
384 
385 enum usb_port_connect_type {
386 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
387 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
388 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
389 	USB_PORT_NOT_USED,
390 };
391 
392 /*
393  * USB 2.0 Link Power Management (LPM) parameters.
394  */
395 struct usb2_lpm_parameters {
396 	/* Best effort service latency indicate how long the host will drive
397 	 * resume on an exit from L1.
398 	 */
399 	unsigned int besl;
400 
401 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
402 	 * When the timer counts to zero, the parent hub will initiate a LPM
403 	 * transition to L1.
404 	 */
405 	int timeout;
406 };
407 
408 /*
409  * USB 3.0 Link Power Management (LPM) parameters.
410  *
411  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
412  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
413  * All three are stored in nanoseconds.
414  */
415 struct usb3_lpm_parameters {
416 	/*
417 	 * Maximum exit latency (MEL) for the host to send a packet to the
418 	 * device (either a Ping for isoc endpoints, or a data packet for
419 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
420 	 * in the path to transition the links to U0.
421 	 */
422 	unsigned int mel;
423 	/*
424 	 * Maximum exit latency for a device-initiated LPM transition to bring
425 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
426 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
427 	 */
428 	unsigned int pel;
429 
430 	/*
431 	 * The System Exit Latency (SEL) includes PEL, and three other
432 	 * latencies.  After a device initiates a U0 transition, it will take
433 	 * some time from when the device sends the ERDY to when it will finally
434 	 * receive the data packet.  Basically, SEL should be the worse-case
435 	 * latency from when a device starts initiating a U0 transition to when
436 	 * it will get data.
437 	 */
438 	unsigned int sel;
439 	/*
440 	 * The idle timeout value that is currently programmed into the parent
441 	 * hub for this device.  When the timer counts to zero, the parent hub
442 	 * will initiate an LPM transition to either U1 or U2.
443 	 */
444 	int timeout;
445 };
446 
447 /**
448  * struct usb_device - kernel's representation of a USB device
449  * @devnum: device number; address on a USB bus
450  * @devpath: device ID string for use in messages (e.g., /port/...)
451  * @route: tree topology hex string for use with xHCI
452  * @state: device state: configured, not attached, etc.
453  * @speed: device speed: high/full/low (or error)
454  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
455  * @ttport: device port on that tt hub
456  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
457  * @parent: our hub, unless we're the root
458  * @bus: bus we're part of
459  * @ep0: endpoint 0 data (default control pipe)
460  * @dev: generic device interface
461  * @descriptor: USB device descriptor
462  * @bos: USB device BOS descriptor set
463  * @config: all of the device's configs
464  * @actconfig: the active configuration
465  * @ep_in: array of IN endpoints
466  * @ep_out: array of OUT endpoints
467  * @rawdescriptors: raw descriptors for each config
468  * @bus_mA: Current available from the bus
469  * @portnum: parent port number (origin 1)
470  * @level: number of USB hub ancestors
471  * @can_submit: URBs may be submitted
472  * @persist_enabled:  USB_PERSIST enabled for this device
473  * @have_langid: whether string_langid is valid
474  * @authorized: policy has said we can use it;
475  *	(user space) policy determines if we authorize this device to be
476  *	used or not. By default, wired USB devices are authorized.
477  *	WUSB devices are not, until we authorize them from user space.
478  *	FIXME -- complete doc
479  * @authenticated: Crypto authentication passed
480  * @wusb: device is Wireless USB
481  * @lpm_capable: device supports LPM
482  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
483  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
484  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
485  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
486  * @usb3_lpm_enabled: USB3 hardware LPM enabled
487  * @string_langid: language ID for strings
488  * @product: iProduct string, if present (static)
489  * @manufacturer: iManufacturer string, if present (static)
490  * @serial: iSerialNumber string, if present (static)
491  * @filelist: usbfs files that are open to this device
492  * @maxchild: number of ports if hub
493  * @quirks: quirks of the whole device
494  * @urbnum: number of URBs submitted for the whole device
495  * @active_duration: total time device is not suspended
496  * @connect_time: time device was first connected
497  * @do_remote_wakeup:  remote wakeup should be enabled
498  * @reset_resume: needs reset instead of resume
499  * @port_is_suspended: the upstream port is suspended (L2 or U3)
500  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
501  *	specific data for the device.
502  * @slot_id: Slot ID assigned by xHCI
503  * @removable: Device can be physically removed from this port
504  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
505  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
506  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
507  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
508  *	to keep track of the number of functions that require USB 3.0 Link Power
509  *	Management to be disabled for this usb_device.  This count should only
510  *	be manipulated by those functions, with the bandwidth_mutex is held.
511  *
512  * Notes:
513  * Usbcore drivers should not set usbdev->state directly.  Instead use
514  * usb_set_device_state().
515  */
516 struct usb_device {
517 	int		devnum;
518 	char		devpath[16];
519 	u32		route;
520 	enum usb_device_state	state;
521 	enum usb_device_speed	speed;
522 
523 	struct usb_tt	*tt;
524 	int		ttport;
525 
526 	unsigned int toggle[2];
527 
528 	struct usb_device *parent;
529 	struct usb_bus *bus;
530 	struct usb_host_endpoint ep0;
531 
532 	struct device dev;
533 
534 	struct usb_device_descriptor descriptor;
535 	struct usb_host_bos *bos;
536 	struct usb_host_config *config;
537 
538 	struct usb_host_config *actconfig;
539 	struct usb_host_endpoint *ep_in[16];
540 	struct usb_host_endpoint *ep_out[16];
541 
542 	char **rawdescriptors;
543 
544 	unsigned short bus_mA;
545 	u8 portnum;
546 	u8 level;
547 
548 	unsigned can_submit:1;
549 	unsigned persist_enabled:1;
550 	unsigned have_langid:1;
551 	unsigned authorized:1;
552 	unsigned authenticated:1;
553 	unsigned wusb:1;
554 	unsigned lpm_capable:1;
555 	unsigned usb2_hw_lpm_capable:1;
556 	unsigned usb2_hw_lpm_besl_capable:1;
557 	unsigned usb2_hw_lpm_enabled:1;
558 	unsigned usb2_hw_lpm_allowed:1;
559 	unsigned usb3_lpm_enabled:1;
560 	int string_langid;
561 
562 	/* static strings from the device */
563 	char *product;
564 	char *manufacturer;
565 	char *serial;
566 
567 	struct list_head filelist;
568 
569 	int maxchild;
570 
571 	u32 quirks;
572 	atomic_t urbnum;
573 
574 	unsigned long active_duration;
575 
576 #ifdef CONFIG_PM
577 	unsigned long connect_time;
578 
579 	unsigned do_remote_wakeup:1;
580 	unsigned reset_resume:1;
581 	unsigned port_is_suspended:1;
582 #endif
583 	struct wusb_dev *wusb_dev;
584 	int slot_id;
585 	enum usb_device_removable removable;
586 	struct usb2_lpm_parameters l1_params;
587 	struct usb3_lpm_parameters u1_params;
588 	struct usb3_lpm_parameters u2_params;
589 	unsigned lpm_disable_count;
590 };
591 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
592 
593 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
594 {
595 	return to_usb_device(intf->dev.parent);
596 }
597 
598 extern struct usb_device *usb_get_dev(struct usb_device *dev);
599 extern void usb_put_dev(struct usb_device *dev);
600 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
601 	int port1);
602 
603 /**
604  * usb_hub_for_each_child - iterate over all child devices on the hub
605  * @hdev:  USB device belonging to the usb hub
606  * @port1: portnum associated with child device
607  * @child: child device pointer
608  */
609 #define usb_hub_for_each_child(hdev, port1, child) \
610 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
611 			port1 <= hdev->maxchild; \
612 			child = usb_hub_find_child(hdev, ++port1)) \
613 		if (!child) continue; else
614 
615 /* USB device locking */
616 #define usb_lock_device(udev)		device_lock(&(udev)->dev)
617 #define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
618 #define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
619 extern int usb_lock_device_for_reset(struct usb_device *udev,
620 				     const struct usb_interface *iface);
621 
622 /* USB port reset for device reinitialization */
623 extern int usb_reset_device(struct usb_device *dev);
624 extern void usb_queue_reset_device(struct usb_interface *dev);
625 
626 #ifdef CONFIG_ACPI
627 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
628 	bool enable);
629 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
630 #else
631 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
632 	bool enable) { return 0; }
633 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
634 	{ return true; }
635 #endif
636 
637 /* USB autosuspend and autoresume */
638 #ifdef CONFIG_PM_RUNTIME
639 extern void usb_enable_autosuspend(struct usb_device *udev);
640 extern void usb_disable_autosuspend(struct usb_device *udev);
641 
642 extern int usb_autopm_get_interface(struct usb_interface *intf);
643 extern void usb_autopm_put_interface(struct usb_interface *intf);
644 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
645 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
646 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
647 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
648 
649 static inline void usb_mark_last_busy(struct usb_device *udev)
650 {
651 	pm_runtime_mark_last_busy(&udev->dev);
652 }
653 
654 #else
655 
656 static inline int usb_enable_autosuspend(struct usb_device *udev)
657 { return 0; }
658 static inline int usb_disable_autosuspend(struct usb_device *udev)
659 { return 0; }
660 
661 static inline int usb_autopm_get_interface(struct usb_interface *intf)
662 { return 0; }
663 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
664 { return 0; }
665 
666 static inline void usb_autopm_put_interface(struct usb_interface *intf)
667 { }
668 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
669 { }
670 static inline void usb_autopm_get_interface_no_resume(
671 		struct usb_interface *intf)
672 { }
673 static inline void usb_autopm_put_interface_no_suspend(
674 		struct usb_interface *intf)
675 { }
676 static inline void usb_mark_last_busy(struct usb_device *udev)
677 { }
678 #endif
679 
680 extern int usb_disable_lpm(struct usb_device *udev);
681 extern void usb_enable_lpm(struct usb_device *udev);
682 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
683 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
684 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
685 
686 extern int usb_disable_ltm(struct usb_device *udev);
687 extern void usb_enable_ltm(struct usb_device *udev);
688 
689 static inline bool usb_device_supports_ltm(struct usb_device *udev)
690 {
691 	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
692 		return false;
693 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
694 }
695 
696 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
697 {
698 	return udev && udev->bus && udev->bus->no_sg_constraint;
699 }
700 
701 
702 /*-------------------------------------------------------------------------*/
703 
704 /* for drivers using iso endpoints */
705 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
706 
707 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
708 extern int usb_alloc_streams(struct usb_interface *interface,
709 		struct usb_host_endpoint **eps, unsigned int num_eps,
710 		unsigned int num_streams, gfp_t mem_flags);
711 
712 /* Reverts a group of bulk endpoints back to not using stream IDs. */
713 extern int usb_free_streams(struct usb_interface *interface,
714 		struct usb_host_endpoint **eps, unsigned int num_eps,
715 		gfp_t mem_flags);
716 
717 /* used these for multi-interface device registration */
718 extern int usb_driver_claim_interface(struct usb_driver *driver,
719 			struct usb_interface *iface, void *priv);
720 
721 /**
722  * usb_interface_claimed - returns true iff an interface is claimed
723  * @iface: the interface being checked
724  *
725  * Return: %true (nonzero) iff the interface is claimed, else %false
726  * (zero).
727  *
728  * Note:
729  * Callers must own the driver model's usb bus readlock.  So driver
730  * probe() entries don't need extra locking, but other call contexts
731  * may need to explicitly claim that lock.
732  *
733  */
734 static inline int usb_interface_claimed(struct usb_interface *iface)
735 {
736 	return (iface->dev.driver != NULL);
737 }
738 
739 extern void usb_driver_release_interface(struct usb_driver *driver,
740 			struct usb_interface *iface);
741 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
742 					 const struct usb_device_id *id);
743 extern int usb_match_one_id(struct usb_interface *interface,
744 			    const struct usb_device_id *id);
745 
746 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
747 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
748 		int minor);
749 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
750 		unsigned ifnum);
751 extern struct usb_host_interface *usb_altnum_to_altsetting(
752 		const struct usb_interface *intf, unsigned int altnum);
753 extern struct usb_host_interface *usb_find_alt_setting(
754 		struct usb_host_config *config,
755 		unsigned int iface_num,
756 		unsigned int alt_num);
757 
758 /* port claiming functions */
759 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
760 		struct usb_dev_state *owner);
761 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
762 		struct usb_dev_state *owner);
763 
764 /**
765  * usb_make_path - returns stable device path in the usb tree
766  * @dev: the device whose path is being constructed
767  * @buf: where to put the string
768  * @size: how big is "buf"?
769  *
770  * Return: Length of the string (> 0) or negative if size was too small.
771  *
772  * Note:
773  * This identifier is intended to be "stable", reflecting physical paths in
774  * hardware such as physical bus addresses for host controllers or ports on
775  * USB hubs.  That makes it stay the same until systems are physically
776  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
777  * controllers.  Adding and removing devices, including virtual root hubs
778  * in host controller driver modules, does not change these path identifiers;
779  * neither does rebooting or re-enumerating.  These are more useful identifiers
780  * than changeable ("unstable") ones like bus numbers or device addresses.
781  *
782  * With a partial exception for devices connected to USB 2.0 root hubs, these
783  * identifiers are also predictable.  So long as the device tree isn't changed,
784  * plugging any USB device into a given hub port always gives it the same path.
785  * Because of the use of "companion" controllers, devices connected to ports on
786  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
787  * high speed, and a different one if they are full or low speed.
788  */
789 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
790 {
791 	int actual;
792 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
793 			  dev->devpath);
794 	return (actual >= (int)size) ? -1 : actual;
795 }
796 
797 /*-------------------------------------------------------------------------*/
798 
799 #define USB_DEVICE_ID_MATCH_DEVICE \
800 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
801 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
802 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
803 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
804 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
805 #define USB_DEVICE_ID_MATCH_DEV_INFO \
806 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
807 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
808 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
809 #define USB_DEVICE_ID_MATCH_INT_INFO \
810 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
811 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
812 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
813 
814 /**
815  * USB_DEVICE - macro used to describe a specific usb device
816  * @vend: the 16 bit USB Vendor ID
817  * @prod: the 16 bit USB Product ID
818  *
819  * This macro is used to create a struct usb_device_id that matches a
820  * specific device.
821  */
822 #define USB_DEVICE(vend, prod) \
823 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
824 	.idVendor = (vend), \
825 	.idProduct = (prod)
826 /**
827  * USB_DEVICE_VER - describe a specific usb device with a version range
828  * @vend: the 16 bit USB Vendor ID
829  * @prod: the 16 bit USB Product ID
830  * @lo: the bcdDevice_lo value
831  * @hi: the bcdDevice_hi value
832  *
833  * This macro is used to create a struct usb_device_id that matches a
834  * specific device, with a version range.
835  */
836 #define USB_DEVICE_VER(vend, prod, lo, hi) \
837 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
838 	.idVendor = (vend), \
839 	.idProduct = (prod), \
840 	.bcdDevice_lo = (lo), \
841 	.bcdDevice_hi = (hi)
842 
843 /**
844  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
845  * @vend: the 16 bit USB Vendor ID
846  * @prod: the 16 bit USB Product ID
847  * @cl: bInterfaceClass value
848  *
849  * This macro is used to create a struct usb_device_id that matches a
850  * specific interface class of devices.
851  */
852 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
853 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
854 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
855 	.idVendor = (vend), \
856 	.idProduct = (prod), \
857 	.bInterfaceClass = (cl)
858 
859 /**
860  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
861  * @vend: the 16 bit USB Vendor ID
862  * @prod: the 16 bit USB Product ID
863  * @pr: bInterfaceProtocol value
864  *
865  * This macro is used to create a struct usb_device_id that matches a
866  * specific interface protocol of devices.
867  */
868 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
869 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
870 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
871 	.idVendor = (vend), \
872 	.idProduct = (prod), \
873 	.bInterfaceProtocol = (pr)
874 
875 /**
876  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
877  * @vend: the 16 bit USB Vendor ID
878  * @prod: the 16 bit USB Product ID
879  * @num: bInterfaceNumber value
880  *
881  * This macro is used to create a struct usb_device_id that matches a
882  * specific interface number of devices.
883  */
884 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
885 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
886 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
887 	.idVendor = (vend), \
888 	.idProduct = (prod), \
889 	.bInterfaceNumber = (num)
890 
891 /**
892  * USB_DEVICE_INFO - macro used to describe a class of usb devices
893  * @cl: bDeviceClass value
894  * @sc: bDeviceSubClass value
895  * @pr: bDeviceProtocol value
896  *
897  * This macro is used to create a struct usb_device_id that matches a
898  * specific class of devices.
899  */
900 #define USB_DEVICE_INFO(cl, sc, pr) \
901 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
902 	.bDeviceClass = (cl), \
903 	.bDeviceSubClass = (sc), \
904 	.bDeviceProtocol = (pr)
905 
906 /**
907  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
908  * @cl: bInterfaceClass value
909  * @sc: bInterfaceSubClass value
910  * @pr: bInterfaceProtocol value
911  *
912  * This macro is used to create a struct usb_device_id that matches a
913  * specific class of interfaces.
914  */
915 #define USB_INTERFACE_INFO(cl, sc, pr) \
916 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
917 	.bInterfaceClass = (cl), \
918 	.bInterfaceSubClass = (sc), \
919 	.bInterfaceProtocol = (pr)
920 
921 /**
922  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
923  * @vend: the 16 bit USB Vendor ID
924  * @prod: the 16 bit USB Product ID
925  * @cl: bInterfaceClass value
926  * @sc: bInterfaceSubClass value
927  * @pr: bInterfaceProtocol value
928  *
929  * This macro is used to create a struct usb_device_id that matches a
930  * specific device with a specific class of interfaces.
931  *
932  * This is especially useful when explicitly matching devices that have
933  * vendor specific bDeviceClass values, but standards-compliant interfaces.
934  */
935 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
936 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
937 		| USB_DEVICE_ID_MATCH_DEVICE, \
938 	.idVendor = (vend), \
939 	.idProduct = (prod), \
940 	.bInterfaceClass = (cl), \
941 	.bInterfaceSubClass = (sc), \
942 	.bInterfaceProtocol = (pr)
943 
944 /**
945  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
946  * @vend: the 16 bit USB Vendor ID
947  * @cl: bInterfaceClass value
948  * @sc: bInterfaceSubClass value
949  * @pr: bInterfaceProtocol value
950  *
951  * This macro is used to create a struct usb_device_id that matches a
952  * specific vendor with a specific class of interfaces.
953  *
954  * This is especially useful when explicitly matching devices that have
955  * vendor specific bDeviceClass values, but standards-compliant interfaces.
956  */
957 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
958 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
959 		| USB_DEVICE_ID_MATCH_VENDOR, \
960 	.idVendor = (vend), \
961 	.bInterfaceClass = (cl), \
962 	.bInterfaceSubClass = (sc), \
963 	.bInterfaceProtocol = (pr)
964 
965 /* ----------------------------------------------------------------------- */
966 
967 /* Stuff for dynamic usb ids */
968 struct usb_dynids {
969 	spinlock_t lock;
970 	struct list_head list;
971 };
972 
973 struct usb_dynid {
974 	struct list_head node;
975 	struct usb_device_id id;
976 };
977 
978 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
979 				const struct usb_device_id *id_table,
980 				struct device_driver *driver,
981 				const char *buf, size_t count);
982 
983 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
984 
985 /**
986  * struct usbdrv_wrap - wrapper for driver-model structure
987  * @driver: The driver-model core driver structure.
988  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
989  */
990 struct usbdrv_wrap {
991 	struct device_driver driver;
992 	int for_devices;
993 };
994 
995 /**
996  * struct usb_driver - identifies USB interface driver to usbcore
997  * @name: The driver name should be unique among USB drivers,
998  *	and should normally be the same as the module name.
999  * @probe: Called to see if the driver is willing to manage a particular
1000  *	interface on a device.  If it is, probe returns zero and uses
1001  *	usb_set_intfdata() to associate driver-specific data with the
1002  *	interface.  It may also use usb_set_interface() to specify the
1003  *	appropriate altsetting.  If unwilling to manage the interface,
1004  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1005  *	negative errno value.
1006  * @disconnect: Called when the interface is no longer accessible, usually
1007  *	because its device has been (or is being) disconnected or the
1008  *	driver module is being unloaded.
1009  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1010  *	the "usbfs" filesystem.  This lets devices provide ways to
1011  *	expose information to user space regardless of where they
1012  *	do (or don't) show up otherwise in the filesystem.
1013  * @suspend: Called when the device is going to be suspended by the
1014  *	system either from system sleep or runtime suspend context. The
1015  *	return value will be ignored in system sleep context, so do NOT
1016  *	try to continue using the device if suspend fails in this case.
1017  *	Instead, let the resume or reset-resume routine recover from
1018  *	the failure.
1019  * @resume: Called when the device is being resumed by the system.
1020  * @reset_resume: Called when the suspended device has been reset instead
1021  *	of being resumed.
1022  * @pre_reset: Called by usb_reset_device() when the device is about to be
1023  *	reset.  This routine must not return until the driver has no active
1024  *	URBs for the device, and no more URBs may be submitted until the
1025  *	post_reset method is called.
1026  * @post_reset: Called by usb_reset_device() after the device
1027  *	has been reset
1028  * @id_table: USB drivers use ID table to support hotplugging.
1029  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1030  *	or your driver's probe function will never get called.
1031  * @dynids: used internally to hold the list of dynamically added device
1032  *	ids for this driver.
1033  * @drvwrap: Driver-model core structure wrapper.
1034  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1035  *	added to this driver by preventing the sysfs file from being created.
1036  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1037  *	for interfaces bound to this driver.
1038  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1039  *	endpoints before calling the driver's disconnect method.
1040  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1041  *	to initiate lower power link state transitions when an idle timeout
1042  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1043  *
1044  * USB interface drivers must provide a name, probe() and disconnect()
1045  * methods, and an id_table.  Other driver fields are optional.
1046  *
1047  * The id_table is used in hotplugging.  It holds a set of descriptors,
1048  * and specialized data may be associated with each entry.  That table
1049  * is used by both user and kernel mode hotplugging support.
1050  *
1051  * The probe() and disconnect() methods are called in a context where
1052  * they can sleep, but they should avoid abusing the privilege.  Most
1053  * work to connect to a device should be done when the device is opened,
1054  * and undone at the last close.  The disconnect code needs to address
1055  * concurrency issues with respect to open() and close() methods, as
1056  * well as forcing all pending I/O requests to complete (by unlinking
1057  * them as necessary, and blocking until the unlinks complete).
1058  */
1059 struct usb_driver {
1060 	const char *name;
1061 
1062 	int (*probe) (struct usb_interface *intf,
1063 		      const struct usb_device_id *id);
1064 
1065 	void (*disconnect) (struct usb_interface *intf);
1066 
1067 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1068 			void *buf);
1069 
1070 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1071 	int (*resume) (struct usb_interface *intf);
1072 	int (*reset_resume)(struct usb_interface *intf);
1073 
1074 	int (*pre_reset)(struct usb_interface *intf);
1075 	int (*post_reset)(struct usb_interface *intf);
1076 
1077 	const struct usb_device_id *id_table;
1078 
1079 	struct usb_dynids dynids;
1080 	struct usbdrv_wrap drvwrap;
1081 	unsigned int no_dynamic_id:1;
1082 	unsigned int supports_autosuspend:1;
1083 	unsigned int disable_hub_initiated_lpm:1;
1084 	unsigned int soft_unbind:1;
1085 };
1086 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1087 
1088 /**
1089  * struct usb_device_driver - identifies USB device driver to usbcore
1090  * @name: The driver name should be unique among USB drivers,
1091  *	and should normally be the same as the module name.
1092  * @probe: Called to see if the driver is willing to manage a particular
1093  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1094  *	to associate driver-specific data with the device.  If unwilling
1095  *	to manage the device, return a negative errno value.
1096  * @disconnect: Called when the device is no longer accessible, usually
1097  *	because it has been (or is being) disconnected or the driver's
1098  *	module is being unloaded.
1099  * @suspend: Called when the device is going to be suspended by the system.
1100  * @resume: Called when the device is being resumed by the system.
1101  * @drvwrap: Driver-model core structure wrapper.
1102  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1103  *	for devices bound to this driver.
1104  *
1105  * USB drivers must provide all the fields listed above except drvwrap.
1106  */
1107 struct usb_device_driver {
1108 	const char *name;
1109 
1110 	int (*probe) (struct usb_device *udev);
1111 	void (*disconnect) (struct usb_device *udev);
1112 
1113 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1114 	int (*resume) (struct usb_device *udev, pm_message_t message);
1115 	struct usbdrv_wrap drvwrap;
1116 	unsigned int supports_autosuspend:1;
1117 };
1118 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1119 		drvwrap.driver)
1120 
1121 extern struct bus_type usb_bus_type;
1122 
1123 /**
1124  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1125  * @name: the usb class device name for this driver.  Will show up in sysfs.
1126  * @devnode: Callback to provide a naming hint for a possible
1127  *	device node to create.
1128  * @fops: pointer to the struct file_operations of this driver.
1129  * @minor_base: the start of the minor range for this driver.
1130  *
1131  * This structure is used for the usb_register_dev() and
1132  * usb_unregister_dev() functions, to consolidate a number of the
1133  * parameters used for them.
1134  */
1135 struct usb_class_driver {
1136 	char *name;
1137 	char *(*devnode)(struct device *dev, umode_t *mode);
1138 	const struct file_operations *fops;
1139 	int minor_base;
1140 };
1141 
1142 /*
1143  * use these in module_init()/module_exit()
1144  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1145  */
1146 extern int usb_register_driver(struct usb_driver *, struct module *,
1147 			       const char *);
1148 
1149 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1150 #define usb_register(driver) \
1151 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1152 
1153 extern void usb_deregister(struct usb_driver *);
1154 
1155 /**
1156  * module_usb_driver() - Helper macro for registering a USB driver
1157  * @__usb_driver: usb_driver struct
1158  *
1159  * Helper macro for USB drivers which do not do anything special in module
1160  * init/exit. This eliminates a lot of boilerplate. Each module may only
1161  * use this macro once, and calling it replaces module_init() and module_exit()
1162  */
1163 #define module_usb_driver(__usb_driver) \
1164 	module_driver(__usb_driver, usb_register, \
1165 		       usb_deregister)
1166 
1167 extern int usb_register_device_driver(struct usb_device_driver *,
1168 			struct module *);
1169 extern void usb_deregister_device_driver(struct usb_device_driver *);
1170 
1171 extern int usb_register_dev(struct usb_interface *intf,
1172 			    struct usb_class_driver *class_driver);
1173 extern void usb_deregister_dev(struct usb_interface *intf,
1174 			       struct usb_class_driver *class_driver);
1175 
1176 extern int usb_disabled(void);
1177 
1178 /* ----------------------------------------------------------------------- */
1179 
1180 /*
1181  * URB support, for asynchronous request completions
1182  */
1183 
1184 /*
1185  * urb->transfer_flags:
1186  *
1187  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1188  */
1189 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1190 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1191 					 * slot in the schedule */
1192 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1193 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1194 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1195 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1196 					 * needed */
1197 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1198 
1199 /* The following flags are used internally by usbcore and HCDs */
1200 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1201 #define URB_DIR_OUT		0
1202 #define URB_DIR_MASK		URB_DIR_IN
1203 
1204 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1205 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1206 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1207 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1208 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1209 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1210 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1211 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1212 
1213 struct usb_iso_packet_descriptor {
1214 	unsigned int offset;
1215 	unsigned int length;		/* expected length */
1216 	unsigned int actual_length;
1217 	int status;
1218 };
1219 
1220 struct urb;
1221 
1222 struct usb_anchor {
1223 	struct list_head urb_list;
1224 	wait_queue_head_t wait;
1225 	spinlock_t lock;
1226 	atomic_t suspend_wakeups;
1227 	unsigned int poisoned:1;
1228 };
1229 
1230 static inline void init_usb_anchor(struct usb_anchor *anchor)
1231 {
1232 	memset(anchor, 0, sizeof(*anchor));
1233 	INIT_LIST_HEAD(&anchor->urb_list);
1234 	init_waitqueue_head(&anchor->wait);
1235 	spin_lock_init(&anchor->lock);
1236 }
1237 
1238 typedef void (*usb_complete_t)(struct urb *);
1239 
1240 /**
1241  * struct urb - USB Request Block
1242  * @urb_list: For use by current owner of the URB.
1243  * @anchor_list: membership in the list of an anchor
1244  * @anchor: to anchor URBs to a common mooring
1245  * @ep: Points to the endpoint's data structure.  Will eventually
1246  *	replace @pipe.
1247  * @pipe: Holds endpoint number, direction, type, and more.
1248  *	Create these values with the eight macros available;
1249  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1250  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1251  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1252  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1253  *	is a different endpoint (and pipe) from "out" endpoint two.
1254  *	The current configuration controls the existence, type, and
1255  *	maximum packet size of any given endpoint.
1256  * @stream_id: the endpoint's stream ID for bulk streams
1257  * @dev: Identifies the USB device to perform the request.
1258  * @status: This is read in non-iso completion functions to get the
1259  *	status of the particular request.  ISO requests only use it
1260  *	to tell whether the URB was unlinked; detailed status for
1261  *	each frame is in the fields of the iso_frame-desc.
1262  * @transfer_flags: A variety of flags may be used to affect how URB
1263  *	submission, unlinking, or operation are handled.  Different
1264  *	kinds of URB can use different flags.
1265  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1266  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1267  *	(however, do not leave garbage in transfer_buffer even then).
1268  *	This buffer must be suitable for DMA; allocate it with
1269  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1270  *	of this buffer will be modified.  This buffer is used for the data
1271  *	stage of control transfers.
1272  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1273  *	the device driver is saying that it provided this DMA address,
1274  *	which the host controller driver should use in preference to the
1275  *	transfer_buffer.
1276  * @sg: scatter gather buffer list, the buffer size of each element in
1277  * 	the list (except the last) must be divisible by the endpoint's
1278  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1279  * @num_mapped_sgs: (internal) number of mapped sg entries
1280  * @num_sgs: number of entries in the sg list
1281  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1282  *	be broken up into chunks according to the current maximum packet
1283  *	size for the endpoint, which is a function of the configuration
1284  *	and is encoded in the pipe.  When the length is zero, neither
1285  *	transfer_buffer nor transfer_dma is used.
1286  * @actual_length: This is read in non-iso completion functions, and
1287  *	it tells how many bytes (out of transfer_buffer_length) were
1288  *	transferred.  It will normally be the same as requested, unless
1289  *	either an error was reported or a short read was performed.
1290  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1291  *	short reads be reported as errors.
1292  * @setup_packet: Only used for control transfers, this points to eight bytes
1293  *	of setup data.  Control transfers always start by sending this data
1294  *	to the device.  Then transfer_buffer is read or written, if needed.
1295  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1296  *	this field; setup_packet must point to a valid buffer.
1297  * @start_frame: Returns the initial frame for isochronous transfers.
1298  * @number_of_packets: Lists the number of ISO transfer buffers.
1299  * @interval: Specifies the polling interval for interrupt or isochronous
1300  *	transfers.  The units are frames (milliseconds) for full and low
1301  *	speed devices, and microframes (1/8 millisecond) for highspeed
1302  *	and SuperSpeed devices.
1303  * @error_count: Returns the number of ISO transfers that reported errors.
1304  * @context: For use in completion functions.  This normally points to
1305  *	request-specific driver context.
1306  * @complete: Completion handler. This URB is passed as the parameter to the
1307  *	completion function.  The completion function may then do what
1308  *	it likes with the URB, including resubmitting or freeing it.
1309  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1310  *	collect the transfer status for each buffer.
1311  *
1312  * This structure identifies USB transfer requests.  URBs must be allocated by
1313  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1314  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1315  * are submitted using usb_submit_urb(), and pending requests may be canceled
1316  * using usb_unlink_urb() or usb_kill_urb().
1317  *
1318  * Data Transfer Buffers:
1319  *
1320  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1321  * taken from the general page pool.  That is provided by transfer_buffer
1322  * (control requests also use setup_packet), and host controller drivers
1323  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1324  * mapping operations can be expensive on some platforms (perhaps using a dma
1325  * bounce buffer or talking to an IOMMU),
1326  * although they're cheap on commodity x86 and ppc hardware.
1327  *
1328  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1329  * which tells the host controller driver that no such mapping is needed for
1330  * the transfer_buffer since
1331  * the device driver is DMA-aware.  For example, a device driver might
1332  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1333  * When this transfer flag is provided, host controller drivers will
1334  * attempt to use the dma address found in the transfer_dma
1335  * field rather than determining a dma address themselves.
1336  *
1337  * Note that transfer_buffer must still be set if the controller
1338  * does not support DMA (as indicated by bus.uses_dma) and when talking
1339  * to root hub. If you have to trasfer between highmem zone and the device
1340  * on such controller, create a bounce buffer or bail out with an error.
1341  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1342  * capable, assign NULL to it, so that usbmon knows not to use the value.
1343  * The setup_packet must always be set, so it cannot be located in highmem.
1344  *
1345  * Initialization:
1346  *
1347  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1348  * zero), and complete fields.  All URBs must also initialize
1349  * transfer_buffer and transfer_buffer_length.  They may provide the
1350  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1351  * to be treated as errors; that flag is invalid for write requests.
1352  *
1353  * Bulk URBs may
1354  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1355  * should always terminate with a short packet, even if it means adding an
1356  * extra zero length packet.
1357  *
1358  * Control URBs must provide a valid pointer in the setup_packet field.
1359  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1360  * beforehand.
1361  *
1362  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1363  * or, for highspeed devices, 125 microsecond units)
1364  * to poll for transfers.  After the URB has been submitted, the interval
1365  * field reflects how the transfer was actually scheduled.
1366  * The polling interval may be more frequent than requested.
1367  * For example, some controllers have a maximum interval of 32 milliseconds,
1368  * while others support intervals of up to 1024 milliseconds.
1369  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1370  * endpoints, as well as high speed interrupt endpoints, the encoding of
1371  * the transfer interval in the endpoint descriptor is logarithmic.
1372  * Device drivers must convert that value to linear units themselves.)
1373  *
1374  * If an isochronous endpoint queue isn't already running, the host
1375  * controller will schedule a new URB to start as soon as bandwidth
1376  * utilization allows.  If the queue is running then a new URB will be
1377  * scheduled to start in the first transfer slot following the end of the
1378  * preceding URB, if that slot has not already expired.  If the slot has
1379  * expired (which can happen when IRQ delivery is delayed for a long time),
1380  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1381  * is clear then the URB will be scheduled to start in the expired slot,
1382  * implying that some of its packets will not be transferred; if the flag
1383  * is set then the URB will be scheduled in the first unexpired slot,
1384  * breaking the queue's synchronization.  Upon URB completion, the
1385  * start_frame field will be set to the (micro)frame number in which the
1386  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1387  * and can go from as low as 256 to as high as 65536 frames.
1388  *
1389  * Isochronous URBs have a different data transfer model, in part because
1390  * the quality of service is only "best effort".  Callers provide specially
1391  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1392  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1393  * URBs are normally queued, submitted by drivers to arrange that
1394  * transfers are at least double buffered, and then explicitly resubmitted
1395  * in completion handlers, so
1396  * that data (such as audio or video) streams at as constant a rate as the
1397  * host controller scheduler can support.
1398  *
1399  * Completion Callbacks:
1400  *
1401  * The completion callback is made in_interrupt(), and one of the first
1402  * things that a completion handler should do is check the status field.
1403  * The status field is provided for all URBs.  It is used to report
1404  * unlinked URBs, and status for all non-ISO transfers.  It should not
1405  * be examined before the URB is returned to the completion handler.
1406  *
1407  * The context field is normally used to link URBs back to the relevant
1408  * driver or request state.
1409  *
1410  * When the completion callback is invoked for non-isochronous URBs, the
1411  * actual_length field tells how many bytes were transferred.  This field
1412  * is updated even when the URB terminated with an error or was unlinked.
1413  *
1414  * ISO transfer status is reported in the status and actual_length fields
1415  * of the iso_frame_desc array, and the number of errors is reported in
1416  * error_count.  Completion callbacks for ISO transfers will normally
1417  * (re)submit URBs to ensure a constant transfer rate.
1418  *
1419  * Note that even fields marked "public" should not be touched by the driver
1420  * when the urb is owned by the hcd, that is, since the call to
1421  * usb_submit_urb() till the entry into the completion routine.
1422  */
1423 struct urb {
1424 	/* private: usb core and host controller only fields in the urb */
1425 	struct kref kref;		/* reference count of the URB */
1426 	void *hcpriv;			/* private data for host controller */
1427 	atomic_t use_count;		/* concurrent submissions counter */
1428 	atomic_t reject;		/* submissions will fail */
1429 	int unlinked;			/* unlink error code */
1430 
1431 	/* public: documented fields in the urb that can be used by drivers */
1432 	struct list_head urb_list;	/* list head for use by the urb's
1433 					 * current owner */
1434 	struct list_head anchor_list;	/* the URB may be anchored */
1435 	struct usb_anchor *anchor;
1436 	struct usb_device *dev;		/* (in) pointer to associated device */
1437 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1438 	unsigned int pipe;		/* (in) pipe information */
1439 	unsigned int stream_id;		/* (in) stream ID */
1440 	int status;			/* (return) non-ISO status */
1441 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1442 	void *transfer_buffer;		/* (in) associated data buffer */
1443 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1444 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1445 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1446 	int num_sgs;			/* (in) number of entries in the sg list */
1447 	u32 transfer_buffer_length;	/* (in) data buffer length */
1448 	u32 actual_length;		/* (return) actual transfer length */
1449 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1450 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1451 	int start_frame;		/* (modify) start frame (ISO) */
1452 	int number_of_packets;		/* (in) number of ISO packets */
1453 	int interval;			/* (modify) transfer interval
1454 					 * (INT/ISO) */
1455 	int error_count;		/* (return) number of ISO errors */
1456 	void *context;			/* (in) context for completion */
1457 	usb_complete_t complete;	/* (in) completion routine */
1458 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1459 					/* (in) ISO ONLY */
1460 };
1461 
1462 /* ----------------------------------------------------------------------- */
1463 
1464 /**
1465  * usb_fill_control_urb - initializes a control urb
1466  * @urb: pointer to the urb to initialize.
1467  * @dev: pointer to the struct usb_device for this urb.
1468  * @pipe: the endpoint pipe
1469  * @setup_packet: pointer to the setup_packet buffer
1470  * @transfer_buffer: pointer to the transfer buffer
1471  * @buffer_length: length of the transfer buffer
1472  * @complete_fn: pointer to the usb_complete_t function
1473  * @context: what to set the urb context to.
1474  *
1475  * Initializes a control urb with the proper information needed to submit
1476  * it to a device.
1477  */
1478 static inline void usb_fill_control_urb(struct urb *urb,
1479 					struct usb_device *dev,
1480 					unsigned int pipe,
1481 					unsigned char *setup_packet,
1482 					void *transfer_buffer,
1483 					int buffer_length,
1484 					usb_complete_t complete_fn,
1485 					void *context)
1486 {
1487 	urb->dev = dev;
1488 	urb->pipe = pipe;
1489 	urb->setup_packet = setup_packet;
1490 	urb->transfer_buffer = transfer_buffer;
1491 	urb->transfer_buffer_length = buffer_length;
1492 	urb->complete = complete_fn;
1493 	urb->context = context;
1494 }
1495 
1496 /**
1497  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1498  * @urb: pointer to the urb to initialize.
1499  * @dev: pointer to the struct usb_device for this urb.
1500  * @pipe: the endpoint pipe
1501  * @transfer_buffer: pointer to the transfer buffer
1502  * @buffer_length: length of the transfer buffer
1503  * @complete_fn: pointer to the usb_complete_t function
1504  * @context: what to set the urb context to.
1505  *
1506  * Initializes a bulk urb with the proper information needed to submit it
1507  * to a device.
1508  */
1509 static inline void usb_fill_bulk_urb(struct urb *urb,
1510 				     struct usb_device *dev,
1511 				     unsigned int pipe,
1512 				     void *transfer_buffer,
1513 				     int buffer_length,
1514 				     usb_complete_t complete_fn,
1515 				     void *context)
1516 {
1517 	urb->dev = dev;
1518 	urb->pipe = pipe;
1519 	urb->transfer_buffer = transfer_buffer;
1520 	urb->transfer_buffer_length = buffer_length;
1521 	urb->complete = complete_fn;
1522 	urb->context = context;
1523 }
1524 
1525 /**
1526  * usb_fill_int_urb - macro to help initialize a interrupt urb
1527  * @urb: pointer to the urb to initialize.
1528  * @dev: pointer to the struct usb_device for this urb.
1529  * @pipe: the endpoint pipe
1530  * @transfer_buffer: pointer to the transfer buffer
1531  * @buffer_length: length of the transfer buffer
1532  * @complete_fn: pointer to the usb_complete_t function
1533  * @context: what to set the urb context to.
1534  * @interval: what to set the urb interval to, encoded like
1535  *	the endpoint descriptor's bInterval value.
1536  *
1537  * Initializes a interrupt urb with the proper information needed to submit
1538  * it to a device.
1539  *
1540  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1541  * encoding of the endpoint interval, and express polling intervals in
1542  * microframes (eight per millisecond) rather than in frames (one per
1543  * millisecond).
1544  *
1545  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1546  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1547  * through to the host controller, rather than being translated into microframe
1548  * units.
1549  */
1550 static inline void usb_fill_int_urb(struct urb *urb,
1551 				    struct usb_device *dev,
1552 				    unsigned int pipe,
1553 				    void *transfer_buffer,
1554 				    int buffer_length,
1555 				    usb_complete_t complete_fn,
1556 				    void *context,
1557 				    int interval)
1558 {
1559 	urb->dev = dev;
1560 	urb->pipe = pipe;
1561 	urb->transfer_buffer = transfer_buffer;
1562 	urb->transfer_buffer_length = buffer_length;
1563 	urb->complete = complete_fn;
1564 	urb->context = context;
1565 
1566 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1567 		/* make sure interval is within allowed range */
1568 		interval = clamp(interval, 1, 16);
1569 
1570 		urb->interval = 1 << (interval - 1);
1571 	} else {
1572 		urb->interval = interval;
1573 	}
1574 
1575 	urb->start_frame = -1;
1576 }
1577 
1578 extern void usb_init_urb(struct urb *urb);
1579 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1580 extern void usb_free_urb(struct urb *urb);
1581 #define usb_put_urb usb_free_urb
1582 extern struct urb *usb_get_urb(struct urb *urb);
1583 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1584 extern int usb_unlink_urb(struct urb *urb);
1585 extern void usb_kill_urb(struct urb *urb);
1586 extern void usb_poison_urb(struct urb *urb);
1587 extern void usb_unpoison_urb(struct urb *urb);
1588 extern void usb_block_urb(struct urb *urb);
1589 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1590 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1591 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1592 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1593 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1594 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1595 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1596 extern void usb_unanchor_urb(struct urb *urb);
1597 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1598 					 unsigned int timeout);
1599 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1600 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1601 extern int usb_anchor_empty(struct usb_anchor *anchor);
1602 
1603 #define usb_unblock_urb	usb_unpoison_urb
1604 
1605 /**
1606  * usb_urb_dir_in - check if an URB describes an IN transfer
1607  * @urb: URB to be checked
1608  *
1609  * Return: 1 if @urb describes an IN transfer (device-to-host),
1610  * otherwise 0.
1611  */
1612 static inline int usb_urb_dir_in(struct urb *urb)
1613 {
1614 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1615 }
1616 
1617 /**
1618  * usb_urb_dir_out - check if an URB describes an OUT transfer
1619  * @urb: URB to be checked
1620  *
1621  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1622  * otherwise 0.
1623  */
1624 static inline int usb_urb_dir_out(struct urb *urb)
1625 {
1626 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1627 }
1628 
1629 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1630 	gfp_t mem_flags, dma_addr_t *dma);
1631 void usb_free_coherent(struct usb_device *dev, size_t size,
1632 	void *addr, dma_addr_t dma);
1633 
1634 #if 0
1635 struct urb *usb_buffer_map(struct urb *urb);
1636 void usb_buffer_dmasync(struct urb *urb);
1637 void usb_buffer_unmap(struct urb *urb);
1638 #endif
1639 
1640 struct scatterlist;
1641 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1642 		      struct scatterlist *sg, int nents);
1643 #if 0
1644 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1645 			   struct scatterlist *sg, int n_hw_ents);
1646 #endif
1647 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1648 			 struct scatterlist *sg, int n_hw_ents);
1649 
1650 /*-------------------------------------------------------------------*
1651  *                         SYNCHRONOUS CALL SUPPORT                  *
1652  *-------------------------------------------------------------------*/
1653 
1654 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1655 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1656 	void *data, __u16 size, int timeout);
1657 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1658 	void *data, int len, int *actual_length, int timeout);
1659 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1660 	void *data, int len, int *actual_length,
1661 	int timeout);
1662 
1663 /* wrappers around usb_control_msg() for the most common standard requests */
1664 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1665 	unsigned char descindex, void *buf, int size);
1666 extern int usb_get_status(struct usb_device *dev,
1667 	int type, int target, void *data);
1668 extern int usb_string(struct usb_device *dev, int index,
1669 	char *buf, size_t size);
1670 
1671 /* wrappers that also update important state inside usbcore */
1672 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1673 extern int usb_reset_configuration(struct usb_device *dev);
1674 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1675 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1676 
1677 /* this request isn't really synchronous, but it belongs with the others */
1678 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1679 
1680 /* choose and set configuration for device */
1681 extern int usb_choose_configuration(struct usb_device *udev);
1682 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1683 
1684 /*
1685  * timeouts, in milliseconds, used for sending/receiving control messages
1686  * they typically complete within a few frames (msec) after they're issued
1687  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1688  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1689  */
1690 #define USB_CTRL_GET_TIMEOUT	5000
1691 #define USB_CTRL_SET_TIMEOUT	5000
1692 
1693 
1694 /**
1695  * struct usb_sg_request - support for scatter/gather I/O
1696  * @status: zero indicates success, else negative errno
1697  * @bytes: counts bytes transferred.
1698  *
1699  * These requests are initialized using usb_sg_init(), and then are used
1700  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1701  * members of the request object aren't for driver access.
1702  *
1703  * The status and bytecount values are valid only after usb_sg_wait()
1704  * returns.  If the status is zero, then the bytecount matches the total
1705  * from the request.
1706  *
1707  * After an error completion, drivers may need to clear a halt condition
1708  * on the endpoint.
1709  */
1710 struct usb_sg_request {
1711 	int			status;
1712 	size_t			bytes;
1713 
1714 	/* private:
1715 	 * members below are private to usbcore,
1716 	 * and are not provided for driver access!
1717 	 */
1718 	spinlock_t		lock;
1719 
1720 	struct usb_device	*dev;
1721 	int			pipe;
1722 
1723 	int			entries;
1724 	struct urb		**urbs;
1725 
1726 	int			count;
1727 	struct completion	complete;
1728 };
1729 
1730 int usb_sg_init(
1731 	struct usb_sg_request	*io,
1732 	struct usb_device	*dev,
1733 	unsigned		pipe,
1734 	unsigned		period,
1735 	struct scatterlist	*sg,
1736 	int			nents,
1737 	size_t			length,
1738 	gfp_t			mem_flags
1739 );
1740 void usb_sg_cancel(struct usb_sg_request *io);
1741 void usb_sg_wait(struct usb_sg_request *io);
1742 
1743 
1744 /* ----------------------------------------------------------------------- */
1745 
1746 /*
1747  * For various legacy reasons, Linux has a small cookie that's paired with
1748  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1749  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1750  * an unsigned int encoded as:
1751  *
1752  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1753  *					 1 = Device-to-Host [In] ...
1754  *					like endpoint bEndpointAddress)
1755  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1756  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1757  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1758  *					 10 = control, 11 = bulk)
1759  *
1760  * Given the device address and endpoint descriptor, pipes are redundant.
1761  */
1762 
1763 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1764 /* (yet ... they're the values used by usbfs) */
1765 #define PIPE_ISOCHRONOUS		0
1766 #define PIPE_INTERRUPT			1
1767 #define PIPE_CONTROL			2
1768 #define PIPE_BULK			3
1769 
1770 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1771 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1772 
1773 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1774 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1775 
1776 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1777 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1778 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1779 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1780 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1781 
1782 static inline unsigned int __create_pipe(struct usb_device *dev,
1783 		unsigned int endpoint)
1784 {
1785 	return (dev->devnum << 8) | (endpoint << 15);
1786 }
1787 
1788 /* Create various pipes... */
1789 #define usb_sndctrlpipe(dev, endpoint)	\
1790 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1791 #define usb_rcvctrlpipe(dev, endpoint)	\
1792 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1793 #define usb_sndisocpipe(dev, endpoint)	\
1794 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1795 #define usb_rcvisocpipe(dev, endpoint)	\
1796 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1797 #define usb_sndbulkpipe(dev, endpoint)	\
1798 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1799 #define usb_rcvbulkpipe(dev, endpoint)	\
1800 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1801 #define usb_sndintpipe(dev, endpoint)	\
1802 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1803 #define usb_rcvintpipe(dev, endpoint)	\
1804 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1805 
1806 static inline struct usb_host_endpoint *
1807 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1808 {
1809 	struct usb_host_endpoint **eps;
1810 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1811 	return eps[usb_pipeendpoint(pipe)];
1812 }
1813 
1814 /*-------------------------------------------------------------------------*/
1815 
1816 static inline __u16
1817 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1818 {
1819 	struct usb_host_endpoint	*ep;
1820 	unsigned			epnum = usb_pipeendpoint(pipe);
1821 
1822 	if (is_out) {
1823 		WARN_ON(usb_pipein(pipe));
1824 		ep = udev->ep_out[epnum];
1825 	} else {
1826 		WARN_ON(usb_pipeout(pipe));
1827 		ep = udev->ep_in[epnum];
1828 	}
1829 	if (!ep)
1830 		return 0;
1831 
1832 	/* NOTE:  only 0x07ff bits are for packet size... */
1833 	return usb_endpoint_maxp(&ep->desc);
1834 }
1835 
1836 /* ----------------------------------------------------------------------- */
1837 
1838 /* translate USB error codes to codes user space understands */
1839 static inline int usb_translate_errors(int error_code)
1840 {
1841 	switch (error_code) {
1842 	case 0:
1843 	case -ENOMEM:
1844 	case -ENODEV:
1845 	case -EOPNOTSUPP:
1846 		return error_code;
1847 	default:
1848 		return -EIO;
1849 	}
1850 }
1851 
1852 /* Events from the usb core */
1853 #define USB_DEVICE_ADD		0x0001
1854 #define USB_DEVICE_REMOVE	0x0002
1855 #define USB_BUS_ADD		0x0003
1856 #define USB_BUS_REMOVE		0x0004
1857 extern void usb_register_notify(struct notifier_block *nb);
1858 extern void usb_unregister_notify(struct notifier_block *nb);
1859 
1860 /* debugfs stuff */
1861 extern struct dentry *usb_debug_root;
1862 
1863 #endif  /* __KERNEL__ */
1864 
1865 #endif
1866