xref: /linux-6.15/include/linux/usb.h (revision de19ca6f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29 
30 /*-------------------------------------------------------------------------*/
31 
32 /*
33  * Host-side wrappers for standard USB descriptors ... these are parsed
34  * from the data provided by devices.  Parsing turns them from a flat
35  * sequence of descriptors into a hierarchy:
36  *
37  *  - devices have one (usually) or more configs;
38  *  - configs have one (often) or more interfaces;
39  *  - interfaces have one (usually) or more settings;
40  *  - each interface setting has zero or (usually) more endpoints.
41  *  - a SuperSpeed endpoint has a companion descriptor
42  *
43  * And there might be other descriptors mixed in with those.
44  *
45  * Devices may also have class-specific or vendor-specific descriptors.
46  */
47 
48 struct ep_device;
49 
50 /**
51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor		desc;
69 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
71 	struct list_head		urb_list;
72 	void				*hcpriv;
73 	struct ep_device		*ep_dev;	/* For sysfs info */
74 
75 	unsigned char *extra;   /* Extra descriptors */
76 	int extralen;
77 	int enabled;
78 	int streams;
79 };
80 
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 	struct usb_interface_descriptor	desc;
84 
85 	int extralen;
86 	unsigned char *extra;   /* Extra descriptors */
87 
88 	/* array of desc.bNumEndpoints endpoints associated with this
89 	 * interface setting.  these will be in no particular order.
90 	 */
91 	struct usb_host_endpoint *endpoint;
92 
93 	char *string;		/* iInterface string, if present */
94 };
95 
96 enum usb_interface_condition {
97 	USB_INTERFACE_UNBOUND = 0,
98 	USB_INTERFACE_BINDING,
99 	USB_INTERFACE_BOUND,
100 	USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 		struct usb_endpoint_descriptor **bulk_in,
106 		struct usb_endpoint_descriptor **bulk_out,
107 		struct usb_endpoint_descriptor **int_in,
108 		struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 		struct usb_endpoint_descriptor **bulk_in,
113 		struct usb_endpoint_descriptor **bulk_out,
114 		struct usb_endpoint_descriptor **int_in,
115 		struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 		struct usb_endpoint_descriptor **bulk_in)
120 {
121 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 		struct usb_endpoint_descriptor **bulk_out)
127 {
128 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 		struct usb_endpoint_descriptor **int_in)
134 {
135 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 		struct usb_endpoint_descriptor **bulk_in)
148 {
149 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 		struct usb_endpoint_descriptor **bulk_out)
155 {
156 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 		struct usb_endpoint_descriptor **int_in)
162 {
163 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 		struct usb_endpoint_descriptor **int_out)
169 {
170 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 /**
174  * struct usb_interface - what usb device drivers talk to
175  * @altsetting: array of interface structures, one for each alternate
176  *	setting that may be selected.  Each one includes a set of
177  *	endpoint configurations.  They will be in no particular order.
178  * @cur_altsetting: the current altsetting.
179  * @num_altsetting: number of altsettings defined.
180  * @intf_assoc: interface association descriptor
181  * @minor: the minor number assigned to this interface, if this
182  *	interface is bound to a driver that uses the USB major number.
183  *	If this interface does not use the USB major, this field should
184  *	be unused.  The driver should set this value in the probe()
185  *	function of the driver, after it has been assigned a minor
186  *	number from the USB core by calling usb_register_dev().
187  * @condition: binding state of the interface: not bound, binding
188  *	(in probe()), bound to a driver, or unbinding (in disconnect())
189  * @sysfs_files_created: sysfs attributes exist
190  * @ep_devs_created: endpoint child pseudo-devices exist
191  * @unregistering: flag set when the interface is being unregistered
192  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193  *	capability during autosuspend.
194  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195  *	has been deferred.
196  * @needs_binding: flag set when the driver should be re-probed or unbound
197  *	following a reset or suspend operation it doesn't support.
198  * @authorized: This allows to (de)authorize individual interfaces instead
199  *	a whole device in contrast to the device authorization.
200  * @dev: driver model's view of this device
201  * @usb_dev: if an interface is bound to the USB major, this will point
202  *	to the sysfs representation for that device.
203  * @pm_usage_cnt: PM usage counter for this interface
204  * @reset_ws: Used for scheduling resets from atomic context.
205  * @resetting_device: USB core reset the device, so use alt setting 0 as
206  *	current; needs bandwidth alloc after reset.
207  *
208  * USB device drivers attach to interfaces on a physical device.  Each
209  * interface encapsulates a single high level function, such as feeding
210  * an audio stream to a speaker or reporting a change in a volume control.
211  * Many USB devices only have one interface.  The protocol used to talk to
212  * an interface's endpoints can be defined in a usb "class" specification,
213  * or by a product's vendor.  The (default) control endpoint is part of
214  * every interface, but is never listed among the interface's descriptors.
215  *
216  * The driver that is bound to the interface can use standard driver model
217  * calls such as dev_get_drvdata() on the dev member of this structure.
218  *
219  * Each interface may have alternate settings.  The initial configuration
220  * of a device sets altsetting 0, but the device driver can change
221  * that setting using usb_set_interface().  Alternate settings are often
222  * used to control the use of periodic endpoints, such as by having
223  * different endpoints use different amounts of reserved USB bandwidth.
224  * All standards-conformant USB devices that use isochronous endpoints
225  * will use them in non-default settings.
226  *
227  * The USB specification says that alternate setting numbers must run from
228  * 0 to one less than the total number of alternate settings.  But some
229  * devices manage to mess this up, and the structures aren't necessarily
230  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
231  * look up an alternate setting in the altsetting array based on its number.
232  */
233 struct usb_interface {
234 	/* array of alternate settings for this interface,
235 	 * stored in no particular order */
236 	struct usb_host_interface *altsetting;
237 
238 	struct usb_host_interface *cur_altsetting;	/* the currently
239 					 * active alternate setting */
240 	unsigned num_altsetting;	/* number of alternate settings */
241 
242 	/* If there is an interface association descriptor then it will list
243 	 * the associated interfaces */
244 	struct usb_interface_assoc_descriptor *intf_assoc;
245 
246 	int minor;			/* minor number this interface is
247 					 * bound to */
248 	enum usb_interface_condition condition;		/* state of binding */
249 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
250 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
251 	unsigned unregistering:1;	/* unregistration is in progress */
252 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
253 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
254 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
255 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
256 	unsigned authorized:1;		/* used for interface authorization */
257 
258 	struct device dev;		/* interface specific device info */
259 	struct device *usb_dev;
260 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
261 	struct work_struct reset_ws;	/* for resets in atomic context */
262 };
263 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
264 
265 static inline void *usb_get_intfdata(struct usb_interface *intf)
266 {
267 	return dev_get_drvdata(&intf->dev);
268 }
269 
270 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
271 {
272 	dev_set_drvdata(&intf->dev, data);
273 }
274 
275 struct usb_interface *usb_get_intf(struct usb_interface *intf);
276 void usb_put_intf(struct usb_interface *intf);
277 
278 /* Hard limit */
279 #define USB_MAXENDPOINTS	30
280 /* this maximum is arbitrary */
281 #define USB_MAXINTERFACES	32
282 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
283 
284 /*
285  * USB Resume Timer: Every Host controller driver should drive the resume
286  * signalling on the bus for the amount of time defined by this macro.
287  *
288  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
289  *
290  * Note that the USB Specification states we should drive resume for *at least*
291  * 20 ms, but it doesn't give an upper bound. This creates two possible
292  * situations which we want to avoid:
293  *
294  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
295  * us to fail USB Electrical Tests, thus failing Certification
296  *
297  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
298  * and while we can argue that's against the USB Specification, we don't have
299  * control over which devices a certification laboratory will be using for
300  * certification. If CertLab uses a device which was tested against Windows and
301  * that happens to have relaxed resume signalling rules, we might fall into
302  * situations where we fail interoperability and electrical tests.
303  *
304  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
305  * should cope with both LPJ calibration errors and devices not following every
306  * detail of the USB Specification.
307  */
308 #define USB_RESUME_TIMEOUT	40 /* ms */
309 
310 /**
311  * struct usb_interface_cache - long-term representation of a device interface
312  * @num_altsetting: number of altsettings defined.
313  * @ref: reference counter.
314  * @altsetting: variable-length array of interface structures, one for
315  *	each alternate setting that may be selected.  Each one includes a
316  *	set of endpoint configurations.  They will be in no particular order.
317  *
318  * These structures persist for the lifetime of a usb_device, unlike
319  * struct usb_interface (which persists only as long as its configuration
320  * is installed).  The altsetting arrays can be accessed through these
321  * structures at any time, permitting comparison of configurations and
322  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
323  */
324 struct usb_interface_cache {
325 	unsigned num_altsetting;	/* number of alternate settings */
326 	struct kref ref;		/* reference counter */
327 
328 	/* variable-length array of alternate settings for this interface,
329 	 * stored in no particular order */
330 	struct usb_host_interface altsetting[0];
331 };
332 #define	ref_to_usb_interface_cache(r) \
333 		container_of(r, struct usb_interface_cache, ref)
334 #define	altsetting_to_usb_interface_cache(a) \
335 		container_of(a, struct usb_interface_cache, altsetting[0])
336 
337 /**
338  * struct usb_host_config - representation of a device's configuration
339  * @desc: the device's configuration descriptor.
340  * @string: pointer to the cached version of the iConfiguration string, if
341  *	present for this configuration.
342  * @intf_assoc: list of any interface association descriptors in this config
343  * @interface: array of pointers to usb_interface structures, one for each
344  *	interface in the configuration.  The number of interfaces is stored
345  *	in desc.bNumInterfaces.  These pointers are valid only while the
346  *	the configuration is active.
347  * @intf_cache: array of pointers to usb_interface_cache structures, one
348  *	for each interface in the configuration.  These structures exist
349  *	for the entire life of the device.
350  * @extra: pointer to buffer containing all extra descriptors associated
351  *	with this configuration (those preceding the first interface
352  *	descriptor).
353  * @extralen: length of the extra descriptors buffer.
354  *
355  * USB devices may have multiple configurations, but only one can be active
356  * at any time.  Each encapsulates a different operational environment;
357  * for example, a dual-speed device would have separate configurations for
358  * full-speed and high-speed operation.  The number of configurations
359  * available is stored in the device descriptor as bNumConfigurations.
360  *
361  * A configuration can contain multiple interfaces.  Each corresponds to
362  * a different function of the USB device, and all are available whenever
363  * the configuration is active.  The USB standard says that interfaces
364  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
365  * of devices get this wrong.  In addition, the interface array is not
366  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
367  * look up an interface entry based on its number.
368  *
369  * Device drivers should not attempt to activate configurations.  The choice
370  * of which configuration to install is a policy decision based on such
371  * considerations as available power, functionality provided, and the user's
372  * desires (expressed through userspace tools).  However, drivers can call
373  * usb_reset_configuration() to reinitialize the current configuration and
374  * all its interfaces.
375  */
376 struct usb_host_config {
377 	struct usb_config_descriptor	desc;
378 
379 	char *string;		/* iConfiguration string, if present */
380 
381 	/* List of any Interface Association Descriptors in this
382 	 * configuration. */
383 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
384 
385 	/* the interfaces associated with this configuration,
386 	 * stored in no particular order */
387 	struct usb_interface *interface[USB_MAXINTERFACES];
388 
389 	/* Interface information available even when this is not the
390 	 * active configuration */
391 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
392 
393 	unsigned char *extra;   /* Extra descriptors */
394 	int extralen;
395 };
396 
397 /* USB2.0 and USB3.0 device BOS descriptor set */
398 struct usb_host_bos {
399 	struct usb_bos_descriptor	*desc;
400 
401 	/* wireless cap descriptor is handled by wusb */
402 	struct usb_ext_cap_descriptor	*ext_cap;
403 	struct usb_ss_cap_descriptor	*ss_cap;
404 	struct usb_ssp_cap_descriptor	*ssp_cap;
405 	struct usb_ss_container_id_descriptor	*ss_id;
406 	struct usb_ptm_cap_descriptor	*ptm_cap;
407 };
408 
409 int __usb_get_extra_descriptor(char *buffer, unsigned size,
410 	unsigned char type, void **ptr);
411 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
412 				__usb_get_extra_descriptor((ifpoint)->extra, \
413 				(ifpoint)->extralen, \
414 				type, (void **)ptr)
415 
416 /* ----------------------------------------------------------------------- */
417 
418 /* USB device number allocation bitmap */
419 struct usb_devmap {
420 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
421 };
422 
423 /*
424  * Allocated per bus (tree of devices) we have:
425  */
426 struct usb_bus {
427 	struct device *controller;	/* host/master side hardware */
428 	struct device *sysdev;		/* as seen from firmware or bus */
429 	int busnum;			/* Bus number (in order of reg) */
430 	const char *bus_name;		/* stable id (PCI slot_name etc) */
431 	u8 uses_dma;			/* Does the host controller use DMA? */
432 	u8 uses_pio_for_control;	/*
433 					 * Does the host controller use PIO
434 					 * for control transfers?
435 					 */
436 	u8 otg_port;			/* 0, or number of OTG/HNP port */
437 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
438 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
439 	unsigned no_stop_on_short:1;    /*
440 					 * Quirk: some controllers don't stop
441 					 * the ep queue on a short transfer
442 					 * with the URB_SHORT_NOT_OK flag set.
443 					 */
444 	unsigned no_sg_constraint:1;	/* no sg constraint */
445 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
446 
447 	int devnum_next;		/* Next open device number in
448 					 * round-robin allocation */
449 	struct mutex devnum_next_mutex; /* devnum_next mutex */
450 
451 	struct usb_devmap devmap;	/* device address allocation map */
452 	struct usb_device *root_hub;	/* Root hub */
453 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
454 
455 	int bandwidth_allocated;	/* on this bus: how much of the time
456 					 * reserved for periodic (intr/iso)
457 					 * requests is used, on average?
458 					 * Units: microseconds/frame.
459 					 * Limits: Full/low speed reserve 90%,
460 					 * while high speed reserves 80%.
461 					 */
462 	int bandwidth_int_reqs;		/* number of Interrupt requests */
463 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
464 
465 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
466 
467 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
468 	struct mon_bus *mon_bus;	/* non-null when associated */
469 	int monitored;			/* non-zero when monitored */
470 #endif
471 };
472 
473 struct usb_dev_state;
474 
475 /* ----------------------------------------------------------------------- */
476 
477 struct usb_tt;
478 
479 enum usb_device_removable {
480 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
481 	USB_DEVICE_REMOVABLE,
482 	USB_DEVICE_FIXED,
483 };
484 
485 enum usb_port_connect_type {
486 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
487 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
488 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
489 	USB_PORT_NOT_USED,
490 };
491 
492 /*
493  * USB 2.0 Link Power Management (LPM) parameters.
494  */
495 struct usb2_lpm_parameters {
496 	/* Best effort service latency indicate how long the host will drive
497 	 * resume on an exit from L1.
498 	 */
499 	unsigned int besl;
500 
501 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
502 	 * When the timer counts to zero, the parent hub will initiate a LPM
503 	 * transition to L1.
504 	 */
505 	int timeout;
506 };
507 
508 /*
509  * USB 3.0 Link Power Management (LPM) parameters.
510  *
511  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
512  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
513  * All three are stored in nanoseconds.
514  */
515 struct usb3_lpm_parameters {
516 	/*
517 	 * Maximum exit latency (MEL) for the host to send a packet to the
518 	 * device (either a Ping for isoc endpoints, or a data packet for
519 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
520 	 * in the path to transition the links to U0.
521 	 */
522 	unsigned int mel;
523 	/*
524 	 * Maximum exit latency for a device-initiated LPM transition to bring
525 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
526 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
527 	 */
528 	unsigned int pel;
529 
530 	/*
531 	 * The System Exit Latency (SEL) includes PEL, and three other
532 	 * latencies.  After a device initiates a U0 transition, it will take
533 	 * some time from when the device sends the ERDY to when it will finally
534 	 * receive the data packet.  Basically, SEL should be the worse-case
535 	 * latency from when a device starts initiating a U0 transition to when
536 	 * it will get data.
537 	 */
538 	unsigned int sel;
539 	/*
540 	 * The idle timeout value that is currently programmed into the parent
541 	 * hub for this device.  When the timer counts to zero, the parent hub
542 	 * will initiate an LPM transition to either U1 or U2.
543 	 */
544 	int timeout;
545 };
546 
547 /**
548  * struct usb_device - kernel's representation of a USB device
549  * @devnum: device number; address on a USB bus
550  * @devpath: device ID string for use in messages (e.g., /port/...)
551  * @route: tree topology hex string for use with xHCI
552  * @state: device state: configured, not attached, etc.
553  * @speed: device speed: high/full/low (or error)
554  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
555  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
556  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
557  * @ttport: device port on that tt hub
558  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
559  * @parent: our hub, unless we're the root
560  * @bus: bus we're part of
561  * @ep0: endpoint 0 data (default control pipe)
562  * @dev: generic device interface
563  * @descriptor: USB device descriptor
564  * @bos: USB device BOS descriptor set
565  * @config: all of the device's configs
566  * @actconfig: the active configuration
567  * @ep_in: array of IN endpoints
568  * @ep_out: array of OUT endpoints
569  * @rawdescriptors: raw descriptors for each config
570  * @bus_mA: Current available from the bus
571  * @portnum: parent port number (origin 1)
572  * @level: number of USB hub ancestors
573  * @can_submit: URBs may be submitted
574  * @persist_enabled:  USB_PERSIST enabled for this device
575  * @have_langid: whether string_langid is valid
576  * @authorized: policy has said we can use it;
577  *	(user space) policy determines if we authorize this device to be
578  *	used or not. By default, wired USB devices are authorized.
579  *	WUSB devices are not, until we authorize them from user space.
580  *	FIXME -- complete doc
581  * @authenticated: Crypto authentication passed
582  * @wusb: device is Wireless USB
583  * @lpm_capable: device supports LPM
584  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
585  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
586  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
587  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
588  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
589  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
590  * @string_langid: language ID for strings
591  * @product: iProduct string, if present (static)
592  * @manufacturer: iManufacturer string, if present (static)
593  * @serial: iSerialNumber string, if present (static)
594  * @filelist: usbfs files that are open to this device
595  * @maxchild: number of ports if hub
596  * @quirks: quirks of the whole device
597  * @urbnum: number of URBs submitted for the whole device
598  * @active_duration: total time device is not suspended
599  * @connect_time: time device was first connected
600  * @do_remote_wakeup:  remote wakeup should be enabled
601  * @reset_resume: needs reset instead of resume
602  * @port_is_suspended: the upstream port is suspended (L2 or U3)
603  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
604  *	specific data for the device.
605  * @slot_id: Slot ID assigned by xHCI
606  * @removable: Device can be physically removed from this port
607  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
608  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
609  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
610  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
611  *	to keep track of the number of functions that require USB 3.0 Link Power
612  *	Management to be disabled for this usb_device.  This count should only
613  *	be manipulated by those functions, with the bandwidth_mutex is held.
614  * @hub_delay: cached value consisting of:
615  *		parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
616  *
617  *	Will be used as wValue for SetIsochDelay requests.
618  *
619  * Notes:
620  * Usbcore drivers should not set usbdev->state directly.  Instead use
621  * usb_set_device_state().
622  */
623 struct usb_device {
624 	int		devnum;
625 	char		devpath[16];
626 	u32		route;
627 	enum usb_device_state	state;
628 	enum usb_device_speed	speed;
629 	unsigned int		rx_lanes;
630 	unsigned int		tx_lanes;
631 
632 	struct usb_tt	*tt;
633 	int		ttport;
634 
635 	unsigned int toggle[2];
636 
637 	struct usb_device *parent;
638 	struct usb_bus *bus;
639 	struct usb_host_endpoint ep0;
640 
641 	struct device dev;
642 
643 	struct usb_device_descriptor descriptor;
644 	struct usb_host_bos *bos;
645 	struct usb_host_config *config;
646 
647 	struct usb_host_config *actconfig;
648 	struct usb_host_endpoint *ep_in[16];
649 	struct usb_host_endpoint *ep_out[16];
650 
651 	char **rawdescriptors;
652 
653 	unsigned short bus_mA;
654 	u8 portnum;
655 	u8 level;
656 
657 	unsigned can_submit:1;
658 	unsigned persist_enabled:1;
659 	unsigned have_langid:1;
660 	unsigned authorized:1;
661 	unsigned authenticated:1;
662 	unsigned wusb:1;
663 	unsigned lpm_capable:1;
664 	unsigned usb2_hw_lpm_capable:1;
665 	unsigned usb2_hw_lpm_besl_capable:1;
666 	unsigned usb2_hw_lpm_enabled:1;
667 	unsigned usb2_hw_lpm_allowed:1;
668 	unsigned usb3_lpm_u1_enabled:1;
669 	unsigned usb3_lpm_u2_enabled:1;
670 	int string_langid;
671 
672 	/* static strings from the device */
673 	char *product;
674 	char *manufacturer;
675 	char *serial;
676 
677 	struct list_head filelist;
678 
679 	int maxchild;
680 
681 	u32 quirks;
682 	atomic_t urbnum;
683 
684 	unsigned long active_duration;
685 
686 #ifdef CONFIG_PM
687 	unsigned long connect_time;
688 
689 	unsigned do_remote_wakeup:1;
690 	unsigned reset_resume:1;
691 	unsigned port_is_suspended:1;
692 #endif
693 	struct wusb_dev *wusb_dev;
694 	int slot_id;
695 	enum usb_device_removable removable;
696 	struct usb2_lpm_parameters l1_params;
697 	struct usb3_lpm_parameters u1_params;
698 	struct usb3_lpm_parameters u2_params;
699 	unsigned lpm_disable_count;
700 
701 	u16 hub_delay;
702 };
703 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
704 
705 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
706 {
707 	return to_usb_device(intf->dev.parent);
708 }
709 
710 extern struct usb_device *usb_get_dev(struct usb_device *dev);
711 extern void usb_put_dev(struct usb_device *dev);
712 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
713 	int port1);
714 
715 /**
716  * usb_hub_for_each_child - iterate over all child devices on the hub
717  * @hdev:  USB device belonging to the usb hub
718  * @port1: portnum associated with child device
719  * @child: child device pointer
720  */
721 #define usb_hub_for_each_child(hdev, port1, child) \
722 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
723 			port1 <= hdev->maxchild; \
724 			child = usb_hub_find_child(hdev, ++port1)) \
725 		if (!child) continue; else
726 
727 /* USB device locking */
728 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
729 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
730 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
731 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
732 extern int usb_lock_device_for_reset(struct usb_device *udev,
733 				     const struct usb_interface *iface);
734 
735 /* USB port reset for device reinitialization */
736 extern int usb_reset_device(struct usb_device *dev);
737 extern void usb_queue_reset_device(struct usb_interface *dev);
738 
739 #ifdef CONFIG_ACPI
740 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
741 	bool enable);
742 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
743 #else
744 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
745 	bool enable) { return 0; }
746 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
747 	{ return true; }
748 #endif
749 
750 /* USB autosuspend and autoresume */
751 #ifdef CONFIG_PM
752 extern void usb_enable_autosuspend(struct usb_device *udev);
753 extern void usb_disable_autosuspend(struct usb_device *udev);
754 
755 extern int usb_autopm_get_interface(struct usb_interface *intf);
756 extern void usb_autopm_put_interface(struct usb_interface *intf);
757 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
758 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
759 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
760 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
761 
762 static inline void usb_mark_last_busy(struct usb_device *udev)
763 {
764 	pm_runtime_mark_last_busy(&udev->dev);
765 }
766 
767 #else
768 
769 static inline int usb_enable_autosuspend(struct usb_device *udev)
770 { return 0; }
771 static inline int usb_disable_autosuspend(struct usb_device *udev)
772 { return 0; }
773 
774 static inline int usb_autopm_get_interface(struct usb_interface *intf)
775 { return 0; }
776 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
777 { return 0; }
778 
779 static inline void usb_autopm_put_interface(struct usb_interface *intf)
780 { }
781 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
782 { }
783 static inline void usb_autopm_get_interface_no_resume(
784 		struct usb_interface *intf)
785 { }
786 static inline void usb_autopm_put_interface_no_suspend(
787 		struct usb_interface *intf)
788 { }
789 static inline void usb_mark_last_busy(struct usb_device *udev)
790 { }
791 #endif
792 
793 extern int usb_disable_lpm(struct usb_device *udev);
794 extern void usb_enable_lpm(struct usb_device *udev);
795 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
796 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
797 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
798 
799 extern int usb_disable_ltm(struct usb_device *udev);
800 extern void usb_enable_ltm(struct usb_device *udev);
801 
802 static inline bool usb_device_supports_ltm(struct usb_device *udev)
803 {
804 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
805 		return false;
806 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
807 }
808 
809 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
810 {
811 	return udev && udev->bus && udev->bus->no_sg_constraint;
812 }
813 
814 
815 /*-------------------------------------------------------------------------*/
816 
817 /* for drivers using iso endpoints */
818 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
819 
820 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
821 extern int usb_alloc_streams(struct usb_interface *interface,
822 		struct usb_host_endpoint **eps, unsigned int num_eps,
823 		unsigned int num_streams, gfp_t mem_flags);
824 
825 /* Reverts a group of bulk endpoints back to not using stream IDs. */
826 extern int usb_free_streams(struct usb_interface *interface,
827 		struct usb_host_endpoint **eps, unsigned int num_eps,
828 		gfp_t mem_flags);
829 
830 /* used these for multi-interface device registration */
831 extern int usb_driver_claim_interface(struct usb_driver *driver,
832 			struct usb_interface *iface, void *priv);
833 
834 /**
835  * usb_interface_claimed - returns true iff an interface is claimed
836  * @iface: the interface being checked
837  *
838  * Return: %true (nonzero) iff the interface is claimed, else %false
839  * (zero).
840  *
841  * Note:
842  * Callers must own the driver model's usb bus readlock.  So driver
843  * probe() entries don't need extra locking, but other call contexts
844  * may need to explicitly claim that lock.
845  *
846  */
847 static inline int usb_interface_claimed(struct usb_interface *iface)
848 {
849 	return (iface->dev.driver != NULL);
850 }
851 
852 extern void usb_driver_release_interface(struct usb_driver *driver,
853 			struct usb_interface *iface);
854 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
855 					 const struct usb_device_id *id);
856 extern int usb_match_one_id(struct usb_interface *interface,
857 			    const struct usb_device_id *id);
858 
859 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
860 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
861 		int minor);
862 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
863 		unsigned ifnum);
864 extern struct usb_host_interface *usb_altnum_to_altsetting(
865 		const struct usb_interface *intf, unsigned int altnum);
866 extern struct usb_host_interface *usb_find_alt_setting(
867 		struct usb_host_config *config,
868 		unsigned int iface_num,
869 		unsigned int alt_num);
870 
871 /* port claiming functions */
872 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
873 		struct usb_dev_state *owner);
874 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
875 		struct usb_dev_state *owner);
876 
877 /**
878  * usb_make_path - returns stable device path in the usb tree
879  * @dev: the device whose path is being constructed
880  * @buf: where to put the string
881  * @size: how big is "buf"?
882  *
883  * Return: Length of the string (> 0) or negative if size was too small.
884  *
885  * Note:
886  * This identifier is intended to be "stable", reflecting physical paths in
887  * hardware such as physical bus addresses for host controllers or ports on
888  * USB hubs.  That makes it stay the same until systems are physically
889  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
890  * controllers.  Adding and removing devices, including virtual root hubs
891  * in host controller driver modules, does not change these path identifiers;
892  * neither does rebooting or re-enumerating.  These are more useful identifiers
893  * than changeable ("unstable") ones like bus numbers or device addresses.
894  *
895  * With a partial exception for devices connected to USB 2.0 root hubs, these
896  * identifiers are also predictable.  So long as the device tree isn't changed,
897  * plugging any USB device into a given hub port always gives it the same path.
898  * Because of the use of "companion" controllers, devices connected to ports on
899  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
900  * high speed, and a different one if they are full or low speed.
901  */
902 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
903 {
904 	int actual;
905 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
906 			  dev->devpath);
907 	return (actual >= (int)size) ? -1 : actual;
908 }
909 
910 /*-------------------------------------------------------------------------*/
911 
912 #define USB_DEVICE_ID_MATCH_DEVICE \
913 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
914 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
915 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
916 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
917 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
918 #define USB_DEVICE_ID_MATCH_DEV_INFO \
919 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
920 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
921 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
922 #define USB_DEVICE_ID_MATCH_INT_INFO \
923 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
924 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
925 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
926 
927 /**
928  * USB_DEVICE - macro used to describe a specific usb device
929  * @vend: the 16 bit USB Vendor ID
930  * @prod: the 16 bit USB Product ID
931  *
932  * This macro is used to create a struct usb_device_id that matches a
933  * specific device.
934  */
935 #define USB_DEVICE(vend, prod) \
936 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
937 	.idVendor = (vend), \
938 	.idProduct = (prod)
939 /**
940  * USB_DEVICE_VER - describe a specific usb device with a version range
941  * @vend: the 16 bit USB Vendor ID
942  * @prod: the 16 bit USB Product ID
943  * @lo: the bcdDevice_lo value
944  * @hi: the bcdDevice_hi value
945  *
946  * This macro is used to create a struct usb_device_id that matches a
947  * specific device, with a version range.
948  */
949 #define USB_DEVICE_VER(vend, prod, lo, hi) \
950 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
951 	.idVendor = (vend), \
952 	.idProduct = (prod), \
953 	.bcdDevice_lo = (lo), \
954 	.bcdDevice_hi = (hi)
955 
956 /**
957  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
958  * @vend: the 16 bit USB Vendor ID
959  * @prod: the 16 bit USB Product ID
960  * @cl: bInterfaceClass value
961  *
962  * This macro is used to create a struct usb_device_id that matches a
963  * specific interface class of devices.
964  */
965 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
966 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
967 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
968 	.idVendor = (vend), \
969 	.idProduct = (prod), \
970 	.bInterfaceClass = (cl)
971 
972 /**
973  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
974  * @vend: the 16 bit USB Vendor ID
975  * @prod: the 16 bit USB Product ID
976  * @pr: bInterfaceProtocol value
977  *
978  * This macro is used to create a struct usb_device_id that matches a
979  * specific interface protocol of devices.
980  */
981 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
982 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
983 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
984 	.idVendor = (vend), \
985 	.idProduct = (prod), \
986 	.bInterfaceProtocol = (pr)
987 
988 /**
989  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
990  * @vend: the 16 bit USB Vendor ID
991  * @prod: the 16 bit USB Product ID
992  * @num: bInterfaceNumber value
993  *
994  * This macro is used to create a struct usb_device_id that matches a
995  * specific interface number of devices.
996  */
997 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
998 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
999 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1000 	.idVendor = (vend), \
1001 	.idProduct = (prod), \
1002 	.bInterfaceNumber = (num)
1003 
1004 /**
1005  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1006  * @cl: bDeviceClass value
1007  * @sc: bDeviceSubClass value
1008  * @pr: bDeviceProtocol value
1009  *
1010  * This macro is used to create a struct usb_device_id that matches a
1011  * specific class of devices.
1012  */
1013 #define USB_DEVICE_INFO(cl, sc, pr) \
1014 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1015 	.bDeviceClass = (cl), \
1016 	.bDeviceSubClass = (sc), \
1017 	.bDeviceProtocol = (pr)
1018 
1019 /**
1020  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1021  * @cl: bInterfaceClass value
1022  * @sc: bInterfaceSubClass value
1023  * @pr: bInterfaceProtocol value
1024  *
1025  * This macro is used to create a struct usb_device_id that matches a
1026  * specific class of interfaces.
1027  */
1028 #define USB_INTERFACE_INFO(cl, sc, pr) \
1029 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1030 	.bInterfaceClass = (cl), \
1031 	.bInterfaceSubClass = (sc), \
1032 	.bInterfaceProtocol = (pr)
1033 
1034 /**
1035  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1036  * @vend: the 16 bit USB Vendor ID
1037  * @prod: the 16 bit USB Product ID
1038  * @cl: bInterfaceClass value
1039  * @sc: bInterfaceSubClass value
1040  * @pr: bInterfaceProtocol value
1041  *
1042  * This macro is used to create a struct usb_device_id that matches a
1043  * specific device with a specific class of interfaces.
1044  *
1045  * This is especially useful when explicitly matching devices that have
1046  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1047  */
1048 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1049 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1050 		| USB_DEVICE_ID_MATCH_DEVICE, \
1051 	.idVendor = (vend), \
1052 	.idProduct = (prod), \
1053 	.bInterfaceClass = (cl), \
1054 	.bInterfaceSubClass = (sc), \
1055 	.bInterfaceProtocol = (pr)
1056 
1057 /**
1058  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1059  * @vend: the 16 bit USB Vendor ID
1060  * @cl: bInterfaceClass value
1061  * @sc: bInterfaceSubClass value
1062  * @pr: bInterfaceProtocol value
1063  *
1064  * This macro is used to create a struct usb_device_id that matches a
1065  * specific vendor with a specific class of interfaces.
1066  *
1067  * This is especially useful when explicitly matching devices that have
1068  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1069  */
1070 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1071 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1072 		| USB_DEVICE_ID_MATCH_VENDOR, \
1073 	.idVendor = (vend), \
1074 	.bInterfaceClass = (cl), \
1075 	.bInterfaceSubClass = (sc), \
1076 	.bInterfaceProtocol = (pr)
1077 
1078 /* ----------------------------------------------------------------------- */
1079 
1080 /* Stuff for dynamic usb ids */
1081 struct usb_dynids {
1082 	spinlock_t lock;
1083 	struct list_head list;
1084 };
1085 
1086 struct usb_dynid {
1087 	struct list_head node;
1088 	struct usb_device_id id;
1089 };
1090 
1091 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1092 				const struct usb_device_id *id_table,
1093 				struct device_driver *driver,
1094 				const char *buf, size_t count);
1095 
1096 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1097 
1098 /**
1099  * struct usbdrv_wrap - wrapper for driver-model structure
1100  * @driver: The driver-model core driver structure.
1101  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1102  */
1103 struct usbdrv_wrap {
1104 	struct device_driver driver;
1105 	int for_devices;
1106 };
1107 
1108 /**
1109  * struct usb_driver - identifies USB interface driver to usbcore
1110  * @name: The driver name should be unique among USB drivers,
1111  *	and should normally be the same as the module name.
1112  * @probe: Called to see if the driver is willing to manage a particular
1113  *	interface on a device.  If it is, probe returns zero and uses
1114  *	usb_set_intfdata() to associate driver-specific data with the
1115  *	interface.  It may also use usb_set_interface() to specify the
1116  *	appropriate altsetting.  If unwilling to manage the interface,
1117  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1118  *	negative errno value.
1119  * @disconnect: Called when the interface is no longer accessible, usually
1120  *	because its device has been (or is being) disconnected or the
1121  *	driver module is being unloaded.
1122  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1123  *	the "usbfs" filesystem.  This lets devices provide ways to
1124  *	expose information to user space regardless of where they
1125  *	do (or don't) show up otherwise in the filesystem.
1126  * @suspend: Called when the device is going to be suspended by the
1127  *	system either from system sleep or runtime suspend context. The
1128  *	return value will be ignored in system sleep context, so do NOT
1129  *	try to continue using the device if suspend fails in this case.
1130  *	Instead, let the resume or reset-resume routine recover from
1131  *	the failure.
1132  * @resume: Called when the device is being resumed by the system.
1133  * @reset_resume: Called when the suspended device has been reset instead
1134  *	of being resumed.
1135  * @pre_reset: Called by usb_reset_device() when the device is about to be
1136  *	reset.  This routine must not return until the driver has no active
1137  *	URBs for the device, and no more URBs may be submitted until the
1138  *	post_reset method is called.
1139  * @post_reset: Called by usb_reset_device() after the device
1140  *	has been reset
1141  * @id_table: USB drivers use ID table to support hotplugging.
1142  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1143  *	or your driver's probe function will never get called.
1144  * @dynids: used internally to hold the list of dynamically added device
1145  *	ids for this driver.
1146  * @drvwrap: Driver-model core structure wrapper.
1147  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1148  *	added to this driver by preventing the sysfs file from being created.
1149  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1150  *	for interfaces bound to this driver.
1151  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1152  *	endpoints before calling the driver's disconnect method.
1153  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1154  *	to initiate lower power link state transitions when an idle timeout
1155  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1156  *
1157  * USB interface drivers must provide a name, probe() and disconnect()
1158  * methods, and an id_table.  Other driver fields are optional.
1159  *
1160  * The id_table is used in hotplugging.  It holds a set of descriptors,
1161  * and specialized data may be associated with each entry.  That table
1162  * is used by both user and kernel mode hotplugging support.
1163  *
1164  * The probe() and disconnect() methods are called in a context where
1165  * they can sleep, but they should avoid abusing the privilege.  Most
1166  * work to connect to a device should be done when the device is opened,
1167  * and undone at the last close.  The disconnect code needs to address
1168  * concurrency issues with respect to open() and close() methods, as
1169  * well as forcing all pending I/O requests to complete (by unlinking
1170  * them as necessary, and blocking until the unlinks complete).
1171  */
1172 struct usb_driver {
1173 	const char *name;
1174 
1175 	int (*probe) (struct usb_interface *intf,
1176 		      const struct usb_device_id *id);
1177 
1178 	void (*disconnect) (struct usb_interface *intf);
1179 
1180 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1181 			void *buf);
1182 
1183 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1184 	int (*resume) (struct usb_interface *intf);
1185 	int (*reset_resume)(struct usb_interface *intf);
1186 
1187 	int (*pre_reset)(struct usb_interface *intf);
1188 	int (*post_reset)(struct usb_interface *intf);
1189 
1190 	const struct usb_device_id *id_table;
1191 
1192 	struct usb_dynids dynids;
1193 	struct usbdrv_wrap drvwrap;
1194 	unsigned int no_dynamic_id:1;
1195 	unsigned int supports_autosuspend:1;
1196 	unsigned int disable_hub_initiated_lpm:1;
1197 	unsigned int soft_unbind:1;
1198 };
1199 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1200 
1201 /**
1202  * struct usb_device_driver - identifies USB device driver to usbcore
1203  * @name: The driver name should be unique among USB drivers,
1204  *	and should normally be the same as the module name.
1205  * @probe: Called to see if the driver is willing to manage a particular
1206  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1207  *	to associate driver-specific data with the device.  If unwilling
1208  *	to manage the device, return a negative errno value.
1209  * @disconnect: Called when the device is no longer accessible, usually
1210  *	because it has been (or is being) disconnected or the driver's
1211  *	module is being unloaded.
1212  * @suspend: Called when the device is going to be suspended by the system.
1213  * @resume: Called when the device is being resumed by the system.
1214  * @drvwrap: Driver-model core structure wrapper.
1215  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1216  *	for devices bound to this driver.
1217  *
1218  * USB drivers must provide all the fields listed above except drvwrap.
1219  */
1220 struct usb_device_driver {
1221 	const char *name;
1222 
1223 	int (*probe) (struct usb_device *udev);
1224 	void (*disconnect) (struct usb_device *udev);
1225 
1226 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1227 	int (*resume) (struct usb_device *udev, pm_message_t message);
1228 	struct usbdrv_wrap drvwrap;
1229 	unsigned int supports_autosuspend:1;
1230 };
1231 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1232 		drvwrap.driver)
1233 
1234 extern struct bus_type usb_bus_type;
1235 
1236 /**
1237  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1238  * @name: the usb class device name for this driver.  Will show up in sysfs.
1239  * @devnode: Callback to provide a naming hint for a possible
1240  *	device node to create.
1241  * @fops: pointer to the struct file_operations of this driver.
1242  * @minor_base: the start of the minor range for this driver.
1243  *
1244  * This structure is used for the usb_register_dev() and
1245  * usb_deregister_dev() functions, to consolidate a number of the
1246  * parameters used for them.
1247  */
1248 struct usb_class_driver {
1249 	char *name;
1250 	char *(*devnode)(struct device *dev, umode_t *mode);
1251 	const struct file_operations *fops;
1252 	int minor_base;
1253 };
1254 
1255 /*
1256  * use these in module_init()/module_exit()
1257  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1258  */
1259 extern int usb_register_driver(struct usb_driver *, struct module *,
1260 			       const char *);
1261 
1262 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1263 #define usb_register(driver) \
1264 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1265 
1266 extern void usb_deregister(struct usb_driver *);
1267 
1268 /**
1269  * module_usb_driver() - Helper macro for registering a USB driver
1270  * @__usb_driver: usb_driver struct
1271  *
1272  * Helper macro for USB drivers which do not do anything special in module
1273  * init/exit. This eliminates a lot of boilerplate. Each module may only
1274  * use this macro once, and calling it replaces module_init() and module_exit()
1275  */
1276 #define module_usb_driver(__usb_driver) \
1277 	module_driver(__usb_driver, usb_register, \
1278 		       usb_deregister)
1279 
1280 extern int usb_register_device_driver(struct usb_device_driver *,
1281 			struct module *);
1282 extern void usb_deregister_device_driver(struct usb_device_driver *);
1283 
1284 extern int usb_register_dev(struct usb_interface *intf,
1285 			    struct usb_class_driver *class_driver);
1286 extern void usb_deregister_dev(struct usb_interface *intf,
1287 			       struct usb_class_driver *class_driver);
1288 
1289 extern int usb_disabled(void);
1290 
1291 /* ----------------------------------------------------------------------- */
1292 
1293 /*
1294  * URB support, for asynchronous request completions
1295  */
1296 
1297 /*
1298  * urb->transfer_flags:
1299  *
1300  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1301  */
1302 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1303 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1304 					 * slot in the schedule */
1305 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1306 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1307 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1308 					 * needed */
1309 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1310 
1311 /* The following flags are used internally by usbcore and HCDs */
1312 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1313 #define URB_DIR_OUT		0
1314 #define URB_DIR_MASK		URB_DIR_IN
1315 
1316 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1317 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1318 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1319 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1320 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1321 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1322 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1323 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1324 
1325 struct usb_iso_packet_descriptor {
1326 	unsigned int offset;
1327 	unsigned int length;		/* expected length */
1328 	unsigned int actual_length;
1329 	int status;
1330 };
1331 
1332 struct urb;
1333 
1334 struct usb_anchor {
1335 	struct list_head urb_list;
1336 	wait_queue_head_t wait;
1337 	spinlock_t lock;
1338 	atomic_t suspend_wakeups;
1339 	unsigned int poisoned:1;
1340 };
1341 
1342 static inline void init_usb_anchor(struct usb_anchor *anchor)
1343 {
1344 	memset(anchor, 0, sizeof(*anchor));
1345 	INIT_LIST_HEAD(&anchor->urb_list);
1346 	init_waitqueue_head(&anchor->wait);
1347 	spin_lock_init(&anchor->lock);
1348 }
1349 
1350 typedef void (*usb_complete_t)(struct urb *);
1351 
1352 /**
1353  * struct urb - USB Request Block
1354  * @urb_list: For use by current owner of the URB.
1355  * @anchor_list: membership in the list of an anchor
1356  * @anchor: to anchor URBs to a common mooring
1357  * @ep: Points to the endpoint's data structure.  Will eventually
1358  *	replace @pipe.
1359  * @pipe: Holds endpoint number, direction, type, and more.
1360  *	Create these values with the eight macros available;
1361  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1362  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1363  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1364  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1365  *	is a different endpoint (and pipe) from "out" endpoint two.
1366  *	The current configuration controls the existence, type, and
1367  *	maximum packet size of any given endpoint.
1368  * @stream_id: the endpoint's stream ID for bulk streams
1369  * @dev: Identifies the USB device to perform the request.
1370  * @status: This is read in non-iso completion functions to get the
1371  *	status of the particular request.  ISO requests only use it
1372  *	to tell whether the URB was unlinked; detailed status for
1373  *	each frame is in the fields of the iso_frame-desc.
1374  * @transfer_flags: A variety of flags may be used to affect how URB
1375  *	submission, unlinking, or operation are handled.  Different
1376  *	kinds of URB can use different flags.
1377  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1378  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1379  *	(however, do not leave garbage in transfer_buffer even then).
1380  *	This buffer must be suitable for DMA; allocate it with
1381  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1382  *	of this buffer will be modified.  This buffer is used for the data
1383  *	stage of control transfers.
1384  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1385  *	the device driver is saying that it provided this DMA address,
1386  *	which the host controller driver should use in preference to the
1387  *	transfer_buffer.
1388  * @sg: scatter gather buffer list, the buffer size of each element in
1389  * 	the list (except the last) must be divisible by the endpoint's
1390  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1391  * @num_mapped_sgs: (internal) number of mapped sg entries
1392  * @num_sgs: number of entries in the sg list
1393  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1394  *	be broken up into chunks according to the current maximum packet
1395  *	size for the endpoint, which is a function of the configuration
1396  *	and is encoded in the pipe.  When the length is zero, neither
1397  *	transfer_buffer nor transfer_dma is used.
1398  * @actual_length: This is read in non-iso completion functions, and
1399  *	it tells how many bytes (out of transfer_buffer_length) were
1400  *	transferred.  It will normally be the same as requested, unless
1401  *	either an error was reported or a short read was performed.
1402  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1403  *	short reads be reported as errors.
1404  * @setup_packet: Only used for control transfers, this points to eight bytes
1405  *	of setup data.  Control transfers always start by sending this data
1406  *	to the device.  Then transfer_buffer is read or written, if needed.
1407  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1408  *	this field; setup_packet must point to a valid buffer.
1409  * @start_frame: Returns the initial frame for isochronous transfers.
1410  * @number_of_packets: Lists the number of ISO transfer buffers.
1411  * @interval: Specifies the polling interval for interrupt or isochronous
1412  *	transfers.  The units are frames (milliseconds) for full and low
1413  *	speed devices, and microframes (1/8 millisecond) for highspeed
1414  *	and SuperSpeed devices.
1415  * @error_count: Returns the number of ISO transfers that reported errors.
1416  * @context: For use in completion functions.  This normally points to
1417  *	request-specific driver context.
1418  * @complete: Completion handler. This URB is passed as the parameter to the
1419  *	completion function.  The completion function may then do what
1420  *	it likes with the URB, including resubmitting or freeing it.
1421  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1422  *	collect the transfer status for each buffer.
1423  *
1424  * This structure identifies USB transfer requests.  URBs must be allocated by
1425  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1426  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1427  * are submitted using usb_submit_urb(), and pending requests may be canceled
1428  * using usb_unlink_urb() or usb_kill_urb().
1429  *
1430  * Data Transfer Buffers:
1431  *
1432  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1433  * taken from the general page pool.  That is provided by transfer_buffer
1434  * (control requests also use setup_packet), and host controller drivers
1435  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1436  * mapping operations can be expensive on some platforms (perhaps using a dma
1437  * bounce buffer or talking to an IOMMU),
1438  * although they're cheap on commodity x86 and ppc hardware.
1439  *
1440  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1441  * which tells the host controller driver that no such mapping is needed for
1442  * the transfer_buffer since
1443  * the device driver is DMA-aware.  For example, a device driver might
1444  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1445  * When this transfer flag is provided, host controller drivers will
1446  * attempt to use the dma address found in the transfer_dma
1447  * field rather than determining a dma address themselves.
1448  *
1449  * Note that transfer_buffer must still be set if the controller
1450  * does not support DMA (as indicated by bus.uses_dma) and when talking
1451  * to root hub. If you have to trasfer between highmem zone and the device
1452  * on such controller, create a bounce buffer or bail out with an error.
1453  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1454  * capable, assign NULL to it, so that usbmon knows not to use the value.
1455  * The setup_packet must always be set, so it cannot be located in highmem.
1456  *
1457  * Initialization:
1458  *
1459  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1460  * zero), and complete fields.  All URBs must also initialize
1461  * transfer_buffer and transfer_buffer_length.  They may provide the
1462  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1463  * to be treated as errors; that flag is invalid for write requests.
1464  *
1465  * Bulk URBs may
1466  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1467  * should always terminate with a short packet, even if it means adding an
1468  * extra zero length packet.
1469  *
1470  * Control URBs must provide a valid pointer in the setup_packet field.
1471  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1472  * beforehand.
1473  *
1474  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1475  * or, for highspeed devices, 125 microsecond units)
1476  * to poll for transfers.  After the URB has been submitted, the interval
1477  * field reflects how the transfer was actually scheduled.
1478  * The polling interval may be more frequent than requested.
1479  * For example, some controllers have a maximum interval of 32 milliseconds,
1480  * while others support intervals of up to 1024 milliseconds.
1481  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1482  * endpoints, as well as high speed interrupt endpoints, the encoding of
1483  * the transfer interval in the endpoint descriptor is logarithmic.
1484  * Device drivers must convert that value to linear units themselves.)
1485  *
1486  * If an isochronous endpoint queue isn't already running, the host
1487  * controller will schedule a new URB to start as soon as bandwidth
1488  * utilization allows.  If the queue is running then a new URB will be
1489  * scheduled to start in the first transfer slot following the end of the
1490  * preceding URB, if that slot has not already expired.  If the slot has
1491  * expired (which can happen when IRQ delivery is delayed for a long time),
1492  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1493  * is clear then the URB will be scheduled to start in the expired slot,
1494  * implying that some of its packets will not be transferred; if the flag
1495  * is set then the URB will be scheduled in the first unexpired slot,
1496  * breaking the queue's synchronization.  Upon URB completion, the
1497  * start_frame field will be set to the (micro)frame number in which the
1498  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1499  * and can go from as low as 256 to as high as 65536 frames.
1500  *
1501  * Isochronous URBs have a different data transfer model, in part because
1502  * the quality of service is only "best effort".  Callers provide specially
1503  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1504  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1505  * URBs are normally queued, submitted by drivers to arrange that
1506  * transfers are at least double buffered, and then explicitly resubmitted
1507  * in completion handlers, so
1508  * that data (such as audio or video) streams at as constant a rate as the
1509  * host controller scheduler can support.
1510  *
1511  * Completion Callbacks:
1512  *
1513  * The completion callback is made in_interrupt(), and one of the first
1514  * things that a completion handler should do is check the status field.
1515  * The status field is provided for all URBs.  It is used to report
1516  * unlinked URBs, and status for all non-ISO transfers.  It should not
1517  * be examined before the URB is returned to the completion handler.
1518  *
1519  * The context field is normally used to link URBs back to the relevant
1520  * driver or request state.
1521  *
1522  * When the completion callback is invoked for non-isochronous URBs, the
1523  * actual_length field tells how many bytes were transferred.  This field
1524  * is updated even when the URB terminated with an error or was unlinked.
1525  *
1526  * ISO transfer status is reported in the status and actual_length fields
1527  * of the iso_frame_desc array, and the number of errors is reported in
1528  * error_count.  Completion callbacks for ISO transfers will normally
1529  * (re)submit URBs to ensure a constant transfer rate.
1530  *
1531  * Note that even fields marked "public" should not be touched by the driver
1532  * when the urb is owned by the hcd, that is, since the call to
1533  * usb_submit_urb() till the entry into the completion routine.
1534  */
1535 struct urb {
1536 	/* private: usb core and host controller only fields in the urb */
1537 	struct kref kref;		/* reference count of the URB */
1538 	void *hcpriv;			/* private data for host controller */
1539 	atomic_t use_count;		/* concurrent submissions counter */
1540 	atomic_t reject;		/* submissions will fail */
1541 	int unlinked;			/* unlink error code */
1542 
1543 	/* public: documented fields in the urb that can be used by drivers */
1544 	struct list_head urb_list;	/* list head for use by the urb's
1545 					 * current owner */
1546 	struct list_head anchor_list;	/* the URB may be anchored */
1547 	struct usb_anchor *anchor;
1548 	struct usb_device *dev;		/* (in) pointer to associated device */
1549 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1550 	unsigned int pipe;		/* (in) pipe information */
1551 	unsigned int stream_id;		/* (in) stream ID */
1552 	int status;			/* (return) non-ISO status */
1553 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1554 	void *transfer_buffer;		/* (in) associated data buffer */
1555 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1556 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1557 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1558 	int num_sgs;			/* (in) number of entries in the sg list */
1559 	u32 transfer_buffer_length;	/* (in) data buffer length */
1560 	u32 actual_length;		/* (return) actual transfer length */
1561 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1562 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1563 	int start_frame;		/* (modify) start frame (ISO) */
1564 	int number_of_packets;		/* (in) number of ISO packets */
1565 	int interval;			/* (modify) transfer interval
1566 					 * (INT/ISO) */
1567 	int error_count;		/* (return) number of ISO errors */
1568 	void *context;			/* (in) context for completion */
1569 	usb_complete_t complete;	/* (in) completion routine */
1570 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1571 					/* (in) ISO ONLY */
1572 };
1573 
1574 /* ----------------------------------------------------------------------- */
1575 
1576 /**
1577  * usb_fill_control_urb - initializes a control urb
1578  * @urb: pointer to the urb to initialize.
1579  * @dev: pointer to the struct usb_device for this urb.
1580  * @pipe: the endpoint pipe
1581  * @setup_packet: pointer to the setup_packet buffer
1582  * @transfer_buffer: pointer to the transfer buffer
1583  * @buffer_length: length of the transfer buffer
1584  * @complete_fn: pointer to the usb_complete_t function
1585  * @context: what to set the urb context to.
1586  *
1587  * Initializes a control urb with the proper information needed to submit
1588  * it to a device.
1589  */
1590 static inline void usb_fill_control_urb(struct urb *urb,
1591 					struct usb_device *dev,
1592 					unsigned int pipe,
1593 					unsigned char *setup_packet,
1594 					void *transfer_buffer,
1595 					int buffer_length,
1596 					usb_complete_t complete_fn,
1597 					void *context)
1598 {
1599 	urb->dev = dev;
1600 	urb->pipe = pipe;
1601 	urb->setup_packet = setup_packet;
1602 	urb->transfer_buffer = transfer_buffer;
1603 	urb->transfer_buffer_length = buffer_length;
1604 	urb->complete = complete_fn;
1605 	urb->context = context;
1606 }
1607 
1608 /**
1609  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1610  * @urb: pointer to the urb to initialize.
1611  * @dev: pointer to the struct usb_device for this urb.
1612  * @pipe: the endpoint pipe
1613  * @transfer_buffer: pointer to the transfer buffer
1614  * @buffer_length: length of the transfer buffer
1615  * @complete_fn: pointer to the usb_complete_t function
1616  * @context: what to set the urb context to.
1617  *
1618  * Initializes a bulk urb with the proper information needed to submit it
1619  * to a device.
1620  */
1621 static inline void usb_fill_bulk_urb(struct urb *urb,
1622 				     struct usb_device *dev,
1623 				     unsigned int pipe,
1624 				     void *transfer_buffer,
1625 				     int buffer_length,
1626 				     usb_complete_t complete_fn,
1627 				     void *context)
1628 {
1629 	urb->dev = dev;
1630 	urb->pipe = pipe;
1631 	urb->transfer_buffer = transfer_buffer;
1632 	urb->transfer_buffer_length = buffer_length;
1633 	urb->complete = complete_fn;
1634 	urb->context = context;
1635 }
1636 
1637 /**
1638  * usb_fill_int_urb - macro to help initialize a interrupt urb
1639  * @urb: pointer to the urb to initialize.
1640  * @dev: pointer to the struct usb_device for this urb.
1641  * @pipe: the endpoint pipe
1642  * @transfer_buffer: pointer to the transfer buffer
1643  * @buffer_length: length of the transfer buffer
1644  * @complete_fn: pointer to the usb_complete_t function
1645  * @context: what to set the urb context to.
1646  * @interval: what to set the urb interval to, encoded like
1647  *	the endpoint descriptor's bInterval value.
1648  *
1649  * Initializes a interrupt urb with the proper information needed to submit
1650  * it to a device.
1651  *
1652  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1653  * encoding of the endpoint interval, and express polling intervals in
1654  * microframes (eight per millisecond) rather than in frames (one per
1655  * millisecond).
1656  *
1657  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1658  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1659  * through to the host controller, rather than being translated into microframe
1660  * units.
1661  */
1662 static inline void usb_fill_int_urb(struct urb *urb,
1663 				    struct usb_device *dev,
1664 				    unsigned int pipe,
1665 				    void *transfer_buffer,
1666 				    int buffer_length,
1667 				    usb_complete_t complete_fn,
1668 				    void *context,
1669 				    int interval)
1670 {
1671 	urb->dev = dev;
1672 	urb->pipe = pipe;
1673 	urb->transfer_buffer = transfer_buffer;
1674 	urb->transfer_buffer_length = buffer_length;
1675 	urb->complete = complete_fn;
1676 	urb->context = context;
1677 
1678 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1679 		/* make sure interval is within allowed range */
1680 		interval = clamp(interval, 1, 16);
1681 
1682 		urb->interval = 1 << (interval - 1);
1683 	} else {
1684 		urb->interval = interval;
1685 	}
1686 
1687 	urb->start_frame = -1;
1688 }
1689 
1690 extern void usb_init_urb(struct urb *urb);
1691 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1692 extern void usb_free_urb(struct urb *urb);
1693 #define usb_put_urb usb_free_urb
1694 extern struct urb *usb_get_urb(struct urb *urb);
1695 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1696 extern int usb_unlink_urb(struct urb *urb);
1697 extern void usb_kill_urb(struct urb *urb);
1698 extern void usb_poison_urb(struct urb *urb);
1699 extern void usb_unpoison_urb(struct urb *urb);
1700 extern void usb_block_urb(struct urb *urb);
1701 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1702 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1703 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1704 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1705 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1706 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1707 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1708 extern void usb_unanchor_urb(struct urb *urb);
1709 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1710 					 unsigned int timeout);
1711 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1712 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1713 extern int usb_anchor_empty(struct usb_anchor *anchor);
1714 
1715 #define usb_unblock_urb	usb_unpoison_urb
1716 
1717 /**
1718  * usb_urb_dir_in - check if an URB describes an IN transfer
1719  * @urb: URB to be checked
1720  *
1721  * Return: 1 if @urb describes an IN transfer (device-to-host),
1722  * otherwise 0.
1723  */
1724 static inline int usb_urb_dir_in(struct urb *urb)
1725 {
1726 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1727 }
1728 
1729 /**
1730  * usb_urb_dir_out - check if an URB describes an OUT transfer
1731  * @urb: URB to be checked
1732  *
1733  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1734  * otherwise 0.
1735  */
1736 static inline int usb_urb_dir_out(struct urb *urb)
1737 {
1738 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1739 }
1740 
1741 int usb_urb_ep_type_check(const struct urb *urb);
1742 
1743 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1744 	gfp_t mem_flags, dma_addr_t *dma);
1745 void usb_free_coherent(struct usb_device *dev, size_t size,
1746 	void *addr, dma_addr_t dma);
1747 
1748 #if 0
1749 struct urb *usb_buffer_map(struct urb *urb);
1750 void usb_buffer_dmasync(struct urb *urb);
1751 void usb_buffer_unmap(struct urb *urb);
1752 #endif
1753 
1754 struct scatterlist;
1755 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1756 		      struct scatterlist *sg, int nents);
1757 #if 0
1758 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1759 			   struct scatterlist *sg, int n_hw_ents);
1760 #endif
1761 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1762 			 struct scatterlist *sg, int n_hw_ents);
1763 
1764 /*-------------------------------------------------------------------*
1765  *                         SYNCHRONOUS CALL SUPPORT                  *
1766  *-------------------------------------------------------------------*/
1767 
1768 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1769 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1770 	void *data, __u16 size, int timeout);
1771 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1772 	void *data, int len, int *actual_length, int timeout);
1773 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1774 	void *data, int len, int *actual_length,
1775 	int timeout);
1776 
1777 /* wrappers around usb_control_msg() for the most common standard requests */
1778 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1779 	unsigned char descindex, void *buf, int size);
1780 extern int usb_get_status(struct usb_device *dev,
1781 	int recip, int type, int target, void *data);
1782 
1783 static inline int usb_get_std_status(struct usb_device *dev,
1784 	int recip, int target, void *data)
1785 {
1786 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1787 		data);
1788 }
1789 
1790 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1791 {
1792 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1793 		0, data);
1794 }
1795 
1796 extern int usb_string(struct usb_device *dev, int index,
1797 	char *buf, size_t size);
1798 
1799 /* wrappers that also update important state inside usbcore */
1800 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1801 extern int usb_reset_configuration(struct usb_device *dev);
1802 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1803 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1804 
1805 /* this request isn't really synchronous, but it belongs with the others */
1806 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1807 
1808 /* choose and set configuration for device */
1809 extern int usb_choose_configuration(struct usb_device *udev);
1810 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1811 
1812 /*
1813  * timeouts, in milliseconds, used for sending/receiving control messages
1814  * they typically complete within a few frames (msec) after they're issued
1815  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1816  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1817  */
1818 #define USB_CTRL_GET_TIMEOUT	5000
1819 #define USB_CTRL_SET_TIMEOUT	5000
1820 
1821 
1822 /**
1823  * struct usb_sg_request - support for scatter/gather I/O
1824  * @status: zero indicates success, else negative errno
1825  * @bytes: counts bytes transferred.
1826  *
1827  * These requests are initialized using usb_sg_init(), and then are used
1828  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1829  * members of the request object aren't for driver access.
1830  *
1831  * The status and bytecount values are valid only after usb_sg_wait()
1832  * returns.  If the status is zero, then the bytecount matches the total
1833  * from the request.
1834  *
1835  * After an error completion, drivers may need to clear a halt condition
1836  * on the endpoint.
1837  */
1838 struct usb_sg_request {
1839 	int			status;
1840 	size_t			bytes;
1841 
1842 	/* private:
1843 	 * members below are private to usbcore,
1844 	 * and are not provided for driver access!
1845 	 */
1846 	spinlock_t		lock;
1847 
1848 	struct usb_device	*dev;
1849 	int			pipe;
1850 
1851 	int			entries;
1852 	struct urb		**urbs;
1853 
1854 	int			count;
1855 	struct completion	complete;
1856 };
1857 
1858 int usb_sg_init(
1859 	struct usb_sg_request	*io,
1860 	struct usb_device	*dev,
1861 	unsigned		pipe,
1862 	unsigned		period,
1863 	struct scatterlist	*sg,
1864 	int			nents,
1865 	size_t			length,
1866 	gfp_t			mem_flags
1867 );
1868 void usb_sg_cancel(struct usb_sg_request *io);
1869 void usb_sg_wait(struct usb_sg_request *io);
1870 
1871 
1872 /* ----------------------------------------------------------------------- */
1873 
1874 /*
1875  * For various legacy reasons, Linux has a small cookie that's paired with
1876  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1877  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1878  * an unsigned int encoded as:
1879  *
1880  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1881  *					 1 = Device-to-Host [In] ...
1882  *					like endpoint bEndpointAddress)
1883  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1884  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1885  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1886  *					 10 = control, 11 = bulk)
1887  *
1888  * Given the device address and endpoint descriptor, pipes are redundant.
1889  */
1890 
1891 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1892 /* (yet ... they're the values used by usbfs) */
1893 #define PIPE_ISOCHRONOUS		0
1894 #define PIPE_INTERRUPT			1
1895 #define PIPE_CONTROL			2
1896 #define PIPE_BULK			3
1897 
1898 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1899 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1900 
1901 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1902 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1903 
1904 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1905 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1906 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1907 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1908 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1909 
1910 static inline unsigned int __create_pipe(struct usb_device *dev,
1911 		unsigned int endpoint)
1912 {
1913 	return (dev->devnum << 8) | (endpoint << 15);
1914 }
1915 
1916 /* Create various pipes... */
1917 #define usb_sndctrlpipe(dev, endpoint)	\
1918 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1919 #define usb_rcvctrlpipe(dev, endpoint)	\
1920 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1921 #define usb_sndisocpipe(dev, endpoint)	\
1922 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1923 #define usb_rcvisocpipe(dev, endpoint)	\
1924 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1925 #define usb_sndbulkpipe(dev, endpoint)	\
1926 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1927 #define usb_rcvbulkpipe(dev, endpoint)	\
1928 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1929 #define usb_sndintpipe(dev, endpoint)	\
1930 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1931 #define usb_rcvintpipe(dev, endpoint)	\
1932 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1933 
1934 static inline struct usb_host_endpoint *
1935 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1936 {
1937 	struct usb_host_endpoint **eps;
1938 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1939 	return eps[usb_pipeendpoint(pipe)];
1940 }
1941 
1942 /*-------------------------------------------------------------------------*/
1943 
1944 static inline __u16
1945 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1946 {
1947 	struct usb_host_endpoint	*ep;
1948 	unsigned			epnum = usb_pipeendpoint(pipe);
1949 
1950 	if (is_out) {
1951 		WARN_ON(usb_pipein(pipe));
1952 		ep = udev->ep_out[epnum];
1953 	} else {
1954 		WARN_ON(usb_pipeout(pipe));
1955 		ep = udev->ep_in[epnum];
1956 	}
1957 	if (!ep)
1958 		return 0;
1959 
1960 	/* NOTE:  only 0x07ff bits are for packet size... */
1961 	return usb_endpoint_maxp(&ep->desc);
1962 }
1963 
1964 /* ----------------------------------------------------------------------- */
1965 
1966 /* translate USB error codes to codes user space understands */
1967 static inline int usb_translate_errors(int error_code)
1968 {
1969 	switch (error_code) {
1970 	case 0:
1971 	case -ENOMEM:
1972 	case -ENODEV:
1973 	case -EOPNOTSUPP:
1974 		return error_code;
1975 	default:
1976 		return -EIO;
1977 	}
1978 }
1979 
1980 /* Events from the usb core */
1981 #define USB_DEVICE_ADD		0x0001
1982 #define USB_DEVICE_REMOVE	0x0002
1983 #define USB_BUS_ADD		0x0003
1984 #define USB_BUS_REMOVE		0x0004
1985 extern void usb_register_notify(struct notifier_block *nb);
1986 extern void usb_unregister_notify(struct notifier_block *nb);
1987 
1988 /* debugfs stuff */
1989 extern struct dentry *usb_debug_root;
1990 
1991 /* LED triggers */
1992 enum usb_led_event {
1993 	USB_LED_EVENT_HOST = 0,
1994 	USB_LED_EVENT_GADGET = 1,
1995 };
1996 
1997 #ifdef CONFIG_USB_LED_TRIG
1998 extern void usb_led_activity(enum usb_led_event ev);
1999 #else
2000 static inline void usb_led_activity(enum usb_led_event ev) {}
2001 #endif
2002 
2003 #endif  /* __KERNEL__ */
2004 
2005 #endif
2006