1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_USB_H 3 #define __LINUX_USB_H 4 5 #include <linux/mod_devicetable.h> 6 #include <linux/usb/ch9.h> 7 8 #define USB_MAJOR 180 9 #define USB_DEVICE_MAJOR 189 10 11 12 #ifdef __KERNEL__ 13 14 #include <linux/errno.h> /* for -ENODEV */ 15 #include <linux/delay.h> /* for mdelay() */ 16 #include <linux/interrupt.h> /* for in_interrupt() */ 17 #include <linux/list.h> /* for struct list_head */ 18 #include <linux/kref.h> /* for struct kref */ 19 #include <linux/device.h> /* for struct device */ 20 #include <linux/fs.h> /* for struct file_operations */ 21 #include <linux/completion.h> /* for struct completion */ 22 #include <linux/sched.h> /* for current && schedule_timeout */ 23 #include <linux/mutex.h> /* for struct mutex */ 24 #include <linux/pm_runtime.h> /* for runtime PM */ 25 26 struct usb_device; 27 struct usb_driver; 28 struct wusb_dev; 29 30 /*-------------------------------------------------------------------------*/ 31 32 /* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48 struct ep_device; 49 50 /** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67 struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79 }; 80 81 /* host-side wrapper for one interface setting's parsed descriptors */ 82 struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94 }; 95 96 enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101 }; 102 103 int __must_check 104 usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110 int __must_check 111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117 static inline int __must_check 118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120 { 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122 } 123 124 static inline int __must_check 125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127 { 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129 } 130 131 static inline int __must_check 132 usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134 { 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136 } 137 138 static inline int __must_check 139 usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141 { 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143 } 144 145 static inline int __must_check 146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148 { 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150 } 151 152 static inline int __must_check 153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155 { 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157 } 158 159 static inline int __must_check 160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162 { 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164 } 165 166 static inline int __must_check 167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169 { 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171 } 172 173 /** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232 struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 struct work_struct reset_ws; /* for resets in atomic context */ 260 }; 261 262 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev) 263 264 static inline void *usb_get_intfdata(struct usb_interface *intf) 265 { 266 return dev_get_drvdata(&intf->dev); 267 } 268 269 /** 270 * usb_set_intfdata() - associate driver-specific data with the interface 271 * @intf: the usb interface 272 * @data: pointer to the device priv structure or %NULL 273 * 274 * Drivers should use this function in their probe() to associate their 275 * driver-specific data with the usb interface. 276 * 277 * When disconnecting, the core will take care of setting @intf back to %NULL, 278 * so no actions are needed on the driver side. The interface should not be set 279 * to %NULL before all actions completed (e.g. no outsanding URB remaining). 280 */ 281 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 282 { 283 dev_set_drvdata(&intf->dev, data); 284 } 285 286 struct usb_interface *usb_get_intf(struct usb_interface *intf); 287 void usb_put_intf(struct usb_interface *intf); 288 289 /* Hard limit */ 290 #define USB_MAXENDPOINTS 30 291 /* this maximum is arbitrary */ 292 #define USB_MAXINTERFACES 32 293 #define USB_MAXIADS (USB_MAXINTERFACES/2) 294 295 /* 296 * USB Resume Timer: Every Host controller driver should drive the resume 297 * signalling on the bus for the amount of time defined by this macro. 298 * 299 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 300 * 301 * Note that the USB Specification states we should drive resume for *at least* 302 * 20 ms, but it doesn't give an upper bound. This creates two possible 303 * situations which we want to avoid: 304 * 305 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 306 * us to fail USB Electrical Tests, thus failing Certification 307 * 308 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 309 * and while we can argue that's against the USB Specification, we don't have 310 * control over which devices a certification laboratory will be using for 311 * certification. If CertLab uses a device which was tested against Windows and 312 * that happens to have relaxed resume signalling rules, we might fall into 313 * situations where we fail interoperability and electrical tests. 314 * 315 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 316 * should cope with both LPJ calibration errors and devices not following every 317 * detail of the USB Specification. 318 */ 319 #define USB_RESUME_TIMEOUT 40 /* ms */ 320 321 /** 322 * struct usb_interface_cache - long-term representation of a device interface 323 * @num_altsetting: number of altsettings defined. 324 * @ref: reference counter. 325 * @altsetting: variable-length array of interface structures, one for 326 * each alternate setting that may be selected. Each one includes a 327 * set of endpoint configurations. They will be in no particular order. 328 * 329 * These structures persist for the lifetime of a usb_device, unlike 330 * struct usb_interface (which persists only as long as its configuration 331 * is installed). The altsetting arrays can be accessed through these 332 * structures at any time, permitting comparison of configurations and 333 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 334 */ 335 struct usb_interface_cache { 336 unsigned num_altsetting; /* number of alternate settings */ 337 struct kref ref; /* reference counter */ 338 339 /* variable-length array of alternate settings for this interface, 340 * stored in no particular order */ 341 struct usb_host_interface altsetting[]; 342 }; 343 #define ref_to_usb_interface_cache(r) \ 344 container_of(r, struct usb_interface_cache, ref) 345 #define altsetting_to_usb_interface_cache(a) \ 346 container_of(a, struct usb_interface_cache, altsetting[0]) 347 348 /** 349 * struct usb_host_config - representation of a device's configuration 350 * @desc: the device's configuration descriptor. 351 * @string: pointer to the cached version of the iConfiguration string, if 352 * present for this configuration. 353 * @intf_assoc: list of any interface association descriptors in this config 354 * @interface: array of pointers to usb_interface structures, one for each 355 * interface in the configuration. The number of interfaces is stored 356 * in desc.bNumInterfaces. These pointers are valid only while the 357 * configuration is active. 358 * @intf_cache: array of pointers to usb_interface_cache structures, one 359 * for each interface in the configuration. These structures exist 360 * for the entire life of the device. 361 * @extra: pointer to buffer containing all extra descriptors associated 362 * with this configuration (those preceding the first interface 363 * descriptor). 364 * @extralen: length of the extra descriptors buffer. 365 * 366 * USB devices may have multiple configurations, but only one can be active 367 * at any time. Each encapsulates a different operational environment; 368 * for example, a dual-speed device would have separate configurations for 369 * full-speed and high-speed operation. The number of configurations 370 * available is stored in the device descriptor as bNumConfigurations. 371 * 372 * A configuration can contain multiple interfaces. Each corresponds to 373 * a different function of the USB device, and all are available whenever 374 * the configuration is active. The USB standard says that interfaces 375 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 376 * of devices get this wrong. In addition, the interface array is not 377 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 378 * look up an interface entry based on its number. 379 * 380 * Device drivers should not attempt to activate configurations. The choice 381 * of which configuration to install is a policy decision based on such 382 * considerations as available power, functionality provided, and the user's 383 * desires (expressed through userspace tools). However, drivers can call 384 * usb_reset_configuration() to reinitialize the current configuration and 385 * all its interfaces. 386 */ 387 struct usb_host_config { 388 struct usb_config_descriptor desc; 389 390 char *string; /* iConfiguration string, if present */ 391 392 /* List of any Interface Association Descriptors in this 393 * configuration. */ 394 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 395 396 /* the interfaces associated with this configuration, 397 * stored in no particular order */ 398 struct usb_interface *interface[USB_MAXINTERFACES]; 399 400 /* Interface information available even when this is not the 401 * active configuration */ 402 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 403 404 unsigned char *extra; /* Extra descriptors */ 405 int extralen; 406 }; 407 408 /* USB2.0 and USB3.0 device BOS descriptor set */ 409 struct usb_host_bos { 410 struct usb_bos_descriptor *desc; 411 412 /* wireless cap descriptor is handled by wusb */ 413 struct usb_ext_cap_descriptor *ext_cap; 414 struct usb_ss_cap_descriptor *ss_cap; 415 struct usb_ssp_cap_descriptor *ssp_cap; 416 struct usb_ss_container_id_descriptor *ss_id; 417 struct usb_ptm_cap_descriptor *ptm_cap; 418 }; 419 420 int __usb_get_extra_descriptor(char *buffer, unsigned size, 421 unsigned char type, void **ptr, size_t min); 422 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 423 __usb_get_extra_descriptor((ifpoint)->extra, \ 424 (ifpoint)->extralen, \ 425 type, (void **)ptr, sizeof(**(ptr))) 426 427 /* ----------------------------------------------------------------------- */ 428 429 /* USB device number allocation bitmap */ 430 struct usb_devmap { 431 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 432 }; 433 434 /* 435 * Allocated per bus (tree of devices) we have: 436 */ 437 struct usb_bus { 438 struct device *controller; /* host side hardware */ 439 struct device *sysdev; /* as seen from firmware or bus */ 440 int busnum; /* Bus number (in order of reg) */ 441 const char *bus_name; /* stable id (PCI slot_name etc) */ 442 u8 uses_pio_for_control; /* 443 * Does the host controller use PIO 444 * for control transfers? 445 */ 446 u8 otg_port; /* 0, or number of OTG/HNP port */ 447 unsigned is_b_host:1; /* true during some HNP roleswitches */ 448 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 449 unsigned no_stop_on_short:1; /* 450 * Quirk: some controllers don't stop 451 * the ep queue on a short transfer 452 * with the URB_SHORT_NOT_OK flag set. 453 */ 454 unsigned no_sg_constraint:1; /* no sg constraint */ 455 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 456 457 int devnum_next; /* Next open device number in 458 * round-robin allocation */ 459 struct mutex devnum_next_mutex; /* devnum_next mutex */ 460 461 struct usb_devmap devmap; /* device address allocation map */ 462 struct usb_device *root_hub; /* Root hub */ 463 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 464 465 int bandwidth_allocated; /* on this bus: how much of the time 466 * reserved for periodic (intr/iso) 467 * requests is used, on average? 468 * Units: microseconds/frame. 469 * Limits: Full/low speed reserve 90%, 470 * while high speed reserves 80%. 471 */ 472 int bandwidth_int_reqs; /* number of Interrupt requests */ 473 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 474 475 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 476 477 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 478 struct mon_bus *mon_bus; /* non-null when associated */ 479 int monitored; /* non-zero when monitored */ 480 #endif 481 }; 482 483 struct usb_dev_state; 484 485 /* ----------------------------------------------------------------------- */ 486 487 struct usb_tt; 488 489 enum usb_port_connect_type { 490 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 491 USB_PORT_CONNECT_TYPE_HOT_PLUG, 492 USB_PORT_CONNECT_TYPE_HARD_WIRED, 493 USB_PORT_NOT_USED, 494 }; 495 496 /* 497 * USB port quirks. 498 */ 499 500 /* For the given port, prefer the old (faster) enumeration scheme. */ 501 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 502 503 /* Decrease TRSTRCY to 10ms during device enumeration. */ 504 #define USB_PORT_QUIRK_FAST_ENUM BIT(1) 505 506 /* 507 * USB 2.0 Link Power Management (LPM) parameters. 508 */ 509 struct usb2_lpm_parameters { 510 /* Best effort service latency indicate how long the host will drive 511 * resume on an exit from L1. 512 */ 513 unsigned int besl; 514 515 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 516 * When the timer counts to zero, the parent hub will initiate a LPM 517 * transition to L1. 518 */ 519 int timeout; 520 }; 521 522 /* 523 * USB 3.0 Link Power Management (LPM) parameters. 524 * 525 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 526 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 527 * All three are stored in nanoseconds. 528 */ 529 struct usb3_lpm_parameters { 530 /* 531 * Maximum exit latency (MEL) for the host to send a packet to the 532 * device (either a Ping for isoc endpoints, or a data packet for 533 * interrupt endpoints), the hubs to decode the packet, and for all hubs 534 * in the path to transition the links to U0. 535 */ 536 unsigned int mel; 537 /* 538 * Maximum exit latency for a device-initiated LPM transition to bring 539 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 540 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 541 */ 542 unsigned int pel; 543 544 /* 545 * The System Exit Latency (SEL) includes PEL, and three other 546 * latencies. After a device initiates a U0 transition, it will take 547 * some time from when the device sends the ERDY to when it will finally 548 * receive the data packet. Basically, SEL should be the worse-case 549 * latency from when a device starts initiating a U0 transition to when 550 * it will get data. 551 */ 552 unsigned int sel; 553 /* 554 * The idle timeout value that is currently programmed into the parent 555 * hub for this device. When the timer counts to zero, the parent hub 556 * will initiate an LPM transition to either U1 or U2. 557 */ 558 int timeout; 559 }; 560 561 /** 562 * struct usb_device - kernel's representation of a USB device 563 * @devnum: device number; address on a USB bus 564 * @devpath: device ID string for use in messages (e.g., /port/...) 565 * @route: tree topology hex string for use with xHCI 566 * @state: device state: configured, not attached, etc. 567 * @speed: device speed: high/full/low (or error) 568 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 569 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 570 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 571 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 572 * @ttport: device port on that tt hub 573 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 574 * @parent: our hub, unless we're the root 575 * @bus: bus we're part of 576 * @ep0: endpoint 0 data (default control pipe) 577 * @dev: generic device interface 578 * @descriptor: USB device descriptor 579 * @bos: USB device BOS descriptor set 580 * @config: all of the device's configs 581 * @actconfig: the active configuration 582 * @ep_in: array of IN endpoints 583 * @ep_out: array of OUT endpoints 584 * @rawdescriptors: raw descriptors for each config 585 * @bus_mA: Current available from the bus 586 * @portnum: parent port number (origin 1) 587 * @level: number of USB hub ancestors 588 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 589 * @can_submit: URBs may be submitted 590 * @persist_enabled: USB_PERSIST enabled for this device 591 * @reset_in_progress: the device is being reset 592 * @have_langid: whether string_langid is valid 593 * @authorized: policy has said we can use it; 594 * (user space) policy determines if we authorize this device to be 595 * used or not. By default, wired USB devices are authorized. 596 * WUSB devices are not, until we authorize them from user space. 597 * FIXME -- complete doc 598 * @authenticated: Crypto authentication passed 599 * @wusb: device is Wireless USB 600 * @lpm_capable: device supports LPM 601 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 602 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 603 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 604 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 605 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 606 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 607 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 608 * @string_langid: language ID for strings 609 * @product: iProduct string, if present (static) 610 * @manufacturer: iManufacturer string, if present (static) 611 * @serial: iSerialNumber string, if present (static) 612 * @filelist: usbfs files that are open to this device 613 * @maxchild: number of ports if hub 614 * @quirks: quirks of the whole device 615 * @urbnum: number of URBs submitted for the whole device 616 * @active_duration: total time device is not suspended 617 * @connect_time: time device was first connected 618 * @do_remote_wakeup: remote wakeup should be enabled 619 * @reset_resume: needs reset instead of resume 620 * @port_is_suspended: the upstream port is suspended (L2 or U3) 621 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 622 * specific data for the device. 623 * @slot_id: Slot ID assigned by xHCI 624 * @removable: Device can be physically removed from this port 625 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 626 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 627 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 628 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 629 * to keep track of the number of functions that require USB 3.0 Link Power 630 * Management to be disabled for this usb_device. This count should only 631 * be manipulated by those functions, with the bandwidth_mutex is held. 632 * @hub_delay: cached value consisting of: 633 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 634 * Will be used as wValue for SetIsochDelay requests. 635 * @use_generic_driver: ask driver core to reprobe using the generic driver. 636 * 637 * Notes: 638 * Usbcore drivers should not set usbdev->state directly. Instead use 639 * usb_set_device_state(). 640 */ 641 struct usb_device { 642 int devnum; 643 char devpath[16]; 644 u32 route; 645 enum usb_device_state state; 646 enum usb_device_speed speed; 647 unsigned int rx_lanes; 648 unsigned int tx_lanes; 649 enum usb_ssp_rate ssp_rate; 650 651 struct usb_tt *tt; 652 int ttport; 653 654 unsigned int toggle[2]; 655 656 struct usb_device *parent; 657 struct usb_bus *bus; 658 struct usb_host_endpoint ep0; 659 660 struct device dev; 661 662 struct usb_device_descriptor descriptor; 663 struct usb_host_bos *bos; 664 struct usb_host_config *config; 665 666 struct usb_host_config *actconfig; 667 struct usb_host_endpoint *ep_in[16]; 668 struct usb_host_endpoint *ep_out[16]; 669 670 char **rawdescriptors; 671 672 unsigned short bus_mA; 673 u8 portnum; 674 u8 level; 675 u8 devaddr; 676 677 unsigned can_submit:1; 678 unsigned persist_enabled:1; 679 unsigned reset_in_progress:1; 680 unsigned have_langid:1; 681 unsigned authorized:1; 682 unsigned authenticated:1; 683 unsigned wusb:1; 684 unsigned lpm_capable:1; 685 unsigned lpm_devinit_allow:1; 686 unsigned usb2_hw_lpm_capable:1; 687 unsigned usb2_hw_lpm_besl_capable:1; 688 unsigned usb2_hw_lpm_enabled:1; 689 unsigned usb2_hw_lpm_allowed:1; 690 unsigned usb3_lpm_u1_enabled:1; 691 unsigned usb3_lpm_u2_enabled:1; 692 int string_langid; 693 694 /* static strings from the device */ 695 char *product; 696 char *manufacturer; 697 char *serial; 698 699 struct list_head filelist; 700 701 int maxchild; 702 703 u32 quirks; 704 atomic_t urbnum; 705 706 unsigned long active_duration; 707 708 #ifdef CONFIG_PM 709 unsigned long connect_time; 710 711 unsigned do_remote_wakeup:1; 712 unsigned reset_resume:1; 713 unsigned port_is_suspended:1; 714 #endif 715 struct wusb_dev *wusb_dev; 716 int slot_id; 717 struct usb2_lpm_parameters l1_params; 718 struct usb3_lpm_parameters u1_params; 719 struct usb3_lpm_parameters u2_params; 720 unsigned lpm_disable_count; 721 722 u16 hub_delay; 723 unsigned use_generic_driver:1; 724 }; 725 726 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev) 727 728 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 729 { 730 return to_usb_device(intf->dev.parent); 731 } 732 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 733 { 734 return to_usb_device((const struct device *)intf->dev.parent); 735 } 736 737 #define interface_to_usbdev(intf) \ 738 _Generic((intf), \ 739 const struct usb_interface *: __intf_to_usbdev_const, \ 740 struct usb_interface *: __intf_to_usbdev)(intf) 741 742 extern struct usb_device *usb_get_dev(struct usb_device *dev); 743 extern void usb_put_dev(struct usb_device *dev); 744 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 745 int port1); 746 747 /** 748 * usb_hub_for_each_child - iterate over all child devices on the hub 749 * @hdev: USB device belonging to the usb hub 750 * @port1: portnum associated with child device 751 * @child: child device pointer 752 */ 753 #define usb_hub_for_each_child(hdev, port1, child) \ 754 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 755 port1 <= hdev->maxchild; \ 756 child = usb_hub_find_child(hdev, ++port1)) \ 757 if (!child) continue; else 758 759 /* USB device locking */ 760 #define usb_lock_device(udev) device_lock(&(udev)->dev) 761 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 762 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 763 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 764 extern int usb_lock_device_for_reset(struct usb_device *udev, 765 const struct usb_interface *iface); 766 767 /* USB port reset for device reinitialization */ 768 extern int usb_reset_device(struct usb_device *dev); 769 extern void usb_queue_reset_device(struct usb_interface *dev); 770 771 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 772 773 #ifdef CONFIG_ACPI 774 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 775 bool enable); 776 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 777 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index); 778 #else 779 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 780 bool enable) { return 0; } 781 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 782 { return true; } 783 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index) 784 { return 0; } 785 #endif 786 787 /* USB autosuspend and autoresume */ 788 #ifdef CONFIG_PM 789 extern void usb_enable_autosuspend(struct usb_device *udev); 790 extern void usb_disable_autosuspend(struct usb_device *udev); 791 792 extern int usb_autopm_get_interface(struct usb_interface *intf); 793 extern void usb_autopm_put_interface(struct usb_interface *intf); 794 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 795 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 796 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 797 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 798 799 static inline void usb_mark_last_busy(struct usb_device *udev) 800 { 801 pm_runtime_mark_last_busy(&udev->dev); 802 } 803 804 #else 805 806 static inline int usb_enable_autosuspend(struct usb_device *udev) 807 { return 0; } 808 static inline int usb_disable_autosuspend(struct usb_device *udev) 809 { return 0; } 810 811 static inline int usb_autopm_get_interface(struct usb_interface *intf) 812 { return 0; } 813 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 814 { return 0; } 815 816 static inline void usb_autopm_put_interface(struct usb_interface *intf) 817 { } 818 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 819 { } 820 static inline void usb_autopm_get_interface_no_resume( 821 struct usb_interface *intf) 822 { } 823 static inline void usb_autopm_put_interface_no_suspend( 824 struct usb_interface *intf) 825 { } 826 static inline void usb_mark_last_busy(struct usb_device *udev) 827 { } 828 #endif 829 830 extern int usb_disable_lpm(struct usb_device *udev); 831 extern void usb_enable_lpm(struct usb_device *udev); 832 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 833 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 834 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 835 836 extern int usb_disable_ltm(struct usb_device *udev); 837 extern void usb_enable_ltm(struct usb_device *udev); 838 839 static inline bool usb_device_supports_ltm(struct usb_device *udev) 840 { 841 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 842 return false; 843 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 844 } 845 846 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 847 { 848 return udev && udev->bus && udev->bus->no_sg_constraint; 849 } 850 851 852 /*-------------------------------------------------------------------------*/ 853 854 /* for drivers using iso endpoints */ 855 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 856 857 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 858 extern int usb_alloc_streams(struct usb_interface *interface, 859 struct usb_host_endpoint **eps, unsigned int num_eps, 860 unsigned int num_streams, gfp_t mem_flags); 861 862 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 863 extern int usb_free_streams(struct usb_interface *interface, 864 struct usb_host_endpoint **eps, unsigned int num_eps, 865 gfp_t mem_flags); 866 867 /* used these for multi-interface device registration */ 868 extern int usb_driver_claim_interface(struct usb_driver *driver, 869 struct usb_interface *iface, void *data); 870 871 /** 872 * usb_interface_claimed - returns true iff an interface is claimed 873 * @iface: the interface being checked 874 * 875 * Return: %true (nonzero) iff the interface is claimed, else %false 876 * (zero). 877 * 878 * Note: 879 * Callers must own the driver model's usb bus readlock. So driver 880 * probe() entries don't need extra locking, but other call contexts 881 * may need to explicitly claim that lock. 882 * 883 */ 884 static inline int usb_interface_claimed(struct usb_interface *iface) 885 { 886 return (iface->dev.driver != NULL); 887 } 888 889 extern void usb_driver_release_interface(struct usb_driver *driver, 890 struct usb_interface *iface); 891 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 892 const struct usb_device_id *id); 893 extern int usb_match_one_id(struct usb_interface *interface, 894 const struct usb_device_id *id); 895 896 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 897 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 898 int minor); 899 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 900 unsigned ifnum); 901 extern struct usb_host_interface *usb_altnum_to_altsetting( 902 const struct usb_interface *intf, unsigned int altnum); 903 extern struct usb_host_interface *usb_find_alt_setting( 904 struct usb_host_config *config, 905 unsigned int iface_num, 906 unsigned int alt_num); 907 908 /* port claiming functions */ 909 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 910 struct usb_dev_state *owner); 911 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 912 struct usb_dev_state *owner); 913 914 /** 915 * usb_make_path - returns stable device path in the usb tree 916 * @dev: the device whose path is being constructed 917 * @buf: where to put the string 918 * @size: how big is "buf"? 919 * 920 * Return: Length of the string (> 0) or negative if size was too small. 921 * 922 * Note: 923 * This identifier is intended to be "stable", reflecting physical paths in 924 * hardware such as physical bus addresses for host controllers or ports on 925 * USB hubs. That makes it stay the same until systems are physically 926 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 927 * controllers. Adding and removing devices, including virtual root hubs 928 * in host controller driver modules, does not change these path identifiers; 929 * neither does rebooting or re-enumerating. These are more useful identifiers 930 * than changeable ("unstable") ones like bus numbers or device addresses. 931 * 932 * With a partial exception for devices connected to USB 2.0 root hubs, these 933 * identifiers are also predictable. So long as the device tree isn't changed, 934 * plugging any USB device into a given hub port always gives it the same path. 935 * Because of the use of "companion" controllers, devices connected to ports on 936 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 937 * high speed, and a different one if they are full or low speed. 938 */ 939 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 940 { 941 int actual; 942 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 943 dev->devpath); 944 return (actual >= (int)size) ? -1 : actual; 945 } 946 947 /*-------------------------------------------------------------------------*/ 948 949 #define USB_DEVICE_ID_MATCH_DEVICE \ 950 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 951 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 952 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 953 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 954 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 955 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 956 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 957 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 958 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 959 #define USB_DEVICE_ID_MATCH_INT_INFO \ 960 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 961 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 962 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 963 964 /** 965 * USB_DEVICE - macro used to describe a specific usb device 966 * @vend: the 16 bit USB Vendor ID 967 * @prod: the 16 bit USB Product ID 968 * 969 * This macro is used to create a struct usb_device_id that matches a 970 * specific device. 971 */ 972 #define USB_DEVICE(vend, prod) \ 973 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 974 .idVendor = (vend), \ 975 .idProduct = (prod) 976 /** 977 * USB_DEVICE_VER - describe a specific usb device with a version range 978 * @vend: the 16 bit USB Vendor ID 979 * @prod: the 16 bit USB Product ID 980 * @lo: the bcdDevice_lo value 981 * @hi: the bcdDevice_hi value 982 * 983 * This macro is used to create a struct usb_device_id that matches a 984 * specific device, with a version range. 985 */ 986 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 987 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 988 .idVendor = (vend), \ 989 .idProduct = (prod), \ 990 .bcdDevice_lo = (lo), \ 991 .bcdDevice_hi = (hi) 992 993 /** 994 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 995 * @vend: the 16 bit USB Vendor ID 996 * @prod: the 16 bit USB Product ID 997 * @cl: bInterfaceClass value 998 * 999 * This macro is used to create a struct usb_device_id that matches a 1000 * specific interface class of devices. 1001 */ 1002 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 1003 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1004 USB_DEVICE_ID_MATCH_INT_CLASS, \ 1005 .idVendor = (vend), \ 1006 .idProduct = (prod), \ 1007 .bInterfaceClass = (cl) 1008 1009 /** 1010 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 1011 * @vend: the 16 bit USB Vendor ID 1012 * @prod: the 16 bit USB Product ID 1013 * @pr: bInterfaceProtocol value 1014 * 1015 * This macro is used to create a struct usb_device_id that matches a 1016 * specific interface protocol of devices. 1017 */ 1018 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1019 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1020 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1021 .idVendor = (vend), \ 1022 .idProduct = (prod), \ 1023 .bInterfaceProtocol = (pr) 1024 1025 /** 1026 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1027 * @vend: the 16 bit USB Vendor ID 1028 * @prod: the 16 bit USB Product ID 1029 * @num: bInterfaceNumber value 1030 * 1031 * This macro is used to create a struct usb_device_id that matches a 1032 * specific interface number of devices. 1033 */ 1034 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1035 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1036 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1037 .idVendor = (vend), \ 1038 .idProduct = (prod), \ 1039 .bInterfaceNumber = (num) 1040 1041 /** 1042 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1043 * @cl: bDeviceClass value 1044 * @sc: bDeviceSubClass value 1045 * @pr: bDeviceProtocol value 1046 * 1047 * This macro is used to create a struct usb_device_id that matches a 1048 * specific class of devices. 1049 */ 1050 #define USB_DEVICE_INFO(cl, sc, pr) \ 1051 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1052 .bDeviceClass = (cl), \ 1053 .bDeviceSubClass = (sc), \ 1054 .bDeviceProtocol = (pr) 1055 1056 /** 1057 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1058 * @cl: bInterfaceClass value 1059 * @sc: bInterfaceSubClass value 1060 * @pr: bInterfaceProtocol value 1061 * 1062 * This macro is used to create a struct usb_device_id that matches a 1063 * specific class of interfaces. 1064 */ 1065 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1066 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1067 .bInterfaceClass = (cl), \ 1068 .bInterfaceSubClass = (sc), \ 1069 .bInterfaceProtocol = (pr) 1070 1071 /** 1072 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1073 * @vend: the 16 bit USB Vendor ID 1074 * @prod: the 16 bit USB Product ID 1075 * @cl: bInterfaceClass value 1076 * @sc: bInterfaceSubClass value 1077 * @pr: bInterfaceProtocol value 1078 * 1079 * This macro is used to create a struct usb_device_id that matches a 1080 * specific device with a specific class of interfaces. 1081 * 1082 * This is especially useful when explicitly matching devices that have 1083 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1084 */ 1085 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1086 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1087 | USB_DEVICE_ID_MATCH_DEVICE, \ 1088 .idVendor = (vend), \ 1089 .idProduct = (prod), \ 1090 .bInterfaceClass = (cl), \ 1091 .bInterfaceSubClass = (sc), \ 1092 .bInterfaceProtocol = (pr) 1093 1094 /** 1095 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1096 * @vend: the 16 bit USB Vendor ID 1097 * @cl: bInterfaceClass value 1098 * @sc: bInterfaceSubClass value 1099 * @pr: bInterfaceProtocol value 1100 * 1101 * This macro is used to create a struct usb_device_id that matches a 1102 * specific vendor with a specific class of interfaces. 1103 * 1104 * This is especially useful when explicitly matching devices that have 1105 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1106 */ 1107 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1108 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1109 | USB_DEVICE_ID_MATCH_VENDOR, \ 1110 .idVendor = (vend), \ 1111 .bInterfaceClass = (cl), \ 1112 .bInterfaceSubClass = (sc), \ 1113 .bInterfaceProtocol = (pr) 1114 1115 /* ----------------------------------------------------------------------- */ 1116 1117 /* Stuff for dynamic usb ids */ 1118 struct usb_dynids { 1119 spinlock_t lock; 1120 struct list_head list; 1121 }; 1122 1123 struct usb_dynid { 1124 struct list_head node; 1125 struct usb_device_id id; 1126 }; 1127 1128 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1129 const struct usb_device_id *id_table, 1130 struct device_driver *driver, 1131 const char *buf, size_t count); 1132 1133 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1134 1135 /** 1136 * struct usbdrv_wrap - wrapper for driver-model structure 1137 * @driver: The driver-model core driver structure. 1138 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1139 */ 1140 struct usbdrv_wrap { 1141 struct device_driver driver; 1142 int for_devices; 1143 }; 1144 1145 /** 1146 * struct usb_driver - identifies USB interface driver to usbcore 1147 * @name: The driver name should be unique among USB drivers, 1148 * and should normally be the same as the module name. 1149 * @probe: Called to see if the driver is willing to manage a particular 1150 * interface on a device. If it is, probe returns zero and uses 1151 * usb_set_intfdata() to associate driver-specific data with the 1152 * interface. It may also use usb_set_interface() to specify the 1153 * appropriate altsetting. If unwilling to manage the interface, 1154 * return -ENODEV, if genuine IO errors occurred, an appropriate 1155 * negative errno value. 1156 * @disconnect: Called when the interface is no longer accessible, usually 1157 * because its device has been (or is being) disconnected or the 1158 * driver module is being unloaded. 1159 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1160 * the "usbfs" filesystem. This lets devices provide ways to 1161 * expose information to user space regardless of where they 1162 * do (or don't) show up otherwise in the filesystem. 1163 * @suspend: Called when the device is going to be suspended by the 1164 * system either from system sleep or runtime suspend context. The 1165 * return value will be ignored in system sleep context, so do NOT 1166 * try to continue using the device if suspend fails in this case. 1167 * Instead, let the resume or reset-resume routine recover from 1168 * the failure. 1169 * @resume: Called when the device is being resumed by the system. 1170 * @reset_resume: Called when the suspended device has been reset instead 1171 * of being resumed. 1172 * @pre_reset: Called by usb_reset_device() when the device is about to be 1173 * reset. This routine must not return until the driver has no active 1174 * URBs for the device, and no more URBs may be submitted until the 1175 * post_reset method is called. 1176 * @post_reset: Called by usb_reset_device() after the device 1177 * has been reset 1178 * @id_table: USB drivers use ID table to support hotplugging. 1179 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1180 * or your driver's probe function will never get called. 1181 * @dev_groups: Attributes attached to the device that will be created once it 1182 * is bound to the driver. 1183 * @dynids: used internally to hold the list of dynamically added device 1184 * ids for this driver. 1185 * @drvwrap: Driver-model core structure wrapper. 1186 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1187 * added to this driver by preventing the sysfs file from being created. 1188 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1189 * for interfaces bound to this driver. 1190 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1191 * endpoints before calling the driver's disconnect method. 1192 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1193 * to initiate lower power link state transitions when an idle timeout 1194 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1195 * 1196 * USB interface drivers must provide a name, probe() and disconnect() 1197 * methods, and an id_table. Other driver fields are optional. 1198 * 1199 * The id_table is used in hotplugging. It holds a set of descriptors, 1200 * and specialized data may be associated with each entry. That table 1201 * is used by both user and kernel mode hotplugging support. 1202 * 1203 * The probe() and disconnect() methods are called in a context where 1204 * they can sleep, but they should avoid abusing the privilege. Most 1205 * work to connect to a device should be done when the device is opened, 1206 * and undone at the last close. The disconnect code needs to address 1207 * concurrency issues with respect to open() and close() methods, as 1208 * well as forcing all pending I/O requests to complete (by unlinking 1209 * them as necessary, and blocking until the unlinks complete). 1210 */ 1211 struct usb_driver { 1212 const char *name; 1213 1214 int (*probe) (struct usb_interface *intf, 1215 const struct usb_device_id *id); 1216 1217 void (*disconnect) (struct usb_interface *intf); 1218 1219 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1220 void *buf); 1221 1222 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1223 int (*resume) (struct usb_interface *intf); 1224 int (*reset_resume)(struct usb_interface *intf); 1225 1226 int (*pre_reset)(struct usb_interface *intf); 1227 int (*post_reset)(struct usb_interface *intf); 1228 1229 const struct usb_device_id *id_table; 1230 const struct attribute_group **dev_groups; 1231 1232 struct usb_dynids dynids; 1233 struct usbdrv_wrap drvwrap; 1234 unsigned int no_dynamic_id:1; 1235 unsigned int supports_autosuspend:1; 1236 unsigned int disable_hub_initiated_lpm:1; 1237 unsigned int soft_unbind:1; 1238 }; 1239 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1240 1241 /** 1242 * struct usb_device_driver - identifies USB device driver to usbcore 1243 * @name: The driver name should be unique among USB drivers, 1244 * and should normally be the same as the module name. 1245 * @match: If set, used for better device/driver matching. 1246 * @probe: Called to see if the driver is willing to manage a particular 1247 * device. If it is, probe returns zero and uses dev_set_drvdata() 1248 * to associate driver-specific data with the device. If unwilling 1249 * to manage the device, return a negative errno value. 1250 * @disconnect: Called when the device is no longer accessible, usually 1251 * because it has been (or is being) disconnected or the driver's 1252 * module is being unloaded. 1253 * @suspend: Called when the device is going to be suspended by the system. 1254 * @resume: Called when the device is being resumed by the system. 1255 * @dev_groups: Attributes attached to the device that will be created once it 1256 * is bound to the driver. 1257 * @drvwrap: Driver-model core structure wrapper. 1258 * @id_table: used with @match() to select better matching driver at 1259 * probe() time. 1260 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1261 * for devices bound to this driver. 1262 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1263 * resume and suspend functions will be called in addition to the driver's 1264 * own, so this part of the setup does not need to be replicated. 1265 * 1266 * USB drivers must provide all the fields listed above except drvwrap, 1267 * match, and id_table. 1268 */ 1269 struct usb_device_driver { 1270 const char *name; 1271 1272 bool (*match) (struct usb_device *udev); 1273 int (*probe) (struct usb_device *udev); 1274 void (*disconnect) (struct usb_device *udev); 1275 1276 int (*suspend) (struct usb_device *udev, pm_message_t message); 1277 int (*resume) (struct usb_device *udev, pm_message_t message); 1278 const struct attribute_group **dev_groups; 1279 struct usbdrv_wrap drvwrap; 1280 const struct usb_device_id *id_table; 1281 unsigned int supports_autosuspend:1; 1282 unsigned int generic_subclass:1; 1283 }; 1284 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1285 drvwrap.driver) 1286 1287 /** 1288 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1289 * @name: the usb class device name for this driver. Will show up in sysfs. 1290 * @devnode: Callback to provide a naming hint for a possible 1291 * device node to create. 1292 * @fops: pointer to the struct file_operations of this driver. 1293 * @minor_base: the start of the minor range for this driver. 1294 * 1295 * This structure is used for the usb_register_dev() and 1296 * usb_deregister_dev() functions, to consolidate a number of the 1297 * parameters used for them. 1298 */ 1299 struct usb_class_driver { 1300 char *name; 1301 char *(*devnode)(const struct device *dev, umode_t *mode); 1302 const struct file_operations *fops; 1303 int minor_base; 1304 }; 1305 1306 /* 1307 * use these in module_init()/module_exit() 1308 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1309 */ 1310 extern int usb_register_driver(struct usb_driver *, struct module *, 1311 const char *); 1312 1313 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1314 #define usb_register(driver) \ 1315 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1316 1317 extern void usb_deregister(struct usb_driver *); 1318 1319 /** 1320 * module_usb_driver() - Helper macro for registering a USB driver 1321 * @__usb_driver: usb_driver struct 1322 * 1323 * Helper macro for USB drivers which do not do anything special in module 1324 * init/exit. This eliminates a lot of boilerplate. Each module may only 1325 * use this macro once, and calling it replaces module_init() and module_exit() 1326 */ 1327 #define module_usb_driver(__usb_driver) \ 1328 module_driver(__usb_driver, usb_register, \ 1329 usb_deregister) 1330 1331 extern int usb_register_device_driver(struct usb_device_driver *, 1332 struct module *); 1333 extern void usb_deregister_device_driver(struct usb_device_driver *); 1334 1335 extern int usb_register_dev(struct usb_interface *intf, 1336 struct usb_class_driver *class_driver); 1337 extern void usb_deregister_dev(struct usb_interface *intf, 1338 struct usb_class_driver *class_driver); 1339 1340 extern int usb_disabled(void); 1341 1342 /* ----------------------------------------------------------------------- */ 1343 1344 /* 1345 * URB support, for asynchronous request completions 1346 */ 1347 1348 /* 1349 * urb->transfer_flags: 1350 * 1351 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1352 */ 1353 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1354 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1355 * slot in the schedule */ 1356 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1357 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1358 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1359 * needed */ 1360 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1361 1362 /* The following flags are used internally by usbcore and HCDs */ 1363 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1364 #define URB_DIR_OUT 0 1365 #define URB_DIR_MASK URB_DIR_IN 1366 1367 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1368 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1369 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1370 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1371 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1372 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1373 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1374 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1375 1376 struct usb_iso_packet_descriptor { 1377 unsigned int offset; 1378 unsigned int length; /* expected length */ 1379 unsigned int actual_length; 1380 int status; 1381 }; 1382 1383 struct urb; 1384 1385 struct usb_anchor { 1386 struct list_head urb_list; 1387 wait_queue_head_t wait; 1388 spinlock_t lock; 1389 atomic_t suspend_wakeups; 1390 unsigned int poisoned:1; 1391 }; 1392 1393 static inline void init_usb_anchor(struct usb_anchor *anchor) 1394 { 1395 memset(anchor, 0, sizeof(*anchor)); 1396 INIT_LIST_HEAD(&anchor->urb_list); 1397 init_waitqueue_head(&anchor->wait); 1398 spin_lock_init(&anchor->lock); 1399 } 1400 1401 typedef void (*usb_complete_t)(struct urb *); 1402 1403 /** 1404 * struct urb - USB Request Block 1405 * @urb_list: For use by current owner of the URB. 1406 * @anchor_list: membership in the list of an anchor 1407 * @anchor: to anchor URBs to a common mooring 1408 * @ep: Points to the endpoint's data structure. Will eventually 1409 * replace @pipe. 1410 * @pipe: Holds endpoint number, direction, type, and more. 1411 * Create these values with the eight macros available; 1412 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1413 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1414 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1415 * numbers range from zero to fifteen. Note that "in" endpoint two 1416 * is a different endpoint (and pipe) from "out" endpoint two. 1417 * The current configuration controls the existence, type, and 1418 * maximum packet size of any given endpoint. 1419 * @stream_id: the endpoint's stream ID for bulk streams 1420 * @dev: Identifies the USB device to perform the request. 1421 * @status: This is read in non-iso completion functions to get the 1422 * status of the particular request. ISO requests only use it 1423 * to tell whether the URB was unlinked; detailed status for 1424 * each frame is in the fields of the iso_frame-desc. 1425 * @transfer_flags: A variety of flags may be used to affect how URB 1426 * submission, unlinking, or operation are handled. Different 1427 * kinds of URB can use different flags. 1428 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1429 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1430 * (however, do not leave garbage in transfer_buffer even then). 1431 * This buffer must be suitable for DMA; allocate it with 1432 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1433 * of this buffer will be modified. This buffer is used for the data 1434 * stage of control transfers. 1435 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1436 * the device driver is saying that it provided this DMA address, 1437 * which the host controller driver should use in preference to the 1438 * transfer_buffer. 1439 * @sg: scatter gather buffer list, the buffer size of each element in 1440 * the list (except the last) must be divisible by the endpoint's 1441 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1442 * @num_mapped_sgs: (internal) number of mapped sg entries 1443 * @num_sgs: number of entries in the sg list 1444 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1445 * be broken up into chunks according to the current maximum packet 1446 * size for the endpoint, which is a function of the configuration 1447 * and is encoded in the pipe. When the length is zero, neither 1448 * transfer_buffer nor transfer_dma is used. 1449 * @actual_length: This is read in non-iso completion functions, and 1450 * it tells how many bytes (out of transfer_buffer_length) were 1451 * transferred. It will normally be the same as requested, unless 1452 * either an error was reported or a short read was performed. 1453 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1454 * short reads be reported as errors. 1455 * @setup_packet: Only used for control transfers, this points to eight bytes 1456 * of setup data. Control transfers always start by sending this data 1457 * to the device. Then transfer_buffer is read or written, if needed. 1458 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1459 * this field; setup_packet must point to a valid buffer. 1460 * @start_frame: Returns the initial frame for isochronous transfers. 1461 * @number_of_packets: Lists the number of ISO transfer buffers. 1462 * @interval: Specifies the polling interval for interrupt or isochronous 1463 * transfers. The units are frames (milliseconds) for full and low 1464 * speed devices, and microframes (1/8 millisecond) for highspeed 1465 * and SuperSpeed devices. 1466 * @error_count: Returns the number of ISO transfers that reported errors. 1467 * @context: For use in completion functions. This normally points to 1468 * request-specific driver context. 1469 * @complete: Completion handler. This URB is passed as the parameter to the 1470 * completion function. The completion function may then do what 1471 * it likes with the URB, including resubmitting or freeing it. 1472 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1473 * collect the transfer status for each buffer. 1474 * 1475 * This structure identifies USB transfer requests. URBs must be allocated by 1476 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1477 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1478 * are submitted using usb_submit_urb(), and pending requests may be canceled 1479 * using usb_unlink_urb() or usb_kill_urb(). 1480 * 1481 * Data Transfer Buffers: 1482 * 1483 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1484 * taken from the general page pool. That is provided by transfer_buffer 1485 * (control requests also use setup_packet), and host controller drivers 1486 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1487 * mapping operations can be expensive on some platforms (perhaps using a dma 1488 * bounce buffer or talking to an IOMMU), 1489 * although they're cheap on commodity x86 and ppc hardware. 1490 * 1491 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1492 * which tells the host controller driver that no such mapping is needed for 1493 * the transfer_buffer since 1494 * the device driver is DMA-aware. For example, a device driver might 1495 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1496 * When this transfer flag is provided, host controller drivers will 1497 * attempt to use the dma address found in the transfer_dma 1498 * field rather than determining a dma address themselves. 1499 * 1500 * Note that transfer_buffer must still be set if the controller 1501 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1502 * to root hub. If you have to transfer between highmem zone and the device 1503 * on such controller, create a bounce buffer or bail out with an error. 1504 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1505 * capable, assign NULL to it, so that usbmon knows not to use the value. 1506 * The setup_packet must always be set, so it cannot be located in highmem. 1507 * 1508 * Initialization: 1509 * 1510 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1511 * zero), and complete fields. All URBs must also initialize 1512 * transfer_buffer and transfer_buffer_length. They may provide the 1513 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1514 * to be treated as errors; that flag is invalid for write requests. 1515 * 1516 * Bulk URBs may 1517 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1518 * should always terminate with a short packet, even if it means adding an 1519 * extra zero length packet. 1520 * 1521 * Control URBs must provide a valid pointer in the setup_packet field. 1522 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1523 * beforehand. 1524 * 1525 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1526 * or, for highspeed devices, 125 microsecond units) 1527 * to poll for transfers. After the URB has been submitted, the interval 1528 * field reflects how the transfer was actually scheduled. 1529 * The polling interval may be more frequent than requested. 1530 * For example, some controllers have a maximum interval of 32 milliseconds, 1531 * while others support intervals of up to 1024 milliseconds. 1532 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1533 * endpoints, as well as high speed interrupt endpoints, the encoding of 1534 * the transfer interval in the endpoint descriptor is logarithmic. 1535 * Device drivers must convert that value to linear units themselves.) 1536 * 1537 * If an isochronous endpoint queue isn't already running, the host 1538 * controller will schedule a new URB to start as soon as bandwidth 1539 * utilization allows. If the queue is running then a new URB will be 1540 * scheduled to start in the first transfer slot following the end of the 1541 * preceding URB, if that slot has not already expired. If the slot has 1542 * expired (which can happen when IRQ delivery is delayed for a long time), 1543 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1544 * is clear then the URB will be scheduled to start in the expired slot, 1545 * implying that some of its packets will not be transferred; if the flag 1546 * is set then the URB will be scheduled in the first unexpired slot, 1547 * breaking the queue's synchronization. Upon URB completion, the 1548 * start_frame field will be set to the (micro)frame number in which the 1549 * transfer was scheduled. Ranges for frame counter values are HC-specific 1550 * and can go from as low as 256 to as high as 65536 frames. 1551 * 1552 * Isochronous URBs have a different data transfer model, in part because 1553 * the quality of service is only "best effort". Callers provide specially 1554 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1555 * at the end. Each such packet is an individual ISO transfer. Isochronous 1556 * URBs are normally queued, submitted by drivers to arrange that 1557 * transfers are at least double buffered, and then explicitly resubmitted 1558 * in completion handlers, so 1559 * that data (such as audio or video) streams at as constant a rate as the 1560 * host controller scheduler can support. 1561 * 1562 * Completion Callbacks: 1563 * 1564 * The completion callback is made in_interrupt(), and one of the first 1565 * things that a completion handler should do is check the status field. 1566 * The status field is provided for all URBs. It is used to report 1567 * unlinked URBs, and status for all non-ISO transfers. It should not 1568 * be examined before the URB is returned to the completion handler. 1569 * 1570 * The context field is normally used to link URBs back to the relevant 1571 * driver or request state. 1572 * 1573 * When the completion callback is invoked for non-isochronous URBs, the 1574 * actual_length field tells how many bytes were transferred. This field 1575 * is updated even when the URB terminated with an error or was unlinked. 1576 * 1577 * ISO transfer status is reported in the status and actual_length fields 1578 * of the iso_frame_desc array, and the number of errors is reported in 1579 * error_count. Completion callbacks for ISO transfers will normally 1580 * (re)submit URBs to ensure a constant transfer rate. 1581 * 1582 * Note that even fields marked "public" should not be touched by the driver 1583 * when the urb is owned by the hcd, that is, since the call to 1584 * usb_submit_urb() till the entry into the completion routine. 1585 */ 1586 struct urb { 1587 /* private: usb core and host controller only fields in the urb */ 1588 struct kref kref; /* reference count of the URB */ 1589 int unlinked; /* unlink error code */ 1590 void *hcpriv; /* private data for host controller */ 1591 atomic_t use_count; /* concurrent submissions counter */ 1592 atomic_t reject; /* submissions will fail */ 1593 1594 /* public: documented fields in the urb that can be used by drivers */ 1595 struct list_head urb_list; /* list head for use by the urb's 1596 * current owner */ 1597 struct list_head anchor_list; /* the URB may be anchored */ 1598 struct usb_anchor *anchor; 1599 struct usb_device *dev; /* (in) pointer to associated device */ 1600 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1601 unsigned int pipe; /* (in) pipe information */ 1602 unsigned int stream_id; /* (in) stream ID */ 1603 int status; /* (return) non-ISO status */ 1604 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1605 void *transfer_buffer; /* (in) associated data buffer */ 1606 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1607 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1608 int num_mapped_sgs; /* (internal) mapped sg entries */ 1609 int num_sgs; /* (in) number of entries in the sg list */ 1610 u32 transfer_buffer_length; /* (in) data buffer length */ 1611 u32 actual_length; /* (return) actual transfer length */ 1612 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1613 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1614 int start_frame; /* (modify) start frame (ISO) */ 1615 int number_of_packets; /* (in) number of ISO packets */ 1616 int interval; /* (modify) transfer interval 1617 * (INT/ISO) */ 1618 int error_count; /* (return) number of ISO errors */ 1619 void *context; /* (in) context for completion */ 1620 usb_complete_t complete; /* (in) completion routine */ 1621 struct usb_iso_packet_descriptor iso_frame_desc[]; 1622 /* (in) ISO ONLY */ 1623 }; 1624 1625 /* ----------------------------------------------------------------------- */ 1626 1627 /** 1628 * usb_fill_control_urb - initializes a control urb 1629 * @urb: pointer to the urb to initialize. 1630 * @dev: pointer to the struct usb_device for this urb. 1631 * @pipe: the endpoint pipe 1632 * @setup_packet: pointer to the setup_packet buffer 1633 * @transfer_buffer: pointer to the transfer buffer 1634 * @buffer_length: length of the transfer buffer 1635 * @complete_fn: pointer to the usb_complete_t function 1636 * @context: what to set the urb context to. 1637 * 1638 * Initializes a control urb with the proper information needed to submit 1639 * it to a device. 1640 */ 1641 static inline void usb_fill_control_urb(struct urb *urb, 1642 struct usb_device *dev, 1643 unsigned int pipe, 1644 unsigned char *setup_packet, 1645 void *transfer_buffer, 1646 int buffer_length, 1647 usb_complete_t complete_fn, 1648 void *context) 1649 { 1650 urb->dev = dev; 1651 urb->pipe = pipe; 1652 urb->setup_packet = setup_packet; 1653 urb->transfer_buffer = transfer_buffer; 1654 urb->transfer_buffer_length = buffer_length; 1655 urb->complete = complete_fn; 1656 urb->context = context; 1657 } 1658 1659 /** 1660 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1661 * @urb: pointer to the urb to initialize. 1662 * @dev: pointer to the struct usb_device for this urb. 1663 * @pipe: the endpoint pipe 1664 * @transfer_buffer: pointer to the transfer buffer 1665 * @buffer_length: length of the transfer buffer 1666 * @complete_fn: pointer to the usb_complete_t function 1667 * @context: what to set the urb context to. 1668 * 1669 * Initializes a bulk urb with the proper information needed to submit it 1670 * to a device. 1671 */ 1672 static inline void usb_fill_bulk_urb(struct urb *urb, 1673 struct usb_device *dev, 1674 unsigned int pipe, 1675 void *transfer_buffer, 1676 int buffer_length, 1677 usb_complete_t complete_fn, 1678 void *context) 1679 { 1680 urb->dev = dev; 1681 urb->pipe = pipe; 1682 urb->transfer_buffer = transfer_buffer; 1683 urb->transfer_buffer_length = buffer_length; 1684 urb->complete = complete_fn; 1685 urb->context = context; 1686 } 1687 1688 /** 1689 * usb_fill_int_urb - macro to help initialize a interrupt urb 1690 * @urb: pointer to the urb to initialize. 1691 * @dev: pointer to the struct usb_device for this urb. 1692 * @pipe: the endpoint pipe 1693 * @transfer_buffer: pointer to the transfer buffer 1694 * @buffer_length: length of the transfer buffer 1695 * @complete_fn: pointer to the usb_complete_t function 1696 * @context: what to set the urb context to. 1697 * @interval: what to set the urb interval to, encoded like 1698 * the endpoint descriptor's bInterval value. 1699 * 1700 * Initializes a interrupt urb with the proper information needed to submit 1701 * it to a device. 1702 * 1703 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1704 * encoding of the endpoint interval, and express polling intervals in 1705 * microframes (eight per millisecond) rather than in frames (one per 1706 * millisecond). 1707 * 1708 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1709 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1710 * through to the host controller, rather than being translated into microframe 1711 * units. 1712 */ 1713 static inline void usb_fill_int_urb(struct urb *urb, 1714 struct usb_device *dev, 1715 unsigned int pipe, 1716 void *transfer_buffer, 1717 int buffer_length, 1718 usb_complete_t complete_fn, 1719 void *context, 1720 int interval) 1721 { 1722 urb->dev = dev; 1723 urb->pipe = pipe; 1724 urb->transfer_buffer = transfer_buffer; 1725 urb->transfer_buffer_length = buffer_length; 1726 urb->complete = complete_fn; 1727 urb->context = context; 1728 1729 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1730 /* make sure interval is within allowed range */ 1731 interval = clamp(interval, 1, 16); 1732 1733 urb->interval = 1 << (interval - 1); 1734 } else { 1735 urb->interval = interval; 1736 } 1737 1738 urb->start_frame = -1; 1739 } 1740 1741 extern void usb_init_urb(struct urb *urb); 1742 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1743 extern void usb_free_urb(struct urb *urb); 1744 #define usb_put_urb usb_free_urb 1745 extern struct urb *usb_get_urb(struct urb *urb); 1746 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1747 extern int usb_unlink_urb(struct urb *urb); 1748 extern void usb_kill_urb(struct urb *urb); 1749 extern void usb_poison_urb(struct urb *urb); 1750 extern void usb_unpoison_urb(struct urb *urb); 1751 extern void usb_block_urb(struct urb *urb); 1752 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1753 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1754 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1755 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1756 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1757 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1758 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1759 extern void usb_unanchor_urb(struct urb *urb); 1760 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1761 unsigned int timeout); 1762 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1763 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1764 extern int usb_anchor_empty(struct usb_anchor *anchor); 1765 1766 #define usb_unblock_urb usb_unpoison_urb 1767 1768 /** 1769 * usb_urb_dir_in - check if an URB describes an IN transfer 1770 * @urb: URB to be checked 1771 * 1772 * Return: 1 if @urb describes an IN transfer (device-to-host), 1773 * otherwise 0. 1774 */ 1775 static inline int usb_urb_dir_in(struct urb *urb) 1776 { 1777 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1778 } 1779 1780 /** 1781 * usb_urb_dir_out - check if an URB describes an OUT transfer 1782 * @urb: URB to be checked 1783 * 1784 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1785 * otherwise 0. 1786 */ 1787 static inline int usb_urb_dir_out(struct urb *urb) 1788 { 1789 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1790 } 1791 1792 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1793 int usb_urb_ep_type_check(const struct urb *urb); 1794 1795 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1796 gfp_t mem_flags, dma_addr_t *dma); 1797 void usb_free_coherent(struct usb_device *dev, size_t size, 1798 void *addr, dma_addr_t dma); 1799 1800 #if 0 1801 struct urb *usb_buffer_map(struct urb *urb); 1802 void usb_buffer_dmasync(struct urb *urb); 1803 void usb_buffer_unmap(struct urb *urb); 1804 #endif 1805 1806 struct scatterlist; 1807 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1808 struct scatterlist *sg, int nents); 1809 #if 0 1810 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1811 struct scatterlist *sg, int n_hw_ents); 1812 #endif 1813 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1814 struct scatterlist *sg, int n_hw_ents); 1815 1816 /*-------------------------------------------------------------------* 1817 * SYNCHRONOUS CALL SUPPORT * 1818 *-------------------------------------------------------------------*/ 1819 1820 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1821 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1822 void *data, __u16 size, int timeout); 1823 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1824 void *data, int len, int *actual_length, int timeout); 1825 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1826 void *data, int len, int *actual_length, 1827 int timeout); 1828 1829 /* wrappers around usb_control_msg() for the most common standard requests */ 1830 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1831 __u8 requesttype, __u16 value, __u16 index, 1832 const void *data, __u16 size, int timeout, 1833 gfp_t memflags); 1834 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1835 __u8 requesttype, __u16 value, __u16 index, 1836 void *data, __u16 size, int timeout, 1837 gfp_t memflags); 1838 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1839 unsigned char descindex, void *buf, int size); 1840 extern int usb_get_status(struct usb_device *dev, 1841 int recip, int type, int target, void *data); 1842 1843 static inline int usb_get_std_status(struct usb_device *dev, 1844 int recip, int target, void *data) 1845 { 1846 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1847 data); 1848 } 1849 1850 static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1851 { 1852 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1853 0, data); 1854 } 1855 1856 extern int usb_string(struct usb_device *dev, int index, 1857 char *buf, size_t size); 1858 extern char *usb_cache_string(struct usb_device *udev, int index); 1859 1860 /* wrappers that also update important state inside usbcore */ 1861 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1862 extern int usb_reset_configuration(struct usb_device *dev); 1863 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1864 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1865 1866 /* this request isn't really synchronous, but it belongs with the others */ 1867 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1868 1869 /* choose and set configuration for device */ 1870 extern int usb_choose_configuration(struct usb_device *udev); 1871 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1872 1873 /* 1874 * timeouts, in milliseconds, used for sending/receiving control messages 1875 * they typically complete within a few frames (msec) after they're issued 1876 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1877 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1878 */ 1879 #define USB_CTRL_GET_TIMEOUT 5000 1880 #define USB_CTRL_SET_TIMEOUT 5000 1881 1882 1883 /** 1884 * struct usb_sg_request - support for scatter/gather I/O 1885 * @status: zero indicates success, else negative errno 1886 * @bytes: counts bytes transferred. 1887 * 1888 * These requests are initialized using usb_sg_init(), and then are used 1889 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1890 * members of the request object aren't for driver access. 1891 * 1892 * The status and bytecount values are valid only after usb_sg_wait() 1893 * returns. If the status is zero, then the bytecount matches the total 1894 * from the request. 1895 * 1896 * After an error completion, drivers may need to clear a halt condition 1897 * on the endpoint. 1898 */ 1899 struct usb_sg_request { 1900 int status; 1901 size_t bytes; 1902 1903 /* private: 1904 * members below are private to usbcore, 1905 * and are not provided for driver access! 1906 */ 1907 spinlock_t lock; 1908 1909 struct usb_device *dev; 1910 int pipe; 1911 1912 int entries; 1913 struct urb **urbs; 1914 1915 int count; 1916 struct completion complete; 1917 }; 1918 1919 int usb_sg_init( 1920 struct usb_sg_request *io, 1921 struct usb_device *dev, 1922 unsigned pipe, 1923 unsigned period, 1924 struct scatterlist *sg, 1925 int nents, 1926 size_t length, 1927 gfp_t mem_flags 1928 ); 1929 void usb_sg_cancel(struct usb_sg_request *io); 1930 void usb_sg_wait(struct usb_sg_request *io); 1931 1932 1933 /* ----------------------------------------------------------------------- */ 1934 1935 /* 1936 * For various legacy reasons, Linux has a small cookie that's paired with 1937 * a struct usb_device to identify an endpoint queue. Queue characteristics 1938 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1939 * an unsigned int encoded as: 1940 * 1941 * - direction: bit 7 (0 = Host-to-Device [Out], 1942 * 1 = Device-to-Host [In] ... 1943 * like endpoint bEndpointAddress) 1944 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1945 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1946 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1947 * 10 = control, 11 = bulk) 1948 * 1949 * Given the device address and endpoint descriptor, pipes are redundant. 1950 */ 1951 1952 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1953 /* (yet ... they're the values used by usbfs) */ 1954 #define PIPE_ISOCHRONOUS 0 1955 #define PIPE_INTERRUPT 1 1956 #define PIPE_CONTROL 2 1957 #define PIPE_BULK 3 1958 1959 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1960 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1961 1962 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1963 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1964 1965 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1966 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1967 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1968 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1969 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1970 1971 static inline unsigned int __create_pipe(struct usb_device *dev, 1972 unsigned int endpoint) 1973 { 1974 return (dev->devnum << 8) | (endpoint << 15); 1975 } 1976 1977 /* Create various pipes... */ 1978 #define usb_sndctrlpipe(dev, endpoint) \ 1979 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1980 #define usb_rcvctrlpipe(dev, endpoint) \ 1981 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1982 #define usb_sndisocpipe(dev, endpoint) \ 1983 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1984 #define usb_rcvisocpipe(dev, endpoint) \ 1985 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1986 #define usb_sndbulkpipe(dev, endpoint) \ 1987 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1988 #define usb_rcvbulkpipe(dev, endpoint) \ 1989 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1990 #define usb_sndintpipe(dev, endpoint) \ 1991 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1992 #define usb_rcvintpipe(dev, endpoint) \ 1993 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1994 1995 static inline struct usb_host_endpoint * 1996 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1997 { 1998 struct usb_host_endpoint **eps; 1999 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 2000 return eps[usb_pipeendpoint(pipe)]; 2001 } 2002 2003 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 2004 { 2005 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 2006 2007 if (!ep) 2008 return 0; 2009 2010 /* NOTE: only 0x07ff bits are for packet size... */ 2011 return usb_endpoint_maxp(&ep->desc); 2012 } 2013 2014 /* translate USB error codes to codes user space understands */ 2015 static inline int usb_translate_errors(int error_code) 2016 { 2017 switch (error_code) { 2018 case 0: 2019 case -ENOMEM: 2020 case -ENODEV: 2021 case -EOPNOTSUPP: 2022 return error_code; 2023 default: 2024 return -EIO; 2025 } 2026 } 2027 2028 /* Events from the usb core */ 2029 #define USB_DEVICE_ADD 0x0001 2030 #define USB_DEVICE_REMOVE 0x0002 2031 #define USB_BUS_ADD 0x0003 2032 #define USB_BUS_REMOVE 0x0004 2033 extern void usb_register_notify(struct notifier_block *nb); 2034 extern void usb_unregister_notify(struct notifier_block *nb); 2035 2036 /* debugfs stuff */ 2037 extern struct dentry *usb_debug_root; 2038 2039 /* LED triggers */ 2040 enum usb_led_event { 2041 USB_LED_EVENT_HOST = 0, 2042 USB_LED_EVENT_GADGET = 1, 2043 }; 2044 2045 #ifdef CONFIG_USB_LED_TRIG 2046 extern void usb_led_activity(enum usb_led_event ev); 2047 #else 2048 static inline void usb_led_activity(enum usb_led_event ev) {} 2049 #endif 2050 2051 #endif /* __KERNEL__ */ 2052 2053 #endif 2054