xref: /linux-6.15/include/linux/usb.h (revision de2fe5e0)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb_ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/config.h>
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 
24 struct usb_device;
25 struct usb_driver;
26 
27 /*-------------------------------------------------------------------------*/
28 
29 /*
30  * Host-side wrappers for standard USB descriptors ... these are parsed
31  * from the data provided by devices.  Parsing turns them from a flat
32  * sequence of descriptors into a hierarchy:
33  *
34  *  - devices have one (usually) or more configs;
35  *  - configs have one (often) or more interfaces;
36  *  - interfaces have one (usually) or more settings;
37  *  - each interface setting has zero or (usually) more endpoints.
38  *
39  * And there might be other descriptors mixed in with those.
40  *
41  * Devices may also have class-specific or vendor-specific descriptors.
42  */
43 
44 /**
45  * struct usb_host_endpoint - host-side endpoint descriptor and queue
46  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
47  * @urb_list: urbs queued to this endpoint; maintained by usbcore
48  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
49  *	with one or more transfer descriptors (TDs) per urb
50  * @kobj: kobject for sysfs info
51  * @extra: descriptors following this endpoint in the configuration
52  * @extralen: how many bytes of "extra" are valid
53  *
54  * USB requests are always queued to a given endpoint, identified by a
55  * descriptor within an active interface in a given USB configuration.
56  */
57 struct usb_host_endpoint {
58 	struct usb_endpoint_descriptor	desc;
59 	struct list_head		urb_list;
60 	void				*hcpriv;
61 	struct kobject			*kobj;	/* For sysfs info */
62 
63 	unsigned char *extra;   /* Extra descriptors */
64 	int extralen;
65 };
66 
67 /* host-side wrapper for one interface setting's parsed descriptors */
68 struct usb_host_interface {
69 	struct usb_interface_descriptor	desc;
70 
71 	/* array of desc.bNumEndpoint endpoints associated with this
72 	 * interface setting.  these will be in no particular order.
73 	 */
74 	struct usb_host_endpoint *endpoint;
75 
76 	char *string;		/* iInterface string, if present */
77 	unsigned char *extra;   /* Extra descriptors */
78 	int extralen;
79 };
80 
81 enum usb_interface_condition {
82 	USB_INTERFACE_UNBOUND = 0,
83 	USB_INTERFACE_BINDING,
84 	USB_INTERFACE_BOUND,
85 	USB_INTERFACE_UNBINDING,
86 };
87 
88 /**
89  * struct usb_interface - what usb device drivers talk to
90  * @altsetting: array of interface structures, one for each alternate
91  * 	setting that may be selected.  Each one includes a set of
92  * 	endpoint configurations.  They will be in no particular order.
93  * @num_altsetting: number of altsettings defined.
94  * @cur_altsetting: the current altsetting.
95  * @driver: the USB driver that is bound to this interface.
96  * @minor: the minor number assigned to this interface, if this
97  *	interface is bound to a driver that uses the USB major number.
98  *	If this interface does not use the USB major, this field should
99  *	be unused.  The driver should set this value in the probe()
100  *	function of the driver, after it has been assigned a minor
101  *	number from the USB core by calling usb_register_dev().
102  * @condition: binding state of the interface: not bound, binding
103  *	(in probe()), bound to a driver, or unbinding (in disconnect())
104  * @dev: driver model's view of this device
105  * @class_dev: driver model's class view of this device.
106  *
107  * USB device drivers attach to interfaces on a physical device.  Each
108  * interface encapsulates a single high level function, such as feeding
109  * an audio stream to a speaker or reporting a change in a volume control.
110  * Many USB devices only have one interface.  The protocol used to talk to
111  * an interface's endpoints can be defined in a usb "class" specification,
112  * or by a product's vendor.  The (default) control endpoint is part of
113  * every interface, but is never listed among the interface's descriptors.
114  *
115  * The driver that is bound to the interface can use standard driver model
116  * calls such as dev_get_drvdata() on the dev member of this structure.
117  *
118  * Each interface may have alternate settings.  The initial configuration
119  * of a device sets altsetting 0, but the device driver can change
120  * that setting using usb_set_interface().  Alternate settings are often
121  * used to control the the use of periodic endpoints, such as by having
122  * different endpoints use different amounts of reserved USB bandwidth.
123  * All standards-conformant USB devices that use isochronous endpoints
124  * will use them in non-default settings.
125  *
126  * The USB specification says that alternate setting numbers must run from
127  * 0 to one less than the total number of alternate settings.  But some
128  * devices manage to mess this up, and the structures aren't necessarily
129  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
130  * look up an alternate setting in the altsetting array based on its number.
131  */
132 struct usb_interface {
133 	/* array of alternate settings for this interface,
134 	 * stored in no particular order */
135 	struct usb_host_interface *altsetting;
136 
137 	struct usb_host_interface *cur_altsetting;	/* the currently
138 					 * active alternate setting */
139 	unsigned num_altsetting;	/* number of alternate settings */
140 
141 	int minor;			/* minor number this interface is
142 					 * bound to */
143 	enum usb_interface_condition condition;		/* state of binding */
144 	struct device dev;		/* interface specific device info */
145 	struct class_device *class_dev;
146 };
147 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
148 #define	interface_to_usbdev(intf) \
149 	container_of(intf->dev.parent, struct usb_device, dev)
150 
151 static inline void *usb_get_intfdata (struct usb_interface *intf)
152 {
153 	return dev_get_drvdata (&intf->dev);
154 }
155 
156 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
157 {
158 	dev_set_drvdata(&intf->dev, data);
159 }
160 
161 struct usb_interface *usb_get_intf(struct usb_interface *intf);
162 void usb_put_intf(struct usb_interface *intf);
163 
164 /* this maximum is arbitrary */
165 #define USB_MAXINTERFACES	32
166 
167 /**
168  * struct usb_interface_cache - long-term representation of a device interface
169  * @num_altsetting: number of altsettings defined.
170  * @ref: reference counter.
171  * @altsetting: variable-length array of interface structures, one for
172  *	each alternate setting that may be selected.  Each one includes a
173  *	set of endpoint configurations.  They will be in no particular order.
174  *
175  * These structures persist for the lifetime of a usb_device, unlike
176  * struct usb_interface (which persists only as long as its configuration
177  * is installed).  The altsetting arrays can be accessed through these
178  * structures at any time, permitting comparison of configurations and
179  * providing support for the /proc/bus/usb/devices pseudo-file.
180  */
181 struct usb_interface_cache {
182 	unsigned num_altsetting;	/* number of alternate settings */
183 	struct kref ref;		/* reference counter */
184 
185 	/* variable-length array of alternate settings for this interface,
186 	 * stored in no particular order */
187 	struct usb_host_interface altsetting[0];
188 };
189 #define	ref_to_usb_interface_cache(r) \
190 		container_of(r, struct usb_interface_cache, ref)
191 #define	altsetting_to_usb_interface_cache(a) \
192 		container_of(a, struct usb_interface_cache, altsetting[0])
193 
194 /**
195  * struct usb_host_config - representation of a device's configuration
196  * @desc: the device's configuration descriptor.
197  * @string: pointer to the cached version of the iConfiguration string, if
198  *	present for this configuration.
199  * @interface: array of pointers to usb_interface structures, one for each
200  *	interface in the configuration.  The number of interfaces is stored
201  *	in desc.bNumInterfaces.  These pointers are valid only while the
202  *	the configuration is active.
203  * @intf_cache: array of pointers to usb_interface_cache structures, one
204  *	for each interface in the configuration.  These structures exist
205  *	for the entire life of the device.
206  * @extra: pointer to buffer containing all extra descriptors associated
207  *	with this configuration (those preceding the first interface
208  *	descriptor).
209  * @extralen: length of the extra descriptors buffer.
210  *
211  * USB devices may have multiple configurations, but only one can be active
212  * at any time.  Each encapsulates a different operational environment;
213  * for example, a dual-speed device would have separate configurations for
214  * full-speed and high-speed operation.  The number of configurations
215  * available is stored in the device descriptor as bNumConfigurations.
216  *
217  * A configuration can contain multiple interfaces.  Each corresponds to
218  * a different function of the USB device, and all are available whenever
219  * the configuration is active.  The USB standard says that interfaces
220  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
221  * of devices get this wrong.  In addition, the interface array is not
222  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
223  * look up an interface entry based on its number.
224  *
225  * Device drivers should not attempt to activate configurations.  The choice
226  * of which configuration to install is a policy decision based on such
227  * considerations as available power, functionality provided, and the user's
228  * desires (expressed through userspace tools).  However, drivers can call
229  * usb_reset_configuration() to reinitialize the current configuration and
230  * all its interfaces.
231  */
232 struct usb_host_config {
233 	struct usb_config_descriptor	desc;
234 
235 	char *string;		/* iConfiguration string, if present */
236 	/* the interfaces associated with this configuration,
237 	 * stored in no particular order */
238 	struct usb_interface *interface[USB_MAXINTERFACES];
239 
240 	/* Interface information available even when this is not the
241 	 * active configuration */
242 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
243 
244 	unsigned char *extra;   /* Extra descriptors */
245 	int extralen;
246 };
247 
248 int __usb_get_extra_descriptor(char *buffer, unsigned size,
249 	unsigned char type, void **ptr);
250 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
251 	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
252 		type,(void**)ptr)
253 
254 /* ----------------------------------------------------------------------- */
255 
256 struct usb_operations;
257 
258 /* USB device number allocation bitmap */
259 struct usb_devmap {
260 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
261 };
262 
263 /*
264  * Allocated per bus (tree of devices) we have:
265  */
266 struct usb_bus {
267 	struct device *controller;	/* host/master side hardware */
268 	int busnum;			/* Bus number (in order of reg) */
269 	char *bus_name;			/* stable id (PCI slot_name etc) */
270 	u8 otg_port;			/* 0, or number of OTG/HNP port */
271 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
272 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
273 
274 	int devnum_next;		/* Next open device number in
275 					 * round-robin allocation */
276 
277 	struct usb_devmap devmap;	/* device address allocation map */
278 	struct usb_operations *op;	/* Operations (specific to the HC) */
279 	struct usb_device *root_hub;	/* Root hub */
280 	struct list_head bus_list;	/* list of busses */
281 	void *hcpriv;                   /* Host Controller private data */
282 
283 	int bandwidth_allocated;	/* on this bus: how much of the time
284 					 * reserved for periodic (intr/iso)
285 					 * requests is used, on average?
286 					 * Units: microseconds/frame.
287 					 * Limits: Full/low speed reserve 90%,
288 					 * while high speed reserves 80%.
289 					 */
290 	int bandwidth_int_reqs;		/* number of Interrupt requests */
291 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
292 
293 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
294 
295 	struct class_device *class_dev;	/* class device for this bus */
296 	struct kref kref;		/* reference counting for this bus */
297 	void (*release)(struct usb_bus *bus);
298 
299 #if defined(CONFIG_USB_MON)
300 	struct mon_bus *mon_bus;	/* non-null when associated */
301 	int monitored;			/* non-zero when monitored */
302 #endif
303 };
304 
305 /* ----------------------------------------------------------------------- */
306 
307 /* This is arbitrary.
308  * From USB 2.0 spec Table 11-13, offset 7, a hub can
309  * have up to 255 ports. The most yet reported is 10.
310  */
311 #define USB_MAXCHILDREN		(16)
312 
313 struct usb_tt;
314 
315 /*
316  * struct usb_device - kernel's representation of a USB device
317  *
318  * FIXME: Write the kerneldoc!
319  *
320  * Usbcore drivers should not set usbdev->state directly.  Instead use
321  * usb_set_device_state().
322  */
323 struct usb_device {
324 	int		devnum;		/* Address on USB bus */
325 	char		devpath [16];	/* Use in messages: /port/port/... */
326 	enum usb_device_state	state;	/* configured, not attached, etc */
327 	enum usb_device_speed	speed;	/* high/full/low (or error) */
328 
329 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
330 	int		ttport;		/* device port on that tt hub */
331 
332 	unsigned int toggle[2];		/* one bit for each endpoint
333 					 * ([0] = IN, [1] = OUT) */
334 
335 	struct usb_device *parent;	/* our hub, unless we're the root */
336 	struct usb_bus *bus;		/* Bus we're part of */
337 	struct usb_host_endpoint ep0;
338 
339 	struct device dev;		/* Generic device interface */
340 
341 	struct usb_device_descriptor descriptor;/* Descriptor */
342 	struct usb_host_config *config;	/* All of the configs */
343 
344 	struct usb_host_config *actconfig;/* the active configuration */
345 	struct usb_host_endpoint *ep_in[16];
346 	struct usb_host_endpoint *ep_out[16];
347 
348 	char **rawdescriptors;		/* Raw descriptors for each config */
349 
350 	unsigned short bus_mA;		/* Current available from the bus */
351 	u8 portnum;			/* Parent port number (origin 1) */
352 
353 	int have_langid;		/* whether string_langid is valid */
354 	int string_langid;		/* language ID for strings */
355 
356 	/* static strings from the device */
357 	char *product;			/* iProduct string, if present */
358 	char *manufacturer;		/* iManufacturer string, if present */
359 	char *serial;			/* iSerialNumber string, if present */
360 
361 	struct list_head filelist;
362 	struct class_device *class_dev;
363 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
364 
365 	/*
366 	 * Child devices - these can be either new devices
367 	 * (if this is a hub device), or different instances
368 	 * of this same device.
369 	 *
370 	 * Each instance needs its own set of data structures.
371 	 */
372 
373 	int maxchild;			/* Number of ports if hub */
374 	struct usb_device *children[USB_MAXCHILDREN];
375 };
376 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
377 
378 extern struct usb_device *usb_get_dev(struct usb_device *dev);
379 extern void usb_put_dev(struct usb_device *dev);
380 
381 /* USB device locking */
382 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
383 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
384 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
385 extern int usb_lock_device_for_reset(struct usb_device *udev,
386 		struct usb_interface *iface);
387 
388 /* USB port reset for device reinitialization */
389 extern int usb_reset_device(struct usb_device *dev);
390 
391 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
392 
393 /*-------------------------------------------------------------------------*/
394 
395 /* for drivers using iso endpoints */
396 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
397 
398 /* used these for multi-interface device registration */
399 extern int usb_driver_claim_interface(struct usb_driver *driver,
400 			struct usb_interface *iface, void* priv);
401 
402 /**
403  * usb_interface_claimed - returns true iff an interface is claimed
404  * @iface: the interface being checked
405  *
406  * Returns true (nonzero) iff the interface is claimed, else false (zero).
407  * Callers must own the driver model's usb bus readlock.  So driver
408  * probe() entries don't need extra locking, but other call contexts
409  * may need to explicitly claim that lock.
410  *
411  */
412 static inline int usb_interface_claimed(struct usb_interface *iface) {
413 	return (iface->dev.driver != NULL);
414 }
415 
416 extern void usb_driver_release_interface(struct usb_driver *driver,
417 			struct usb_interface *iface);
418 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
419 					 const struct usb_device_id *id);
420 
421 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
422 		int minor);
423 extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
424 		unsigned ifnum);
425 extern struct usb_host_interface *usb_altnum_to_altsetting(
426 		struct usb_interface *intf, unsigned int altnum);
427 
428 
429 /**
430  * usb_make_path - returns stable device path in the usb tree
431  * @dev: the device whose path is being constructed
432  * @buf: where to put the string
433  * @size: how big is "buf"?
434  *
435  * Returns length of the string (> 0) or negative if size was too small.
436  *
437  * This identifier is intended to be "stable", reflecting physical paths in
438  * hardware such as physical bus addresses for host controllers or ports on
439  * USB hubs.  That makes it stay the same until systems are physically
440  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
441  * controllers.  Adding and removing devices, including virtual root hubs
442  * in host controller driver modules, does not change these path identifers;
443  * neither does rebooting or re-enumerating.  These are more useful identifiers
444  * than changeable ("unstable") ones like bus numbers or device addresses.
445  *
446  * With a partial exception for devices connected to USB 2.0 root hubs, these
447  * identifiers are also predictable.  So long as the device tree isn't changed,
448  * plugging any USB device into a given hub port always gives it the same path.
449  * Because of the use of "companion" controllers, devices connected to ports on
450  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
451  * high speed, and a different one if they are full or low speed.
452  */
453 static inline int usb_make_path (struct usb_device *dev, char *buf,
454 		size_t size)
455 {
456 	int actual;
457 	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
458 			dev->devpath);
459 	return (actual >= (int)size) ? -1 : actual;
460 }
461 
462 /*-------------------------------------------------------------------------*/
463 
464 #define USB_DEVICE_ID_MATCH_DEVICE \
465 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
466 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
467 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
468 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
469 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
470 #define USB_DEVICE_ID_MATCH_DEV_INFO \
471 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
472 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
473 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
474 #define USB_DEVICE_ID_MATCH_INT_INFO \
475 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
476 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
477 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
478 
479 /**
480  * USB_DEVICE - macro used to describe a specific usb device
481  * @vend: the 16 bit USB Vendor ID
482  * @prod: the 16 bit USB Product ID
483  *
484  * This macro is used to create a struct usb_device_id that matches a
485  * specific device.
486  */
487 #define USB_DEVICE(vend,prod) \
488 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
489 			.idProduct = (prod)
490 /**
491  * USB_DEVICE_VER - macro used to describe a specific usb device with a
492  *		version range
493  * @vend: the 16 bit USB Vendor ID
494  * @prod: the 16 bit USB Product ID
495  * @lo: the bcdDevice_lo value
496  * @hi: the bcdDevice_hi value
497  *
498  * This macro is used to create a struct usb_device_id that matches a
499  * specific device, with a version range.
500  */
501 #define USB_DEVICE_VER(vend,prod,lo,hi) \
502 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
503 	.idVendor = (vend), .idProduct = (prod), \
504 	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
505 
506 /**
507  * USB_DEVICE_INFO - macro used to describe a class of usb devices
508  * @cl: bDeviceClass value
509  * @sc: bDeviceSubClass value
510  * @pr: bDeviceProtocol value
511  *
512  * This macro is used to create a struct usb_device_id that matches a
513  * specific class of devices.
514  */
515 #define USB_DEVICE_INFO(cl,sc,pr) \
516 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
517 	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
518 
519 /**
520  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
521  * @cl: bInterfaceClass value
522  * @sc: bInterfaceSubClass value
523  * @pr: bInterfaceProtocol value
524  *
525  * This macro is used to create a struct usb_device_id that matches a
526  * specific class of interfaces.
527  */
528 #define USB_INTERFACE_INFO(cl,sc,pr) \
529 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
530 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
531 
532 /* ----------------------------------------------------------------------- */
533 
534 struct usb_dynids {
535 	spinlock_t lock;
536 	struct list_head list;
537 };
538 
539 /**
540  * struct usb_driver - identifies USB driver to usbcore
541  * @name: The driver name should be unique among USB drivers,
542  *	and should normally be the same as the module name.
543  * @probe: Called to see if the driver is willing to manage a particular
544  *	interface on a device.  If it is, probe returns zero and uses
545  *	dev_set_drvdata() to associate driver-specific data with the
546  *	interface.  It may also use usb_set_interface() to specify the
547  *	appropriate altsetting.  If unwilling to manage the interface,
548  *	return a negative errno value.
549  * @disconnect: Called when the interface is no longer accessible, usually
550  *	because its device has been (or is being) disconnected or the
551  *	driver module is being unloaded.
552  * @ioctl: Used for drivers that want to talk to userspace through
553  *	the "usbfs" filesystem.  This lets devices provide ways to
554  *	expose information to user space regardless of where they
555  *	do (or don't) show up otherwise in the filesystem.
556  * @suspend: Called when the device is going to be suspended by the system.
557  * @resume: Called when the device is being resumed by the system.
558  * @id_table: USB drivers use ID table to support hotplugging.
559  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
560  *	or your driver's probe function will never get called.
561  * @dynids: used internally to hold the list of dynamically added device
562  *	ids for this driver.
563  * @driver: the driver model core driver structure.
564  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
565  *	added to this driver by preventing the sysfs file from being created.
566  *
567  * USB drivers must provide a name, probe() and disconnect() methods,
568  * and an id_table.  Other driver fields are optional.
569  *
570  * The id_table is used in hotplugging.  It holds a set of descriptors,
571  * and specialized data may be associated with each entry.  That table
572  * is used by both user and kernel mode hotplugging support.
573  *
574  * The probe() and disconnect() methods are called in a context where
575  * they can sleep, but they should avoid abusing the privilege.  Most
576  * work to connect to a device should be done when the device is opened,
577  * and undone at the last close.  The disconnect code needs to address
578  * concurrency issues with respect to open() and close() methods, as
579  * well as forcing all pending I/O requests to complete (by unlinking
580  * them as necessary, and blocking until the unlinks complete).
581  */
582 struct usb_driver {
583 	const char *name;
584 
585 	int (*probe) (struct usb_interface *intf,
586 		      const struct usb_device_id *id);
587 
588 	void (*disconnect) (struct usb_interface *intf);
589 
590 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
591 			void *buf);
592 
593 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
594 	int (*resume) (struct usb_interface *intf);
595 
596 	const struct usb_device_id *id_table;
597 
598 	struct usb_dynids dynids;
599 	struct device_driver driver;
600 	unsigned int no_dynamic_id:1;
601 };
602 #define	to_usb_driver(d) container_of(d, struct usb_driver, driver)
603 
604 extern struct bus_type usb_bus_type;
605 
606 /**
607  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
608  * @name: the usb class device name for this driver.  Will show up in sysfs.
609  * @fops: pointer to the struct file_operations of this driver.
610  * @minor_base: the start of the minor range for this driver.
611  *
612  * This structure is used for the usb_register_dev() and
613  * usb_unregister_dev() functions, to consolidate a number of the
614  * parameters used for them.
615  */
616 struct usb_class_driver {
617 	char *name;
618 	const struct file_operations *fops;
619 	int minor_base;
620 };
621 
622 /*
623  * use these in module_init()/module_exit()
624  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
625  */
626 int usb_register_driver(struct usb_driver *, struct module *);
627 static inline int usb_register(struct usb_driver *driver)
628 {
629 	return usb_register_driver(driver, THIS_MODULE);
630 }
631 extern void usb_deregister(struct usb_driver *);
632 
633 extern int usb_register_dev(struct usb_interface *intf,
634 			    struct usb_class_driver *class_driver);
635 extern void usb_deregister_dev(struct usb_interface *intf,
636 			       struct usb_class_driver *class_driver);
637 
638 extern int usb_disabled(void);
639 
640 /* ----------------------------------------------------------------------- */
641 
642 /*
643  * URB support, for asynchronous request completions
644  */
645 
646 /*
647  * urb->transfer_flags:
648  */
649 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
650 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
651 					 * ignored */
652 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
653 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
654 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
655 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
656 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
657 					 * needed */
658 
659 struct usb_iso_packet_descriptor {
660 	unsigned int offset;
661 	unsigned int length;		/* expected length */
662 	unsigned int actual_length;
663 	unsigned int status;
664 };
665 
666 struct urb;
667 struct pt_regs;
668 
669 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
670 
671 /**
672  * struct urb - USB Request Block
673  * @urb_list: For use by current owner of the URB.
674  * @pipe: Holds endpoint number, direction, type, and more.
675  *	Create these values with the eight macros available;
676  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
677  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
678  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
679  *	numbers range from zero to fifteen.  Note that "in" endpoint two
680  *	is a different endpoint (and pipe) from "out" endpoint two.
681  *	The current configuration controls the existence, type, and
682  *	maximum packet size of any given endpoint.
683  * @dev: Identifies the USB device to perform the request.
684  * @status: This is read in non-iso completion functions to get the
685  *	status of the particular request.  ISO requests only use it
686  *	to tell whether the URB was unlinked; detailed status for
687  *	each frame is in the fields of the iso_frame-desc.
688  * @transfer_flags: A variety of flags may be used to affect how URB
689  *	submission, unlinking, or operation are handled.  Different
690  *	kinds of URB can use different flags.
691  * @transfer_buffer:  This identifies the buffer to (or from) which
692  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
693  *	is set).  This buffer must be suitable for DMA; allocate it with
694  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
695  *	of this buffer will be modified.  This buffer is used for the data
696  *	stage of control transfers.
697  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
698  *	the device driver is saying that it provided this DMA address,
699  *	which the host controller driver should use in preference to the
700  *	transfer_buffer.
701  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
702  *	be broken up into chunks according to the current maximum packet
703  *	size for the endpoint, which is a function of the configuration
704  *	and is encoded in the pipe.  When the length is zero, neither
705  *	transfer_buffer nor transfer_dma is used.
706  * @actual_length: This is read in non-iso completion functions, and
707  *	it tells how many bytes (out of transfer_buffer_length) were
708  *	transferred.  It will normally be the same as requested, unless
709  *	either an error was reported or a short read was performed.
710  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
711  *	short reads be reported as errors.
712  * @setup_packet: Only used for control transfers, this points to eight bytes
713  *	of setup data.  Control transfers always start by sending this data
714  *	to the device.  Then transfer_buffer is read or written, if needed.
715  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
716  *	device driver has provided this DMA address for the setup packet.
717  *	The host controller driver should use this in preference to
718  *	setup_packet.
719  * @start_frame: Returns the initial frame for isochronous transfers.
720  * @number_of_packets: Lists the number of ISO transfer buffers.
721  * @interval: Specifies the polling interval for interrupt or isochronous
722  *	transfers.  The units are frames (milliseconds) for for full and low
723  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
724  * @error_count: Returns the number of ISO transfers that reported errors.
725  * @context: For use in completion functions.  This normally points to
726  *	request-specific driver context.
727  * @complete: Completion handler. This URB is passed as the parameter to the
728  *	completion function.  The completion function may then do what
729  *	it likes with the URB, including resubmitting or freeing it.
730  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
731  *	collect the transfer status for each buffer.
732  *
733  * This structure identifies USB transfer requests.  URBs must be allocated by
734  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
735  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
736  * are submitted using usb_submit_urb(), and pending requests may be canceled
737  * using usb_unlink_urb() or usb_kill_urb().
738  *
739  * Data Transfer Buffers:
740  *
741  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
742  * taken from the general page pool.  That is provided by transfer_buffer
743  * (control requests also use setup_packet), and host controller drivers
744  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
745  * mapping operations can be expensive on some platforms (perhaps using a dma
746  * bounce buffer or talking to an IOMMU),
747  * although they're cheap on commodity x86 and ppc hardware.
748  *
749  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
750  * which tell the host controller driver that no such mapping is needed since
751  * the device driver is DMA-aware.  For example, a device driver might
752  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
753  * When these transfer flags are provided, host controller drivers will
754  * attempt to use the dma addresses found in the transfer_dma and/or
755  * setup_dma fields rather than determining a dma address themselves.  (Note
756  * that transfer_buffer and setup_packet must still be set because not all
757  * host controllers use DMA, nor do virtual root hubs).
758  *
759  * Initialization:
760  *
761  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
762  * zero), and complete fields.  All URBs must also initialize
763  * transfer_buffer and transfer_buffer_length.  They may provide the
764  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
765  * to be treated as errors; that flag is invalid for write requests.
766  *
767  * Bulk URBs may
768  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
769  * should always terminate with a short packet, even if it means adding an
770  * extra zero length packet.
771  *
772  * Control URBs must provide a setup_packet.  The setup_packet and
773  * transfer_buffer may each be mapped for DMA or not, independently of
774  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
775  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
776  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
777  *
778  * Interrupt URBs must provide an interval, saying how often (in milliseconds
779  * or, for highspeed devices, 125 microsecond units)
780  * to poll for transfers.  After the URB has been submitted, the interval
781  * field reflects how the transfer was actually scheduled.
782  * The polling interval may be more frequent than requested.
783  * For example, some controllers have a maximum interval of 32 milliseconds,
784  * while others support intervals of up to 1024 milliseconds.
785  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
786  * endpoints, as well as high speed interrupt endpoints, the encoding of
787  * the transfer interval in the endpoint descriptor is logarithmic.
788  * Device drivers must convert that value to linear units themselves.)
789  *
790  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
791  * the host controller to schedule the transfer as soon as bandwidth
792  * utilization allows, and then set start_frame to reflect the actual frame
793  * selected during submission.  Otherwise drivers must specify the start_frame
794  * and handle the case where the transfer can't begin then.  However, drivers
795  * won't know how bandwidth is currently allocated, and while they can
796  * find the current frame using usb_get_current_frame_number () they can't
797  * know the range for that frame number.  (Ranges for frame counter values
798  * are HC-specific, and can go from 256 to 65536 frames from "now".)
799  *
800  * Isochronous URBs have a different data transfer model, in part because
801  * the quality of service is only "best effort".  Callers provide specially
802  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
803  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
804  * URBs are normally queued, submitted by drivers to arrange that
805  * transfers are at least double buffered, and then explicitly resubmitted
806  * in completion handlers, so
807  * that data (such as audio or video) streams at as constant a rate as the
808  * host controller scheduler can support.
809  *
810  * Completion Callbacks:
811  *
812  * The completion callback is made in_interrupt(), and one of the first
813  * things that a completion handler should do is check the status field.
814  * The status field is provided for all URBs.  It is used to report
815  * unlinked URBs, and status for all non-ISO transfers.  It should not
816  * be examined before the URB is returned to the completion handler.
817  *
818  * The context field is normally used to link URBs back to the relevant
819  * driver or request state.
820  *
821  * When the completion callback is invoked for non-isochronous URBs, the
822  * actual_length field tells how many bytes were transferred.  This field
823  * is updated even when the URB terminated with an error or was unlinked.
824  *
825  * ISO transfer status is reported in the status and actual_length fields
826  * of the iso_frame_desc array, and the number of errors is reported in
827  * error_count.  Completion callbacks for ISO transfers will normally
828  * (re)submit URBs to ensure a constant transfer rate.
829  *
830  * Note that even fields marked "public" should not be touched by the driver
831  * when the urb is owned by the hcd, that is, since the call to
832  * usb_submit_urb() till the entry into the completion routine.
833  */
834 struct urb
835 {
836 	/* private: usb core and host controller only fields in the urb */
837 	struct kref kref;		/* reference count of the URB */
838 	spinlock_t lock;		/* lock for the URB */
839 	void *hcpriv;			/* private data for host controller */
840 	int bandwidth;			/* bandwidth for INT/ISO request */
841 	atomic_t use_count;		/* concurrent submissions counter */
842 	u8 reject;			/* submissions will fail */
843 
844 	/* public: documented fields in the urb that can be used by drivers */
845 	struct list_head urb_list;	/* list head for use by the urb's
846 					 * current owner */
847 	struct usb_device *dev; 	/* (in) pointer to associated device */
848 	unsigned int pipe;		/* (in) pipe information */
849 	int status;			/* (return) non-ISO status */
850 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
851 	void *transfer_buffer;		/* (in) associated data buffer */
852 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
853 	int transfer_buffer_length;	/* (in) data buffer length */
854 	int actual_length;		/* (return) actual transfer length */
855 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
856 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
857 	int start_frame;		/* (modify) start frame (ISO) */
858 	int number_of_packets;		/* (in) number of ISO packets */
859 	int interval;			/* (modify) transfer interval
860 					 * (INT/ISO) */
861 	int error_count;		/* (return) number of ISO errors */
862 	void *context;			/* (in) context for completion */
863 	usb_complete_t complete;	/* (in) completion routine */
864 	struct usb_iso_packet_descriptor iso_frame_desc[0];
865 					/* (in) ISO ONLY */
866 };
867 
868 /* ----------------------------------------------------------------------- */
869 
870 /**
871  * usb_fill_control_urb - initializes a control urb
872  * @urb: pointer to the urb to initialize.
873  * @dev: pointer to the struct usb_device for this urb.
874  * @pipe: the endpoint pipe
875  * @setup_packet: pointer to the setup_packet buffer
876  * @transfer_buffer: pointer to the transfer buffer
877  * @buffer_length: length of the transfer buffer
878  * @complete: pointer to the usb_complete_t function
879  * @context: what to set the urb context to.
880  *
881  * Initializes a control urb with the proper information needed to submit
882  * it to a device.
883  */
884 static inline void usb_fill_control_urb (struct urb *urb,
885 					 struct usb_device *dev,
886 					 unsigned int pipe,
887 					 unsigned char *setup_packet,
888 					 void *transfer_buffer,
889 					 int buffer_length,
890 					 usb_complete_t complete,
891 					 void *context)
892 {
893 	spin_lock_init(&urb->lock);
894 	urb->dev = dev;
895 	urb->pipe = pipe;
896 	urb->setup_packet = setup_packet;
897 	urb->transfer_buffer = transfer_buffer;
898 	urb->transfer_buffer_length = buffer_length;
899 	urb->complete = complete;
900 	urb->context = context;
901 }
902 
903 /**
904  * usb_fill_bulk_urb - macro to help initialize a bulk urb
905  * @urb: pointer to the urb to initialize.
906  * @dev: pointer to the struct usb_device for this urb.
907  * @pipe: the endpoint pipe
908  * @transfer_buffer: pointer to the transfer buffer
909  * @buffer_length: length of the transfer buffer
910  * @complete: pointer to the usb_complete_t function
911  * @context: what to set the urb context to.
912  *
913  * Initializes a bulk urb with the proper information needed to submit it
914  * to a device.
915  */
916 static inline void usb_fill_bulk_urb (struct urb *urb,
917 				      struct usb_device *dev,
918 				      unsigned int pipe,
919 				      void *transfer_buffer,
920 				      int buffer_length,
921 				      usb_complete_t complete,
922 				      void *context)
923 {
924 	spin_lock_init(&urb->lock);
925 	urb->dev = dev;
926 	urb->pipe = pipe;
927 	urb->transfer_buffer = transfer_buffer;
928 	urb->transfer_buffer_length = buffer_length;
929 	urb->complete = complete;
930 	urb->context = context;
931 }
932 
933 /**
934  * usb_fill_int_urb - macro to help initialize a interrupt urb
935  * @urb: pointer to the urb to initialize.
936  * @dev: pointer to the struct usb_device for this urb.
937  * @pipe: the endpoint pipe
938  * @transfer_buffer: pointer to the transfer buffer
939  * @buffer_length: length of the transfer buffer
940  * @complete: pointer to the usb_complete_t function
941  * @context: what to set the urb context to.
942  * @interval: what to set the urb interval to, encoded like
943  *	the endpoint descriptor's bInterval value.
944  *
945  * Initializes a interrupt urb with the proper information needed to submit
946  * it to a device.
947  * Note that high speed interrupt endpoints use a logarithmic encoding of
948  * the endpoint interval, and express polling intervals in microframes
949  * (eight per millisecond) rather than in frames (one per millisecond).
950  */
951 static inline void usb_fill_int_urb (struct urb *urb,
952 				     struct usb_device *dev,
953 				     unsigned int pipe,
954 				     void *transfer_buffer,
955 				     int buffer_length,
956 				     usb_complete_t complete,
957 				     void *context,
958 				     int interval)
959 {
960 	spin_lock_init(&urb->lock);
961 	urb->dev = dev;
962 	urb->pipe = pipe;
963 	urb->transfer_buffer = transfer_buffer;
964 	urb->transfer_buffer_length = buffer_length;
965 	urb->complete = complete;
966 	urb->context = context;
967 	if (dev->speed == USB_SPEED_HIGH)
968 		urb->interval = 1 << (interval - 1);
969 	else
970 		urb->interval = interval;
971 	urb->start_frame = -1;
972 }
973 
974 extern void usb_init_urb(struct urb *urb);
975 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
976 extern void usb_free_urb(struct urb *urb);
977 #define usb_put_urb usb_free_urb
978 extern struct urb *usb_get_urb(struct urb *urb);
979 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
980 extern int usb_unlink_urb(struct urb *urb);
981 extern void usb_kill_urb(struct urb *urb);
982 
983 #define HAVE_USB_BUFFERS
984 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
985 	gfp_t mem_flags, dma_addr_t *dma);
986 void usb_buffer_free (struct usb_device *dev, size_t size,
987 	void *addr, dma_addr_t dma);
988 
989 #if 0
990 struct urb *usb_buffer_map (struct urb *urb);
991 void usb_buffer_dmasync (struct urb *urb);
992 void usb_buffer_unmap (struct urb *urb);
993 #endif
994 
995 struct scatterlist;
996 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
997 		struct scatterlist *sg, int nents);
998 #if 0
999 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1000 		struct scatterlist *sg, int n_hw_ents);
1001 #endif
1002 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1003 		struct scatterlist *sg, int n_hw_ents);
1004 
1005 /*-------------------------------------------------------------------*
1006  *                         SYNCHRONOUS CALL SUPPORT                  *
1007  *-------------------------------------------------------------------*/
1008 
1009 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1010 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1011 	void *data, __u16 size, int timeout);
1012 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1013 	void *data, int len, int *actual_length,
1014 	int timeout);
1015 
1016 /* wrappers around usb_control_msg() for the most common standard requests */
1017 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1018 	unsigned char descindex, void *buf, int size);
1019 extern int usb_get_status(struct usb_device *dev,
1020 	int type, int target, void *data);
1021 extern int usb_string(struct usb_device *dev, int index,
1022 	char *buf, size_t size);
1023 
1024 /* wrappers that also update important state inside usbcore */
1025 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1026 extern int usb_reset_configuration(struct usb_device *dev);
1027 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1028 
1029 /*
1030  * timeouts, in milliseconds, used for sending/receiving control messages
1031  * they typically complete within a few frames (msec) after they're issued
1032  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1033  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1034  */
1035 #define USB_CTRL_GET_TIMEOUT	5000
1036 #define USB_CTRL_SET_TIMEOUT	5000
1037 
1038 
1039 /**
1040  * struct usb_sg_request - support for scatter/gather I/O
1041  * @status: zero indicates success, else negative errno
1042  * @bytes: counts bytes transferred.
1043  *
1044  * These requests are initialized using usb_sg_init(), and then are used
1045  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1046  * members of the request object aren't for driver access.
1047  *
1048  * The status and bytecount values are valid only after usb_sg_wait()
1049  * returns.  If the status is zero, then the bytecount matches the total
1050  * from the request.
1051  *
1052  * After an error completion, drivers may need to clear a halt condition
1053  * on the endpoint.
1054  */
1055 struct usb_sg_request {
1056 	int			status;
1057 	size_t			bytes;
1058 
1059 	/*
1060 	 * members below are private: to usbcore,
1061 	 * and are not provided for driver access!
1062 	 */
1063 	spinlock_t		lock;
1064 
1065 	struct usb_device	*dev;
1066 	int			pipe;
1067 	struct scatterlist	*sg;
1068 	int			nents;
1069 
1070 	int			entries;
1071 	struct urb		**urbs;
1072 
1073 	int			count;
1074 	struct completion	complete;
1075 };
1076 
1077 int usb_sg_init (
1078 	struct usb_sg_request	*io,
1079 	struct usb_device	*dev,
1080 	unsigned		pipe,
1081 	unsigned		period,
1082 	struct scatterlist	*sg,
1083 	int			nents,
1084 	size_t			length,
1085 	gfp_t			mem_flags
1086 );
1087 void usb_sg_cancel (struct usb_sg_request *io);
1088 void usb_sg_wait (struct usb_sg_request *io);
1089 
1090 
1091 /* ----------------------------------------------------------------------- */
1092 
1093 /*
1094  * For various legacy reasons, Linux has a small cookie that's paired with
1095  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1096  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1097  * an unsigned int encoded as:
1098  *
1099  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1100  *					 1 = Device-to-Host [In] ...
1101  *					like endpoint bEndpointAddress)
1102  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1103  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1104  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1105  *					 10 = control, 11 = bulk)
1106  *
1107  * Given the device address and endpoint descriptor, pipes are redundant.
1108  */
1109 
1110 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1111 /* (yet ... they're the values used by usbfs) */
1112 #define PIPE_ISOCHRONOUS		0
1113 #define PIPE_INTERRUPT			1
1114 #define PIPE_CONTROL			2
1115 #define PIPE_BULK			3
1116 
1117 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1118 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1119 
1120 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1121 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1122 
1123 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1124 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1125 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1126 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1127 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1128 
1129 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1130 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1131 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1132 #define usb_settoggle(dev, ep, out, bit) \
1133 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1134 		 ((bit) << (ep)))
1135 
1136 
1137 static inline unsigned int __create_pipe(struct usb_device *dev,
1138 		unsigned int endpoint)
1139 {
1140 	return (dev->devnum << 8) | (endpoint << 15);
1141 }
1142 
1143 /* Create various pipes... */
1144 #define usb_sndctrlpipe(dev,endpoint)	\
1145 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1146 #define usb_rcvctrlpipe(dev,endpoint)	\
1147 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1148 #define usb_sndisocpipe(dev,endpoint)	\
1149 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1150 #define usb_rcvisocpipe(dev,endpoint)	\
1151 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1152 #define usb_sndbulkpipe(dev,endpoint)	\
1153 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1154 #define usb_rcvbulkpipe(dev,endpoint)	\
1155 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1156 #define usb_sndintpipe(dev,endpoint)	\
1157 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1158 #define usb_rcvintpipe(dev,endpoint)	\
1159 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1160 
1161 /*-------------------------------------------------------------------------*/
1162 
1163 static inline __u16
1164 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1165 {
1166 	struct usb_host_endpoint	*ep;
1167 	unsigned			epnum = usb_pipeendpoint(pipe);
1168 
1169 	if (is_out) {
1170 		WARN_ON(usb_pipein(pipe));
1171 		ep = udev->ep_out[epnum];
1172 	} else {
1173 		WARN_ON(usb_pipeout(pipe));
1174 		ep = udev->ep_in[epnum];
1175 	}
1176 	if (!ep)
1177 		return 0;
1178 
1179 	/* NOTE:  only 0x07ff bits are for packet size... */
1180 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1181 }
1182 
1183 /* ----------------------------------------------------------------------- */
1184 
1185 /* Events from the usb core */
1186 #define USB_DEVICE_ADD		0x0001
1187 #define USB_DEVICE_REMOVE	0x0002
1188 #define USB_BUS_ADD		0x0003
1189 #define USB_BUS_REMOVE		0x0004
1190 extern void usb_register_notify(struct notifier_block *nb);
1191 extern void usb_unregister_notify(struct notifier_block *nb);
1192 
1193 #ifdef DEBUG
1194 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1195 	__FILE__ , ## arg)
1196 #else
1197 #define dbg(format, arg...) do {} while (0)
1198 #endif
1199 
1200 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1201 	__FILE__ , ## arg)
1202 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1203 	__FILE__ , ## arg)
1204 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1205 	__FILE__ , ## arg)
1206 
1207 
1208 #endif  /* __KERNEL__ */
1209 
1210 #endif
1211