1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_USB_H 3 #define __LINUX_USB_H 4 5 #include <linux/mod_devicetable.h> 6 #include <linux/usb/ch9.h> 7 8 #define USB_MAJOR 180 9 #define USB_DEVICE_MAJOR 189 10 11 12 #ifdef __KERNEL__ 13 14 #include <linux/errno.h> /* for -ENODEV */ 15 #include <linux/delay.h> /* for mdelay() */ 16 #include <linux/interrupt.h> /* for in_interrupt() */ 17 #include <linux/list.h> /* for struct list_head */ 18 #include <linux/kref.h> /* for struct kref */ 19 #include <linux/device.h> /* for struct device */ 20 #include <linux/fs.h> /* for struct file_operations */ 21 #include <linux/completion.h> /* for struct completion */ 22 #include <linux/sched.h> /* for current && schedule_timeout */ 23 #include <linux/mutex.h> /* for struct mutex */ 24 #include <linux/pm_runtime.h> /* for runtime PM */ 25 26 struct usb_device; 27 struct usb_driver; 28 struct wusb_dev; 29 30 /*-------------------------------------------------------------------------*/ 31 32 /* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48 struct ep_device; 49 50 /** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67 struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79 }; 80 81 /* host-side wrapper for one interface setting's parsed descriptors */ 82 struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94 }; 95 96 enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101 }; 102 103 int __must_check 104 usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110 int __must_check 111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117 static inline int __must_check 118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120 { 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122 } 123 124 static inline int __must_check 125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127 { 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129 } 130 131 static inline int __must_check 132 usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134 { 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136 } 137 138 static inline int __must_check 139 usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141 { 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143 } 144 145 static inline int __must_check 146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148 { 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150 } 151 152 static inline int __must_check 153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155 { 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157 } 158 159 static inline int __must_check 160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162 { 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164 } 165 166 static inline int __must_check 167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169 { 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171 } 172 173 /** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232 struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 struct work_struct reset_ws; /* for resets in atomic context */ 260 }; 261 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 262 263 static inline void *usb_get_intfdata(struct usb_interface *intf) 264 { 265 return dev_get_drvdata(&intf->dev); 266 } 267 268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 269 { 270 dev_set_drvdata(&intf->dev, data); 271 } 272 273 struct usb_interface *usb_get_intf(struct usb_interface *intf); 274 void usb_put_intf(struct usb_interface *intf); 275 276 /* Hard limit */ 277 #define USB_MAXENDPOINTS 30 278 /* this maximum is arbitrary */ 279 #define USB_MAXINTERFACES 32 280 #define USB_MAXIADS (USB_MAXINTERFACES/2) 281 282 /* 283 * USB Resume Timer: Every Host controller driver should drive the resume 284 * signalling on the bus for the amount of time defined by this macro. 285 * 286 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 287 * 288 * Note that the USB Specification states we should drive resume for *at least* 289 * 20 ms, but it doesn't give an upper bound. This creates two possible 290 * situations which we want to avoid: 291 * 292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 293 * us to fail USB Electrical Tests, thus failing Certification 294 * 295 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 296 * and while we can argue that's against the USB Specification, we don't have 297 * control over which devices a certification laboratory will be using for 298 * certification. If CertLab uses a device which was tested against Windows and 299 * that happens to have relaxed resume signalling rules, we might fall into 300 * situations where we fail interoperability and electrical tests. 301 * 302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 303 * should cope with both LPJ calibration errors and devices not following every 304 * detail of the USB Specification. 305 */ 306 #define USB_RESUME_TIMEOUT 40 /* ms */ 307 308 /** 309 * struct usb_interface_cache - long-term representation of a device interface 310 * @num_altsetting: number of altsettings defined. 311 * @ref: reference counter. 312 * @altsetting: variable-length array of interface structures, one for 313 * each alternate setting that may be selected. Each one includes a 314 * set of endpoint configurations. They will be in no particular order. 315 * 316 * These structures persist for the lifetime of a usb_device, unlike 317 * struct usb_interface (which persists only as long as its configuration 318 * is installed). The altsetting arrays can be accessed through these 319 * structures at any time, permitting comparison of configurations and 320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 321 */ 322 struct usb_interface_cache { 323 unsigned num_altsetting; /* number of alternate settings */ 324 struct kref ref; /* reference counter */ 325 326 /* variable-length array of alternate settings for this interface, 327 * stored in no particular order */ 328 struct usb_host_interface altsetting[]; 329 }; 330 #define ref_to_usb_interface_cache(r) \ 331 container_of(r, struct usb_interface_cache, ref) 332 #define altsetting_to_usb_interface_cache(a) \ 333 container_of(a, struct usb_interface_cache, altsetting[0]) 334 335 /** 336 * struct usb_host_config - representation of a device's configuration 337 * @desc: the device's configuration descriptor. 338 * @string: pointer to the cached version of the iConfiguration string, if 339 * present for this configuration. 340 * @intf_assoc: list of any interface association descriptors in this config 341 * @interface: array of pointers to usb_interface structures, one for each 342 * interface in the configuration. The number of interfaces is stored 343 * in desc.bNumInterfaces. These pointers are valid only while the 344 * configuration is active. 345 * @intf_cache: array of pointers to usb_interface_cache structures, one 346 * for each interface in the configuration. These structures exist 347 * for the entire life of the device. 348 * @extra: pointer to buffer containing all extra descriptors associated 349 * with this configuration (those preceding the first interface 350 * descriptor). 351 * @extralen: length of the extra descriptors buffer. 352 * 353 * USB devices may have multiple configurations, but only one can be active 354 * at any time. Each encapsulates a different operational environment; 355 * for example, a dual-speed device would have separate configurations for 356 * full-speed and high-speed operation. The number of configurations 357 * available is stored in the device descriptor as bNumConfigurations. 358 * 359 * A configuration can contain multiple interfaces. Each corresponds to 360 * a different function of the USB device, and all are available whenever 361 * the configuration is active. The USB standard says that interfaces 362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 363 * of devices get this wrong. In addition, the interface array is not 364 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 365 * look up an interface entry based on its number. 366 * 367 * Device drivers should not attempt to activate configurations. The choice 368 * of which configuration to install is a policy decision based on such 369 * considerations as available power, functionality provided, and the user's 370 * desires (expressed through userspace tools). However, drivers can call 371 * usb_reset_configuration() to reinitialize the current configuration and 372 * all its interfaces. 373 */ 374 struct usb_host_config { 375 struct usb_config_descriptor desc; 376 377 char *string; /* iConfiguration string, if present */ 378 379 /* List of any Interface Association Descriptors in this 380 * configuration. */ 381 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 382 383 /* the interfaces associated with this configuration, 384 * stored in no particular order */ 385 struct usb_interface *interface[USB_MAXINTERFACES]; 386 387 /* Interface information available even when this is not the 388 * active configuration */ 389 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 390 391 unsigned char *extra; /* Extra descriptors */ 392 int extralen; 393 }; 394 395 /* USB2.0 and USB3.0 device BOS descriptor set */ 396 struct usb_host_bos { 397 struct usb_bos_descriptor *desc; 398 399 /* wireless cap descriptor is handled by wusb */ 400 struct usb_ext_cap_descriptor *ext_cap; 401 struct usb_ss_cap_descriptor *ss_cap; 402 struct usb_ssp_cap_descriptor *ssp_cap; 403 struct usb_ss_container_id_descriptor *ss_id; 404 struct usb_ptm_cap_descriptor *ptm_cap; 405 }; 406 407 int __usb_get_extra_descriptor(char *buffer, unsigned size, 408 unsigned char type, void **ptr, size_t min); 409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 410 __usb_get_extra_descriptor((ifpoint)->extra, \ 411 (ifpoint)->extralen, \ 412 type, (void **)ptr, sizeof(**(ptr))) 413 414 /* ----------------------------------------------------------------------- */ 415 416 /* USB device number allocation bitmap */ 417 struct usb_devmap { 418 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 419 }; 420 421 /* 422 * Allocated per bus (tree of devices) we have: 423 */ 424 struct usb_bus { 425 struct device *controller; /* host side hardware */ 426 struct device *sysdev; /* as seen from firmware or bus */ 427 int busnum; /* Bus number (in order of reg) */ 428 const char *bus_name; /* stable id (PCI slot_name etc) */ 429 u8 uses_pio_for_control; /* 430 * Does the host controller use PIO 431 * for control transfers? 432 */ 433 u8 otg_port; /* 0, or number of OTG/HNP port */ 434 unsigned is_b_host:1; /* true during some HNP roleswitches */ 435 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 436 unsigned no_stop_on_short:1; /* 437 * Quirk: some controllers don't stop 438 * the ep queue on a short transfer 439 * with the URB_SHORT_NOT_OK flag set. 440 */ 441 unsigned no_sg_constraint:1; /* no sg constraint */ 442 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 443 444 int devnum_next; /* Next open device number in 445 * round-robin allocation */ 446 struct mutex devnum_next_mutex; /* devnum_next mutex */ 447 448 struct usb_devmap devmap; /* device address allocation map */ 449 struct usb_device *root_hub; /* Root hub */ 450 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 451 452 int bandwidth_allocated; /* on this bus: how much of the time 453 * reserved for periodic (intr/iso) 454 * requests is used, on average? 455 * Units: microseconds/frame. 456 * Limits: Full/low speed reserve 90%, 457 * while high speed reserves 80%. 458 */ 459 int bandwidth_int_reqs; /* number of Interrupt requests */ 460 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 461 462 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 463 464 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 465 struct mon_bus *mon_bus; /* non-null when associated */ 466 int monitored; /* non-zero when monitored */ 467 #endif 468 }; 469 470 struct usb_dev_state; 471 472 /* ----------------------------------------------------------------------- */ 473 474 struct usb_tt; 475 476 enum usb_port_connect_type { 477 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 478 USB_PORT_CONNECT_TYPE_HOT_PLUG, 479 USB_PORT_CONNECT_TYPE_HARD_WIRED, 480 USB_PORT_NOT_USED, 481 }; 482 483 /* 484 * USB port quirks. 485 */ 486 487 /* For the given port, prefer the old (faster) enumeration scheme. */ 488 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 489 490 /* Decrease TRSTRCY to 10ms during device enumeration. */ 491 #define USB_PORT_QUIRK_FAST_ENUM BIT(1) 492 493 /* 494 * USB 2.0 Link Power Management (LPM) parameters. 495 */ 496 struct usb2_lpm_parameters { 497 /* Best effort service latency indicate how long the host will drive 498 * resume on an exit from L1. 499 */ 500 unsigned int besl; 501 502 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 503 * When the timer counts to zero, the parent hub will initiate a LPM 504 * transition to L1. 505 */ 506 int timeout; 507 }; 508 509 /* 510 * USB 3.0 Link Power Management (LPM) parameters. 511 * 512 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 513 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 514 * All three are stored in nanoseconds. 515 */ 516 struct usb3_lpm_parameters { 517 /* 518 * Maximum exit latency (MEL) for the host to send a packet to the 519 * device (either a Ping for isoc endpoints, or a data packet for 520 * interrupt endpoints), the hubs to decode the packet, and for all hubs 521 * in the path to transition the links to U0. 522 */ 523 unsigned int mel; 524 /* 525 * Maximum exit latency for a device-initiated LPM transition to bring 526 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 527 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 528 */ 529 unsigned int pel; 530 531 /* 532 * The System Exit Latency (SEL) includes PEL, and three other 533 * latencies. After a device initiates a U0 transition, it will take 534 * some time from when the device sends the ERDY to when it will finally 535 * receive the data packet. Basically, SEL should be the worse-case 536 * latency from when a device starts initiating a U0 transition to when 537 * it will get data. 538 */ 539 unsigned int sel; 540 /* 541 * The idle timeout value that is currently programmed into the parent 542 * hub for this device. When the timer counts to zero, the parent hub 543 * will initiate an LPM transition to either U1 or U2. 544 */ 545 int timeout; 546 }; 547 548 /** 549 * struct usb_device - kernel's representation of a USB device 550 * @devnum: device number; address on a USB bus 551 * @devpath: device ID string for use in messages (e.g., /port/...) 552 * @route: tree topology hex string for use with xHCI 553 * @state: device state: configured, not attached, etc. 554 * @speed: device speed: high/full/low (or error) 555 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 556 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 557 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 558 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 559 * @ttport: device port on that tt hub 560 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 561 * @parent: our hub, unless we're the root 562 * @bus: bus we're part of 563 * @ep0: endpoint 0 data (default control pipe) 564 * @dev: generic device interface 565 * @descriptor: USB device descriptor 566 * @bos: USB device BOS descriptor set 567 * @config: all of the device's configs 568 * @actconfig: the active configuration 569 * @ep_in: array of IN endpoints 570 * @ep_out: array of OUT endpoints 571 * @rawdescriptors: raw descriptors for each config 572 * @bus_mA: Current available from the bus 573 * @portnum: parent port number (origin 1) 574 * @level: number of USB hub ancestors 575 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 576 * @can_submit: URBs may be submitted 577 * @persist_enabled: USB_PERSIST enabled for this device 578 * @have_langid: whether string_langid is valid 579 * @authorized: policy has said we can use it; 580 * (user space) policy determines if we authorize this device to be 581 * used or not. By default, wired USB devices are authorized. 582 * WUSB devices are not, until we authorize them from user space. 583 * FIXME -- complete doc 584 * @authenticated: Crypto authentication passed 585 * @wusb: device is Wireless USB 586 * @lpm_capable: device supports LPM 587 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 588 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 589 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 590 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 591 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 592 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 593 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 594 * @string_langid: language ID for strings 595 * @product: iProduct string, if present (static) 596 * @manufacturer: iManufacturer string, if present (static) 597 * @serial: iSerialNumber string, if present (static) 598 * @filelist: usbfs files that are open to this device 599 * @maxchild: number of ports if hub 600 * @quirks: quirks of the whole device 601 * @urbnum: number of URBs submitted for the whole device 602 * @active_duration: total time device is not suspended 603 * @connect_time: time device was first connected 604 * @do_remote_wakeup: remote wakeup should be enabled 605 * @reset_resume: needs reset instead of resume 606 * @port_is_suspended: the upstream port is suspended (L2 or U3) 607 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 608 * specific data for the device. 609 * @slot_id: Slot ID assigned by xHCI 610 * @removable: Device can be physically removed from this port 611 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 612 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 613 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 614 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 615 * to keep track of the number of functions that require USB 3.0 Link Power 616 * Management to be disabled for this usb_device. This count should only 617 * be manipulated by those functions, with the bandwidth_mutex is held. 618 * @hub_delay: cached value consisting of: 619 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 620 * Will be used as wValue for SetIsochDelay requests. 621 * @use_generic_driver: ask driver core to reprobe using the generic driver. 622 * 623 * Notes: 624 * Usbcore drivers should not set usbdev->state directly. Instead use 625 * usb_set_device_state(). 626 */ 627 struct usb_device { 628 int devnum; 629 char devpath[16]; 630 u32 route; 631 enum usb_device_state state; 632 enum usb_device_speed speed; 633 unsigned int rx_lanes; 634 unsigned int tx_lanes; 635 enum usb_ssp_rate ssp_rate; 636 637 struct usb_tt *tt; 638 int ttport; 639 640 unsigned int toggle[2]; 641 642 struct usb_device *parent; 643 struct usb_bus *bus; 644 struct usb_host_endpoint ep0; 645 646 struct device dev; 647 648 struct usb_device_descriptor descriptor; 649 struct usb_host_bos *bos; 650 struct usb_host_config *config; 651 652 struct usb_host_config *actconfig; 653 struct usb_host_endpoint *ep_in[16]; 654 struct usb_host_endpoint *ep_out[16]; 655 656 char **rawdescriptors; 657 658 unsigned short bus_mA; 659 u8 portnum; 660 u8 level; 661 u8 devaddr; 662 663 unsigned can_submit:1; 664 unsigned persist_enabled:1; 665 unsigned have_langid:1; 666 unsigned authorized:1; 667 unsigned authenticated:1; 668 unsigned wusb:1; 669 unsigned lpm_capable:1; 670 unsigned lpm_devinit_allow:1; 671 unsigned usb2_hw_lpm_capable:1; 672 unsigned usb2_hw_lpm_besl_capable:1; 673 unsigned usb2_hw_lpm_enabled:1; 674 unsigned usb2_hw_lpm_allowed:1; 675 unsigned usb3_lpm_u1_enabled:1; 676 unsigned usb3_lpm_u2_enabled:1; 677 int string_langid; 678 679 /* static strings from the device */ 680 char *product; 681 char *manufacturer; 682 char *serial; 683 684 struct list_head filelist; 685 686 int maxchild; 687 688 u32 quirks; 689 atomic_t urbnum; 690 691 unsigned long active_duration; 692 693 #ifdef CONFIG_PM 694 unsigned long connect_time; 695 696 unsigned do_remote_wakeup:1; 697 unsigned reset_resume:1; 698 unsigned port_is_suspended:1; 699 #endif 700 struct wusb_dev *wusb_dev; 701 int slot_id; 702 struct usb2_lpm_parameters l1_params; 703 struct usb3_lpm_parameters u1_params; 704 struct usb3_lpm_parameters u2_params; 705 unsigned lpm_disable_count; 706 707 u16 hub_delay; 708 unsigned use_generic_driver:1; 709 }; 710 #define to_usb_device(d) container_of(d, struct usb_device, dev) 711 712 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 713 { 714 return to_usb_device(intf->dev.parent); 715 } 716 717 extern struct usb_device *usb_get_dev(struct usb_device *dev); 718 extern void usb_put_dev(struct usb_device *dev); 719 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 720 int port1); 721 722 /** 723 * usb_hub_for_each_child - iterate over all child devices on the hub 724 * @hdev: USB device belonging to the usb hub 725 * @port1: portnum associated with child device 726 * @child: child device pointer 727 */ 728 #define usb_hub_for_each_child(hdev, port1, child) \ 729 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 730 port1 <= hdev->maxchild; \ 731 child = usb_hub_find_child(hdev, ++port1)) \ 732 if (!child) continue; else 733 734 /* USB device locking */ 735 #define usb_lock_device(udev) device_lock(&(udev)->dev) 736 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 737 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 738 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 739 extern int usb_lock_device_for_reset(struct usb_device *udev, 740 const struct usb_interface *iface); 741 742 /* USB port reset for device reinitialization */ 743 extern int usb_reset_device(struct usb_device *dev); 744 extern void usb_queue_reset_device(struct usb_interface *dev); 745 746 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 747 748 #ifdef CONFIG_ACPI 749 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 750 bool enable); 751 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 752 #else 753 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 754 bool enable) { return 0; } 755 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 756 { return true; } 757 #endif 758 759 /* USB autosuspend and autoresume */ 760 #ifdef CONFIG_PM 761 extern void usb_enable_autosuspend(struct usb_device *udev); 762 extern void usb_disable_autosuspend(struct usb_device *udev); 763 764 extern int usb_autopm_get_interface(struct usb_interface *intf); 765 extern void usb_autopm_put_interface(struct usb_interface *intf); 766 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 767 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 768 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 769 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 770 771 static inline void usb_mark_last_busy(struct usb_device *udev) 772 { 773 pm_runtime_mark_last_busy(&udev->dev); 774 } 775 776 #else 777 778 static inline int usb_enable_autosuspend(struct usb_device *udev) 779 { return 0; } 780 static inline int usb_disable_autosuspend(struct usb_device *udev) 781 { return 0; } 782 783 static inline int usb_autopm_get_interface(struct usb_interface *intf) 784 { return 0; } 785 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 786 { return 0; } 787 788 static inline void usb_autopm_put_interface(struct usb_interface *intf) 789 { } 790 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 791 { } 792 static inline void usb_autopm_get_interface_no_resume( 793 struct usb_interface *intf) 794 { } 795 static inline void usb_autopm_put_interface_no_suspend( 796 struct usb_interface *intf) 797 { } 798 static inline void usb_mark_last_busy(struct usb_device *udev) 799 { } 800 #endif 801 802 extern int usb_disable_lpm(struct usb_device *udev); 803 extern void usb_enable_lpm(struct usb_device *udev); 804 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 805 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 806 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 807 808 extern int usb_disable_ltm(struct usb_device *udev); 809 extern void usb_enable_ltm(struct usb_device *udev); 810 811 static inline bool usb_device_supports_ltm(struct usb_device *udev) 812 { 813 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 814 return false; 815 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 816 } 817 818 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 819 { 820 return udev && udev->bus && udev->bus->no_sg_constraint; 821 } 822 823 824 /*-------------------------------------------------------------------------*/ 825 826 /* for drivers using iso endpoints */ 827 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 828 829 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 830 extern int usb_alloc_streams(struct usb_interface *interface, 831 struct usb_host_endpoint **eps, unsigned int num_eps, 832 unsigned int num_streams, gfp_t mem_flags); 833 834 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 835 extern int usb_free_streams(struct usb_interface *interface, 836 struct usb_host_endpoint **eps, unsigned int num_eps, 837 gfp_t mem_flags); 838 839 /* used these for multi-interface device registration */ 840 extern int usb_driver_claim_interface(struct usb_driver *driver, 841 struct usb_interface *iface, void *data); 842 843 /** 844 * usb_interface_claimed - returns true iff an interface is claimed 845 * @iface: the interface being checked 846 * 847 * Return: %true (nonzero) iff the interface is claimed, else %false 848 * (zero). 849 * 850 * Note: 851 * Callers must own the driver model's usb bus readlock. So driver 852 * probe() entries don't need extra locking, but other call contexts 853 * may need to explicitly claim that lock. 854 * 855 */ 856 static inline int usb_interface_claimed(struct usb_interface *iface) 857 { 858 return (iface->dev.driver != NULL); 859 } 860 861 extern void usb_driver_release_interface(struct usb_driver *driver, 862 struct usb_interface *iface); 863 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 864 const struct usb_device_id *id); 865 extern int usb_match_one_id(struct usb_interface *interface, 866 const struct usb_device_id *id); 867 868 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 869 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 870 int minor); 871 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 872 unsigned ifnum); 873 extern struct usb_host_interface *usb_altnum_to_altsetting( 874 const struct usb_interface *intf, unsigned int altnum); 875 extern struct usb_host_interface *usb_find_alt_setting( 876 struct usb_host_config *config, 877 unsigned int iface_num, 878 unsigned int alt_num); 879 880 /* port claiming functions */ 881 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 882 struct usb_dev_state *owner); 883 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 884 struct usb_dev_state *owner); 885 886 /** 887 * usb_make_path - returns stable device path in the usb tree 888 * @dev: the device whose path is being constructed 889 * @buf: where to put the string 890 * @size: how big is "buf"? 891 * 892 * Return: Length of the string (> 0) or negative if size was too small. 893 * 894 * Note: 895 * This identifier is intended to be "stable", reflecting physical paths in 896 * hardware such as physical bus addresses for host controllers or ports on 897 * USB hubs. That makes it stay the same until systems are physically 898 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 899 * controllers. Adding and removing devices, including virtual root hubs 900 * in host controller driver modules, does not change these path identifiers; 901 * neither does rebooting or re-enumerating. These are more useful identifiers 902 * than changeable ("unstable") ones like bus numbers or device addresses. 903 * 904 * With a partial exception for devices connected to USB 2.0 root hubs, these 905 * identifiers are also predictable. So long as the device tree isn't changed, 906 * plugging any USB device into a given hub port always gives it the same path. 907 * Because of the use of "companion" controllers, devices connected to ports on 908 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 909 * high speed, and a different one if they are full or low speed. 910 */ 911 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 912 { 913 int actual; 914 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 915 dev->devpath); 916 return (actual >= (int)size) ? -1 : actual; 917 } 918 919 /*-------------------------------------------------------------------------*/ 920 921 #define USB_DEVICE_ID_MATCH_DEVICE \ 922 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 923 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 924 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 925 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 926 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 927 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 928 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 929 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 930 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 931 #define USB_DEVICE_ID_MATCH_INT_INFO \ 932 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 933 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 934 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 935 936 /** 937 * USB_DEVICE - macro used to describe a specific usb device 938 * @vend: the 16 bit USB Vendor ID 939 * @prod: the 16 bit USB Product ID 940 * 941 * This macro is used to create a struct usb_device_id that matches a 942 * specific device. 943 */ 944 #define USB_DEVICE(vend, prod) \ 945 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 946 .idVendor = (vend), \ 947 .idProduct = (prod) 948 /** 949 * USB_DEVICE_VER - describe a specific usb device with a version range 950 * @vend: the 16 bit USB Vendor ID 951 * @prod: the 16 bit USB Product ID 952 * @lo: the bcdDevice_lo value 953 * @hi: the bcdDevice_hi value 954 * 955 * This macro is used to create a struct usb_device_id that matches a 956 * specific device, with a version range. 957 */ 958 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 959 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 960 .idVendor = (vend), \ 961 .idProduct = (prod), \ 962 .bcdDevice_lo = (lo), \ 963 .bcdDevice_hi = (hi) 964 965 /** 966 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 967 * @vend: the 16 bit USB Vendor ID 968 * @prod: the 16 bit USB Product ID 969 * @cl: bInterfaceClass value 970 * 971 * This macro is used to create a struct usb_device_id that matches a 972 * specific interface class of devices. 973 */ 974 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 975 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 976 USB_DEVICE_ID_MATCH_INT_CLASS, \ 977 .idVendor = (vend), \ 978 .idProduct = (prod), \ 979 .bInterfaceClass = (cl) 980 981 /** 982 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 983 * @vend: the 16 bit USB Vendor ID 984 * @prod: the 16 bit USB Product ID 985 * @pr: bInterfaceProtocol value 986 * 987 * This macro is used to create a struct usb_device_id that matches a 988 * specific interface protocol of devices. 989 */ 990 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 991 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 992 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 993 .idVendor = (vend), \ 994 .idProduct = (prod), \ 995 .bInterfaceProtocol = (pr) 996 997 /** 998 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 999 * @vend: the 16 bit USB Vendor ID 1000 * @prod: the 16 bit USB Product ID 1001 * @num: bInterfaceNumber value 1002 * 1003 * This macro is used to create a struct usb_device_id that matches a 1004 * specific interface number of devices. 1005 */ 1006 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1007 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1008 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1009 .idVendor = (vend), \ 1010 .idProduct = (prod), \ 1011 .bInterfaceNumber = (num) 1012 1013 /** 1014 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1015 * @cl: bDeviceClass value 1016 * @sc: bDeviceSubClass value 1017 * @pr: bDeviceProtocol value 1018 * 1019 * This macro is used to create a struct usb_device_id that matches a 1020 * specific class of devices. 1021 */ 1022 #define USB_DEVICE_INFO(cl, sc, pr) \ 1023 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1024 .bDeviceClass = (cl), \ 1025 .bDeviceSubClass = (sc), \ 1026 .bDeviceProtocol = (pr) 1027 1028 /** 1029 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1030 * @cl: bInterfaceClass value 1031 * @sc: bInterfaceSubClass value 1032 * @pr: bInterfaceProtocol value 1033 * 1034 * This macro is used to create a struct usb_device_id that matches a 1035 * specific class of interfaces. 1036 */ 1037 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1038 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1039 .bInterfaceClass = (cl), \ 1040 .bInterfaceSubClass = (sc), \ 1041 .bInterfaceProtocol = (pr) 1042 1043 /** 1044 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1045 * @vend: the 16 bit USB Vendor ID 1046 * @prod: the 16 bit USB Product ID 1047 * @cl: bInterfaceClass value 1048 * @sc: bInterfaceSubClass value 1049 * @pr: bInterfaceProtocol value 1050 * 1051 * This macro is used to create a struct usb_device_id that matches a 1052 * specific device with a specific class of interfaces. 1053 * 1054 * This is especially useful when explicitly matching devices that have 1055 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1056 */ 1057 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1058 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1059 | USB_DEVICE_ID_MATCH_DEVICE, \ 1060 .idVendor = (vend), \ 1061 .idProduct = (prod), \ 1062 .bInterfaceClass = (cl), \ 1063 .bInterfaceSubClass = (sc), \ 1064 .bInterfaceProtocol = (pr) 1065 1066 /** 1067 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1068 * @vend: the 16 bit USB Vendor ID 1069 * @cl: bInterfaceClass value 1070 * @sc: bInterfaceSubClass value 1071 * @pr: bInterfaceProtocol value 1072 * 1073 * This macro is used to create a struct usb_device_id that matches a 1074 * specific vendor with a specific class of interfaces. 1075 * 1076 * This is especially useful when explicitly matching devices that have 1077 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1078 */ 1079 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1080 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1081 | USB_DEVICE_ID_MATCH_VENDOR, \ 1082 .idVendor = (vend), \ 1083 .bInterfaceClass = (cl), \ 1084 .bInterfaceSubClass = (sc), \ 1085 .bInterfaceProtocol = (pr) 1086 1087 /* ----------------------------------------------------------------------- */ 1088 1089 /* Stuff for dynamic usb ids */ 1090 struct usb_dynids { 1091 spinlock_t lock; 1092 struct list_head list; 1093 }; 1094 1095 struct usb_dynid { 1096 struct list_head node; 1097 struct usb_device_id id; 1098 }; 1099 1100 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1101 const struct usb_device_id *id_table, 1102 struct device_driver *driver, 1103 const char *buf, size_t count); 1104 1105 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1106 1107 /** 1108 * struct usbdrv_wrap - wrapper for driver-model structure 1109 * @driver: The driver-model core driver structure. 1110 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1111 */ 1112 struct usbdrv_wrap { 1113 struct device_driver driver; 1114 int for_devices; 1115 }; 1116 1117 /** 1118 * struct usb_driver - identifies USB interface driver to usbcore 1119 * @name: The driver name should be unique among USB drivers, 1120 * and should normally be the same as the module name. 1121 * @probe: Called to see if the driver is willing to manage a particular 1122 * interface on a device. If it is, probe returns zero and uses 1123 * usb_set_intfdata() to associate driver-specific data with the 1124 * interface. It may also use usb_set_interface() to specify the 1125 * appropriate altsetting. If unwilling to manage the interface, 1126 * return -ENODEV, if genuine IO errors occurred, an appropriate 1127 * negative errno value. 1128 * @disconnect: Called when the interface is no longer accessible, usually 1129 * because its device has been (or is being) disconnected or the 1130 * driver module is being unloaded. 1131 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1132 * the "usbfs" filesystem. This lets devices provide ways to 1133 * expose information to user space regardless of where they 1134 * do (or don't) show up otherwise in the filesystem. 1135 * @suspend: Called when the device is going to be suspended by the 1136 * system either from system sleep or runtime suspend context. The 1137 * return value will be ignored in system sleep context, so do NOT 1138 * try to continue using the device if suspend fails in this case. 1139 * Instead, let the resume or reset-resume routine recover from 1140 * the failure. 1141 * @resume: Called when the device is being resumed by the system. 1142 * @reset_resume: Called when the suspended device has been reset instead 1143 * of being resumed. 1144 * @pre_reset: Called by usb_reset_device() when the device is about to be 1145 * reset. This routine must not return until the driver has no active 1146 * URBs for the device, and no more URBs may be submitted until the 1147 * post_reset method is called. 1148 * @post_reset: Called by usb_reset_device() after the device 1149 * has been reset 1150 * @id_table: USB drivers use ID table to support hotplugging. 1151 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1152 * or your driver's probe function will never get called. 1153 * @dev_groups: Attributes attached to the device that will be created once it 1154 * is bound to the driver. 1155 * @dynids: used internally to hold the list of dynamically added device 1156 * ids for this driver. 1157 * @drvwrap: Driver-model core structure wrapper. 1158 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1159 * added to this driver by preventing the sysfs file from being created. 1160 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1161 * for interfaces bound to this driver. 1162 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1163 * endpoints before calling the driver's disconnect method. 1164 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1165 * to initiate lower power link state transitions when an idle timeout 1166 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1167 * 1168 * USB interface drivers must provide a name, probe() and disconnect() 1169 * methods, and an id_table. Other driver fields are optional. 1170 * 1171 * The id_table is used in hotplugging. It holds a set of descriptors, 1172 * and specialized data may be associated with each entry. That table 1173 * is used by both user and kernel mode hotplugging support. 1174 * 1175 * The probe() and disconnect() methods are called in a context where 1176 * they can sleep, but they should avoid abusing the privilege. Most 1177 * work to connect to a device should be done when the device is opened, 1178 * and undone at the last close. The disconnect code needs to address 1179 * concurrency issues with respect to open() and close() methods, as 1180 * well as forcing all pending I/O requests to complete (by unlinking 1181 * them as necessary, and blocking until the unlinks complete). 1182 */ 1183 struct usb_driver { 1184 const char *name; 1185 1186 int (*probe) (struct usb_interface *intf, 1187 const struct usb_device_id *id); 1188 1189 void (*disconnect) (struct usb_interface *intf); 1190 1191 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1192 void *buf); 1193 1194 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1195 int (*resume) (struct usb_interface *intf); 1196 int (*reset_resume)(struct usb_interface *intf); 1197 1198 int (*pre_reset)(struct usb_interface *intf); 1199 int (*post_reset)(struct usb_interface *intf); 1200 1201 const struct usb_device_id *id_table; 1202 const struct attribute_group **dev_groups; 1203 1204 struct usb_dynids dynids; 1205 struct usbdrv_wrap drvwrap; 1206 unsigned int no_dynamic_id:1; 1207 unsigned int supports_autosuspend:1; 1208 unsigned int disable_hub_initiated_lpm:1; 1209 unsigned int soft_unbind:1; 1210 }; 1211 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1212 1213 /** 1214 * struct usb_device_driver - identifies USB device driver to usbcore 1215 * @name: The driver name should be unique among USB drivers, 1216 * and should normally be the same as the module name. 1217 * @match: If set, used for better device/driver matching. 1218 * @probe: Called to see if the driver is willing to manage a particular 1219 * device. If it is, probe returns zero and uses dev_set_drvdata() 1220 * to associate driver-specific data with the device. If unwilling 1221 * to manage the device, return a negative errno value. 1222 * @disconnect: Called when the device is no longer accessible, usually 1223 * because it has been (or is being) disconnected or the driver's 1224 * module is being unloaded. 1225 * @suspend: Called when the device is going to be suspended by the system. 1226 * @resume: Called when the device is being resumed by the system. 1227 * @dev_groups: Attributes attached to the device that will be created once it 1228 * is bound to the driver. 1229 * @drvwrap: Driver-model core structure wrapper. 1230 * @id_table: used with @match() to select better matching driver at 1231 * probe() time. 1232 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1233 * for devices bound to this driver. 1234 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1235 * resume and suspend functions will be called in addition to the driver's 1236 * own, so this part of the setup does not need to be replicated. 1237 * 1238 * USB drivers must provide all the fields listed above except drvwrap, 1239 * match, and id_table. 1240 */ 1241 struct usb_device_driver { 1242 const char *name; 1243 1244 bool (*match) (struct usb_device *udev); 1245 int (*probe) (struct usb_device *udev); 1246 void (*disconnect) (struct usb_device *udev); 1247 1248 int (*suspend) (struct usb_device *udev, pm_message_t message); 1249 int (*resume) (struct usb_device *udev, pm_message_t message); 1250 const struct attribute_group **dev_groups; 1251 struct usbdrv_wrap drvwrap; 1252 const struct usb_device_id *id_table; 1253 unsigned int supports_autosuspend:1; 1254 unsigned int generic_subclass:1; 1255 }; 1256 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1257 drvwrap.driver) 1258 1259 /** 1260 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1261 * @name: the usb class device name for this driver. Will show up in sysfs. 1262 * @devnode: Callback to provide a naming hint for a possible 1263 * device node to create. 1264 * @fops: pointer to the struct file_operations of this driver. 1265 * @minor_base: the start of the minor range for this driver. 1266 * 1267 * This structure is used for the usb_register_dev() and 1268 * usb_deregister_dev() functions, to consolidate a number of the 1269 * parameters used for them. 1270 */ 1271 struct usb_class_driver { 1272 char *name; 1273 char *(*devnode)(struct device *dev, umode_t *mode); 1274 const struct file_operations *fops; 1275 int minor_base; 1276 }; 1277 1278 /* 1279 * use these in module_init()/module_exit() 1280 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1281 */ 1282 extern int usb_register_driver(struct usb_driver *, struct module *, 1283 const char *); 1284 1285 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1286 #define usb_register(driver) \ 1287 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1288 1289 extern void usb_deregister(struct usb_driver *); 1290 1291 /** 1292 * module_usb_driver() - Helper macro for registering a USB driver 1293 * @__usb_driver: usb_driver struct 1294 * 1295 * Helper macro for USB drivers which do not do anything special in module 1296 * init/exit. This eliminates a lot of boilerplate. Each module may only 1297 * use this macro once, and calling it replaces module_init() and module_exit() 1298 */ 1299 #define module_usb_driver(__usb_driver) \ 1300 module_driver(__usb_driver, usb_register, \ 1301 usb_deregister) 1302 1303 extern int usb_register_device_driver(struct usb_device_driver *, 1304 struct module *); 1305 extern void usb_deregister_device_driver(struct usb_device_driver *); 1306 1307 extern int usb_register_dev(struct usb_interface *intf, 1308 struct usb_class_driver *class_driver); 1309 extern void usb_deregister_dev(struct usb_interface *intf, 1310 struct usb_class_driver *class_driver); 1311 1312 extern int usb_disabled(void); 1313 1314 /* ----------------------------------------------------------------------- */ 1315 1316 /* 1317 * URB support, for asynchronous request completions 1318 */ 1319 1320 /* 1321 * urb->transfer_flags: 1322 * 1323 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1324 */ 1325 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1326 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1327 * slot in the schedule */ 1328 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1329 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1330 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1331 * needed */ 1332 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1333 1334 /* The following flags are used internally by usbcore and HCDs */ 1335 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1336 #define URB_DIR_OUT 0 1337 #define URB_DIR_MASK URB_DIR_IN 1338 1339 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1340 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1341 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1342 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1343 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1344 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1345 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1346 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1347 1348 struct usb_iso_packet_descriptor { 1349 unsigned int offset; 1350 unsigned int length; /* expected length */ 1351 unsigned int actual_length; 1352 int status; 1353 }; 1354 1355 struct urb; 1356 1357 struct usb_anchor { 1358 struct list_head urb_list; 1359 wait_queue_head_t wait; 1360 spinlock_t lock; 1361 atomic_t suspend_wakeups; 1362 unsigned int poisoned:1; 1363 }; 1364 1365 static inline void init_usb_anchor(struct usb_anchor *anchor) 1366 { 1367 memset(anchor, 0, sizeof(*anchor)); 1368 INIT_LIST_HEAD(&anchor->urb_list); 1369 init_waitqueue_head(&anchor->wait); 1370 spin_lock_init(&anchor->lock); 1371 } 1372 1373 typedef void (*usb_complete_t)(struct urb *); 1374 1375 /** 1376 * struct urb - USB Request Block 1377 * @urb_list: For use by current owner of the URB. 1378 * @anchor_list: membership in the list of an anchor 1379 * @anchor: to anchor URBs to a common mooring 1380 * @ep: Points to the endpoint's data structure. Will eventually 1381 * replace @pipe. 1382 * @pipe: Holds endpoint number, direction, type, and more. 1383 * Create these values with the eight macros available; 1384 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1385 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1386 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1387 * numbers range from zero to fifteen. Note that "in" endpoint two 1388 * is a different endpoint (and pipe) from "out" endpoint two. 1389 * The current configuration controls the existence, type, and 1390 * maximum packet size of any given endpoint. 1391 * @stream_id: the endpoint's stream ID for bulk streams 1392 * @dev: Identifies the USB device to perform the request. 1393 * @status: This is read in non-iso completion functions to get the 1394 * status of the particular request. ISO requests only use it 1395 * to tell whether the URB was unlinked; detailed status for 1396 * each frame is in the fields of the iso_frame-desc. 1397 * @transfer_flags: A variety of flags may be used to affect how URB 1398 * submission, unlinking, or operation are handled. Different 1399 * kinds of URB can use different flags. 1400 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1401 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1402 * (however, do not leave garbage in transfer_buffer even then). 1403 * This buffer must be suitable for DMA; allocate it with 1404 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1405 * of this buffer will be modified. This buffer is used for the data 1406 * stage of control transfers. 1407 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1408 * the device driver is saying that it provided this DMA address, 1409 * which the host controller driver should use in preference to the 1410 * transfer_buffer. 1411 * @sg: scatter gather buffer list, the buffer size of each element in 1412 * the list (except the last) must be divisible by the endpoint's 1413 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1414 * @num_mapped_sgs: (internal) number of mapped sg entries 1415 * @num_sgs: number of entries in the sg list 1416 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1417 * be broken up into chunks according to the current maximum packet 1418 * size for the endpoint, which is a function of the configuration 1419 * and is encoded in the pipe. When the length is zero, neither 1420 * transfer_buffer nor transfer_dma is used. 1421 * @actual_length: This is read in non-iso completion functions, and 1422 * it tells how many bytes (out of transfer_buffer_length) were 1423 * transferred. It will normally be the same as requested, unless 1424 * either an error was reported or a short read was performed. 1425 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1426 * short reads be reported as errors. 1427 * @setup_packet: Only used for control transfers, this points to eight bytes 1428 * of setup data. Control transfers always start by sending this data 1429 * to the device. Then transfer_buffer is read or written, if needed. 1430 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1431 * this field; setup_packet must point to a valid buffer. 1432 * @start_frame: Returns the initial frame for isochronous transfers. 1433 * @number_of_packets: Lists the number of ISO transfer buffers. 1434 * @interval: Specifies the polling interval for interrupt or isochronous 1435 * transfers. The units are frames (milliseconds) for full and low 1436 * speed devices, and microframes (1/8 millisecond) for highspeed 1437 * and SuperSpeed devices. 1438 * @error_count: Returns the number of ISO transfers that reported errors. 1439 * @context: For use in completion functions. This normally points to 1440 * request-specific driver context. 1441 * @complete: Completion handler. This URB is passed as the parameter to the 1442 * completion function. The completion function may then do what 1443 * it likes with the URB, including resubmitting or freeing it. 1444 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1445 * collect the transfer status for each buffer. 1446 * 1447 * This structure identifies USB transfer requests. URBs must be allocated by 1448 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1449 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1450 * are submitted using usb_submit_urb(), and pending requests may be canceled 1451 * using usb_unlink_urb() or usb_kill_urb(). 1452 * 1453 * Data Transfer Buffers: 1454 * 1455 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1456 * taken from the general page pool. That is provided by transfer_buffer 1457 * (control requests also use setup_packet), and host controller drivers 1458 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1459 * mapping operations can be expensive on some platforms (perhaps using a dma 1460 * bounce buffer or talking to an IOMMU), 1461 * although they're cheap on commodity x86 and ppc hardware. 1462 * 1463 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1464 * which tells the host controller driver that no such mapping is needed for 1465 * the transfer_buffer since 1466 * the device driver is DMA-aware. For example, a device driver might 1467 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1468 * When this transfer flag is provided, host controller drivers will 1469 * attempt to use the dma address found in the transfer_dma 1470 * field rather than determining a dma address themselves. 1471 * 1472 * Note that transfer_buffer must still be set if the controller 1473 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1474 * to root hub. If you have to transfer between highmem zone and the device 1475 * on such controller, create a bounce buffer or bail out with an error. 1476 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1477 * capable, assign NULL to it, so that usbmon knows not to use the value. 1478 * The setup_packet must always be set, so it cannot be located in highmem. 1479 * 1480 * Initialization: 1481 * 1482 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1483 * zero), and complete fields. All URBs must also initialize 1484 * transfer_buffer and transfer_buffer_length. They may provide the 1485 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1486 * to be treated as errors; that flag is invalid for write requests. 1487 * 1488 * Bulk URBs may 1489 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1490 * should always terminate with a short packet, even if it means adding an 1491 * extra zero length packet. 1492 * 1493 * Control URBs must provide a valid pointer in the setup_packet field. 1494 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1495 * beforehand. 1496 * 1497 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1498 * or, for highspeed devices, 125 microsecond units) 1499 * to poll for transfers. After the URB has been submitted, the interval 1500 * field reflects how the transfer was actually scheduled. 1501 * The polling interval may be more frequent than requested. 1502 * For example, some controllers have a maximum interval of 32 milliseconds, 1503 * while others support intervals of up to 1024 milliseconds. 1504 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1505 * endpoints, as well as high speed interrupt endpoints, the encoding of 1506 * the transfer interval in the endpoint descriptor is logarithmic. 1507 * Device drivers must convert that value to linear units themselves.) 1508 * 1509 * If an isochronous endpoint queue isn't already running, the host 1510 * controller will schedule a new URB to start as soon as bandwidth 1511 * utilization allows. If the queue is running then a new URB will be 1512 * scheduled to start in the first transfer slot following the end of the 1513 * preceding URB, if that slot has not already expired. If the slot has 1514 * expired (which can happen when IRQ delivery is delayed for a long time), 1515 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1516 * is clear then the URB will be scheduled to start in the expired slot, 1517 * implying that some of its packets will not be transferred; if the flag 1518 * is set then the URB will be scheduled in the first unexpired slot, 1519 * breaking the queue's synchronization. Upon URB completion, the 1520 * start_frame field will be set to the (micro)frame number in which the 1521 * transfer was scheduled. Ranges for frame counter values are HC-specific 1522 * and can go from as low as 256 to as high as 65536 frames. 1523 * 1524 * Isochronous URBs have a different data transfer model, in part because 1525 * the quality of service is only "best effort". Callers provide specially 1526 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1527 * at the end. Each such packet is an individual ISO transfer. Isochronous 1528 * URBs are normally queued, submitted by drivers to arrange that 1529 * transfers are at least double buffered, and then explicitly resubmitted 1530 * in completion handlers, so 1531 * that data (such as audio or video) streams at as constant a rate as the 1532 * host controller scheduler can support. 1533 * 1534 * Completion Callbacks: 1535 * 1536 * The completion callback is made in_interrupt(), and one of the first 1537 * things that a completion handler should do is check the status field. 1538 * The status field is provided for all URBs. It is used to report 1539 * unlinked URBs, and status for all non-ISO transfers. It should not 1540 * be examined before the URB is returned to the completion handler. 1541 * 1542 * The context field is normally used to link URBs back to the relevant 1543 * driver or request state. 1544 * 1545 * When the completion callback is invoked for non-isochronous URBs, the 1546 * actual_length field tells how many bytes were transferred. This field 1547 * is updated even when the URB terminated with an error or was unlinked. 1548 * 1549 * ISO transfer status is reported in the status and actual_length fields 1550 * of the iso_frame_desc array, and the number of errors is reported in 1551 * error_count. Completion callbacks for ISO transfers will normally 1552 * (re)submit URBs to ensure a constant transfer rate. 1553 * 1554 * Note that even fields marked "public" should not be touched by the driver 1555 * when the urb is owned by the hcd, that is, since the call to 1556 * usb_submit_urb() till the entry into the completion routine. 1557 */ 1558 struct urb { 1559 /* private: usb core and host controller only fields in the urb */ 1560 struct kref kref; /* reference count of the URB */ 1561 int unlinked; /* unlink error code */ 1562 void *hcpriv; /* private data for host controller */ 1563 atomic_t use_count; /* concurrent submissions counter */ 1564 atomic_t reject; /* submissions will fail */ 1565 1566 /* public: documented fields in the urb that can be used by drivers */ 1567 struct list_head urb_list; /* list head for use by the urb's 1568 * current owner */ 1569 struct list_head anchor_list; /* the URB may be anchored */ 1570 struct usb_anchor *anchor; 1571 struct usb_device *dev; /* (in) pointer to associated device */ 1572 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1573 unsigned int pipe; /* (in) pipe information */ 1574 unsigned int stream_id; /* (in) stream ID */ 1575 int status; /* (return) non-ISO status */ 1576 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1577 void *transfer_buffer; /* (in) associated data buffer */ 1578 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1579 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1580 int num_mapped_sgs; /* (internal) mapped sg entries */ 1581 int num_sgs; /* (in) number of entries in the sg list */ 1582 u32 transfer_buffer_length; /* (in) data buffer length */ 1583 u32 actual_length; /* (return) actual transfer length */ 1584 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1585 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1586 int start_frame; /* (modify) start frame (ISO) */ 1587 int number_of_packets; /* (in) number of ISO packets */ 1588 int interval; /* (modify) transfer interval 1589 * (INT/ISO) */ 1590 int error_count; /* (return) number of ISO errors */ 1591 void *context; /* (in) context for completion */ 1592 usb_complete_t complete; /* (in) completion routine */ 1593 struct usb_iso_packet_descriptor iso_frame_desc[]; 1594 /* (in) ISO ONLY */ 1595 }; 1596 1597 /* ----------------------------------------------------------------------- */ 1598 1599 /** 1600 * usb_fill_control_urb - initializes a control urb 1601 * @urb: pointer to the urb to initialize. 1602 * @dev: pointer to the struct usb_device for this urb. 1603 * @pipe: the endpoint pipe 1604 * @setup_packet: pointer to the setup_packet buffer 1605 * @transfer_buffer: pointer to the transfer buffer 1606 * @buffer_length: length of the transfer buffer 1607 * @complete_fn: pointer to the usb_complete_t function 1608 * @context: what to set the urb context to. 1609 * 1610 * Initializes a control urb with the proper information needed to submit 1611 * it to a device. 1612 */ 1613 static inline void usb_fill_control_urb(struct urb *urb, 1614 struct usb_device *dev, 1615 unsigned int pipe, 1616 unsigned char *setup_packet, 1617 void *transfer_buffer, 1618 int buffer_length, 1619 usb_complete_t complete_fn, 1620 void *context) 1621 { 1622 urb->dev = dev; 1623 urb->pipe = pipe; 1624 urb->setup_packet = setup_packet; 1625 urb->transfer_buffer = transfer_buffer; 1626 urb->transfer_buffer_length = buffer_length; 1627 urb->complete = complete_fn; 1628 urb->context = context; 1629 } 1630 1631 /** 1632 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1633 * @urb: pointer to the urb to initialize. 1634 * @dev: pointer to the struct usb_device for this urb. 1635 * @pipe: the endpoint pipe 1636 * @transfer_buffer: pointer to the transfer buffer 1637 * @buffer_length: length of the transfer buffer 1638 * @complete_fn: pointer to the usb_complete_t function 1639 * @context: what to set the urb context to. 1640 * 1641 * Initializes a bulk urb with the proper information needed to submit it 1642 * to a device. 1643 */ 1644 static inline void usb_fill_bulk_urb(struct urb *urb, 1645 struct usb_device *dev, 1646 unsigned int pipe, 1647 void *transfer_buffer, 1648 int buffer_length, 1649 usb_complete_t complete_fn, 1650 void *context) 1651 { 1652 urb->dev = dev; 1653 urb->pipe = pipe; 1654 urb->transfer_buffer = transfer_buffer; 1655 urb->transfer_buffer_length = buffer_length; 1656 urb->complete = complete_fn; 1657 urb->context = context; 1658 } 1659 1660 /** 1661 * usb_fill_int_urb - macro to help initialize a interrupt urb 1662 * @urb: pointer to the urb to initialize. 1663 * @dev: pointer to the struct usb_device for this urb. 1664 * @pipe: the endpoint pipe 1665 * @transfer_buffer: pointer to the transfer buffer 1666 * @buffer_length: length of the transfer buffer 1667 * @complete_fn: pointer to the usb_complete_t function 1668 * @context: what to set the urb context to. 1669 * @interval: what to set the urb interval to, encoded like 1670 * the endpoint descriptor's bInterval value. 1671 * 1672 * Initializes a interrupt urb with the proper information needed to submit 1673 * it to a device. 1674 * 1675 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1676 * encoding of the endpoint interval, and express polling intervals in 1677 * microframes (eight per millisecond) rather than in frames (one per 1678 * millisecond). 1679 * 1680 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1681 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1682 * through to the host controller, rather than being translated into microframe 1683 * units. 1684 */ 1685 static inline void usb_fill_int_urb(struct urb *urb, 1686 struct usb_device *dev, 1687 unsigned int pipe, 1688 void *transfer_buffer, 1689 int buffer_length, 1690 usb_complete_t complete_fn, 1691 void *context, 1692 int interval) 1693 { 1694 urb->dev = dev; 1695 urb->pipe = pipe; 1696 urb->transfer_buffer = transfer_buffer; 1697 urb->transfer_buffer_length = buffer_length; 1698 urb->complete = complete_fn; 1699 urb->context = context; 1700 1701 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1702 /* make sure interval is within allowed range */ 1703 interval = clamp(interval, 1, 16); 1704 1705 urb->interval = 1 << (interval - 1); 1706 } else { 1707 urb->interval = interval; 1708 } 1709 1710 urb->start_frame = -1; 1711 } 1712 1713 extern void usb_init_urb(struct urb *urb); 1714 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1715 extern void usb_free_urb(struct urb *urb); 1716 #define usb_put_urb usb_free_urb 1717 extern struct urb *usb_get_urb(struct urb *urb); 1718 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1719 extern int usb_unlink_urb(struct urb *urb); 1720 extern void usb_kill_urb(struct urb *urb); 1721 extern void usb_poison_urb(struct urb *urb); 1722 extern void usb_unpoison_urb(struct urb *urb); 1723 extern void usb_block_urb(struct urb *urb); 1724 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1725 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1726 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1727 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1728 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1729 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1730 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1731 extern void usb_unanchor_urb(struct urb *urb); 1732 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1733 unsigned int timeout); 1734 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1735 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1736 extern int usb_anchor_empty(struct usb_anchor *anchor); 1737 1738 #define usb_unblock_urb usb_unpoison_urb 1739 1740 /** 1741 * usb_urb_dir_in - check if an URB describes an IN transfer 1742 * @urb: URB to be checked 1743 * 1744 * Return: 1 if @urb describes an IN transfer (device-to-host), 1745 * otherwise 0. 1746 */ 1747 static inline int usb_urb_dir_in(struct urb *urb) 1748 { 1749 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1750 } 1751 1752 /** 1753 * usb_urb_dir_out - check if an URB describes an OUT transfer 1754 * @urb: URB to be checked 1755 * 1756 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1757 * otherwise 0. 1758 */ 1759 static inline int usb_urb_dir_out(struct urb *urb) 1760 { 1761 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1762 } 1763 1764 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1765 int usb_urb_ep_type_check(const struct urb *urb); 1766 1767 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1768 gfp_t mem_flags, dma_addr_t *dma); 1769 void usb_free_coherent(struct usb_device *dev, size_t size, 1770 void *addr, dma_addr_t dma); 1771 1772 #if 0 1773 struct urb *usb_buffer_map(struct urb *urb); 1774 void usb_buffer_dmasync(struct urb *urb); 1775 void usb_buffer_unmap(struct urb *urb); 1776 #endif 1777 1778 struct scatterlist; 1779 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1780 struct scatterlist *sg, int nents); 1781 #if 0 1782 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1783 struct scatterlist *sg, int n_hw_ents); 1784 #endif 1785 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1786 struct scatterlist *sg, int n_hw_ents); 1787 1788 /*-------------------------------------------------------------------* 1789 * SYNCHRONOUS CALL SUPPORT * 1790 *-------------------------------------------------------------------*/ 1791 1792 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1793 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1794 void *data, __u16 size, int timeout); 1795 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1796 void *data, int len, int *actual_length, int timeout); 1797 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1798 void *data, int len, int *actual_length, 1799 int timeout); 1800 1801 /* wrappers around usb_control_msg() for the most common standard requests */ 1802 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1803 __u8 requesttype, __u16 value, __u16 index, 1804 const void *data, __u16 size, int timeout, 1805 gfp_t memflags); 1806 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1807 __u8 requesttype, __u16 value, __u16 index, 1808 void *data, __u16 size, int timeout, 1809 gfp_t memflags); 1810 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1811 unsigned char descindex, void *buf, int size); 1812 extern int usb_get_status(struct usb_device *dev, 1813 int recip, int type, int target, void *data); 1814 1815 static inline int usb_get_std_status(struct usb_device *dev, 1816 int recip, int target, void *data) 1817 { 1818 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1819 data); 1820 } 1821 1822 static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1823 { 1824 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1825 0, data); 1826 } 1827 1828 extern int usb_string(struct usb_device *dev, int index, 1829 char *buf, size_t size); 1830 1831 /* wrappers that also update important state inside usbcore */ 1832 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1833 extern int usb_reset_configuration(struct usb_device *dev); 1834 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1835 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1836 1837 /* this request isn't really synchronous, but it belongs with the others */ 1838 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1839 1840 /* choose and set configuration for device */ 1841 extern int usb_choose_configuration(struct usb_device *udev); 1842 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1843 1844 /* 1845 * timeouts, in milliseconds, used for sending/receiving control messages 1846 * they typically complete within a few frames (msec) after they're issued 1847 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1848 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1849 */ 1850 #define USB_CTRL_GET_TIMEOUT 5000 1851 #define USB_CTRL_SET_TIMEOUT 5000 1852 1853 1854 /** 1855 * struct usb_sg_request - support for scatter/gather I/O 1856 * @status: zero indicates success, else negative errno 1857 * @bytes: counts bytes transferred. 1858 * 1859 * These requests are initialized using usb_sg_init(), and then are used 1860 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1861 * members of the request object aren't for driver access. 1862 * 1863 * The status and bytecount values are valid only after usb_sg_wait() 1864 * returns. If the status is zero, then the bytecount matches the total 1865 * from the request. 1866 * 1867 * After an error completion, drivers may need to clear a halt condition 1868 * on the endpoint. 1869 */ 1870 struct usb_sg_request { 1871 int status; 1872 size_t bytes; 1873 1874 /* private: 1875 * members below are private to usbcore, 1876 * and are not provided for driver access! 1877 */ 1878 spinlock_t lock; 1879 1880 struct usb_device *dev; 1881 int pipe; 1882 1883 int entries; 1884 struct urb **urbs; 1885 1886 int count; 1887 struct completion complete; 1888 }; 1889 1890 int usb_sg_init( 1891 struct usb_sg_request *io, 1892 struct usb_device *dev, 1893 unsigned pipe, 1894 unsigned period, 1895 struct scatterlist *sg, 1896 int nents, 1897 size_t length, 1898 gfp_t mem_flags 1899 ); 1900 void usb_sg_cancel(struct usb_sg_request *io); 1901 void usb_sg_wait(struct usb_sg_request *io); 1902 1903 1904 /* ----------------------------------------------------------------------- */ 1905 1906 /* 1907 * For various legacy reasons, Linux has a small cookie that's paired with 1908 * a struct usb_device to identify an endpoint queue. Queue characteristics 1909 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1910 * an unsigned int encoded as: 1911 * 1912 * - direction: bit 7 (0 = Host-to-Device [Out], 1913 * 1 = Device-to-Host [In] ... 1914 * like endpoint bEndpointAddress) 1915 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1916 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1917 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1918 * 10 = control, 11 = bulk) 1919 * 1920 * Given the device address and endpoint descriptor, pipes are redundant. 1921 */ 1922 1923 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1924 /* (yet ... they're the values used by usbfs) */ 1925 #define PIPE_ISOCHRONOUS 0 1926 #define PIPE_INTERRUPT 1 1927 #define PIPE_CONTROL 2 1928 #define PIPE_BULK 3 1929 1930 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1931 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1932 1933 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1934 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1935 1936 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1937 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1938 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1939 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1940 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1941 1942 static inline unsigned int __create_pipe(struct usb_device *dev, 1943 unsigned int endpoint) 1944 { 1945 return (dev->devnum << 8) | (endpoint << 15); 1946 } 1947 1948 /* Create various pipes... */ 1949 #define usb_sndctrlpipe(dev, endpoint) \ 1950 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1951 #define usb_rcvctrlpipe(dev, endpoint) \ 1952 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1953 #define usb_sndisocpipe(dev, endpoint) \ 1954 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1955 #define usb_rcvisocpipe(dev, endpoint) \ 1956 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1957 #define usb_sndbulkpipe(dev, endpoint) \ 1958 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1959 #define usb_rcvbulkpipe(dev, endpoint) \ 1960 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1961 #define usb_sndintpipe(dev, endpoint) \ 1962 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1963 #define usb_rcvintpipe(dev, endpoint) \ 1964 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1965 1966 static inline struct usb_host_endpoint * 1967 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1968 { 1969 struct usb_host_endpoint **eps; 1970 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1971 return eps[usb_pipeendpoint(pipe)]; 1972 } 1973 1974 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 1975 { 1976 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 1977 1978 if (!ep) 1979 return 0; 1980 1981 /* NOTE: only 0x07ff bits are for packet size... */ 1982 return usb_endpoint_maxp(&ep->desc); 1983 } 1984 1985 /* translate USB error codes to codes user space understands */ 1986 static inline int usb_translate_errors(int error_code) 1987 { 1988 switch (error_code) { 1989 case 0: 1990 case -ENOMEM: 1991 case -ENODEV: 1992 case -EOPNOTSUPP: 1993 return error_code; 1994 default: 1995 return -EIO; 1996 } 1997 } 1998 1999 /* Events from the usb core */ 2000 #define USB_DEVICE_ADD 0x0001 2001 #define USB_DEVICE_REMOVE 0x0002 2002 #define USB_BUS_ADD 0x0003 2003 #define USB_BUS_REMOVE 0x0004 2004 extern void usb_register_notify(struct notifier_block *nb); 2005 extern void usb_unregister_notify(struct notifier_block *nb); 2006 2007 /* debugfs stuff */ 2008 extern struct dentry *usb_debug_root; 2009 2010 /* LED triggers */ 2011 enum usb_led_event { 2012 USB_LED_EVENT_HOST = 0, 2013 USB_LED_EVENT_GADGET = 1, 2014 }; 2015 2016 #ifdef CONFIG_USB_LED_TRIG 2017 extern void usb_led_activity(enum usb_led_event ev); 2018 #else 2019 static inline void usb_led_activity(enum usb_led_event ev) {} 2020 #endif 2021 2022 #endif /* __KERNEL__ */ 2023 2024 #endif 2025