1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_USB_H 3 #define __LINUX_USB_H 4 5 #include <linux/mod_devicetable.h> 6 #include <linux/usb/ch9.h> 7 8 #define USB_MAJOR 180 9 #define USB_DEVICE_MAJOR 189 10 11 12 #ifdef __KERNEL__ 13 14 #include <linux/errno.h> /* for -ENODEV */ 15 #include <linux/delay.h> /* for mdelay() */ 16 #include <linux/interrupt.h> /* for in_interrupt() */ 17 #include <linux/list.h> /* for struct list_head */ 18 #include <linux/kref.h> /* for struct kref */ 19 #include <linux/device.h> /* for struct device */ 20 #include <linux/fs.h> /* for struct file_operations */ 21 #include <linux/completion.h> /* for struct completion */ 22 #include <linux/sched.h> /* for current && schedule_timeout */ 23 #include <linux/mutex.h> /* for struct mutex */ 24 #include <linux/pm_runtime.h> /* for runtime PM */ 25 26 struct usb_device; 27 struct usb_driver; 28 struct wusb_dev; 29 30 /*-------------------------------------------------------------------------*/ 31 32 /* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48 struct ep_device; 49 50 /** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67 struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79 }; 80 81 /* host-side wrapper for one interface setting's parsed descriptors */ 82 struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94 }; 95 96 enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101 }; 102 103 int __must_check 104 usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110 int __must_check 111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117 static inline int __must_check 118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120 { 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122 } 123 124 static inline int __must_check 125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127 { 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129 } 130 131 static inline int __must_check 132 usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134 { 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136 } 137 138 static inline int __must_check 139 usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141 { 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143 } 144 145 static inline int __must_check 146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148 { 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150 } 151 152 static inline int __must_check 153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155 { 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157 } 158 159 static inline int __must_check 160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162 { 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164 } 165 166 static inline int __must_check 167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169 { 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171 } 172 173 /** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @pm_usage_cnt: PM usage counter for this interface 204 * @reset_ws: Used for scheduling resets from atomic context. 205 * @resetting_device: USB core reset the device, so use alt setting 0 as 206 * current; needs bandwidth alloc after reset. 207 * 208 * USB device drivers attach to interfaces on a physical device. Each 209 * interface encapsulates a single high level function, such as feeding 210 * an audio stream to a speaker or reporting a change in a volume control. 211 * Many USB devices only have one interface. The protocol used to talk to 212 * an interface's endpoints can be defined in a usb "class" specification, 213 * or by a product's vendor. The (default) control endpoint is part of 214 * every interface, but is never listed among the interface's descriptors. 215 * 216 * The driver that is bound to the interface can use standard driver model 217 * calls such as dev_get_drvdata() on the dev member of this structure. 218 * 219 * Each interface may have alternate settings. The initial configuration 220 * of a device sets altsetting 0, but the device driver can change 221 * that setting using usb_set_interface(). Alternate settings are often 222 * used to control the use of periodic endpoints, such as by having 223 * different endpoints use different amounts of reserved USB bandwidth. 224 * All standards-conformant USB devices that use isochronous endpoints 225 * will use them in non-default settings. 226 * 227 * The USB specification says that alternate setting numbers must run from 228 * 0 to one less than the total number of alternate settings. But some 229 * devices manage to mess this up, and the structures aren't necessarily 230 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 231 * look up an alternate setting in the altsetting array based on its number. 232 */ 233 struct usb_interface { 234 /* array of alternate settings for this interface, 235 * stored in no particular order */ 236 struct usb_host_interface *altsetting; 237 238 struct usb_host_interface *cur_altsetting; /* the currently 239 * active alternate setting */ 240 unsigned num_altsetting; /* number of alternate settings */ 241 242 /* If there is an interface association descriptor then it will list 243 * the associated interfaces */ 244 struct usb_interface_assoc_descriptor *intf_assoc; 245 246 int minor; /* minor number this interface is 247 * bound to */ 248 enum usb_interface_condition condition; /* state of binding */ 249 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 250 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 251 unsigned unregistering:1; /* unregistration is in progress */ 252 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 253 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 254 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 255 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 256 unsigned authorized:1; /* used for interface authorization */ 257 258 struct device dev; /* interface specific device info */ 259 struct device *usb_dev; 260 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 261 struct work_struct reset_ws; /* for resets in atomic context */ 262 }; 263 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 264 265 static inline void *usb_get_intfdata(struct usb_interface *intf) 266 { 267 return dev_get_drvdata(&intf->dev); 268 } 269 270 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 271 { 272 dev_set_drvdata(&intf->dev, data); 273 } 274 275 struct usb_interface *usb_get_intf(struct usb_interface *intf); 276 void usb_put_intf(struct usb_interface *intf); 277 278 /* Hard limit */ 279 #define USB_MAXENDPOINTS 30 280 /* this maximum is arbitrary */ 281 #define USB_MAXINTERFACES 32 282 #define USB_MAXIADS (USB_MAXINTERFACES/2) 283 284 /* 285 * USB Resume Timer: Every Host controller driver should drive the resume 286 * signalling on the bus for the amount of time defined by this macro. 287 * 288 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 289 * 290 * Note that the USB Specification states we should drive resume for *at least* 291 * 20 ms, but it doesn't give an upper bound. This creates two possible 292 * situations which we want to avoid: 293 * 294 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 295 * us to fail USB Electrical Tests, thus failing Certification 296 * 297 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 298 * and while we can argue that's against the USB Specification, we don't have 299 * control over which devices a certification laboratory will be using for 300 * certification. If CertLab uses a device which was tested against Windows and 301 * that happens to have relaxed resume signalling rules, we might fall into 302 * situations where we fail interoperability and electrical tests. 303 * 304 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 305 * should cope with both LPJ calibration errors and devices not following every 306 * detail of the USB Specification. 307 */ 308 #define USB_RESUME_TIMEOUT 40 /* ms */ 309 310 /** 311 * struct usb_interface_cache - long-term representation of a device interface 312 * @num_altsetting: number of altsettings defined. 313 * @ref: reference counter. 314 * @altsetting: variable-length array of interface structures, one for 315 * each alternate setting that may be selected. Each one includes a 316 * set of endpoint configurations. They will be in no particular order. 317 * 318 * These structures persist for the lifetime of a usb_device, unlike 319 * struct usb_interface (which persists only as long as its configuration 320 * is installed). The altsetting arrays can be accessed through these 321 * structures at any time, permitting comparison of configurations and 322 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 323 */ 324 struct usb_interface_cache { 325 unsigned num_altsetting; /* number of alternate settings */ 326 struct kref ref; /* reference counter */ 327 328 /* variable-length array of alternate settings for this interface, 329 * stored in no particular order */ 330 struct usb_host_interface altsetting[0]; 331 }; 332 #define ref_to_usb_interface_cache(r) \ 333 container_of(r, struct usb_interface_cache, ref) 334 #define altsetting_to_usb_interface_cache(a) \ 335 container_of(a, struct usb_interface_cache, altsetting[0]) 336 337 /** 338 * struct usb_host_config - representation of a device's configuration 339 * @desc: the device's configuration descriptor. 340 * @string: pointer to the cached version of the iConfiguration string, if 341 * present for this configuration. 342 * @intf_assoc: list of any interface association descriptors in this config 343 * @interface: array of pointers to usb_interface structures, one for each 344 * interface in the configuration. The number of interfaces is stored 345 * in desc.bNumInterfaces. These pointers are valid only while the 346 * the configuration is active. 347 * @intf_cache: array of pointers to usb_interface_cache structures, one 348 * for each interface in the configuration. These structures exist 349 * for the entire life of the device. 350 * @extra: pointer to buffer containing all extra descriptors associated 351 * with this configuration (those preceding the first interface 352 * descriptor). 353 * @extralen: length of the extra descriptors buffer. 354 * 355 * USB devices may have multiple configurations, but only one can be active 356 * at any time. Each encapsulates a different operational environment; 357 * for example, a dual-speed device would have separate configurations for 358 * full-speed and high-speed operation. The number of configurations 359 * available is stored in the device descriptor as bNumConfigurations. 360 * 361 * A configuration can contain multiple interfaces. Each corresponds to 362 * a different function of the USB device, and all are available whenever 363 * the configuration is active. The USB standard says that interfaces 364 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 365 * of devices get this wrong. In addition, the interface array is not 366 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 367 * look up an interface entry based on its number. 368 * 369 * Device drivers should not attempt to activate configurations. The choice 370 * of which configuration to install is a policy decision based on such 371 * considerations as available power, functionality provided, and the user's 372 * desires (expressed through userspace tools). However, drivers can call 373 * usb_reset_configuration() to reinitialize the current configuration and 374 * all its interfaces. 375 */ 376 struct usb_host_config { 377 struct usb_config_descriptor desc; 378 379 char *string; /* iConfiguration string, if present */ 380 381 /* List of any Interface Association Descriptors in this 382 * configuration. */ 383 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 384 385 /* the interfaces associated with this configuration, 386 * stored in no particular order */ 387 struct usb_interface *interface[USB_MAXINTERFACES]; 388 389 /* Interface information available even when this is not the 390 * active configuration */ 391 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 392 393 unsigned char *extra; /* Extra descriptors */ 394 int extralen; 395 }; 396 397 /* USB2.0 and USB3.0 device BOS descriptor set */ 398 struct usb_host_bos { 399 struct usb_bos_descriptor *desc; 400 401 /* wireless cap descriptor is handled by wusb */ 402 struct usb_ext_cap_descriptor *ext_cap; 403 struct usb_ss_cap_descriptor *ss_cap; 404 struct usb_ssp_cap_descriptor *ssp_cap; 405 struct usb_ss_container_id_descriptor *ss_id; 406 struct usb_ptm_cap_descriptor *ptm_cap; 407 }; 408 409 int __usb_get_extra_descriptor(char *buffer, unsigned size, 410 unsigned char type, void **ptr); 411 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 412 __usb_get_extra_descriptor((ifpoint)->extra, \ 413 (ifpoint)->extralen, \ 414 type, (void **)ptr) 415 416 /* ----------------------------------------------------------------------- */ 417 418 /* USB device number allocation bitmap */ 419 struct usb_devmap { 420 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 421 }; 422 423 /* 424 * Allocated per bus (tree of devices) we have: 425 */ 426 struct usb_bus { 427 struct device *controller; /* host/master side hardware */ 428 struct device *sysdev; /* as seen from firmware or bus */ 429 int busnum; /* Bus number (in order of reg) */ 430 const char *bus_name; /* stable id (PCI slot_name etc) */ 431 u8 uses_dma; /* Does the host controller use DMA? */ 432 u8 uses_pio_for_control; /* 433 * Does the host controller use PIO 434 * for control transfers? 435 */ 436 u8 otg_port; /* 0, or number of OTG/HNP port */ 437 unsigned is_b_host:1; /* true during some HNP roleswitches */ 438 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 439 unsigned no_stop_on_short:1; /* 440 * Quirk: some controllers don't stop 441 * the ep queue on a short transfer 442 * with the URB_SHORT_NOT_OK flag set. 443 */ 444 unsigned no_sg_constraint:1; /* no sg constraint */ 445 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 446 447 int devnum_next; /* Next open device number in 448 * round-robin allocation */ 449 struct mutex devnum_next_mutex; /* devnum_next mutex */ 450 451 struct usb_devmap devmap; /* device address allocation map */ 452 struct usb_device *root_hub; /* Root hub */ 453 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 454 455 int bandwidth_allocated; /* on this bus: how much of the time 456 * reserved for periodic (intr/iso) 457 * requests is used, on average? 458 * Units: microseconds/frame. 459 * Limits: Full/low speed reserve 90%, 460 * while high speed reserves 80%. 461 */ 462 int bandwidth_int_reqs; /* number of Interrupt requests */ 463 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 464 465 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 466 467 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 468 struct mon_bus *mon_bus; /* non-null when associated */ 469 int monitored; /* non-zero when monitored */ 470 #endif 471 }; 472 473 struct usb_dev_state; 474 475 /* ----------------------------------------------------------------------- */ 476 477 struct usb_tt; 478 479 enum usb_device_removable { 480 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 481 USB_DEVICE_REMOVABLE, 482 USB_DEVICE_FIXED, 483 }; 484 485 enum usb_port_connect_type { 486 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 487 USB_PORT_CONNECT_TYPE_HOT_PLUG, 488 USB_PORT_CONNECT_TYPE_HARD_WIRED, 489 USB_PORT_NOT_USED, 490 }; 491 492 /* 493 * USB 2.0 Link Power Management (LPM) parameters. 494 */ 495 struct usb2_lpm_parameters { 496 /* Best effort service latency indicate how long the host will drive 497 * resume on an exit from L1. 498 */ 499 unsigned int besl; 500 501 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 502 * When the timer counts to zero, the parent hub will initiate a LPM 503 * transition to L1. 504 */ 505 int timeout; 506 }; 507 508 /* 509 * USB 3.0 Link Power Management (LPM) parameters. 510 * 511 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 512 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 513 * All three are stored in nanoseconds. 514 */ 515 struct usb3_lpm_parameters { 516 /* 517 * Maximum exit latency (MEL) for the host to send a packet to the 518 * device (either a Ping for isoc endpoints, or a data packet for 519 * interrupt endpoints), the hubs to decode the packet, and for all hubs 520 * in the path to transition the links to U0. 521 */ 522 unsigned int mel; 523 /* 524 * Maximum exit latency for a device-initiated LPM transition to bring 525 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 526 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 527 */ 528 unsigned int pel; 529 530 /* 531 * The System Exit Latency (SEL) includes PEL, and three other 532 * latencies. After a device initiates a U0 transition, it will take 533 * some time from when the device sends the ERDY to when it will finally 534 * receive the data packet. Basically, SEL should be the worse-case 535 * latency from when a device starts initiating a U0 transition to when 536 * it will get data. 537 */ 538 unsigned int sel; 539 /* 540 * The idle timeout value that is currently programmed into the parent 541 * hub for this device. When the timer counts to zero, the parent hub 542 * will initiate an LPM transition to either U1 or U2. 543 */ 544 int timeout; 545 }; 546 547 /** 548 * struct usb_device - kernel's representation of a USB device 549 * @devnum: device number; address on a USB bus 550 * @devpath: device ID string for use in messages (e.g., /port/...) 551 * @route: tree topology hex string for use with xHCI 552 * @state: device state: configured, not attached, etc. 553 * @speed: device speed: high/full/low (or error) 554 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 555 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 556 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 557 * @ttport: device port on that tt hub 558 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 559 * @parent: our hub, unless we're the root 560 * @bus: bus we're part of 561 * @ep0: endpoint 0 data (default control pipe) 562 * @dev: generic device interface 563 * @descriptor: USB device descriptor 564 * @bos: USB device BOS descriptor set 565 * @config: all of the device's configs 566 * @actconfig: the active configuration 567 * @ep_in: array of IN endpoints 568 * @ep_out: array of OUT endpoints 569 * @rawdescriptors: raw descriptors for each config 570 * @bus_mA: Current available from the bus 571 * @portnum: parent port number (origin 1) 572 * @level: number of USB hub ancestors 573 * @can_submit: URBs may be submitted 574 * @persist_enabled: USB_PERSIST enabled for this device 575 * @have_langid: whether string_langid is valid 576 * @authorized: policy has said we can use it; 577 * (user space) policy determines if we authorize this device to be 578 * used or not. By default, wired USB devices are authorized. 579 * WUSB devices are not, until we authorize them from user space. 580 * FIXME -- complete doc 581 * @authenticated: Crypto authentication passed 582 * @wusb: device is Wireless USB 583 * @lpm_capable: device supports LPM 584 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 585 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 586 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 587 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 588 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 589 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 590 * @string_langid: language ID for strings 591 * @product: iProduct string, if present (static) 592 * @manufacturer: iManufacturer string, if present (static) 593 * @serial: iSerialNumber string, if present (static) 594 * @filelist: usbfs files that are open to this device 595 * @maxchild: number of ports if hub 596 * @quirks: quirks of the whole device 597 * @urbnum: number of URBs submitted for the whole device 598 * @active_duration: total time device is not suspended 599 * @connect_time: time device was first connected 600 * @do_remote_wakeup: remote wakeup should be enabled 601 * @reset_resume: needs reset instead of resume 602 * @port_is_suspended: the upstream port is suspended (L2 or U3) 603 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 604 * specific data for the device. 605 * @slot_id: Slot ID assigned by xHCI 606 * @removable: Device can be physically removed from this port 607 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 608 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 609 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 610 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 611 * to keep track of the number of functions that require USB 3.0 Link Power 612 * Management to be disabled for this usb_device. This count should only 613 * be manipulated by those functions, with the bandwidth_mutex is held. 614 * @hub_delay: cached value consisting of: 615 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 616 * 617 * Will be used as wValue for SetIsochDelay requests. 618 * 619 * Notes: 620 * Usbcore drivers should not set usbdev->state directly. Instead use 621 * usb_set_device_state(). 622 */ 623 struct usb_device { 624 int devnum; 625 char devpath[16]; 626 u32 route; 627 enum usb_device_state state; 628 enum usb_device_speed speed; 629 unsigned int rx_lanes; 630 unsigned int tx_lanes; 631 632 struct usb_tt *tt; 633 int ttport; 634 635 unsigned int toggle[2]; 636 637 struct usb_device *parent; 638 struct usb_bus *bus; 639 struct usb_host_endpoint ep0; 640 641 struct device dev; 642 643 struct usb_device_descriptor descriptor; 644 struct usb_host_bos *bos; 645 struct usb_host_config *config; 646 647 struct usb_host_config *actconfig; 648 struct usb_host_endpoint *ep_in[16]; 649 struct usb_host_endpoint *ep_out[16]; 650 651 char **rawdescriptors; 652 653 unsigned short bus_mA; 654 u8 portnum; 655 u8 level; 656 657 unsigned can_submit:1; 658 unsigned persist_enabled:1; 659 unsigned have_langid:1; 660 unsigned authorized:1; 661 unsigned authenticated:1; 662 unsigned wusb:1; 663 unsigned lpm_capable:1; 664 unsigned usb2_hw_lpm_capable:1; 665 unsigned usb2_hw_lpm_besl_capable:1; 666 unsigned usb2_hw_lpm_enabled:1; 667 unsigned usb2_hw_lpm_allowed:1; 668 unsigned usb3_lpm_u1_enabled:1; 669 unsigned usb3_lpm_u2_enabled:1; 670 int string_langid; 671 672 /* static strings from the device */ 673 char *product; 674 char *manufacturer; 675 char *serial; 676 677 struct list_head filelist; 678 679 int maxchild; 680 681 u32 quirks; 682 atomic_t urbnum; 683 684 unsigned long active_duration; 685 686 #ifdef CONFIG_PM 687 unsigned long connect_time; 688 689 unsigned do_remote_wakeup:1; 690 unsigned reset_resume:1; 691 unsigned port_is_suspended:1; 692 #endif 693 struct wusb_dev *wusb_dev; 694 int slot_id; 695 enum usb_device_removable removable; 696 struct usb2_lpm_parameters l1_params; 697 struct usb3_lpm_parameters u1_params; 698 struct usb3_lpm_parameters u2_params; 699 unsigned lpm_disable_count; 700 701 u16 hub_delay; 702 }; 703 #define to_usb_device(d) container_of(d, struct usb_device, dev) 704 705 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 706 { 707 return to_usb_device(intf->dev.parent); 708 } 709 710 extern struct usb_device *usb_get_dev(struct usb_device *dev); 711 extern void usb_put_dev(struct usb_device *dev); 712 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 713 int port1); 714 715 /** 716 * usb_hub_for_each_child - iterate over all child devices on the hub 717 * @hdev: USB device belonging to the usb hub 718 * @port1: portnum associated with child device 719 * @child: child device pointer 720 */ 721 #define usb_hub_for_each_child(hdev, port1, child) \ 722 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 723 port1 <= hdev->maxchild; \ 724 child = usb_hub_find_child(hdev, ++port1)) \ 725 if (!child) continue; else 726 727 /* USB device locking */ 728 #define usb_lock_device(udev) device_lock(&(udev)->dev) 729 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 730 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 731 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 732 extern int usb_lock_device_for_reset(struct usb_device *udev, 733 const struct usb_interface *iface); 734 735 /* USB port reset for device reinitialization */ 736 extern int usb_reset_device(struct usb_device *dev); 737 extern void usb_queue_reset_device(struct usb_interface *dev); 738 739 #ifdef CONFIG_ACPI 740 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 741 bool enable); 742 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 743 #else 744 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 745 bool enable) { return 0; } 746 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 747 { return true; } 748 #endif 749 750 /* USB autosuspend and autoresume */ 751 #ifdef CONFIG_PM 752 extern void usb_enable_autosuspend(struct usb_device *udev); 753 extern void usb_disable_autosuspend(struct usb_device *udev); 754 755 extern int usb_autopm_get_interface(struct usb_interface *intf); 756 extern void usb_autopm_put_interface(struct usb_interface *intf); 757 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 758 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 759 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 760 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 761 762 static inline void usb_mark_last_busy(struct usb_device *udev) 763 { 764 pm_runtime_mark_last_busy(&udev->dev); 765 } 766 767 #else 768 769 static inline int usb_enable_autosuspend(struct usb_device *udev) 770 { return 0; } 771 static inline int usb_disable_autosuspend(struct usb_device *udev) 772 { return 0; } 773 774 static inline int usb_autopm_get_interface(struct usb_interface *intf) 775 { return 0; } 776 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 777 { return 0; } 778 779 static inline void usb_autopm_put_interface(struct usb_interface *intf) 780 { } 781 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 782 { } 783 static inline void usb_autopm_get_interface_no_resume( 784 struct usb_interface *intf) 785 { } 786 static inline void usb_autopm_put_interface_no_suspend( 787 struct usb_interface *intf) 788 { } 789 static inline void usb_mark_last_busy(struct usb_device *udev) 790 { } 791 #endif 792 793 extern int usb_disable_lpm(struct usb_device *udev); 794 extern void usb_enable_lpm(struct usb_device *udev); 795 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 796 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 797 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 798 799 extern int usb_disable_ltm(struct usb_device *udev); 800 extern void usb_enable_ltm(struct usb_device *udev); 801 802 static inline bool usb_device_supports_ltm(struct usb_device *udev) 803 { 804 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 805 return false; 806 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 807 } 808 809 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 810 { 811 return udev && udev->bus && udev->bus->no_sg_constraint; 812 } 813 814 815 /*-------------------------------------------------------------------------*/ 816 817 /* for drivers using iso endpoints */ 818 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 819 820 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 821 extern int usb_alloc_streams(struct usb_interface *interface, 822 struct usb_host_endpoint **eps, unsigned int num_eps, 823 unsigned int num_streams, gfp_t mem_flags); 824 825 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 826 extern int usb_free_streams(struct usb_interface *interface, 827 struct usb_host_endpoint **eps, unsigned int num_eps, 828 gfp_t mem_flags); 829 830 /* used these for multi-interface device registration */ 831 extern int usb_driver_claim_interface(struct usb_driver *driver, 832 struct usb_interface *iface, void *priv); 833 834 /** 835 * usb_interface_claimed - returns true iff an interface is claimed 836 * @iface: the interface being checked 837 * 838 * Return: %true (nonzero) iff the interface is claimed, else %false 839 * (zero). 840 * 841 * Note: 842 * Callers must own the driver model's usb bus readlock. So driver 843 * probe() entries don't need extra locking, but other call contexts 844 * may need to explicitly claim that lock. 845 * 846 */ 847 static inline int usb_interface_claimed(struct usb_interface *iface) 848 { 849 return (iface->dev.driver != NULL); 850 } 851 852 extern void usb_driver_release_interface(struct usb_driver *driver, 853 struct usb_interface *iface); 854 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 855 const struct usb_device_id *id); 856 extern int usb_match_one_id(struct usb_interface *interface, 857 const struct usb_device_id *id); 858 859 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 860 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 861 int minor); 862 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 863 unsigned ifnum); 864 extern struct usb_host_interface *usb_altnum_to_altsetting( 865 const struct usb_interface *intf, unsigned int altnum); 866 extern struct usb_host_interface *usb_find_alt_setting( 867 struct usb_host_config *config, 868 unsigned int iface_num, 869 unsigned int alt_num); 870 871 /* port claiming functions */ 872 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 873 struct usb_dev_state *owner); 874 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 875 struct usb_dev_state *owner); 876 877 /** 878 * usb_make_path - returns stable device path in the usb tree 879 * @dev: the device whose path is being constructed 880 * @buf: where to put the string 881 * @size: how big is "buf"? 882 * 883 * Return: Length of the string (> 0) or negative if size was too small. 884 * 885 * Note: 886 * This identifier is intended to be "stable", reflecting physical paths in 887 * hardware such as physical bus addresses for host controllers or ports on 888 * USB hubs. That makes it stay the same until systems are physically 889 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 890 * controllers. Adding and removing devices, including virtual root hubs 891 * in host controller driver modules, does not change these path identifiers; 892 * neither does rebooting or re-enumerating. These are more useful identifiers 893 * than changeable ("unstable") ones like bus numbers or device addresses. 894 * 895 * With a partial exception for devices connected to USB 2.0 root hubs, these 896 * identifiers are also predictable. So long as the device tree isn't changed, 897 * plugging any USB device into a given hub port always gives it the same path. 898 * Because of the use of "companion" controllers, devices connected to ports on 899 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 900 * high speed, and a different one if they are full or low speed. 901 */ 902 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 903 { 904 int actual; 905 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 906 dev->devpath); 907 return (actual >= (int)size) ? -1 : actual; 908 } 909 910 /*-------------------------------------------------------------------------*/ 911 912 #define USB_DEVICE_ID_MATCH_DEVICE \ 913 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 914 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 915 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 916 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 917 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 918 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 919 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 920 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 921 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 922 #define USB_DEVICE_ID_MATCH_INT_INFO \ 923 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 924 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 925 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 926 927 /** 928 * USB_DEVICE - macro used to describe a specific usb device 929 * @vend: the 16 bit USB Vendor ID 930 * @prod: the 16 bit USB Product ID 931 * 932 * This macro is used to create a struct usb_device_id that matches a 933 * specific device. 934 */ 935 #define USB_DEVICE(vend, prod) \ 936 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 937 .idVendor = (vend), \ 938 .idProduct = (prod) 939 /** 940 * USB_DEVICE_VER - describe a specific usb device with a version range 941 * @vend: the 16 bit USB Vendor ID 942 * @prod: the 16 bit USB Product ID 943 * @lo: the bcdDevice_lo value 944 * @hi: the bcdDevice_hi value 945 * 946 * This macro is used to create a struct usb_device_id that matches a 947 * specific device, with a version range. 948 */ 949 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 950 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 951 .idVendor = (vend), \ 952 .idProduct = (prod), \ 953 .bcdDevice_lo = (lo), \ 954 .bcdDevice_hi = (hi) 955 956 /** 957 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 958 * @vend: the 16 bit USB Vendor ID 959 * @prod: the 16 bit USB Product ID 960 * @cl: bInterfaceClass value 961 * 962 * This macro is used to create a struct usb_device_id that matches a 963 * specific interface class of devices. 964 */ 965 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 966 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 967 USB_DEVICE_ID_MATCH_INT_CLASS, \ 968 .idVendor = (vend), \ 969 .idProduct = (prod), \ 970 .bInterfaceClass = (cl) 971 972 /** 973 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 974 * @vend: the 16 bit USB Vendor ID 975 * @prod: the 16 bit USB Product ID 976 * @pr: bInterfaceProtocol value 977 * 978 * This macro is used to create a struct usb_device_id that matches a 979 * specific interface protocol of devices. 980 */ 981 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 982 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 983 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 984 .idVendor = (vend), \ 985 .idProduct = (prod), \ 986 .bInterfaceProtocol = (pr) 987 988 /** 989 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 990 * @vend: the 16 bit USB Vendor ID 991 * @prod: the 16 bit USB Product ID 992 * @num: bInterfaceNumber value 993 * 994 * This macro is used to create a struct usb_device_id that matches a 995 * specific interface number of devices. 996 */ 997 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 998 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 999 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1000 .idVendor = (vend), \ 1001 .idProduct = (prod), \ 1002 .bInterfaceNumber = (num) 1003 1004 /** 1005 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1006 * @cl: bDeviceClass value 1007 * @sc: bDeviceSubClass value 1008 * @pr: bDeviceProtocol value 1009 * 1010 * This macro is used to create a struct usb_device_id that matches a 1011 * specific class of devices. 1012 */ 1013 #define USB_DEVICE_INFO(cl, sc, pr) \ 1014 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1015 .bDeviceClass = (cl), \ 1016 .bDeviceSubClass = (sc), \ 1017 .bDeviceProtocol = (pr) 1018 1019 /** 1020 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1021 * @cl: bInterfaceClass value 1022 * @sc: bInterfaceSubClass value 1023 * @pr: bInterfaceProtocol value 1024 * 1025 * This macro is used to create a struct usb_device_id that matches a 1026 * specific class of interfaces. 1027 */ 1028 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1029 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1030 .bInterfaceClass = (cl), \ 1031 .bInterfaceSubClass = (sc), \ 1032 .bInterfaceProtocol = (pr) 1033 1034 /** 1035 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1036 * @vend: the 16 bit USB Vendor ID 1037 * @prod: the 16 bit USB Product ID 1038 * @cl: bInterfaceClass value 1039 * @sc: bInterfaceSubClass value 1040 * @pr: bInterfaceProtocol value 1041 * 1042 * This macro is used to create a struct usb_device_id that matches a 1043 * specific device with a specific class of interfaces. 1044 * 1045 * This is especially useful when explicitly matching devices that have 1046 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1047 */ 1048 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1049 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1050 | USB_DEVICE_ID_MATCH_DEVICE, \ 1051 .idVendor = (vend), \ 1052 .idProduct = (prod), \ 1053 .bInterfaceClass = (cl), \ 1054 .bInterfaceSubClass = (sc), \ 1055 .bInterfaceProtocol = (pr) 1056 1057 /** 1058 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1059 * @vend: the 16 bit USB Vendor ID 1060 * @cl: bInterfaceClass value 1061 * @sc: bInterfaceSubClass value 1062 * @pr: bInterfaceProtocol value 1063 * 1064 * This macro is used to create a struct usb_device_id that matches a 1065 * specific vendor with a specific class of interfaces. 1066 * 1067 * This is especially useful when explicitly matching devices that have 1068 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1069 */ 1070 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1071 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1072 | USB_DEVICE_ID_MATCH_VENDOR, \ 1073 .idVendor = (vend), \ 1074 .bInterfaceClass = (cl), \ 1075 .bInterfaceSubClass = (sc), \ 1076 .bInterfaceProtocol = (pr) 1077 1078 /* ----------------------------------------------------------------------- */ 1079 1080 /* Stuff for dynamic usb ids */ 1081 struct usb_dynids { 1082 spinlock_t lock; 1083 struct list_head list; 1084 }; 1085 1086 struct usb_dynid { 1087 struct list_head node; 1088 struct usb_device_id id; 1089 }; 1090 1091 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1092 const struct usb_device_id *id_table, 1093 struct device_driver *driver, 1094 const char *buf, size_t count); 1095 1096 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1097 1098 /** 1099 * struct usbdrv_wrap - wrapper for driver-model structure 1100 * @driver: The driver-model core driver structure. 1101 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1102 */ 1103 struct usbdrv_wrap { 1104 struct device_driver driver; 1105 int for_devices; 1106 }; 1107 1108 /** 1109 * struct usb_driver - identifies USB interface driver to usbcore 1110 * @name: The driver name should be unique among USB drivers, 1111 * and should normally be the same as the module name. 1112 * @probe: Called to see if the driver is willing to manage a particular 1113 * interface on a device. If it is, probe returns zero and uses 1114 * usb_set_intfdata() to associate driver-specific data with the 1115 * interface. It may also use usb_set_interface() to specify the 1116 * appropriate altsetting. If unwilling to manage the interface, 1117 * return -ENODEV, if genuine IO errors occurred, an appropriate 1118 * negative errno value. 1119 * @disconnect: Called when the interface is no longer accessible, usually 1120 * because its device has been (or is being) disconnected or the 1121 * driver module is being unloaded. 1122 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1123 * the "usbfs" filesystem. This lets devices provide ways to 1124 * expose information to user space regardless of where they 1125 * do (or don't) show up otherwise in the filesystem. 1126 * @suspend: Called when the device is going to be suspended by the 1127 * system either from system sleep or runtime suspend context. The 1128 * return value will be ignored in system sleep context, so do NOT 1129 * try to continue using the device if suspend fails in this case. 1130 * Instead, let the resume or reset-resume routine recover from 1131 * the failure. 1132 * @resume: Called when the device is being resumed by the system. 1133 * @reset_resume: Called when the suspended device has been reset instead 1134 * of being resumed. 1135 * @pre_reset: Called by usb_reset_device() when the device is about to be 1136 * reset. This routine must not return until the driver has no active 1137 * URBs for the device, and no more URBs may be submitted until the 1138 * post_reset method is called. 1139 * @post_reset: Called by usb_reset_device() after the device 1140 * has been reset 1141 * @id_table: USB drivers use ID table to support hotplugging. 1142 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1143 * or your driver's probe function will never get called. 1144 * @dynids: used internally to hold the list of dynamically added device 1145 * ids for this driver. 1146 * @drvwrap: Driver-model core structure wrapper. 1147 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1148 * added to this driver by preventing the sysfs file from being created. 1149 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1150 * for interfaces bound to this driver. 1151 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1152 * endpoints before calling the driver's disconnect method. 1153 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1154 * to initiate lower power link state transitions when an idle timeout 1155 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1156 * 1157 * USB interface drivers must provide a name, probe() and disconnect() 1158 * methods, and an id_table. Other driver fields are optional. 1159 * 1160 * The id_table is used in hotplugging. It holds a set of descriptors, 1161 * and specialized data may be associated with each entry. That table 1162 * is used by both user and kernel mode hotplugging support. 1163 * 1164 * The probe() and disconnect() methods are called in a context where 1165 * they can sleep, but they should avoid abusing the privilege. Most 1166 * work to connect to a device should be done when the device is opened, 1167 * and undone at the last close. The disconnect code needs to address 1168 * concurrency issues with respect to open() and close() methods, as 1169 * well as forcing all pending I/O requests to complete (by unlinking 1170 * them as necessary, and blocking until the unlinks complete). 1171 */ 1172 struct usb_driver { 1173 const char *name; 1174 1175 int (*probe) (struct usb_interface *intf, 1176 const struct usb_device_id *id); 1177 1178 void (*disconnect) (struct usb_interface *intf); 1179 1180 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1181 void *buf); 1182 1183 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1184 int (*resume) (struct usb_interface *intf); 1185 int (*reset_resume)(struct usb_interface *intf); 1186 1187 int (*pre_reset)(struct usb_interface *intf); 1188 int (*post_reset)(struct usb_interface *intf); 1189 1190 const struct usb_device_id *id_table; 1191 1192 struct usb_dynids dynids; 1193 struct usbdrv_wrap drvwrap; 1194 unsigned int no_dynamic_id:1; 1195 unsigned int supports_autosuspend:1; 1196 unsigned int disable_hub_initiated_lpm:1; 1197 unsigned int soft_unbind:1; 1198 }; 1199 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1200 1201 /** 1202 * struct usb_device_driver - identifies USB device driver to usbcore 1203 * @name: The driver name should be unique among USB drivers, 1204 * and should normally be the same as the module name. 1205 * @probe: Called to see if the driver is willing to manage a particular 1206 * device. If it is, probe returns zero and uses dev_set_drvdata() 1207 * to associate driver-specific data with the device. If unwilling 1208 * to manage the device, return a negative errno value. 1209 * @disconnect: Called when the device is no longer accessible, usually 1210 * because it has been (or is being) disconnected or the driver's 1211 * module is being unloaded. 1212 * @suspend: Called when the device is going to be suspended by the system. 1213 * @resume: Called when the device is being resumed by the system. 1214 * @drvwrap: Driver-model core structure wrapper. 1215 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1216 * for devices bound to this driver. 1217 * 1218 * USB drivers must provide all the fields listed above except drvwrap. 1219 */ 1220 struct usb_device_driver { 1221 const char *name; 1222 1223 int (*probe) (struct usb_device *udev); 1224 void (*disconnect) (struct usb_device *udev); 1225 1226 int (*suspend) (struct usb_device *udev, pm_message_t message); 1227 int (*resume) (struct usb_device *udev, pm_message_t message); 1228 struct usbdrv_wrap drvwrap; 1229 unsigned int supports_autosuspend:1; 1230 }; 1231 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1232 drvwrap.driver) 1233 1234 extern struct bus_type usb_bus_type; 1235 1236 /** 1237 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1238 * @name: the usb class device name for this driver. Will show up in sysfs. 1239 * @devnode: Callback to provide a naming hint for a possible 1240 * device node to create. 1241 * @fops: pointer to the struct file_operations of this driver. 1242 * @minor_base: the start of the minor range for this driver. 1243 * 1244 * This structure is used for the usb_register_dev() and 1245 * usb_deregister_dev() functions, to consolidate a number of the 1246 * parameters used for them. 1247 */ 1248 struct usb_class_driver { 1249 char *name; 1250 char *(*devnode)(struct device *dev, umode_t *mode); 1251 const struct file_operations *fops; 1252 int minor_base; 1253 }; 1254 1255 /* 1256 * use these in module_init()/module_exit() 1257 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1258 */ 1259 extern int usb_register_driver(struct usb_driver *, struct module *, 1260 const char *); 1261 1262 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1263 #define usb_register(driver) \ 1264 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1265 1266 extern void usb_deregister(struct usb_driver *); 1267 1268 /** 1269 * module_usb_driver() - Helper macro for registering a USB driver 1270 * @__usb_driver: usb_driver struct 1271 * 1272 * Helper macro for USB drivers which do not do anything special in module 1273 * init/exit. This eliminates a lot of boilerplate. Each module may only 1274 * use this macro once, and calling it replaces module_init() and module_exit() 1275 */ 1276 #define module_usb_driver(__usb_driver) \ 1277 module_driver(__usb_driver, usb_register, \ 1278 usb_deregister) 1279 1280 extern int usb_register_device_driver(struct usb_device_driver *, 1281 struct module *); 1282 extern void usb_deregister_device_driver(struct usb_device_driver *); 1283 1284 extern int usb_register_dev(struct usb_interface *intf, 1285 struct usb_class_driver *class_driver); 1286 extern void usb_deregister_dev(struct usb_interface *intf, 1287 struct usb_class_driver *class_driver); 1288 1289 extern int usb_disabled(void); 1290 1291 /* ----------------------------------------------------------------------- */ 1292 1293 /* 1294 * URB support, for asynchronous request completions 1295 */ 1296 1297 /* 1298 * urb->transfer_flags: 1299 * 1300 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1301 */ 1302 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1303 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1304 * slot in the schedule */ 1305 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1306 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1307 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1308 * needed */ 1309 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1310 1311 /* The following flags are used internally by usbcore and HCDs */ 1312 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1313 #define URB_DIR_OUT 0 1314 #define URB_DIR_MASK URB_DIR_IN 1315 1316 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1317 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1318 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1319 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1320 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1321 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1322 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1323 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1324 1325 struct usb_iso_packet_descriptor { 1326 unsigned int offset; 1327 unsigned int length; /* expected length */ 1328 unsigned int actual_length; 1329 int status; 1330 }; 1331 1332 struct urb; 1333 1334 struct usb_anchor { 1335 struct list_head urb_list; 1336 wait_queue_head_t wait; 1337 spinlock_t lock; 1338 atomic_t suspend_wakeups; 1339 unsigned int poisoned:1; 1340 }; 1341 1342 static inline void init_usb_anchor(struct usb_anchor *anchor) 1343 { 1344 memset(anchor, 0, sizeof(*anchor)); 1345 INIT_LIST_HEAD(&anchor->urb_list); 1346 init_waitqueue_head(&anchor->wait); 1347 spin_lock_init(&anchor->lock); 1348 } 1349 1350 typedef void (*usb_complete_t)(struct urb *); 1351 1352 /** 1353 * struct urb - USB Request Block 1354 * @urb_list: For use by current owner of the URB. 1355 * @anchor_list: membership in the list of an anchor 1356 * @anchor: to anchor URBs to a common mooring 1357 * @ep: Points to the endpoint's data structure. Will eventually 1358 * replace @pipe. 1359 * @pipe: Holds endpoint number, direction, type, and more. 1360 * Create these values with the eight macros available; 1361 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1362 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1363 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1364 * numbers range from zero to fifteen. Note that "in" endpoint two 1365 * is a different endpoint (and pipe) from "out" endpoint two. 1366 * The current configuration controls the existence, type, and 1367 * maximum packet size of any given endpoint. 1368 * @stream_id: the endpoint's stream ID for bulk streams 1369 * @dev: Identifies the USB device to perform the request. 1370 * @status: This is read in non-iso completion functions to get the 1371 * status of the particular request. ISO requests only use it 1372 * to tell whether the URB was unlinked; detailed status for 1373 * each frame is in the fields of the iso_frame-desc. 1374 * @transfer_flags: A variety of flags may be used to affect how URB 1375 * submission, unlinking, or operation are handled. Different 1376 * kinds of URB can use different flags. 1377 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1378 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1379 * (however, do not leave garbage in transfer_buffer even then). 1380 * This buffer must be suitable for DMA; allocate it with 1381 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1382 * of this buffer will be modified. This buffer is used for the data 1383 * stage of control transfers. 1384 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1385 * the device driver is saying that it provided this DMA address, 1386 * which the host controller driver should use in preference to the 1387 * transfer_buffer. 1388 * @sg: scatter gather buffer list, the buffer size of each element in 1389 * the list (except the last) must be divisible by the endpoint's 1390 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1391 * @num_mapped_sgs: (internal) number of mapped sg entries 1392 * @num_sgs: number of entries in the sg list 1393 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1394 * be broken up into chunks according to the current maximum packet 1395 * size for the endpoint, which is a function of the configuration 1396 * and is encoded in the pipe. When the length is zero, neither 1397 * transfer_buffer nor transfer_dma is used. 1398 * @actual_length: This is read in non-iso completion functions, and 1399 * it tells how many bytes (out of transfer_buffer_length) were 1400 * transferred. It will normally be the same as requested, unless 1401 * either an error was reported or a short read was performed. 1402 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1403 * short reads be reported as errors. 1404 * @setup_packet: Only used for control transfers, this points to eight bytes 1405 * of setup data. Control transfers always start by sending this data 1406 * to the device. Then transfer_buffer is read or written, if needed. 1407 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1408 * this field; setup_packet must point to a valid buffer. 1409 * @start_frame: Returns the initial frame for isochronous transfers. 1410 * @number_of_packets: Lists the number of ISO transfer buffers. 1411 * @interval: Specifies the polling interval for interrupt or isochronous 1412 * transfers. The units are frames (milliseconds) for full and low 1413 * speed devices, and microframes (1/8 millisecond) for highspeed 1414 * and SuperSpeed devices. 1415 * @error_count: Returns the number of ISO transfers that reported errors. 1416 * @context: For use in completion functions. This normally points to 1417 * request-specific driver context. 1418 * @complete: Completion handler. This URB is passed as the parameter to the 1419 * completion function. The completion function may then do what 1420 * it likes with the URB, including resubmitting or freeing it. 1421 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1422 * collect the transfer status for each buffer. 1423 * 1424 * This structure identifies USB transfer requests. URBs must be allocated by 1425 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1426 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1427 * are submitted using usb_submit_urb(), and pending requests may be canceled 1428 * using usb_unlink_urb() or usb_kill_urb(). 1429 * 1430 * Data Transfer Buffers: 1431 * 1432 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1433 * taken from the general page pool. That is provided by transfer_buffer 1434 * (control requests also use setup_packet), and host controller drivers 1435 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1436 * mapping operations can be expensive on some platforms (perhaps using a dma 1437 * bounce buffer or talking to an IOMMU), 1438 * although they're cheap on commodity x86 and ppc hardware. 1439 * 1440 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1441 * which tells the host controller driver that no such mapping is needed for 1442 * the transfer_buffer since 1443 * the device driver is DMA-aware. For example, a device driver might 1444 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1445 * When this transfer flag is provided, host controller drivers will 1446 * attempt to use the dma address found in the transfer_dma 1447 * field rather than determining a dma address themselves. 1448 * 1449 * Note that transfer_buffer must still be set if the controller 1450 * does not support DMA (as indicated by bus.uses_dma) and when talking 1451 * to root hub. If you have to trasfer between highmem zone and the device 1452 * on such controller, create a bounce buffer or bail out with an error. 1453 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1454 * capable, assign NULL to it, so that usbmon knows not to use the value. 1455 * The setup_packet must always be set, so it cannot be located in highmem. 1456 * 1457 * Initialization: 1458 * 1459 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1460 * zero), and complete fields. All URBs must also initialize 1461 * transfer_buffer and transfer_buffer_length. They may provide the 1462 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1463 * to be treated as errors; that flag is invalid for write requests. 1464 * 1465 * Bulk URBs may 1466 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1467 * should always terminate with a short packet, even if it means adding an 1468 * extra zero length packet. 1469 * 1470 * Control URBs must provide a valid pointer in the setup_packet field. 1471 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1472 * beforehand. 1473 * 1474 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1475 * or, for highspeed devices, 125 microsecond units) 1476 * to poll for transfers. After the URB has been submitted, the interval 1477 * field reflects how the transfer was actually scheduled. 1478 * The polling interval may be more frequent than requested. 1479 * For example, some controllers have a maximum interval of 32 milliseconds, 1480 * while others support intervals of up to 1024 milliseconds. 1481 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1482 * endpoints, as well as high speed interrupt endpoints, the encoding of 1483 * the transfer interval in the endpoint descriptor is logarithmic. 1484 * Device drivers must convert that value to linear units themselves.) 1485 * 1486 * If an isochronous endpoint queue isn't already running, the host 1487 * controller will schedule a new URB to start as soon as bandwidth 1488 * utilization allows. If the queue is running then a new URB will be 1489 * scheduled to start in the first transfer slot following the end of the 1490 * preceding URB, if that slot has not already expired. If the slot has 1491 * expired (which can happen when IRQ delivery is delayed for a long time), 1492 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1493 * is clear then the URB will be scheduled to start in the expired slot, 1494 * implying that some of its packets will not be transferred; if the flag 1495 * is set then the URB will be scheduled in the first unexpired slot, 1496 * breaking the queue's synchronization. Upon URB completion, the 1497 * start_frame field will be set to the (micro)frame number in which the 1498 * transfer was scheduled. Ranges for frame counter values are HC-specific 1499 * and can go from as low as 256 to as high as 65536 frames. 1500 * 1501 * Isochronous URBs have a different data transfer model, in part because 1502 * the quality of service is only "best effort". Callers provide specially 1503 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1504 * at the end. Each such packet is an individual ISO transfer. Isochronous 1505 * URBs are normally queued, submitted by drivers to arrange that 1506 * transfers are at least double buffered, and then explicitly resubmitted 1507 * in completion handlers, so 1508 * that data (such as audio or video) streams at as constant a rate as the 1509 * host controller scheduler can support. 1510 * 1511 * Completion Callbacks: 1512 * 1513 * The completion callback is made in_interrupt(), and one of the first 1514 * things that a completion handler should do is check the status field. 1515 * The status field is provided for all URBs. It is used to report 1516 * unlinked URBs, and status for all non-ISO transfers. It should not 1517 * be examined before the URB is returned to the completion handler. 1518 * 1519 * The context field is normally used to link URBs back to the relevant 1520 * driver or request state. 1521 * 1522 * When the completion callback is invoked for non-isochronous URBs, the 1523 * actual_length field tells how many bytes were transferred. This field 1524 * is updated even when the URB terminated with an error or was unlinked. 1525 * 1526 * ISO transfer status is reported in the status and actual_length fields 1527 * of the iso_frame_desc array, and the number of errors is reported in 1528 * error_count. Completion callbacks for ISO transfers will normally 1529 * (re)submit URBs to ensure a constant transfer rate. 1530 * 1531 * Note that even fields marked "public" should not be touched by the driver 1532 * when the urb is owned by the hcd, that is, since the call to 1533 * usb_submit_urb() till the entry into the completion routine. 1534 */ 1535 struct urb { 1536 /* private: usb core and host controller only fields in the urb */ 1537 struct kref kref; /* reference count of the URB */ 1538 void *hcpriv; /* private data for host controller */ 1539 atomic_t use_count; /* concurrent submissions counter */ 1540 atomic_t reject; /* submissions will fail */ 1541 int unlinked; /* unlink error code */ 1542 1543 /* public: documented fields in the urb that can be used by drivers */ 1544 struct list_head urb_list; /* list head for use by the urb's 1545 * current owner */ 1546 struct list_head anchor_list; /* the URB may be anchored */ 1547 struct usb_anchor *anchor; 1548 struct usb_device *dev; /* (in) pointer to associated device */ 1549 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1550 unsigned int pipe; /* (in) pipe information */ 1551 unsigned int stream_id; /* (in) stream ID */ 1552 int status; /* (return) non-ISO status */ 1553 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1554 void *transfer_buffer; /* (in) associated data buffer */ 1555 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1556 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1557 int num_mapped_sgs; /* (internal) mapped sg entries */ 1558 int num_sgs; /* (in) number of entries in the sg list */ 1559 u32 transfer_buffer_length; /* (in) data buffer length */ 1560 u32 actual_length; /* (return) actual transfer length */ 1561 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1562 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1563 int start_frame; /* (modify) start frame (ISO) */ 1564 int number_of_packets; /* (in) number of ISO packets */ 1565 int interval; /* (modify) transfer interval 1566 * (INT/ISO) */ 1567 int error_count; /* (return) number of ISO errors */ 1568 void *context; /* (in) context for completion */ 1569 usb_complete_t complete; /* (in) completion routine */ 1570 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1571 /* (in) ISO ONLY */ 1572 }; 1573 1574 /* ----------------------------------------------------------------------- */ 1575 1576 /** 1577 * usb_fill_control_urb - initializes a control urb 1578 * @urb: pointer to the urb to initialize. 1579 * @dev: pointer to the struct usb_device for this urb. 1580 * @pipe: the endpoint pipe 1581 * @setup_packet: pointer to the setup_packet buffer 1582 * @transfer_buffer: pointer to the transfer buffer 1583 * @buffer_length: length of the transfer buffer 1584 * @complete_fn: pointer to the usb_complete_t function 1585 * @context: what to set the urb context to. 1586 * 1587 * Initializes a control urb with the proper information needed to submit 1588 * it to a device. 1589 */ 1590 static inline void usb_fill_control_urb(struct urb *urb, 1591 struct usb_device *dev, 1592 unsigned int pipe, 1593 unsigned char *setup_packet, 1594 void *transfer_buffer, 1595 int buffer_length, 1596 usb_complete_t complete_fn, 1597 void *context) 1598 { 1599 urb->dev = dev; 1600 urb->pipe = pipe; 1601 urb->setup_packet = setup_packet; 1602 urb->transfer_buffer = transfer_buffer; 1603 urb->transfer_buffer_length = buffer_length; 1604 urb->complete = complete_fn; 1605 urb->context = context; 1606 } 1607 1608 /** 1609 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1610 * @urb: pointer to the urb to initialize. 1611 * @dev: pointer to the struct usb_device for this urb. 1612 * @pipe: the endpoint pipe 1613 * @transfer_buffer: pointer to the transfer buffer 1614 * @buffer_length: length of the transfer buffer 1615 * @complete_fn: pointer to the usb_complete_t function 1616 * @context: what to set the urb context to. 1617 * 1618 * Initializes a bulk urb with the proper information needed to submit it 1619 * to a device. 1620 */ 1621 static inline void usb_fill_bulk_urb(struct urb *urb, 1622 struct usb_device *dev, 1623 unsigned int pipe, 1624 void *transfer_buffer, 1625 int buffer_length, 1626 usb_complete_t complete_fn, 1627 void *context) 1628 { 1629 urb->dev = dev; 1630 urb->pipe = pipe; 1631 urb->transfer_buffer = transfer_buffer; 1632 urb->transfer_buffer_length = buffer_length; 1633 urb->complete = complete_fn; 1634 urb->context = context; 1635 } 1636 1637 /** 1638 * usb_fill_int_urb - macro to help initialize a interrupt urb 1639 * @urb: pointer to the urb to initialize. 1640 * @dev: pointer to the struct usb_device for this urb. 1641 * @pipe: the endpoint pipe 1642 * @transfer_buffer: pointer to the transfer buffer 1643 * @buffer_length: length of the transfer buffer 1644 * @complete_fn: pointer to the usb_complete_t function 1645 * @context: what to set the urb context to. 1646 * @interval: what to set the urb interval to, encoded like 1647 * the endpoint descriptor's bInterval value. 1648 * 1649 * Initializes a interrupt urb with the proper information needed to submit 1650 * it to a device. 1651 * 1652 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1653 * encoding of the endpoint interval, and express polling intervals in 1654 * microframes (eight per millisecond) rather than in frames (one per 1655 * millisecond). 1656 * 1657 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1658 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1659 * through to the host controller, rather than being translated into microframe 1660 * units. 1661 */ 1662 static inline void usb_fill_int_urb(struct urb *urb, 1663 struct usb_device *dev, 1664 unsigned int pipe, 1665 void *transfer_buffer, 1666 int buffer_length, 1667 usb_complete_t complete_fn, 1668 void *context, 1669 int interval) 1670 { 1671 urb->dev = dev; 1672 urb->pipe = pipe; 1673 urb->transfer_buffer = transfer_buffer; 1674 urb->transfer_buffer_length = buffer_length; 1675 urb->complete = complete_fn; 1676 urb->context = context; 1677 1678 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1679 /* make sure interval is within allowed range */ 1680 interval = clamp(interval, 1, 16); 1681 1682 urb->interval = 1 << (interval - 1); 1683 } else { 1684 urb->interval = interval; 1685 } 1686 1687 urb->start_frame = -1; 1688 } 1689 1690 extern void usb_init_urb(struct urb *urb); 1691 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1692 extern void usb_free_urb(struct urb *urb); 1693 #define usb_put_urb usb_free_urb 1694 extern struct urb *usb_get_urb(struct urb *urb); 1695 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1696 extern int usb_unlink_urb(struct urb *urb); 1697 extern void usb_kill_urb(struct urb *urb); 1698 extern void usb_poison_urb(struct urb *urb); 1699 extern void usb_unpoison_urb(struct urb *urb); 1700 extern void usb_block_urb(struct urb *urb); 1701 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1702 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1703 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1704 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1705 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1706 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1707 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1708 extern void usb_unanchor_urb(struct urb *urb); 1709 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1710 unsigned int timeout); 1711 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1712 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1713 extern int usb_anchor_empty(struct usb_anchor *anchor); 1714 1715 #define usb_unblock_urb usb_unpoison_urb 1716 1717 /** 1718 * usb_urb_dir_in - check if an URB describes an IN transfer 1719 * @urb: URB to be checked 1720 * 1721 * Return: 1 if @urb describes an IN transfer (device-to-host), 1722 * otherwise 0. 1723 */ 1724 static inline int usb_urb_dir_in(struct urb *urb) 1725 { 1726 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1727 } 1728 1729 /** 1730 * usb_urb_dir_out - check if an URB describes an OUT transfer 1731 * @urb: URB to be checked 1732 * 1733 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1734 * otherwise 0. 1735 */ 1736 static inline int usb_urb_dir_out(struct urb *urb) 1737 { 1738 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1739 } 1740 1741 int usb_urb_ep_type_check(const struct urb *urb); 1742 1743 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1744 gfp_t mem_flags, dma_addr_t *dma); 1745 void usb_free_coherent(struct usb_device *dev, size_t size, 1746 void *addr, dma_addr_t dma); 1747 1748 #if 0 1749 struct urb *usb_buffer_map(struct urb *urb); 1750 void usb_buffer_dmasync(struct urb *urb); 1751 void usb_buffer_unmap(struct urb *urb); 1752 #endif 1753 1754 struct scatterlist; 1755 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1756 struct scatterlist *sg, int nents); 1757 #if 0 1758 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1759 struct scatterlist *sg, int n_hw_ents); 1760 #endif 1761 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1762 struct scatterlist *sg, int n_hw_ents); 1763 1764 /*-------------------------------------------------------------------* 1765 * SYNCHRONOUS CALL SUPPORT * 1766 *-------------------------------------------------------------------*/ 1767 1768 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1769 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1770 void *data, __u16 size, int timeout); 1771 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1772 void *data, int len, int *actual_length, int timeout); 1773 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1774 void *data, int len, int *actual_length, 1775 int timeout); 1776 1777 /* wrappers around usb_control_msg() for the most common standard requests */ 1778 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1779 unsigned char descindex, void *buf, int size); 1780 extern int usb_get_status(struct usb_device *dev, 1781 int recip, int type, int target, void *data); 1782 1783 static inline int usb_get_std_status(struct usb_device *dev, 1784 int recip, int target, void *data) 1785 { 1786 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1787 data); 1788 } 1789 1790 static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1791 { 1792 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1793 0, data); 1794 } 1795 1796 extern int usb_string(struct usb_device *dev, int index, 1797 char *buf, size_t size); 1798 1799 /* wrappers that also update important state inside usbcore */ 1800 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1801 extern int usb_reset_configuration(struct usb_device *dev); 1802 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1803 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1804 1805 /* this request isn't really synchronous, but it belongs with the others */ 1806 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1807 1808 /* choose and set configuration for device */ 1809 extern int usb_choose_configuration(struct usb_device *udev); 1810 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1811 1812 /* 1813 * timeouts, in milliseconds, used for sending/receiving control messages 1814 * they typically complete within a few frames (msec) after they're issued 1815 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1816 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1817 */ 1818 #define USB_CTRL_GET_TIMEOUT 5000 1819 #define USB_CTRL_SET_TIMEOUT 5000 1820 1821 1822 /** 1823 * struct usb_sg_request - support for scatter/gather I/O 1824 * @status: zero indicates success, else negative errno 1825 * @bytes: counts bytes transferred. 1826 * 1827 * These requests are initialized using usb_sg_init(), and then are used 1828 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1829 * members of the request object aren't for driver access. 1830 * 1831 * The status and bytecount values are valid only after usb_sg_wait() 1832 * returns. If the status is zero, then the bytecount matches the total 1833 * from the request. 1834 * 1835 * After an error completion, drivers may need to clear a halt condition 1836 * on the endpoint. 1837 */ 1838 struct usb_sg_request { 1839 int status; 1840 size_t bytes; 1841 1842 /* private: 1843 * members below are private to usbcore, 1844 * and are not provided for driver access! 1845 */ 1846 spinlock_t lock; 1847 1848 struct usb_device *dev; 1849 int pipe; 1850 1851 int entries; 1852 struct urb **urbs; 1853 1854 int count; 1855 struct completion complete; 1856 }; 1857 1858 int usb_sg_init( 1859 struct usb_sg_request *io, 1860 struct usb_device *dev, 1861 unsigned pipe, 1862 unsigned period, 1863 struct scatterlist *sg, 1864 int nents, 1865 size_t length, 1866 gfp_t mem_flags 1867 ); 1868 void usb_sg_cancel(struct usb_sg_request *io); 1869 void usb_sg_wait(struct usb_sg_request *io); 1870 1871 1872 /* ----------------------------------------------------------------------- */ 1873 1874 /* 1875 * For various legacy reasons, Linux has a small cookie that's paired with 1876 * a struct usb_device to identify an endpoint queue. Queue characteristics 1877 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1878 * an unsigned int encoded as: 1879 * 1880 * - direction: bit 7 (0 = Host-to-Device [Out], 1881 * 1 = Device-to-Host [In] ... 1882 * like endpoint bEndpointAddress) 1883 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1884 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1885 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1886 * 10 = control, 11 = bulk) 1887 * 1888 * Given the device address and endpoint descriptor, pipes are redundant. 1889 */ 1890 1891 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1892 /* (yet ... they're the values used by usbfs) */ 1893 #define PIPE_ISOCHRONOUS 0 1894 #define PIPE_INTERRUPT 1 1895 #define PIPE_CONTROL 2 1896 #define PIPE_BULK 3 1897 1898 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1899 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1900 1901 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1902 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1903 1904 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1905 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1906 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1907 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1908 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1909 1910 static inline unsigned int __create_pipe(struct usb_device *dev, 1911 unsigned int endpoint) 1912 { 1913 return (dev->devnum << 8) | (endpoint << 15); 1914 } 1915 1916 /* Create various pipes... */ 1917 #define usb_sndctrlpipe(dev, endpoint) \ 1918 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1919 #define usb_rcvctrlpipe(dev, endpoint) \ 1920 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1921 #define usb_sndisocpipe(dev, endpoint) \ 1922 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1923 #define usb_rcvisocpipe(dev, endpoint) \ 1924 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1925 #define usb_sndbulkpipe(dev, endpoint) \ 1926 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1927 #define usb_rcvbulkpipe(dev, endpoint) \ 1928 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1929 #define usb_sndintpipe(dev, endpoint) \ 1930 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1931 #define usb_rcvintpipe(dev, endpoint) \ 1932 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1933 1934 static inline struct usb_host_endpoint * 1935 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1936 { 1937 struct usb_host_endpoint **eps; 1938 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1939 return eps[usb_pipeendpoint(pipe)]; 1940 } 1941 1942 /*-------------------------------------------------------------------------*/ 1943 1944 static inline __u16 1945 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1946 { 1947 struct usb_host_endpoint *ep; 1948 unsigned epnum = usb_pipeendpoint(pipe); 1949 1950 if (is_out) { 1951 WARN_ON(usb_pipein(pipe)); 1952 ep = udev->ep_out[epnum]; 1953 } else { 1954 WARN_ON(usb_pipeout(pipe)); 1955 ep = udev->ep_in[epnum]; 1956 } 1957 if (!ep) 1958 return 0; 1959 1960 /* NOTE: only 0x07ff bits are for packet size... */ 1961 return usb_endpoint_maxp(&ep->desc); 1962 } 1963 1964 /* ----------------------------------------------------------------------- */ 1965 1966 /* translate USB error codes to codes user space understands */ 1967 static inline int usb_translate_errors(int error_code) 1968 { 1969 switch (error_code) { 1970 case 0: 1971 case -ENOMEM: 1972 case -ENODEV: 1973 case -EOPNOTSUPP: 1974 return error_code; 1975 default: 1976 return -EIO; 1977 } 1978 } 1979 1980 /* Events from the usb core */ 1981 #define USB_DEVICE_ADD 0x0001 1982 #define USB_DEVICE_REMOVE 0x0002 1983 #define USB_BUS_ADD 0x0003 1984 #define USB_BUS_REMOVE 0x0004 1985 extern void usb_register_notify(struct notifier_block *nb); 1986 extern void usb_unregister_notify(struct notifier_block *nb); 1987 1988 /* debugfs stuff */ 1989 extern struct dentry *usb_debug_root; 1990 1991 /* LED triggers */ 1992 enum usb_led_event { 1993 USB_LED_EVENT_HOST = 0, 1994 USB_LED_EVENT_GADGET = 1, 1995 }; 1996 1997 #ifdef CONFIG_USB_LED_TRIG 1998 extern void usb_led_activity(enum usb_led_event ev); 1999 #else 2000 static inline void usb_led_activity(enum usb_led_event ev) {} 2001 #endif 2002 2003 #endif /* __KERNEL__ */ 2004 2005 #endif 2006