xref: /linux-6.15/include/linux/usb.h (revision dcd454af)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *	with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  *
61  * USB requests are always queued to a given endpoint, identified by a
62  * descriptor within an active interface in a given USB configuration.
63  */
64 struct usb_host_endpoint {
65 	struct usb_endpoint_descriptor		desc;
66 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
67 	struct list_head		urb_list;
68 	void				*hcpriv;
69 	struct ep_device		*ep_dev;	/* For sysfs info */
70 
71 	unsigned char *extra;   /* Extra descriptors */
72 	int extralen;
73 	int enabled;
74 };
75 
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 	struct usb_interface_descriptor	desc;
79 
80 	int extralen;
81 	unsigned char *extra;   /* Extra descriptors */
82 
83 	/* array of desc.bNumEndpoint endpoints associated with this
84 	 * interface setting.  these will be in no particular order.
85 	 */
86 	struct usb_host_endpoint *endpoint;
87 
88 	char *string;		/* iInterface string, if present */
89 };
90 
91 enum usb_interface_condition {
92 	USB_INTERFACE_UNBOUND = 0,
93 	USB_INTERFACE_BINDING,
94 	USB_INTERFACE_BOUND,
95 	USB_INTERFACE_UNBINDING,
96 };
97 
98 /**
99  * struct usb_interface - what usb device drivers talk to
100  * @altsetting: array of interface structures, one for each alternate
101  *	setting that may be selected.  Each one includes a set of
102  *	endpoint configurations.  They will be in no particular order.
103  * @cur_altsetting: the current altsetting.
104  * @num_altsetting: number of altsettings defined.
105  * @intf_assoc: interface association descriptor
106  * @minor: the minor number assigned to this interface, if this
107  *	interface is bound to a driver that uses the USB major number.
108  *	If this interface does not use the USB major, this field should
109  *	be unused.  The driver should set this value in the probe()
110  *	function of the driver, after it has been assigned a minor
111  *	number from the USB core by calling usb_register_dev().
112  * @condition: binding state of the interface: not bound, binding
113  *	(in probe()), bound to a driver, or unbinding (in disconnect())
114  * @sysfs_files_created: sysfs attributes exist
115  * @ep_devs_created: endpoint child pseudo-devices exist
116  * @unregistering: flag set when the interface is being unregistered
117  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118  *	capability during autosuspend.
119  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120  *	has been deferred.
121  * @needs_binding: flag set when the driver should be re-probed or unbound
122  *	following a reset or suspend operation it doesn't support.
123  * @dev: driver model's view of this device
124  * @usb_dev: if an interface is bound to the USB major, this will point
125  *	to the sysfs representation for that device.
126  * @pm_usage_cnt: PM usage counter for this interface
127  * @reset_ws: Used for scheduling resets from atomic context.
128  * @reset_running: set to 1 if the interface is currently running a
129  *      queued reset so that usb_cancel_queued_reset() doesn't try to
130  *      remove from the workqueue when running inside the worker
131  *      thread. See __usb_queue_reset_device().
132  * @resetting_device: USB core reset the device, so use alt setting 0 as
133  *	current; needs bandwidth alloc after reset.
134  *
135  * USB device drivers attach to interfaces on a physical device.  Each
136  * interface encapsulates a single high level function, such as feeding
137  * an audio stream to a speaker or reporting a change in a volume control.
138  * Many USB devices only have one interface.  The protocol used to talk to
139  * an interface's endpoints can be defined in a usb "class" specification,
140  * or by a product's vendor.  The (default) control endpoint is part of
141  * every interface, but is never listed among the interface's descriptors.
142  *
143  * The driver that is bound to the interface can use standard driver model
144  * calls such as dev_get_drvdata() on the dev member of this structure.
145  *
146  * Each interface may have alternate settings.  The initial configuration
147  * of a device sets altsetting 0, but the device driver can change
148  * that setting using usb_set_interface().  Alternate settings are often
149  * used to control the use of periodic endpoints, such as by having
150  * different endpoints use different amounts of reserved USB bandwidth.
151  * All standards-conformant USB devices that use isochronous endpoints
152  * will use them in non-default settings.
153  *
154  * The USB specification says that alternate setting numbers must run from
155  * 0 to one less than the total number of alternate settings.  But some
156  * devices manage to mess this up, and the structures aren't necessarily
157  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
158  * look up an alternate setting in the altsetting array based on its number.
159  */
160 struct usb_interface {
161 	/* array of alternate settings for this interface,
162 	 * stored in no particular order */
163 	struct usb_host_interface *altsetting;
164 
165 	struct usb_host_interface *cur_altsetting;	/* the currently
166 					 * active alternate setting */
167 	unsigned num_altsetting;	/* number of alternate settings */
168 
169 	/* If there is an interface association descriptor then it will list
170 	 * the associated interfaces */
171 	struct usb_interface_assoc_descriptor *intf_assoc;
172 
173 	int minor;			/* minor number this interface is
174 					 * bound to */
175 	enum usb_interface_condition condition;		/* state of binding */
176 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
177 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
178 	unsigned unregistering:1;	/* unregistration is in progress */
179 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
180 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
181 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
182 	unsigned reset_running:1;
183 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
184 
185 	struct device dev;		/* interface specific device info */
186 	struct device *usb_dev;
187 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
188 	struct work_struct reset_ws;	/* for resets in atomic context */
189 };
190 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
191 
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 	return dev_get_drvdata(&intf->dev);
195 }
196 
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 	dev_set_drvdata(&intf->dev, data);
200 }
201 
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204 
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES	32
207 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
208 
209 /**
210  * struct usb_interface_cache - long-term representation of a device interface
211  * @num_altsetting: number of altsettings defined.
212  * @ref: reference counter.
213  * @altsetting: variable-length array of interface structures, one for
214  *	each alternate setting that may be selected.  Each one includes a
215  *	set of endpoint configurations.  They will be in no particular order.
216  *
217  * These structures persist for the lifetime of a usb_device, unlike
218  * struct usb_interface (which persists only as long as its configuration
219  * is installed).  The altsetting arrays can be accessed through these
220  * structures at any time, permitting comparison of configurations and
221  * providing support for the /proc/bus/usb/devices pseudo-file.
222  */
223 struct usb_interface_cache {
224 	unsigned num_altsetting;	/* number of alternate settings */
225 	struct kref ref;		/* reference counter */
226 
227 	/* variable-length array of alternate settings for this interface,
228 	 * stored in no particular order */
229 	struct usb_host_interface altsetting[0];
230 };
231 #define	ref_to_usb_interface_cache(r) \
232 		container_of(r, struct usb_interface_cache, ref)
233 #define	altsetting_to_usb_interface_cache(a) \
234 		container_of(a, struct usb_interface_cache, altsetting[0])
235 
236 /**
237  * struct usb_host_config - representation of a device's configuration
238  * @desc: the device's configuration descriptor.
239  * @string: pointer to the cached version of the iConfiguration string, if
240  *	present for this configuration.
241  * @intf_assoc: list of any interface association descriptors in this config
242  * @interface: array of pointers to usb_interface structures, one for each
243  *	interface in the configuration.  The number of interfaces is stored
244  *	in desc.bNumInterfaces.  These pointers are valid only while the
245  *	the configuration is active.
246  * @intf_cache: array of pointers to usb_interface_cache structures, one
247  *	for each interface in the configuration.  These structures exist
248  *	for the entire life of the device.
249  * @extra: pointer to buffer containing all extra descriptors associated
250  *	with this configuration (those preceding the first interface
251  *	descriptor).
252  * @extralen: length of the extra descriptors buffer.
253  *
254  * USB devices may have multiple configurations, but only one can be active
255  * at any time.  Each encapsulates a different operational environment;
256  * for example, a dual-speed device would have separate configurations for
257  * full-speed and high-speed operation.  The number of configurations
258  * available is stored in the device descriptor as bNumConfigurations.
259  *
260  * A configuration can contain multiple interfaces.  Each corresponds to
261  * a different function of the USB device, and all are available whenever
262  * the configuration is active.  The USB standard says that interfaces
263  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
264  * of devices get this wrong.  In addition, the interface array is not
265  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
266  * look up an interface entry based on its number.
267  *
268  * Device drivers should not attempt to activate configurations.  The choice
269  * of which configuration to install is a policy decision based on such
270  * considerations as available power, functionality provided, and the user's
271  * desires (expressed through userspace tools).  However, drivers can call
272  * usb_reset_configuration() to reinitialize the current configuration and
273  * all its interfaces.
274  */
275 struct usb_host_config {
276 	struct usb_config_descriptor	desc;
277 
278 	char *string;		/* iConfiguration string, if present */
279 
280 	/* List of any Interface Association Descriptors in this
281 	 * configuration. */
282 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283 
284 	/* the interfaces associated with this configuration,
285 	 * stored in no particular order */
286 	struct usb_interface *interface[USB_MAXINTERFACES];
287 
288 	/* Interface information available even when this is not the
289 	 * active configuration */
290 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291 
292 	unsigned char *extra;   /* Extra descriptors */
293 	int extralen;
294 };
295 
296 /* USB2.0 and USB3.0 device BOS descriptor set */
297 struct usb_host_bos {
298 	struct usb_bos_descriptor	*desc;
299 
300 	/* wireless cap descriptor is handled by wusb */
301 	struct usb_ext_cap_descriptor	*ext_cap;
302 	struct usb_ss_cap_descriptor	*ss_cap;
303 	struct usb_ss_container_id_descriptor	*ss_id;
304 };
305 
306 int __usb_get_extra_descriptor(char *buffer, unsigned size,
307 	unsigned char type, void **ptr);
308 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
309 				__usb_get_extra_descriptor((ifpoint)->extra, \
310 				(ifpoint)->extralen, \
311 				type, (void **)ptr)
312 
313 /* ----------------------------------------------------------------------- */
314 
315 /* USB device number allocation bitmap */
316 struct usb_devmap {
317 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
318 };
319 
320 /*
321  * Allocated per bus (tree of devices) we have:
322  */
323 struct usb_bus {
324 	struct device *controller;	/* host/master side hardware */
325 	int busnum;			/* Bus number (in order of reg) */
326 	const char *bus_name;		/* stable id (PCI slot_name etc) */
327 	u8 uses_dma;			/* Does the host controller use DMA? */
328 	u8 uses_pio_for_control;	/*
329 					 * Does the host controller use PIO
330 					 * for control transfers?
331 					 */
332 	u8 otg_port;			/* 0, or number of OTG/HNP port */
333 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
334 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
335 	unsigned no_stop_on_short:1;    /*
336 					 * Quirk: some controllers don't stop
337 					 * the ep queue on a short transfer
338 					 * with the URB_SHORT_NOT_OK flag set.
339 					 */
340 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
341 
342 	int devnum_next;		/* Next open device number in
343 					 * round-robin allocation */
344 
345 	struct usb_devmap devmap;	/* device address allocation map */
346 	struct usb_device *root_hub;	/* Root hub */
347 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
348 	struct list_head bus_list;	/* list of busses */
349 
350 	int bandwidth_allocated;	/* on this bus: how much of the time
351 					 * reserved for periodic (intr/iso)
352 					 * requests is used, on average?
353 					 * Units: microseconds/frame.
354 					 * Limits: Full/low speed reserve 90%,
355 					 * while high speed reserves 80%.
356 					 */
357 	int bandwidth_int_reqs;		/* number of Interrupt requests */
358 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
359 
360 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
361 
362 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
363 	struct mon_bus *mon_bus;	/* non-null when associated */
364 	int monitored;			/* non-zero when monitored */
365 #endif
366 };
367 
368 /* ----------------------------------------------------------------------- */
369 
370 struct usb_tt;
371 
372 enum usb_device_removable {
373 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
374 	USB_DEVICE_REMOVABLE,
375 	USB_DEVICE_FIXED,
376 };
377 
378 enum usb_port_connect_type {
379 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
380 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
381 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
382 	USB_PORT_NOT_USED,
383 };
384 
385 /*
386  * USB 2.0 Link Power Management (LPM) parameters.
387  */
388 struct usb2_lpm_parameters {
389 	/* Best effort service latency indicate how long the host will drive
390 	 * resume on an exit from L1.
391 	 */
392 	unsigned int besl;
393 
394 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
395 	 * When the timer counts to zero, the parent hub will initiate a LPM
396 	 * transition to L1.
397 	 */
398 	int timeout;
399 };
400 
401 /*
402  * USB 3.0 Link Power Management (LPM) parameters.
403  *
404  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
405  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
406  * All three are stored in nanoseconds.
407  */
408 struct usb3_lpm_parameters {
409 	/*
410 	 * Maximum exit latency (MEL) for the host to send a packet to the
411 	 * device (either a Ping for isoc endpoints, or a data packet for
412 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
413 	 * in the path to transition the links to U0.
414 	 */
415 	unsigned int mel;
416 	/*
417 	 * Maximum exit latency for a device-initiated LPM transition to bring
418 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
419 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
420 	 */
421 	unsigned int pel;
422 
423 	/*
424 	 * The System Exit Latency (SEL) includes PEL, and three other
425 	 * latencies.  After a device initiates a U0 transition, it will take
426 	 * some time from when the device sends the ERDY to when it will finally
427 	 * receive the data packet.  Basically, SEL should be the worse-case
428 	 * latency from when a device starts initiating a U0 transition to when
429 	 * it will get data.
430 	 */
431 	unsigned int sel;
432 	/*
433 	 * The idle timeout value that is currently programmed into the parent
434 	 * hub for this device.  When the timer counts to zero, the parent hub
435 	 * will initiate an LPM transition to either U1 or U2.
436 	 */
437 	int timeout;
438 };
439 
440 /**
441  * struct usb_device - kernel's representation of a USB device
442  * @devnum: device number; address on a USB bus
443  * @devpath: device ID string for use in messages (e.g., /port/...)
444  * @route: tree topology hex string for use with xHCI
445  * @state: device state: configured, not attached, etc.
446  * @speed: device speed: high/full/low (or error)
447  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
448  * @ttport: device port on that tt hub
449  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
450  * @parent: our hub, unless we're the root
451  * @bus: bus we're part of
452  * @ep0: endpoint 0 data (default control pipe)
453  * @dev: generic device interface
454  * @descriptor: USB device descriptor
455  * @bos: USB device BOS descriptor set
456  * @config: all of the device's configs
457  * @actconfig: the active configuration
458  * @ep_in: array of IN endpoints
459  * @ep_out: array of OUT endpoints
460  * @rawdescriptors: raw descriptors for each config
461  * @bus_mA: Current available from the bus
462  * @portnum: parent port number (origin 1)
463  * @level: number of USB hub ancestors
464  * @can_submit: URBs may be submitted
465  * @persist_enabled:  USB_PERSIST enabled for this device
466  * @have_langid: whether string_langid is valid
467  * @authorized: policy has said we can use it;
468  *	(user space) policy determines if we authorize this device to be
469  *	used or not. By default, wired USB devices are authorized.
470  *	WUSB devices are not, until we authorize them from user space.
471  *	FIXME -- complete doc
472  * @authenticated: Crypto authentication passed
473  * @wusb: device is Wireless USB
474  * @lpm_capable: device supports LPM
475  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
476  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
477  * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
478  * @usb3_lpm_enabled: USB3 hardware LPM enabled
479  * @string_langid: language ID for strings
480  * @product: iProduct string, if present (static)
481  * @manufacturer: iManufacturer string, if present (static)
482  * @serial: iSerialNumber string, if present (static)
483  * @filelist: usbfs files that are open to this device
484  * @maxchild: number of ports if hub
485  * @quirks: quirks of the whole device
486  * @urbnum: number of URBs submitted for the whole device
487  * @active_duration: total time device is not suspended
488  * @connect_time: time device was first connected
489  * @do_remote_wakeup:  remote wakeup should be enabled
490  * @reset_resume: needs reset instead of resume
491  * @port_is_suspended: the upstream port is suspended (L2 or U3)
492  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
493  *	specific data for the device.
494  * @slot_id: Slot ID assigned by xHCI
495  * @removable: Device can be physically removed from this port
496  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
497  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
498  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
499  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
500  *	to keep track of the number of functions that require USB 3.0 Link Power
501  *	Management to be disabled for this usb_device.  This count should only
502  *	be manipulated by those functions, with the bandwidth_mutex is held.
503  *
504  * Notes:
505  * Usbcore drivers should not set usbdev->state directly.  Instead use
506  * usb_set_device_state().
507  */
508 struct usb_device {
509 	int		devnum;
510 	char		devpath[16];
511 	u32		route;
512 	enum usb_device_state	state;
513 	enum usb_device_speed	speed;
514 
515 	struct usb_tt	*tt;
516 	int		ttport;
517 
518 	unsigned int toggle[2];
519 
520 	struct usb_device *parent;
521 	struct usb_bus *bus;
522 	struct usb_host_endpoint ep0;
523 
524 	struct device dev;
525 
526 	struct usb_device_descriptor descriptor;
527 	struct usb_host_bos *bos;
528 	struct usb_host_config *config;
529 
530 	struct usb_host_config *actconfig;
531 	struct usb_host_endpoint *ep_in[16];
532 	struct usb_host_endpoint *ep_out[16];
533 
534 	char **rawdescriptors;
535 
536 	unsigned short bus_mA;
537 	u8 portnum;
538 	u8 level;
539 
540 	unsigned can_submit:1;
541 	unsigned persist_enabled:1;
542 	unsigned have_langid:1;
543 	unsigned authorized:1;
544 	unsigned authenticated:1;
545 	unsigned wusb:1;
546 	unsigned lpm_capable:1;
547 	unsigned usb2_hw_lpm_capable:1;
548 	unsigned usb2_hw_lpm_besl_capable:1;
549 	unsigned usb2_hw_lpm_enabled:1;
550 	unsigned usb3_lpm_enabled:1;
551 	int string_langid;
552 
553 	/* static strings from the device */
554 	char *product;
555 	char *manufacturer;
556 	char *serial;
557 
558 	struct list_head filelist;
559 
560 	int maxchild;
561 
562 	u32 quirks;
563 	atomic_t urbnum;
564 
565 	unsigned long active_duration;
566 
567 #ifdef CONFIG_PM
568 	unsigned long connect_time;
569 
570 	unsigned do_remote_wakeup:1;
571 	unsigned reset_resume:1;
572 	unsigned port_is_suspended:1;
573 #endif
574 	struct wusb_dev *wusb_dev;
575 	int slot_id;
576 	enum usb_device_removable removable;
577 	struct usb2_lpm_parameters l1_params;
578 	struct usb3_lpm_parameters u1_params;
579 	struct usb3_lpm_parameters u2_params;
580 	unsigned lpm_disable_count;
581 };
582 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
583 
584 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
585 {
586 	return to_usb_device(intf->dev.parent);
587 }
588 
589 extern struct usb_device *usb_get_dev(struct usb_device *dev);
590 extern void usb_put_dev(struct usb_device *dev);
591 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
592 	int port1);
593 
594 /**
595  * usb_hub_for_each_child - iterate over all child devices on the hub
596  * @hdev:  USB device belonging to the usb hub
597  * @port1: portnum associated with child device
598  * @child: child device pointer
599  */
600 #define usb_hub_for_each_child(hdev, port1, child) \
601 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
602 			port1 <= hdev->maxchild; \
603 			child = usb_hub_find_child(hdev, ++port1)) \
604 		if (!child) continue; else
605 
606 /* USB device locking */
607 #define usb_lock_device(udev)		device_lock(&(udev)->dev)
608 #define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
609 #define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
610 extern int usb_lock_device_for_reset(struct usb_device *udev,
611 				     const struct usb_interface *iface);
612 
613 /* USB port reset for device reinitialization */
614 extern int usb_reset_device(struct usb_device *dev);
615 extern void usb_queue_reset_device(struct usb_interface *dev);
616 
617 #ifdef CONFIG_ACPI
618 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
619 	bool enable);
620 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
621 #else
622 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
623 	bool enable) { return 0; }
624 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
625 	{ return true; }
626 #endif
627 
628 /* USB autosuspend and autoresume */
629 #ifdef CONFIG_PM_RUNTIME
630 extern void usb_enable_autosuspend(struct usb_device *udev);
631 extern void usb_disable_autosuspend(struct usb_device *udev);
632 
633 extern int usb_autopm_get_interface(struct usb_interface *intf);
634 extern void usb_autopm_put_interface(struct usb_interface *intf);
635 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
636 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
637 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
638 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
639 
640 static inline void usb_mark_last_busy(struct usb_device *udev)
641 {
642 	pm_runtime_mark_last_busy(&udev->dev);
643 }
644 
645 #else
646 
647 static inline int usb_enable_autosuspend(struct usb_device *udev)
648 { return 0; }
649 static inline int usb_disable_autosuspend(struct usb_device *udev)
650 { return 0; }
651 
652 static inline int usb_autopm_get_interface(struct usb_interface *intf)
653 { return 0; }
654 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
655 { return 0; }
656 
657 static inline void usb_autopm_put_interface(struct usb_interface *intf)
658 { }
659 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
660 { }
661 static inline void usb_autopm_get_interface_no_resume(
662 		struct usb_interface *intf)
663 { }
664 static inline void usb_autopm_put_interface_no_suspend(
665 		struct usb_interface *intf)
666 { }
667 static inline void usb_mark_last_busy(struct usb_device *udev)
668 { }
669 #endif
670 
671 extern int usb_disable_lpm(struct usb_device *udev);
672 extern void usb_enable_lpm(struct usb_device *udev);
673 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
674 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
675 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
676 
677 extern int usb_disable_ltm(struct usb_device *udev);
678 extern void usb_enable_ltm(struct usb_device *udev);
679 
680 static inline bool usb_device_supports_ltm(struct usb_device *udev)
681 {
682 	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
683 		return false;
684 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
685 }
686 
687 
688 /*-------------------------------------------------------------------------*/
689 
690 /* for drivers using iso endpoints */
691 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
692 
693 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
694 extern int usb_alloc_streams(struct usb_interface *interface,
695 		struct usb_host_endpoint **eps, unsigned int num_eps,
696 		unsigned int num_streams, gfp_t mem_flags);
697 
698 /* Reverts a group of bulk endpoints back to not using stream IDs. */
699 extern void usb_free_streams(struct usb_interface *interface,
700 		struct usb_host_endpoint **eps, unsigned int num_eps,
701 		gfp_t mem_flags);
702 
703 /* used these for multi-interface device registration */
704 extern int usb_driver_claim_interface(struct usb_driver *driver,
705 			struct usb_interface *iface, void *priv);
706 
707 /**
708  * usb_interface_claimed - returns true iff an interface is claimed
709  * @iface: the interface being checked
710  *
711  * Returns true (nonzero) iff the interface is claimed, else false (zero).
712  * Callers must own the driver model's usb bus readlock.  So driver
713  * probe() entries don't need extra locking, but other call contexts
714  * may need to explicitly claim that lock.
715  *
716  */
717 static inline int usb_interface_claimed(struct usb_interface *iface)
718 {
719 	return (iface->dev.driver != NULL);
720 }
721 
722 extern void usb_driver_release_interface(struct usb_driver *driver,
723 			struct usb_interface *iface);
724 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
725 					 const struct usb_device_id *id);
726 extern int usb_match_one_id(struct usb_interface *interface,
727 			    const struct usb_device_id *id);
728 
729 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
730 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
731 		int minor);
732 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
733 		unsigned ifnum);
734 extern struct usb_host_interface *usb_altnum_to_altsetting(
735 		const struct usb_interface *intf, unsigned int altnum);
736 extern struct usb_host_interface *usb_find_alt_setting(
737 		struct usb_host_config *config,
738 		unsigned int iface_num,
739 		unsigned int alt_num);
740 
741 
742 /**
743  * usb_make_path - returns stable device path in the usb tree
744  * @dev: the device whose path is being constructed
745  * @buf: where to put the string
746  * @size: how big is "buf"?
747  *
748  * Returns length of the string (> 0) or negative if size was too small.
749  *
750  * This identifier is intended to be "stable", reflecting physical paths in
751  * hardware such as physical bus addresses for host controllers or ports on
752  * USB hubs.  That makes it stay the same until systems are physically
753  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
754  * controllers.  Adding and removing devices, including virtual root hubs
755  * in host controller driver modules, does not change these path identifiers;
756  * neither does rebooting or re-enumerating.  These are more useful identifiers
757  * than changeable ("unstable") ones like bus numbers or device addresses.
758  *
759  * With a partial exception for devices connected to USB 2.0 root hubs, these
760  * identifiers are also predictable.  So long as the device tree isn't changed,
761  * plugging any USB device into a given hub port always gives it the same path.
762  * Because of the use of "companion" controllers, devices connected to ports on
763  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
764  * high speed, and a different one if they are full or low speed.
765  */
766 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
767 {
768 	int actual;
769 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
770 			  dev->devpath);
771 	return (actual >= (int)size) ? -1 : actual;
772 }
773 
774 /*-------------------------------------------------------------------------*/
775 
776 #define USB_DEVICE_ID_MATCH_DEVICE \
777 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
778 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
779 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
780 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
781 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
782 #define USB_DEVICE_ID_MATCH_DEV_INFO \
783 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
784 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
785 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
786 #define USB_DEVICE_ID_MATCH_INT_INFO \
787 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
788 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
789 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
790 
791 /**
792  * USB_DEVICE - macro used to describe a specific usb device
793  * @vend: the 16 bit USB Vendor ID
794  * @prod: the 16 bit USB Product ID
795  *
796  * This macro is used to create a struct usb_device_id that matches a
797  * specific device.
798  */
799 #define USB_DEVICE(vend, prod) \
800 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
801 	.idVendor = (vend), \
802 	.idProduct = (prod)
803 /**
804  * USB_DEVICE_VER - describe a specific usb device with a version range
805  * @vend: the 16 bit USB Vendor ID
806  * @prod: the 16 bit USB Product ID
807  * @lo: the bcdDevice_lo value
808  * @hi: the bcdDevice_hi value
809  *
810  * This macro is used to create a struct usb_device_id that matches a
811  * specific device, with a version range.
812  */
813 #define USB_DEVICE_VER(vend, prod, lo, hi) \
814 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
815 	.idVendor = (vend), \
816 	.idProduct = (prod), \
817 	.bcdDevice_lo = (lo), \
818 	.bcdDevice_hi = (hi)
819 
820 /**
821  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
822  * @vend: the 16 bit USB Vendor ID
823  * @prod: the 16 bit USB Product ID
824  * @cl: bInterfaceClass value
825  *
826  * This macro is used to create a struct usb_device_id that matches a
827  * specific interface class of devices.
828  */
829 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
830 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
831 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
832 	.idVendor = (vend), \
833 	.idProduct = (prod), \
834 	.bInterfaceClass = (cl)
835 
836 /**
837  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
838  * @vend: the 16 bit USB Vendor ID
839  * @prod: the 16 bit USB Product ID
840  * @pr: bInterfaceProtocol value
841  *
842  * This macro is used to create a struct usb_device_id that matches a
843  * specific interface protocol of devices.
844  */
845 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
846 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
847 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
848 	.idVendor = (vend), \
849 	.idProduct = (prod), \
850 	.bInterfaceProtocol = (pr)
851 
852 /**
853  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
854  * @vend: the 16 bit USB Vendor ID
855  * @prod: the 16 bit USB Product ID
856  * @num: bInterfaceNumber value
857  *
858  * This macro is used to create a struct usb_device_id that matches a
859  * specific interface number of devices.
860  */
861 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
862 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
863 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
864 	.idVendor = (vend), \
865 	.idProduct = (prod), \
866 	.bInterfaceNumber = (num)
867 
868 /**
869  * USB_DEVICE_INFO - macro used to describe a class of usb devices
870  * @cl: bDeviceClass value
871  * @sc: bDeviceSubClass value
872  * @pr: bDeviceProtocol value
873  *
874  * This macro is used to create a struct usb_device_id that matches a
875  * specific class of devices.
876  */
877 #define USB_DEVICE_INFO(cl, sc, pr) \
878 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
879 	.bDeviceClass = (cl), \
880 	.bDeviceSubClass = (sc), \
881 	.bDeviceProtocol = (pr)
882 
883 /**
884  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
885  * @cl: bInterfaceClass value
886  * @sc: bInterfaceSubClass value
887  * @pr: bInterfaceProtocol value
888  *
889  * This macro is used to create a struct usb_device_id that matches a
890  * specific class of interfaces.
891  */
892 #define USB_INTERFACE_INFO(cl, sc, pr) \
893 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
894 	.bInterfaceClass = (cl), \
895 	.bInterfaceSubClass = (sc), \
896 	.bInterfaceProtocol = (pr)
897 
898 /**
899  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
900  * @vend: the 16 bit USB Vendor ID
901  * @prod: the 16 bit USB Product ID
902  * @cl: bInterfaceClass value
903  * @sc: bInterfaceSubClass value
904  * @pr: bInterfaceProtocol value
905  *
906  * This macro is used to create a struct usb_device_id that matches a
907  * specific device with a specific class of interfaces.
908  *
909  * This is especially useful when explicitly matching devices that have
910  * vendor specific bDeviceClass values, but standards-compliant interfaces.
911  */
912 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
913 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
914 		| USB_DEVICE_ID_MATCH_DEVICE, \
915 	.idVendor = (vend), \
916 	.idProduct = (prod), \
917 	.bInterfaceClass = (cl), \
918 	.bInterfaceSubClass = (sc), \
919 	.bInterfaceProtocol = (pr)
920 
921 /**
922  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
923  * @vend: the 16 bit USB Vendor ID
924  * @cl: bInterfaceClass value
925  * @sc: bInterfaceSubClass value
926  * @pr: bInterfaceProtocol value
927  *
928  * This macro is used to create a struct usb_device_id that matches a
929  * specific vendor with a specific class of interfaces.
930  *
931  * This is especially useful when explicitly matching devices that have
932  * vendor specific bDeviceClass values, but standards-compliant interfaces.
933  */
934 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
935 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
936 		| USB_DEVICE_ID_MATCH_VENDOR, \
937 	.idVendor = (vend), \
938 	.bInterfaceClass = (cl), \
939 	.bInterfaceSubClass = (sc), \
940 	.bInterfaceProtocol = (pr)
941 
942 /* ----------------------------------------------------------------------- */
943 
944 /* Stuff for dynamic usb ids */
945 struct usb_dynids {
946 	spinlock_t lock;
947 	struct list_head list;
948 };
949 
950 struct usb_dynid {
951 	struct list_head node;
952 	struct usb_device_id id;
953 };
954 
955 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
956 				struct device_driver *driver,
957 				const char *buf, size_t count);
958 
959 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
960 
961 /**
962  * struct usbdrv_wrap - wrapper for driver-model structure
963  * @driver: The driver-model core driver structure.
964  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
965  */
966 struct usbdrv_wrap {
967 	struct device_driver driver;
968 	int for_devices;
969 };
970 
971 /**
972  * struct usb_driver - identifies USB interface driver to usbcore
973  * @name: The driver name should be unique among USB drivers,
974  *	and should normally be the same as the module name.
975  * @probe: Called to see if the driver is willing to manage a particular
976  *	interface on a device.  If it is, probe returns zero and uses
977  *	usb_set_intfdata() to associate driver-specific data with the
978  *	interface.  It may also use usb_set_interface() to specify the
979  *	appropriate altsetting.  If unwilling to manage the interface,
980  *	return -ENODEV, if genuine IO errors occurred, an appropriate
981  *	negative errno value.
982  * @disconnect: Called when the interface is no longer accessible, usually
983  *	because its device has been (or is being) disconnected or the
984  *	driver module is being unloaded.
985  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
986  *	the "usbfs" filesystem.  This lets devices provide ways to
987  *	expose information to user space regardless of where they
988  *	do (or don't) show up otherwise in the filesystem.
989  * @suspend: Called when the device is going to be suspended by the
990  *	system either from system sleep or runtime suspend context. The
991  *	return value will be ignored in system sleep context, so do NOT
992  *	try to continue using the device if suspend fails in this case.
993  *	Instead, let the resume or reset-resume routine recover from
994  *	the failure.
995  * @resume: Called when the device is being resumed by the system.
996  * @reset_resume: Called when the suspended device has been reset instead
997  *	of being resumed.
998  * @pre_reset: Called by usb_reset_device() when the device is about to be
999  *	reset.  This routine must not return until the driver has no active
1000  *	URBs for the device, and no more URBs may be submitted until the
1001  *	post_reset method is called.
1002  * @post_reset: Called by usb_reset_device() after the device
1003  *	has been reset
1004  * @id_table: USB drivers use ID table to support hotplugging.
1005  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1006  *	or your driver's probe function will never get called.
1007  * @dynids: used internally to hold the list of dynamically added device
1008  *	ids for this driver.
1009  * @drvwrap: Driver-model core structure wrapper.
1010  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1011  *	added to this driver by preventing the sysfs file from being created.
1012  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1013  *	for interfaces bound to this driver.
1014  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1015  *	endpoints before calling the driver's disconnect method.
1016  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1017  *	to initiate lower power link state transitions when an idle timeout
1018  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1019  *
1020  * USB interface drivers must provide a name, probe() and disconnect()
1021  * methods, and an id_table.  Other driver fields are optional.
1022  *
1023  * The id_table is used in hotplugging.  It holds a set of descriptors,
1024  * and specialized data may be associated with each entry.  That table
1025  * is used by both user and kernel mode hotplugging support.
1026  *
1027  * The probe() and disconnect() methods are called in a context where
1028  * they can sleep, but they should avoid abusing the privilege.  Most
1029  * work to connect to a device should be done when the device is opened,
1030  * and undone at the last close.  The disconnect code needs to address
1031  * concurrency issues with respect to open() and close() methods, as
1032  * well as forcing all pending I/O requests to complete (by unlinking
1033  * them as necessary, and blocking until the unlinks complete).
1034  */
1035 struct usb_driver {
1036 	const char *name;
1037 
1038 	int (*probe) (struct usb_interface *intf,
1039 		      const struct usb_device_id *id);
1040 
1041 	void (*disconnect) (struct usb_interface *intf);
1042 
1043 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1044 			void *buf);
1045 
1046 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1047 	int (*resume) (struct usb_interface *intf);
1048 	int (*reset_resume)(struct usb_interface *intf);
1049 
1050 	int (*pre_reset)(struct usb_interface *intf);
1051 	int (*post_reset)(struct usb_interface *intf);
1052 
1053 	const struct usb_device_id *id_table;
1054 
1055 	struct usb_dynids dynids;
1056 	struct usbdrv_wrap drvwrap;
1057 	unsigned int no_dynamic_id:1;
1058 	unsigned int supports_autosuspend:1;
1059 	unsigned int disable_hub_initiated_lpm:1;
1060 	unsigned int soft_unbind:1;
1061 };
1062 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1063 
1064 /**
1065  * struct usb_device_driver - identifies USB device driver to usbcore
1066  * @name: The driver name should be unique among USB drivers,
1067  *	and should normally be the same as the module name.
1068  * @probe: Called to see if the driver is willing to manage a particular
1069  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1070  *	to associate driver-specific data with the device.  If unwilling
1071  *	to manage the device, return a negative errno value.
1072  * @disconnect: Called when the device is no longer accessible, usually
1073  *	because it has been (or is being) disconnected or the driver's
1074  *	module is being unloaded.
1075  * @suspend: Called when the device is going to be suspended by the system.
1076  * @resume: Called when the device is being resumed by the system.
1077  * @drvwrap: Driver-model core structure wrapper.
1078  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1079  *	for devices bound to this driver.
1080  *
1081  * USB drivers must provide all the fields listed above except drvwrap.
1082  */
1083 struct usb_device_driver {
1084 	const char *name;
1085 
1086 	int (*probe) (struct usb_device *udev);
1087 	void (*disconnect) (struct usb_device *udev);
1088 
1089 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1090 	int (*resume) (struct usb_device *udev, pm_message_t message);
1091 	struct usbdrv_wrap drvwrap;
1092 	unsigned int supports_autosuspend:1;
1093 };
1094 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1095 		drvwrap.driver)
1096 
1097 extern struct bus_type usb_bus_type;
1098 
1099 /**
1100  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1101  * @name: the usb class device name for this driver.  Will show up in sysfs.
1102  * @devnode: Callback to provide a naming hint for a possible
1103  *	device node to create.
1104  * @fops: pointer to the struct file_operations of this driver.
1105  * @minor_base: the start of the minor range for this driver.
1106  *
1107  * This structure is used for the usb_register_dev() and
1108  * usb_unregister_dev() functions, to consolidate a number of the
1109  * parameters used for them.
1110  */
1111 struct usb_class_driver {
1112 	char *name;
1113 	char *(*devnode)(struct device *dev, umode_t *mode);
1114 	const struct file_operations *fops;
1115 	int minor_base;
1116 };
1117 
1118 /*
1119  * use these in module_init()/module_exit()
1120  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1121  */
1122 extern int usb_register_driver(struct usb_driver *, struct module *,
1123 			       const char *);
1124 
1125 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1126 #define usb_register(driver) \
1127 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1128 
1129 extern void usb_deregister(struct usb_driver *);
1130 
1131 /**
1132  * module_usb_driver() - Helper macro for registering a USB driver
1133  * @__usb_driver: usb_driver struct
1134  *
1135  * Helper macro for USB drivers which do not do anything special in module
1136  * init/exit. This eliminates a lot of boilerplate. Each module may only
1137  * use this macro once, and calling it replaces module_init() and module_exit()
1138  */
1139 #define module_usb_driver(__usb_driver) \
1140 	module_driver(__usb_driver, usb_register, \
1141 		       usb_deregister)
1142 
1143 extern int usb_register_device_driver(struct usb_device_driver *,
1144 			struct module *);
1145 extern void usb_deregister_device_driver(struct usb_device_driver *);
1146 
1147 extern int usb_register_dev(struct usb_interface *intf,
1148 			    struct usb_class_driver *class_driver);
1149 extern void usb_deregister_dev(struct usb_interface *intf,
1150 			       struct usb_class_driver *class_driver);
1151 
1152 extern int usb_disabled(void);
1153 
1154 /* ----------------------------------------------------------------------- */
1155 
1156 /*
1157  * URB support, for asynchronous request completions
1158  */
1159 
1160 /*
1161  * urb->transfer_flags:
1162  *
1163  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1164  */
1165 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1166 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1167 					 * slot in the schedule */
1168 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1169 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1170 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1171 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1172 					 * needed */
1173 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1174 
1175 /* The following flags are used internally by usbcore and HCDs */
1176 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1177 #define URB_DIR_OUT		0
1178 #define URB_DIR_MASK		URB_DIR_IN
1179 
1180 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1181 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1182 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1183 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1184 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1185 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1186 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1187 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1188 
1189 struct usb_iso_packet_descriptor {
1190 	unsigned int offset;
1191 	unsigned int length;		/* expected length */
1192 	unsigned int actual_length;
1193 	int status;
1194 };
1195 
1196 struct urb;
1197 
1198 struct usb_anchor {
1199 	struct list_head urb_list;
1200 	wait_queue_head_t wait;
1201 	spinlock_t lock;
1202 	unsigned int poisoned:1;
1203 };
1204 
1205 static inline void init_usb_anchor(struct usb_anchor *anchor)
1206 {
1207 	INIT_LIST_HEAD(&anchor->urb_list);
1208 	init_waitqueue_head(&anchor->wait);
1209 	spin_lock_init(&anchor->lock);
1210 }
1211 
1212 typedef void (*usb_complete_t)(struct urb *);
1213 
1214 /**
1215  * struct urb - USB Request Block
1216  * @urb_list: For use by current owner of the URB.
1217  * @anchor_list: membership in the list of an anchor
1218  * @anchor: to anchor URBs to a common mooring
1219  * @ep: Points to the endpoint's data structure.  Will eventually
1220  *	replace @pipe.
1221  * @pipe: Holds endpoint number, direction, type, and more.
1222  *	Create these values with the eight macros available;
1223  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1224  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1225  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1226  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1227  *	is a different endpoint (and pipe) from "out" endpoint two.
1228  *	The current configuration controls the existence, type, and
1229  *	maximum packet size of any given endpoint.
1230  * @stream_id: the endpoint's stream ID for bulk streams
1231  * @dev: Identifies the USB device to perform the request.
1232  * @status: This is read in non-iso completion functions to get the
1233  *	status of the particular request.  ISO requests only use it
1234  *	to tell whether the URB was unlinked; detailed status for
1235  *	each frame is in the fields of the iso_frame-desc.
1236  * @transfer_flags: A variety of flags may be used to affect how URB
1237  *	submission, unlinking, or operation are handled.  Different
1238  *	kinds of URB can use different flags.
1239  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1240  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1241  *	(however, do not leave garbage in transfer_buffer even then).
1242  *	This buffer must be suitable for DMA; allocate it with
1243  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1244  *	of this buffer will be modified.  This buffer is used for the data
1245  *	stage of control transfers.
1246  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1247  *	the device driver is saying that it provided this DMA address,
1248  *	which the host controller driver should use in preference to the
1249  *	transfer_buffer.
1250  * @sg: scatter gather buffer list
1251  * @num_mapped_sgs: (internal) number of mapped sg entries
1252  * @num_sgs: number of entries in the sg list
1253  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1254  *	be broken up into chunks according to the current maximum packet
1255  *	size for the endpoint, which is a function of the configuration
1256  *	and is encoded in the pipe.  When the length is zero, neither
1257  *	transfer_buffer nor transfer_dma is used.
1258  * @actual_length: This is read in non-iso completion functions, and
1259  *	it tells how many bytes (out of transfer_buffer_length) were
1260  *	transferred.  It will normally be the same as requested, unless
1261  *	either an error was reported or a short read was performed.
1262  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1263  *	short reads be reported as errors.
1264  * @setup_packet: Only used for control transfers, this points to eight bytes
1265  *	of setup data.  Control transfers always start by sending this data
1266  *	to the device.  Then transfer_buffer is read or written, if needed.
1267  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1268  *	this field; setup_packet must point to a valid buffer.
1269  * @start_frame: Returns the initial frame for isochronous transfers.
1270  * @number_of_packets: Lists the number of ISO transfer buffers.
1271  * @interval: Specifies the polling interval for interrupt or isochronous
1272  *	transfers.  The units are frames (milliseconds) for full and low
1273  *	speed devices, and microframes (1/8 millisecond) for highspeed
1274  *	and SuperSpeed devices.
1275  * @error_count: Returns the number of ISO transfers that reported errors.
1276  * @context: For use in completion functions.  This normally points to
1277  *	request-specific driver context.
1278  * @complete: Completion handler. This URB is passed as the parameter to the
1279  *	completion function.  The completion function may then do what
1280  *	it likes with the URB, including resubmitting or freeing it.
1281  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1282  *	collect the transfer status for each buffer.
1283  *
1284  * This structure identifies USB transfer requests.  URBs must be allocated by
1285  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1286  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1287  * are submitted using usb_submit_urb(), and pending requests may be canceled
1288  * using usb_unlink_urb() or usb_kill_urb().
1289  *
1290  * Data Transfer Buffers:
1291  *
1292  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1293  * taken from the general page pool.  That is provided by transfer_buffer
1294  * (control requests also use setup_packet), and host controller drivers
1295  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1296  * mapping operations can be expensive on some platforms (perhaps using a dma
1297  * bounce buffer or talking to an IOMMU),
1298  * although they're cheap on commodity x86 and ppc hardware.
1299  *
1300  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1301  * which tells the host controller driver that no such mapping is needed for
1302  * the transfer_buffer since
1303  * the device driver is DMA-aware.  For example, a device driver might
1304  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1305  * When this transfer flag is provided, host controller drivers will
1306  * attempt to use the dma address found in the transfer_dma
1307  * field rather than determining a dma address themselves.
1308  *
1309  * Note that transfer_buffer must still be set if the controller
1310  * does not support DMA (as indicated by bus.uses_dma) and when talking
1311  * to root hub. If you have to trasfer between highmem zone and the device
1312  * on such controller, create a bounce buffer or bail out with an error.
1313  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1314  * capable, assign NULL to it, so that usbmon knows not to use the value.
1315  * The setup_packet must always be set, so it cannot be located in highmem.
1316  *
1317  * Initialization:
1318  *
1319  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1320  * zero), and complete fields.  All URBs must also initialize
1321  * transfer_buffer and transfer_buffer_length.  They may provide the
1322  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1323  * to be treated as errors; that flag is invalid for write requests.
1324  *
1325  * Bulk URBs may
1326  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1327  * should always terminate with a short packet, even if it means adding an
1328  * extra zero length packet.
1329  *
1330  * Control URBs must provide a valid pointer in the setup_packet field.
1331  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1332  * beforehand.
1333  *
1334  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1335  * or, for highspeed devices, 125 microsecond units)
1336  * to poll for transfers.  After the URB has been submitted, the interval
1337  * field reflects how the transfer was actually scheduled.
1338  * The polling interval may be more frequent than requested.
1339  * For example, some controllers have a maximum interval of 32 milliseconds,
1340  * while others support intervals of up to 1024 milliseconds.
1341  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1342  * endpoints, as well as high speed interrupt endpoints, the encoding of
1343  * the transfer interval in the endpoint descriptor is logarithmic.
1344  * Device drivers must convert that value to linear units themselves.)
1345  *
1346  * If an isochronous endpoint queue isn't already running, the host
1347  * controller will schedule a new URB to start as soon as bandwidth
1348  * utilization allows.  If the queue is running then a new URB will be
1349  * scheduled to start in the first transfer slot following the end of the
1350  * preceding URB, if that slot has not already expired.  If the slot has
1351  * expired (which can happen when IRQ delivery is delayed for a long time),
1352  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1353  * is clear then the URB will be scheduled to start in the expired slot,
1354  * implying that some of its packets will not be transferred; if the flag
1355  * is set then the URB will be scheduled in the first unexpired slot,
1356  * breaking the queue's synchronization.  Upon URB completion, the
1357  * start_frame field will be set to the (micro)frame number in which the
1358  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1359  * and can go from as low as 256 to as high as 65536 frames.
1360  *
1361  * Isochronous URBs have a different data transfer model, in part because
1362  * the quality of service is only "best effort".  Callers provide specially
1363  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1364  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1365  * URBs are normally queued, submitted by drivers to arrange that
1366  * transfers are at least double buffered, and then explicitly resubmitted
1367  * in completion handlers, so
1368  * that data (such as audio or video) streams at as constant a rate as the
1369  * host controller scheduler can support.
1370  *
1371  * Completion Callbacks:
1372  *
1373  * The completion callback is made in_interrupt(), and one of the first
1374  * things that a completion handler should do is check the status field.
1375  * The status field is provided for all URBs.  It is used to report
1376  * unlinked URBs, and status for all non-ISO transfers.  It should not
1377  * be examined before the URB is returned to the completion handler.
1378  *
1379  * The context field is normally used to link URBs back to the relevant
1380  * driver or request state.
1381  *
1382  * When the completion callback is invoked for non-isochronous URBs, the
1383  * actual_length field tells how many bytes were transferred.  This field
1384  * is updated even when the URB terminated with an error or was unlinked.
1385  *
1386  * ISO transfer status is reported in the status and actual_length fields
1387  * of the iso_frame_desc array, and the number of errors is reported in
1388  * error_count.  Completion callbacks for ISO transfers will normally
1389  * (re)submit URBs to ensure a constant transfer rate.
1390  *
1391  * Note that even fields marked "public" should not be touched by the driver
1392  * when the urb is owned by the hcd, that is, since the call to
1393  * usb_submit_urb() till the entry into the completion routine.
1394  */
1395 struct urb {
1396 	/* private: usb core and host controller only fields in the urb */
1397 	struct kref kref;		/* reference count of the URB */
1398 	void *hcpriv;			/* private data for host controller */
1399 	atomic_t use_count;		/* concurrent submissions counter */
1400 	atomic_t reject;		/* submissions will fail */
1401 	int unlinked;			/* unlink error code */
1402 
1403 	/* public: documented fields in the urb that can be used by drivers */
1404 	struct list_head urb_list;	/* list head for use by the urb's
1405 					 * current owner */
1406 	struct list_head anchor_list;	/* the URB may be anchored */
1407 	struct usb_anchor *anchor;
1408 	struct usb_device *dev;		/* (in) pointer to associated device */
1409 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1410 	unsigned int pipe;		/* (in) pipe information */
1411 	unsigned int stream_id;		/* (in) stream ID */
1412 	int status;			/* (return) non-ISO status */
1413 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1414 	void *transfer_buffer;		/* (in) associated data buffer */
1415 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1416 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1417 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1418 	int num_sgs;			/* (in) number of entries in the sg list */
1419 	u32 transfer_buffer_length;	/* (in) data buffer length */
1420 	u32 actual_length;		/* (return) actual transfer length */
1421 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1422 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1423 	int start_frame;		/* (modify) start frame (ISO) */
1424 	int number_of_packets;		/* (in) number of ISO packets */
1425 	int interval;			/* (modify) transfer interval
1426 					 * (INT/ISO) */
1427 	int error_count;		/* (return) number of ISO errors */
1428 	void *context;			/* (in) context for completion */
1429 	usb_complete_t complete;	/* (in) completion routine */
1430 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1431 					/* (in) ISO ONLY */
1432 };
1433 
1434 /* ----------------------------------------------------------------------- */
1435 
1436 /**
1437  * usb_fill_control_urb - initializes a control urb
1438  * @urb: pointer to the urb to initialize.
1439  * @dev: pointer to the struct usb_device for this urb.
1440  * @pipe: the endpoint pipe
1441  * @setup_packet: pointer to the setup_packet buffer
1442  * @transfer_buffer: pointer to the transfer buffer
1443  * @buffer_length: length of the transfer buffer
1444  * @complete_fn: pointer to the usb_complete_t function
1445  * @context: what to set the urb context to.
1446  *
1447  * Initializes a control urb with the proper information needed to submit
1448  * it to a device.
1449  */
1450 static inline void usb_fill_control_urb(struct urb *urb,
1451 					struct usb_device *dev,
1452 					unsigned int pipe,
1453 					unsigned char *setup_packet,
1454 					void *transfer_buffer,
1455 					int buffer_length,
1456 					usb_complete_t complete_fn,
1457 					void *context)
1458 {
1459 	urb->dev = dev;
1460 	urb->pipe = pipe;
1461 	urb->setup_packet = setup_packet;
1462 	urb->transfer_buffer = transfer_buffer;
1463 	urb->transfer_buffer_length = buffer_length;
1464 	urb->complete = complete_fn;
1465 	urb->context = context;
1466 }
1467 
1468 /**
1469  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1470  * @urb: pointer to the urb to initialize.
1471  * @dev: pointer to the struct usb_device for this urb.
1472  * @pipe: the endpoint pipe
1473  * @transfer_buffer: pointer to the transfer buffer
1474  * @buffer_length: length of the transfer buffer
1475  * @complete_fn: pointer to the usb_complete_t function
1476  * @context: what to set the urb context to.
1477  *
1478  * Initializes a bulk urb with the proper information needed to submit it
1479  * to a device.
1480  */
1481 static inline void usb_fill_bulk_urb(struct urb *urb,
1482 				     struct usb_device *dev,
1483 				     unsigned int pipe,
1484 				     void *transfer_buffer,
1485 				     int buffer_length,
1486 				     usb_complete_t complete_fn,
1487 				     void *context)
1488 {
1489 	urb->dev = dev;
1490 	urb->pipe = pipe;
1491 	urb->transfer_buffer = transfer_buffer;
1492 	urb->transfer_buffer_length = buffer_length;
1493 	urb->complete = complete_fn;
1494 	urb->context = context;
1495 }
1496 
1497 /**
1498  * usb_fill_int_urb - macro to help initialize a interrupt urb
1499  * @urb: pointer to the urb to initialize.
1500  * @dev: pointer to the struct usb_device for this urb.
1501  * @pipe: the endpoint pipe
1502  * @transfer_buffer: pointer to the transfer buffer
1503  * @buffer_length: length of the transfer buffer
1504  * @complete_fn: pointer to the usb_complete_t function
1505  * @context: what to set the urb context to.
1506  * @interval: what to set the urb interval to, encoded like
1507  *	the endpoint descriptor's bInterval value.
1508  *
1509  * Initializes a interrupt urb with the proper information needed to submit
1510  * it to a device.
1511  *
1512  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1513  * encoding of the endpoint interval, and express polling intervals in
1514  * microframes (eight per millisecond) rather than in frames (one per
1515  * millisecond).
1516  *
1517  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1518  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1519  * through to the host controller, rather than being translated into microframe
1520  * units.
1521  */
1522 static inline void usb_fill_int_urb(struct urb *urb,
1523 				    struct usb_device *dev,
1524 				    unsigned int pipe,
1525 				    void *transfer_buffer,
1526 				    int buffer_length,
1527 				    usb_complete_t complete_fn,
1528 				    void *context,
1529 				    int interval)
1530 {
1531 	urb->dev = dev;
1532 	urb->pipe = pipe;
1533 	urb->transfer_buffer = transfer_buffer;
1534 	urb->transfer_buffer_length = buffer_length;
1535 	urb->complete = complete_fn;
1536 	urb->context = context;
1537 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1538 		urb->interval = 1 << (interval - 1);
1539 	else
1540 		urb->interval = interval;
1541 	urb->start_frame = -1;
1542 }
1543 
1544 extern void usb_init_urb(struct urb *urb);
1545 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1546 extern void usb_free_urb(struct urb *urb);
1547 #define usb_put_urb usb_free_urb
1548 extern struct urb *usb_get_urb(struct urb *urb);
1549 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1550 extern int usb_unlink_urb(struct urb *urb);
1551 extern void usb_kill_urb(struct urb *urb);
1552 extern void usb_poison_urb(struct urb *urb);
1553 extern void usb_unpoison_urb(struct urb *urb);
1554 extern void usb_block_urb(struct urb *urb);
1555 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1556 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1557 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1558 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1559 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1560 extern void usb_unanchor_urb(struct urb *urb);
1561 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1562 					 unsigned int timeout);
1563 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1564 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1565 extern int usb_anchor_empty(struct usb_anchor *anchor);
1566 
1567 #define usb_unblock_urb	usb_unpoison_urb
1568 
1569 /**
1570  * usb_urb_dir_in - check if an URB describes an IN transfer
1571  * @urb: URB to be checked
1572  *
1573  * Returns 1 if @urb describes an IN transfer (device-to-host),
1574  * otherwise 0.
1575  */
1576 static inline int usb_urb_dir_in(struct urb *urb)
1577 {
1578 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1579 }
1580 
1581 /**
1582  * usb_urb_dir_out - check if an URB describes an OUT transfer
1583  * @urb: URB to be checked
1584  *
1585  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1586  * otherwise 0.
1587  */
1588 static inline int usb_urb_dir_out(struct urb *urb)
1589 {
1590 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1591 }
1592 
1593 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1594 	gfp_t mem_flags, dma_addr_t *dma);
1595 void usb_free_coherent(struct usb_device *dev, size_t size,
1596 	void *addr, dma_addr_t dma);
1597 
1598 #if 0
1599 struct urb *usb_buffer_map(struct urb *urb);
1600 void usb_buffer_dmasync(struct urb *urb);
1601 void usb_buffer_unmap(struct urb *urb);
1602 #endif
1603 
1604 struct scatterlist;
1605 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1606 		      struct scatterlist *sg, int nents);
1607 #if 0
1608 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1609 			   struct scatterlist *sg, int n_hw_ents);
1610 #endif
1611 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1612 			 struct scatterlist *sg, int n_hw_ents);
1613 
1614 /*-------------------------------------------------------------------*
1615  *                         SYNCHRONOUS CALL SUPPORT                  *
1616  *-------------------------------------------------------------------*/
1617 
1618 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1619 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1620 	void *data, __u16 size, int timeout);
1621 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1622 	void *data, int len, int *actual_length, int timeout);
1623 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1624 	void *data, int len, int *actual_length,
1625 	int timeout);
1626 
1627 /* wrappers around usb_control_msg() for the most common standard requests */
1628 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1629 	unsigned char descindex, void *buf, int size);
1630 extern int usb_get_status(struct usb_device *dev,
1631 	int type, int target, void *data);
1632 extern int usb_string(struct usb_device *dev, int index,
1633 	char *buf, size_t size);
1634 
1635 /* wrappers that also update important state inside usbcore */
1636 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1637 extern int usb_reset_configuration(struct usb_device *dev);
1638 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1639 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1640 
1641 /* this request isn't really synchronous, but it belongs with the others */
1642 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1643 
1644 /*
1645  * timeouts, in milliseconds, used for sending/receiving control messages
1646  * they typically complete within a few frames (msec) after they're issued
1647  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1648  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1649  */
1650 #define USB_CTRL_GET_TIMEOUT	5000
1651 #define USB_CTRL_SET_TIMEOUT	5000
1652 
1653 
1654 /**
1655  * struct usb_sg_request - support for scatter/gather I/O
1656  * @status: zero indicates success, else negative errno
1657  * @bytes: counts bytes transferred.
1658  *
1659  * These requests are initialized using usb_sg_init(), and then are used
1660  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1661  * members of the request object aren't for driver access.
1662  *
1663  * The status and bytecount values are valid only after usb_sg_wait()
1664  * returns.  If the status is zero, then the bytecount matches the total
1665  * from the request.
1666  *
1667  * After an error completion, drivers may need to clear a halt condition
1668  * on the endpoint.
1669  */
1670 struct usb_sg_request {
1671 	int			status;
1672 	size_t			bytes;
1673 
1674 	/* private:
1675 	 * members below are private to usbcore,
1676 	 * and are not provided for driver access!
1677 	 */
1678 	spinlock_t		lock;
1679 
1680 	struct usb_device	*dev;
1681 	int			pipe;
1682 
1683 	int			entries;
1684 	struct urb		**urbs;
1685 
1686 	int			count;
1687 	struct completion	complete;
1688 };
1689 
1690 int usb_sg_init(
1691 	struct usb_sg_request	*io,
1692 	struct usb_device	*dev,
1693 	unsigned		pipe,
1694 	unsigned		period,
1695 	struct scatterlist	*sg,
1696 	int			nents,
1697 	size_t			length,
1698 	gfp_t			mem_flags
1699 );
1700 void usb_sg_cancel(struct usb_sg_request *io);
1701 void usb_sg_wait(struct usb_sg_request *io);
1702 
1703 
1704 /* ----------------------------------------------------------------------- */
1705 
1706 /*
1707  * For various legacy reasons, Linux has a small cookie that's paired with
1708  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1709  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1710  * an unsigned int encoded as:
1711  *
1712  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1713  *					 1 = Device-to-Host [In] ...
1714  *					like endpoint bEndpointAddress)
1715  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1716  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1717  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1718  *					 10 = control, 11 = bulk)
1719  *
1720  * Given the device address and endpoint descriptor, pipes are redundant.
1721  */
1722 
1723 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1724 /* (yet ... they're the values used by usbfs) */
1725 #define PIPE_ISOCHRONOUS		0
1726 #define PIPE_INTERRUPT			1
1727 #define PIPE_CONTROL			2
1728 #define PIPE_BULK			3
1729 
1730 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1731 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1732 
1733 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1734 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1735 
1736 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1737 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1738 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1739 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1740 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1741 
1742 static inline unsigned int __create_pipe(struct usb_device *dev,
1743 		unsigned int endpoint)
1744 {
1745 	return (dev->devnum << 8) | (endpoint << 15);
1746 }
1747 
1748 /* Create various pipes... */
1749 #define usb_sndctrlpipe(dev, endpoint)	\
1750 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1751 #define usb_rcvctrlpipe(dev, endpoint)	\
1752 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1753 #define usb_sndisocpipe(dev, endpoint)	\
1754 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1755 #define usb_rcvisocpipe(dev, endpoint)	\
1756 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1757 #define usb_sndbulkpipe(dev, endpoint)	\
1758 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1759 #define usb_rcvbulkpipe(dev, endpoint)	\
1760 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1761 #define usb_sndintpipe(dev, endpoint)	\
1762 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1763 #define usb_rcvintpipe(dev, endpoint)	\
1764 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1765 
1766 static inline struct usb_host_endpoint *
1767 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1768 {
1769 	struct usb_host_endpoint **eps;
1770 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1771 	return eps[usb_pipeendpoint(pipe)];
1772 }
1773 
1774 /*-------------------------------------------------------------------------*/
1775 
1776 static inline __u16
1777 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1778 {
1779 	struct usb_host_endpoint	*ep;
1780 	unsigned			epnum = usb_pipeendpoint(pipe);
1781 
1782 	if (is_out) {
1783 		WARN_ON(usb_pipein(pipe));
1784 		ep = udev->ep_out[epnum];
1785 	} else {
1786 		WARN_ON(usb_pipeout(pipe));
1787 		ep = udev->ep_in[epnum];
1788 	}
1789 	if (!ep)
1790 		return 0;
1791 
1792 	/* NOTE:  only 0x07ff bits are for packet size... */
1793 	return usb_endpoint_maxp(&ep->desc);
1794 }
1795 
1796 /* ----------------------------------------------------------------------- */
1797 
1798 /* translate USB error codes to codes user space understands */
1799 static inline int usb_translate_errors(int error_code)
1800 {
1801 	switch (error_code) {
1802 	case 0:
1803 	case -ENOMEM:
1804 	case -ENODEV:
1805 	case -EOPNOTSUPP:
1806 		return error_code;
1807 	default:
1808 		return -EIO;
1809 	}
1810 }
1811 
1812 /* Events from the usb core */
1813 #define USB_DEVICE_ADD		0x0001
1814 #define USB_DEVICE_REMOVE	0x0002
1815 #define USB_BUS_ADD		0x0003
1816 #define USB_BUS_REMOVE		0x0004
1817 extern void usb_register_notify(struct notifier_block *nb);
1818 extern void usb_unregister_notify(struct notifier_block *nb);
1819 
1820 /* debugfs stuff */
1821 extern struct dentry *usb_debug_root;
1822 
1823 #endif  /* __KERNEL__ */
1824 
1825 #endif
1826