1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb/ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/errno.h> /* for -ENODEV */ 14 #include <linux/delay.h> /* for mdelay() */ 15 #include <linux/interrupt.h> /* for in_interrupt() */ 16 #include <linux/list.h> /* for struct list_head */ 17 #include <linux/kref.h> /* for struct kref */ 18 #include <linux/device.h> /* for struct device */ 19 #include <linux/fs.h> /* for struct file_operations */ 20 #include <linux/completion.h> /* for struct completion */ 21 #include <linux/sched.h> /* for current && schedule_timeout */ 22 #include <linux/mutex.h> /* for struct mutex */ 23 24 struct usb_device; 25 struct usb_driver; 26 27 /*-------------------------------------------------------------------------*/ 28 29 /* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44 struct ep_device; 45 46 /** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * 56 * USB requests are always queued to a given endpoint, identified by a 57 * descriptor within an active interface in a given USB configuration. 58 */ 59 struct usb_host_endpoint { 60 struct usb_endpoint_descriptor desc; 61 struct list_head urb_list; 62 void *hcpriv; 63 struct ep_device *ep_dev; /* For sysfs info */ 64 65 unsigned char *extra; /* Extra descriptors */ 66 int extralen; 67 }; 68 69 /* host-side wrapper for one interface setting's parsed descriptors */ 70 struct usb_host_interface { 71 struct usb_interface_descriptor desc; 72 73 /* array of desc.bNumEndpoint endpoints associated with this 74 * interface setting. these will be in no particular order. 75 */ 76 struct usb_host_endpoint *endpoint; 77 78 char *string; /* iInterface string, if present */ 79 unsigned char *extra; /* Extra descriptors */ 80 int extralen; 81 }; 82 83 enum usb_interface_condition { 84 USB_INTERFACE_UNBOUND = 0, 85 USB_INTERFACE_BINDING, 86 USB_INTERFACE_BOUND, 87 USB_INTERFACE_UNBINDING, 88 }; 89 90 /** 91 * struct usb_interface - what usb device drivers talk to 92 * @altsetting: array of interface structures, one for each alternate 93 * setting that may be selected. Each one includes a set of 94 * endpoint configurations. They will be in no particular order. 95 * @num_altsetting: number of altsettings defined. 96 * @cur_altsetting: the current altsetting. 97 * @driver: the USB driver that is bound to this interface. 98 * @minor: the minor number assigned to this interface, if this 99 * interface is bound to a driver that uses the USB major number. 100 * If this interface does not use the USB major, this field should 101 * be unused. The driver should set this value in the probe() 102 * function of the driver, after it has been assigned a minor 103 * number from the USB core by calling usb_register_dev(). 104 * @condition: binding state of the interface: not bound, binding 105 * (in probe()), bound to a driver, or unbinding (in disconnect()) 106 * @is_active: flag set when the interface is bound and not suspended. 107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 108 * capability during autosuspend. 109 * @dev: driver model's view of this device 110 * @usb_dev: if an interface is bound to the USB major, this will point 111 * to the sysfs representation for that device. 112 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 113 * allowed unless the counter is 0. 114 * 115 * USB device drivers attach to interfaces on a physical device. Each 116 * interface encapsulates a single high level function, such as feeding 117 * an audio stream to a speaker or reporting a change in a volume control. 118 * Many USB devices only have one interface. The protocol used to talk to 119 * an interface's endpoints can be defined in a usb "class" specification, 120 * or by a product's vendor. The (default) control endpoint is part of 121 * every interface, but is never listed among the interface's descriptors. 122 * 123 * The driver that is bound to the interface can use standard driver model 124 * calls such as dev_get_drvdata() on the dev member of this structure. 125 * 126 * Each interface may have alternate settings. The initial configuration 127 * of a device sets altsetting 0, but the device driver can change 128 * that setting using usb_set_interface(). Alternate settings are often 129 * used to control the use of periodic endpoints, such as by having 130 * different endpoints use different amounts of reserved USB bandwidth. 131 * All standards-conformant USB devices that use isochronous endpoints 132 * will use them in non-default settings. 133 * 134 * The USB specification says that alternate setting numbers must run from 135 * 0 to one less than the total number of alternate settings. But some 136 * devices manage to mess this up, and the structures aren't necessarily 137 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 138 * look up an alternate setting in the altsetting array based on its number. 139 */ 140 struct usb_interface { 141 /* array of alternate settings for this interface, 142 * stored in no particular order */ 143 struct usb_host_interface *altsetting; 144 145 struct usb_host_interface *cur_altsetting; /* the currently 146 * active alternate setting */ 147 unsigned num_altsetting; /* number of alternate settings */ 148 149 /* If there is an interface association descriptor then it will list 150 * the associated interfaces */ 151 struct usb_interface_assoc_descriptor *intf_assoc; 152 153 int minor; /* minor number this interface is 154 * bound to */ 155 enum usb_interface_condition condition; /* state of binding */ 156 unsigned is_active:1; /* the interface is not suspended */ 157 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 158 159 struct device dev; /* interface specific device info */ 160 struct device *usb_dev; /* pointer to the usb class's device, if any */ 161 int pm_usage_cnt; /* usage counter for autosuspend */ 162 }; 163 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 164 #define interface_to_usbdev(intf) \ 165 container_of(intf->dev.parent, struct usb_device, dev) 166 167 static inline void *usb_get_intfdata (struct usb_interface *intf) 168 { 169 return dev_get_drvdata (&intf->dev); 170 } 171 172 static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 173 { 174 dev_set_drvdata(&intf->dev, data); 175 } 176 177 struct usb_interface *usb_get_intf(struct usb_interface *intf); 178 void usb_put_intf(struct usb_interface *intf); 179 180 /* this maximum is arbitrary */ 181 #define USB_MAXINTERFACES 32 182 #define USB_MAXIADS USB_MAXINTERFACES/2 183 184 /** 185 * struct usb_interface_cache - long-term representation of a device interface 186 * @num_altsetting: number of altsettings defined. 187 * @ref: reference counter. 188 * @altsetting: variable-length array of interface structures, one for 189 * each alternate setting that may be selected. Each one includes a 190 * set of endpoint configurations. They will be in no particular order. 191 * 192 * These structures persist for the lifetime of a usb_device, unlike 193 * struct usb_interface (which persists only as long as its configuration 194 * is installed). The altsetting arrays can be accessed through these 195 * structures at any time, permitting comparison of configurations and 196 * providing support for the /proc/bus/usb/devices pseudo-file. 197 */ 198 struct usb_interface_cache { 199 unsigned num_altsetting; /* number of alternate settings */ 200 struct kref ref; /* reference counter */ 201 202 /* variable-length array of alternate settings for this interface, 203 * stored in no particular order */ 204 struct usb_host_interface altsetting[0]; 205 }; 206 #define ref_to_usb_interface_cache(r) \ 207 container_of(r, struct usb_interface_cache, ref) 208 #define altsetting_to_usb_interface_cache(a) \ 209 container_of(a, struct usb_interface_cache, altsetting[0]) 210 211 /** 212 * struct usb_host_config - representation of a device's configuration 213 * @desc: the device's configuration descriptor. 214 * @string: pointer to the cached version of the iConfiguration string, if 215 * present for this configuration. 216 * @interface: array of pointers to usb_interface structures, one for each 217 * interface in the configuration. The number of interfaces is stored 218 * in desc.bNumInterfaces. These pointers are valid only while the 219 * the configuration is active. 220 * @intf_cache: array of pointers to usb_interface_cache structures, one 221 * for each interface in the configuration. These structures exist 222 * for the entire life of the device. 223 * @extra: pointer to buffer containing all extra descriptors associated 224 * with this configuration (those preceding the first interface 225 * descriptor). 226 * @extralen: length of the extra descriptors buffer. 227 * 228 * USB devices may have multiple configurations, but only one can be active 229 * at any time. Each encapsulates a different operational environment; 230 * for example, a dual-speed device would have separate configurations for 231 * full-speed and high-speed operation. The number of configurations 232 * available is stored in the device descriptor as bNumConfigurations. 233 * 234 * A configuration can contain multiple interfaces. Each corresponds to 235 * a different function of the USB device, and all are available whenever 236 * the configuration is active. The USB standard says that interfaces 237 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 238 * of devices get this wrong. In addition, the interface array is not 239 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 240 * look up an interface entry based on its number. 241 * 242 * Device drivers should not attempt to activate configurations. The choice 243 * of which configuration to install is a policy decision based on such 244 * considerations as available power, functionality provided, and the user's 245 * desires (expressed through userspace tools). However, drivers can call 246 * usb_reset_configuration() to reinitialize the current configuration and 247 * all its interfaces. 248 */ 249 struct usb_host_config { 250 struct usb_config_descriptor desc; 251 252 char *string; /* iConfiguration string, if present */ 253 254 /* List of any Interface Association Descriptors in this 255 * configuration. */ 256 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 257 258 /* the interfaces associated with this configuration, 259 * stored in no particular order */ 260 struct usb_interface *interface[USB_MAXINTERFACES]; 261 262 /* Interface information available even when this is not the 263 * active configuration */ 264 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 265 266 unsigned char *extra; /* Extra descriptors */ 267 int extralen; 268 }; 269 270 int __usb_get_extra_descriptor(char *buffer, unsigned size, 271 unsigned char type, void **ptr); 272 #define usb_get_extra_descriptor(ifpoint,type,ptr)\ 273 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 274 type,(void**)ptr) 275 276 /* ----------------------------------------------------------------------- */ 277 278 /* USB device number allocation bitmap */ 279 struct usb_devmap { 280 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 281 }; 282 283 /* 284 * Allocated per bus (tree of devices) we have: 285 */ 286 struct usb_bus { 287 struct device *controller; /* host/master side hardware */ 288 int busnum; /* Bus number (in order of reg) */ 289 char *bus_name; /* stable id (PCI slot_name etc) */ 290 u8 uses_dma; /* Does the host controller use DMA? */ 291 u8 otg_port; /* 0, or number of OTG/HNP port */ 292 unsigned is_b_host:1; /* true during some HNP roleswitches */ 293 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 294 295 int devnum_next; /* Next open device number in 296 * round-robin allocation */ 297 298 struct usb_devmap devmap; /* device address allocation map */ 299 struct usb_device *root_hub; /* Root hub */ 300 struct list_head bus_list; /* list of busses */ 301 302 int bandwidth_allocated; /* on this bus: how much of the time 303 * reserved for periodic (intr/iso) 304 * requests is used, on average? 305 * Units: microseconds/frame. 306 * Limits: Full/low speed reserve 90%, 307 * while high speed reserves 80%. 308 */ 309 int bandwidth_int_reqs; /* number of Interrupt requests */ 310 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 311 312 #ifdef CONFIG_USB_DEVICEFS 313 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 314 #endif 315 struct class_device *class_dev; /* class device for this bus */ 316 317 #if defined(CONFIG_USB_MON) 318 struct mon_bus *mon_bus; /* non-null when associated */ 319 int monitored; /* non-zero when monitored */ 320 #endif 321 }; 322 323 /* ----------------------------------------------------------------------- */ 324 325 /* This is arbitrary. 326 * From USB 2.0 spec Table 11-13, offset 7, a hub can 327 * have up to 255 ports. The most yet reported is 10. 328 * 329 * Current Wireless USB host hardware (Intel i1480 for example) allows 330 * up to 22 devices to connect. Upcoming hardware might raise that 331 * limit. Because the arrays need to add a bit for hub status data, we 332 * do 31, so plus one evens out to four bytes. 333 */ 334 #define USB_MAXCHILDREN (31) 335 336 struct usb_tt; 337 338 /* 339 * struct usb_device - kernel's representation of a USB device 340 * 341 * FIXME: Write the kerneldoc! 342 * 343 * Usbcore drivers should not set usbdev->state directly. Instead use 344 * usb_set_device_state(). 345 */ 346 struct usb_device { 347 int devnum; /* Address on USB bus */ 348 char devpath [16]; /* Use in messages: /port/port/... */ 349 enum usb_device_state state; /* configured, not attached, etc */ 350 enum usb_device_speed speed; /* high/full/low (or error) */ 351 352 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 353 int ttport; /* device port on that tt hub */ 354 355 unsigned int toggle[2]; /* one bit for each endpoint 356 * ([0] = IN, [1] = OUT) */ 357 358 struct usb_device *parent; /* our hub, unless we're the root */ 359 struct usb_bus *bus; /* Bus we're part of */ 360 struct usb_host_endpoint ep0; 361 362 struct device dev; /* Generic device interface */ 363 364 struct usb_device_descriptor descriptor;/* Descriptor */ 365 struct usb_host_config *config; /* All of the configs */ 366 367 struct usb_host_config *actconfig;/* the active configuration */ 368 struct usb_host_endpoint *ep_in[16]; 369 struct usb_host_endpoint *ep_out[16]; 370 371 char **rawdescriptors; /* Raw descriptors for each config */ 372 373 unsigned short bus_mA; /* Current available from the bus */ 374 u8 portnum; /* Parent port number (origin 1) */ 375 u8 level; /* Number of USB hub ancestors */ 376 377 unsigned discon_suspended:1; /* Disconnected while suspended */ 378 unsigned have_langid:1; /* whether string_langid is valid */ 379 int string_langid; /* language ID for strings */ 380 381 /* static strings from the device */ 382 char *product; /* iProduct string, if present */ 383 char *manufacturer; /* iManufacturer string, if present */ 384 char *serial; /* iSerialNumber string, if present */ 385 386 struct list_head filelist; 387 #ifdef CONFIG_USB_DEVICE_CLASS 388 struct device *usb_classdev; 389 #endif 390 #ifdef CONFIG_USB_DEVICEFS 391 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 392 #endif 393 /* 394 * Child devices - these can be either new devices 395 * (if this is a hub device), or different instances 396 * of this same device. 397 * 398 * Each instance needs its own set of data structures. 399 */ 400 401 int maxchild; /* Number of ports if hub */ 402 struct usb_device *children[USB_MAXCHILDREN]; 403 404 int pm_usage_cnt; /* usage counter for autosuspend */ 405 u32 quirks; /* quirks of the whole device */ 406 407 #ifdef CONFIG_PM 408 struct delayed_work autosuspend; /* for delayed autosuspends */ 409 struct mutex pm_mutex; /* protects PM operations */ 410 411 unsigned long last_busy; /* time of last use */ 412 int autosuspend_delay; /* in jiffies */ 413 414 unsigned auto_pm:1; /* autosuspend/resume in progress */ 415 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 416 unsigned reset_resume:1; /* needs reset instead of resume */ 417 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */ 418 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */ 419 unsigned autoresume_disabled:1; /* disabled by the user */ 420 #endif 421 }; 422 #define to_usb_device(d) container_of(d, struct usb_device, dev) 423 424 extern struct usb_device *usb_get_dev(struct usb_device *dev); 425 extern void usb_put_dev(struct usb_device *dev); 426 427 /* USB device locking */ 428 #define usb_lock_device(udev) down(&(udev)->dev.sem) 429 #define usb_unlock_device(udev) up(&(udev)->dev.sem) 430 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 431 extern int usb_lock_device_for_reset(struct usb_device *udev, 432 const struct usb_interface *iface); 433 434 /* USB port reset for device reinitialization */ 435 extern int usb_reset_device(struct usb_device *dev); 436 extern int usb_reset_composite_device(struct usb_device *dev, 437 struct usb_interface *iface); 438 439 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 440 441 /* USB autosuspend and autoresume */ 442 #ifdef CONFIG_USB_SUSPEND 443 extern int usb_autopm_set_interface(struct usb_interface *intf); 444 extern int usb_autopm_get_interface(struct usb_interface *intf); 445 extern void usb_autopm_put_interface(struct usb_interface *intf); 446 447 static inline void usb_autopm_enable(struct usb_interface *intf) 448 { 449 intf->pm_usage_cnt = 0; 450 usb_autopm_set_interface(intf); 451 } 452 453 static inline void usb_autopm_disable(struct usb_interface *intf) 454 { 455 intf->pm_usage_cnt = 1; 456 usb_autopm_set_interface(intf); 457 } 458 459 static inline void usb_mark_last_busy(struct usb_device *udev) 460 { 461 udev->last_busy = jiffies; 462 } 463 464 #else 465 466 static inline int usb_autopm_set_interface(struct usb_interface *intf) 467 { return 0; } 468 469 static inline int usb_autopm_get_interface(struct usb_interface *intf) 470 { return 0; } 471 472 static inline void usb_autopm_put_interface(struct usb_interface *intf) 473 { } 474 static inline void usb_autopm_enable(struct usb_interface *intf) 475 { } 476 static inline void usb_autopm_disable(struct usb_interface *intf) 477 { } 478 static inline void usb_mark_last_busy(struct usb_device *udev) 479 { } 480 #endif 481 482 /*-------------------------------------------------------------------------*/ 483 484 /* for drivers using iso endpoints */ 485 extern int usb_get_current_frame_number (struct usb_device *usb_dev); 486 487 /* used these for multi-interface device registration */ 488 extern int usb_driver_claim_interface(struct usb_driver *driver, 489 struct usb_interface *iface, void* priv); 490 491 /** 492 * usb_interface_claimed - returns true iff an interface is claimed 493 * @iface: the interface being checked 494 * 495 * Returns true (nonzero) iff the interface is claimed, else false (zero). 496 * Callers must own the driver model's usb bus readlock. So driver 497 * probe() entries don't need extra locking, but other call contexts 498 * may need to explicitly claim that lock. 499 * 500 */ 501 static inline int usb_interface_claimed(struct usb_interface *iface) { 502 return (iface->dev.driver != NULL); 503 } 504 505 extern void usb_driver_release_interface(struct usb_driver *driver, 506 struct usb_interface *iface); 507 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 508 const struct usb_device_id *id); 509 extern int usb_match_one_id(struct usb_interface *interface, 510 const struct usb_device_id *id); 511 512 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 513 int minor); 514 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 515 unsigned ifnum); 516 extern struct usb_host_interface *usb_altnum_to_altsetting( 517 const struct usb_interface *intf, unsigned int altnum); 518 519 520 /** 521 * usb_make_path - returns stable device path in the usb tree 522 * @dev: the device whose path is being constructed 523 * @buf: where to put the string 524 * @size: how big is "buf"? 525 * 526 * Returns length of the string (> 0) or negative if size was too small. 527 * 528 * This identifier is intended to be "stable", reflecting physical paths in 529 * hardware such as physical bus addresses for host controllers or ports on 530 * USB hubs. That makes it stay the same until systems are physically 531 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 532 * controllers. Adding and removing devices, including virtual root hubs 533 * in host controller driver modules, does not change these path identifers; 534 * neither does rebooting or re-enumerating. These are more useful identifiers 535 * than changeable ("unstable") ones like bus numbers or device addresses. 536 * 537 * With a partial exception for devices connected to USB 2.0 root hubs, these 538 * identifiers are also predictable. So long as the device tree isn't changed, 539 * plugging any USB device into a given hub port always gives it the same path. 540 * Because of the use of "companion" controllers, devices connected to ports on 541 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 542 * high speed, and a different one if they are full or low speed. 543 */ 544 static inline int usb_make_path (struct usb_device *dev, char *buf, 545 size_t size) 546 { 547 int actual; 548 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 549 dev->devpath); 550 return (actual >= (int)size) ? -1 : actual; 551 } 552 553 /*-------------------------------------------------------------------------*/ 554 555 /** 556 * usb_endpoint_dir_in - check if the endpoint has IN direction 557 * @epd: endpoint to be checked 558 * 559 * Returns true if the endpoint is of type IN, otherwise it returns false. 560 */ 561 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 562 { 563 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 564 } 565 566 /** 567 * usb_endpoint_dir_out - check if the endpoint has OUT direction 568 * @epd: endpoint to be checked 569 * 570 * Returns true if the endpoint is of type OUT, otherwise it returns false. 571 */ 572 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd) 573 { 574 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 575 } 576 577 /** 578 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 579 * @epd: endpoint to be checked 580 * 581 * Returns true if the endpoint is of type bulk, otherwise it returns false. 582 */ 583 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd) 584 { 585 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 586 USB_ENDPOINT_XFER_BULK); 587 } 588 589 /** 590 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 591 * @epd: endpoint to be checked 592 * 593 * Returns true if the endpoint is of type control, otherwise it returns false. 594 */ 595 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd) 596 { 597 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 598 USB_ENDPOINT_XFER_CONTROL); 599 } 600 601 /** 602 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 603 * @epd: endpoint to be checked 604 * 605 * Returns true if the endpoint is of type interrupt, otherwise it returns 606 * false. 607 */ 608 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd) 609 { 610 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 611 USB_ENDPOINT_XFER_INT); 612 } 613 614 /** 615 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 616 * @epd: endpoint to be checked 617 * 618 * Returns true if the endpoint is of type isochronous, otherwise it returns 619 * false. 620 */ 621 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd) 622 { 623 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 624 USB_ENDPOINT_XFER_ISOC); 625 } 626 627 /** 628 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 629 * @epd: endpoint to be checked 630 * 631 * Returns true if the endpoint has bulk transfer type and IN direction, 632 * otherwise it returns false. 633 */ 634 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd) 635 { 636 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 637 } 638 639 /** 640 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 641 * @epd: endpoint to be checked 642 * 643 * Returns true if the endpoint has bulk transfer type and OUT direction, 644 * otherwise it returns false. 645 */ 646 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd) 647 { 648 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 649 } 650 651 /** 652 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 653 * @epd: endpoint to be checked 654 * 655 * Returns true if the endpoint has interrupt transfer type and IN direction, 656 * otherwise it returns false. 657 */ 658 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd) 659 { 660 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 661 } 662 663 /** 664 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 665 * @epd: endpoint to be checked 666 * 667 * Returns true if the endpoint has interrupt transfer type and OUT direction, 668 * otherwise it returns false. 669 */ 670 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd) 671 { 672 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 673 } 674 675 /** 676 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 677 * @epd: endpoint to be checked 678 * 679 * Returns true if the endpoint has isochronous transfer type and IN direction, 680 * otherwise it returns false. 681 */ 682 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd) 683 { 684 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 685 } 686 687 /** 688 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 689 * @epd: endpoint to be checked 690 * 691 * Returns true if the endpoint has isochronous transfer type and OUT direction, 692 * otherwise it returns false. 693 */ 694 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd) 695 { 696 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 697 } 698 699 /*-------------------------------------------------------------------------*/ 700 701 #define USB_DEVICE_ID_MATCH_DEVICE \ 702 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 703 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 704 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 705 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 706 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 707 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 708 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 709 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 710 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 711 #define USB_DEVICE_ID_MATCH_INT_INFO \ 712 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 713 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 714 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 715 716 /** 717 * USB_DEVICE - macro used to describe a specific usb device 718 * @vend: the 16 bit USB Vendor ID 719 * @prod: the 16 bit USB Product ID 720 * 721 * This macro is used to create a struct usb_device_id that matches a 722 * specific device. 723 */ 724 #define USB_DEVICE(vend,prod) \ 725 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 726 .idProduct = (prod) 727 /** 728 * USB_DEVICE_VER - macro used to describe a specific usb device with a 729 * version range 730 * @vend: the 16 bit USB Vendor ID 731 * @prod: the 16 bit USB Product ID 732 * @lo: the bcdDevice_lo value 733 * @hi: the bcdDevice_hi value 734 * 735 * This macro is used to create a struct usb_device_id that matches a 736 * specific device, with a version range. 737 */ 738 #define USB_DEVICE_VER(vend,prod,lo,hi) \ 739 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 740 .idVendor = (vend), .idProduct = (prod), \ 741 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 742 743 /** 744 * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb 745 * device with a specific interface protocol 746 * @vend: the 16 bit USB Vendor ID 747 * @prod: the 16 bit USB Product ID 748 * @pr: bInterfaceProtocol value 749 * 750 * This macro is used to create a struct usb_device_id that matches a 751 * specific interface protocol of devices. 752 */ 753 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \ 754 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 755 .idVendor = (vend), \ 756 .idProduct = (prod), \ 757 .bInterfaceProtocol = (pr) 758 759 /** 760 * USB_DEVICE_INFO - macro used to describe a class of usb devices 761 * @cl: bDeviceClass value 762 * @sc: bDeviceSubClass value 763 * @pr: bDeviceProtocol value 764 * 765 * This macro is used to create a struct usb_device_id that matches a 766 * specific class of devices. 767 */ 768 #define USB_DEVICE_INFO(cl,sc,pr) \ 769 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 770 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 771 772 /** 773 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 774 * @cl: bInterfaceClass value 775 * @sc: bInterfaceSubClass value 776 * @pr: bInterfaceProtocol value 777 * 778 * This macro is used to create a struct usb_device_id that matches a 779 * specific class of interfaces. 780 */ 781 #define USB_INTERFACE_INFO(cl,sc,pr) \ 782 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 783 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 784 785 /** 786 * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device 787 * with a class of usb interfaces 788 * @vend: the 16 bit USB Vendor ID 789 * @prod: the 16 bit USB Product ID 790 * @cl: bInterfaceClass value 791 * @sc: bInterfaceSubClass value 792 * @pr: bInterfaceProtocol value 793 * 794 * This macro is used to create a struct usb_device_id that matches a 795 * specific device with a specific class of interfaces. 796 * 797 * This is especially useful when explicitly matching devices that have 798 * vendor specific bDeviceClass values, but standards-compliant interfaces. 799 */ 800 #define USB_DEVICE_AND_INTERFACE_INFO(vend,prod,cl,sc,pr) \ 801 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 802 | USB_DEVICE_ID_MATCH_DEVICE, \ 803 .idVendor = (vend), .idProduct = (prod), \ 804 .bInterfaceClass = (cl), \ 805 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 806 807 /* ----------------------------------------------------------------------- */ 808 809 /* Stuff for dynamic usb ids */ 810 struct usb_dynids { 811 spinlock_t lock; 812 struct list_head list; 813 }; 814 815 struct usb_dynid { 816 struct list_head node; 817 struct usb_device_id id; 818 }; 819 820 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 821 struct device_driver *driver, 822 const char *buf, size_t count); 823 824 /** 825 * struct usbdrv_wrap - wrapper for driver-model structure 826 * @driver: The driver-model core driver structure. 827 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 828 */ 829 struct usbdrv_wrap { 830 struct device_driver driver; 831 int for_devices; 832 }; 833 834 /** 835 * struct usb_driver - identifies USB interface driver to usbcore 836 * @name: The driver name should be unique among USB drivers, 837 * and should normally be the same as the module name. 838 * @probe: Called to see if the driver is willing to manage a particular 839 * interface on a device. If it is, probe returns zero and uses 840 * dev_set_drvdata() to associate driver-specific data with the 841 * interface. It may also use usb_set_interface() to specify the 842 * appropriate altsetting. If unwilling to manage the interface, 843 * return a negative errno value. 844 * @disconnect: Called when the interface is no longer accessible, usually 845 * because its device has been (or is being) disconnected or the 846 * driver module is being unloaded. 847 * @ioctl: Used for drivers that want to talk to userspace through 848 * the "usbfs" filesystem. This lets devices provide ways to 849 * expose information to user space regardless of where they 850 * do (or don't) show up otherwise in the filesystem. 851 * @suspend: Called when the device is going to be suspended by the system. 852 * @resume: Called when the device is being resumed by the system. 853 * @reset_resume: Called when the suspended device has been reset instead 854 * of being resumed. 855 * @pre_reset: Called by usb_reset_composite_device() when the device 856 * is about to be reset. 857 * @post_reset: Called by usb_reset_composite_device() after the device 858 * has been reset, or in lieu of @resume following a reset-resume 859 * (i.e., the device is reset instead of being resumed, as might 860 * happen if power was lost). The second argument tells which is 861 * the reason. 862 * @id_table: USB drivers use ID table to support hotplugging. 863 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 864 * or your driver's probe function will never get called. 865 * @dynids: used internally to hold the list of dynamically added device 866 * ids for this driver. 867 * @drvwrap: Driver-model core structure wrapper. 868 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 869 * added to this driver by preventing the sysfs file from being created. 870 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 871 * for interfaces bound to this driver. 872 * 873 * USB interface drivers must provide a name, probe() and disconnect() 874 * methods, and an id_table. Other driver fields are optional. 875 * 876 * The id_table is used in hotplugging. It holds a set of descriptors, 877 * and specialized data may be associated with each entry. That table 878 * is used by both user and kernel mode hotplugging support. 879 * 880 * The probe() and disconnect() methods are called in a context where 881 * they can sleep, but they should avoid abusing the privilege. Most 882 * work to connect to a device should be done when the device is opened, 883 * and undone at the last close. The disconnect code needs to address 884 * concurrency issues with respect to open() and close() methods, as 885 * well as forcing all pending I/O requests to complete (by unlinking 886 * them as necessary, and blocking until the unlinks complete). 887 */ 888 struct usb_driver { 889 const char *name; 890 891 int (*probe) (struct usb_interface *intf, 892 const struct usb_device_id *id); 893 894 void (*disconnect) (struct usb_interface *intf); 895 896 int (*ioctl) (struct usb_interface *intf, unsigned int code, 897 void *buf); 898 899 int (*suspend) (struct usb_interface *intf, pm_message_t message); 900 int (*resume) (struct usb_interface *intf); 901 int (*reset_resume)(struct usb_interface *intf); 902 903 int (*pre_reset)(struct usb_interface *intf); 904 int (*post_reset)(struct usb_interface *intf); 905 906 const struct usb_device_id *id_table; 907 908 struct usb_dynids dynids; 909 struct usbdrv_wrap drvwrap; 910 unsigned int no_dynamic_id:1; 911 unsigned int supports_autosuspend:1; 912 }; 913 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 914 915 /** 916 * struct usb_device_driver - identifies USB device driver to usbcore 917 * @name: The driver name should be unique among USB drivers, 918 * and should normally be the same as the module name. 919 * @probe: Called to see if the driver is willing to manage a particular 920 * device. If it is, probe returns zero and uses dev_set_drvdata() 921 * to associate driver-specific data with the device. If unwilling 922 * to manage the device, return a negative errno value. 923 * @disconnect: Called when the device is no longer accessible, usually 924 * because it has been (or is being) disconnected or the driver's 925 * module is being unloaded. 926 * @suspend: Called when the device is going to be suspended by the system. 927 * @resume: Called when the device is being resumed by the system. 928 * @drvwrap: Driver-model core structure wrapper. 929 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 930 * for devices bound to this driver. 931 * 932 * USB drivers must provide all the fields listed above except drvwrap. 933 */ 934 struct usb_device_driver { 935 const char *name; 936 937 int (*probe) (struct usb_device *udev); 938 void (*disconnect) (struct usb_device *udev); 939 940 int (*suspend) (struct usb_device *udev, pm_message_t message); 941 int (*resume) (struct usb_device *udev); 942 struct usbdrv_wrap drvwrap; 943 unsigned int supports_autosuspend:1; 944 }; 945 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 946 drvwrap.driver) 947 948 extern struct bus_type usb_bus_type; 949 950 /** 951 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 952 * @name: the usb class device name for this driver. Will show up in sysfs. 953 * @fops: pointer to the struct file_operations of this driver. 954 * @minor_base: the start of the minor range for this driver. 955 * 956 * This structure is used for the usb_register_dev() and 957 * usb_unregister_dev() functions, to consolidate a number of the 958 * parameters used for them. 959 */ 960 struct usb_class_driver { 961 char *name; 962 const struct file_operations *fops; 963 int minor_base; 964 }; 965 966 /* 967 * use these in module_init()/module_exit() 968 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 969 */ 970 extern int usb_register_driver(struct usb_driver *, struct module *, 971 const char *); 972 static inline int usb_register(struct usb_driver *driver) 973 { 974 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 975 } 976 extern void usb_deregister(struct usb_driver *); 977 978 extern int usb_register_device_driver(struct usb_device_driver *, 979 struct module *); 980 extern void usb_deregister_device_driver(struct usb_device_driver *); 981 982 extern int usb_register_dev(struct usb_interface *intf, 983 struct usb_class_driver *class_driver); 984 extern void usb_deregister_dev(struct usb_interface *intf, 985 struct usb_class_driver *class_driver); 986 987 extern int usb_disabled(void); 988 989 /* ----------------------------------------------------------------------- */ 990 991 /* 992 * URB support, for asynchronous request completions 993 */ 994 995 /* 996 * urb->transfer_flags: 997 */ 998 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 999 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1000 * ignored */ 1001 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1002 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1003 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1004 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1005 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1006 * needed */ 1007 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1008 1009 struct usb_iso_packet_descriptor { 1010 unsigned int offset; 1011 unsigned int length; /* expected length */ 1012 unsigned int actual_length; 1013 int status; 1014 }; 1015 1016 struct urb; 1017 1018 struct usb_anchor { 1019 struct list_head urb_list; 1020 wait_queue_head_t wait; 1021 spinlock_t lock; 1022 }; 1023 1024 static inline void init_usb_anchor(struct usb_anchor *anchor) 1025 { 1026 INIT_LIST_HEAD(&anchor->urb_list); 1027 init_waitqueue_head(&anchor->wait); 1028 spin_lock_init(&anchor->lock); 1029 } 1030 1031 typedef void (*usb_complete_t)(struct urb *); 1032 1033 /** 1034 * struct urb - USB Request Block 1035 * @urb_list: For use by current owner of the URB. 1036 * @anchor_list: membership in the list of an anchor 1037 * @anchor: to anchor URBs to a common mooring 1038 * @pipe: Holds endpoint number, direction, type, and more. 1039 * Create these values with the eight macros available; 1040 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1041 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1042 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1043 * numbers range from zero to fifteen. Note that "in" endpoint two 1044 * is a different endpoint (and pipe) from "out" endpoint two. 1045 * The current configuration controls the existence, type, and 1046 * maximum packet size of any given endpoint. 1047 * @dev: Identifies the USB device to perform the request. 1048 * @status: This is read in non-iso completion functions to get the 1049 * status of the particular request. ISO requests only use it 1050 * to tell whether the URB was unlinked; detailed status for 1051 * each frame is in the fields of the iso_frame-desc. 1052 * @transfer_flags: A variety of flags may be used to affect how URB 1053 * submission, unlinking, or operation are handled. Different 1054 * kinds of URB can use different flags. 1055 * @transfer_buffer: This identifies the buffer to (or from) which 1056 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1057 * is set). This buffer must be suitable for DMA; allocate it with 1058 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1059 * of this buffer will be modified. This buffer is used for the data 1060 * stage of control transfers. 1061 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1062 * the device driver is saying that it provided this DMA address, 1063 * which the host controller driver should use in preference to the 1064 * transfer_buffer. 1065 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1066 * be broken up into chunks according to the current maximum packet 1067 * size for the endpoint, which is a function of the configuration 1068 * and is encoded in the pipe. When the length is zero, neither 1069 * transfer_buffer nor transfer_dma is used. 1070 * @actual_length: This is read in non-iso completion functions, and 1071 * it tells how many bytes (out of transfer_buffer_length) were 1072 * transferred. It will normally be the same as requested, unless 1073 * either an error was reported or a short read was performed. 1074 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1075 * short reads be reported as errors. 1076 * @setup_packet: Only used for control transfers, this points to eight bytes 1077 * of setup data. Control transfers always start by sending this data 1078 * to the device. Then transfer_buffer is read or written, if needed. 1079 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1080 * device driver has provided this DMA address for the setup packet. 1081 * The host controller driver should use this in preference to 1082 * setup_packet. 1083 * @start_frame: Returns the initial frame for isochronous transfers. 1084 * @number_of_packets: Lists the number of ISO transfer buffers. 1085 * @interval: Specifies the polling interval for interrupt or isochronous 1086 * transfers. The units are frames (milliseconds) for for full and low 1087 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1088 * @error_count: Returns the number of ISO transfers that reported errors. 1089 * @context: For use in completion functions. This normally points to 1090 * request-specific driver context. 1091 * @complete: Completion handler. This URB is passed as the parameter to the 1092 * completion function. The completion function may then do what 1093 * it likes with the URB, including resubmitting or freeing it. 1094 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1095 * collect the transfer status for each buffer. 1096 * 1097 * This structure identifies USB transfer requests. URBs must be allocated by 1098 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1099 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1100 * are submitted using usb_submit_urb(), and pending requests may be canceled 1101 * using usb_unlink_urb() or usb_kill_urb(). 1102 * 1103 * Data Transfer Buffers: 1104 * 1105 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1106 * taken from the general page pool. That is provided by transfer_buffer 1107 * (control requests also use setup_packet), and host controller drivers 1108 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1109 * mapping operations can be expensive on some platforms (perhaps using a dma 1110 * bounce buffer or talking to an IOMMU), 1111 * although they're cheap on commodity x86 and ppc hardware. 1112 * 1113 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1114 * which tell the host controller driver that no such mapping is needed since 1115 * the device driver is DMA-aware. For example, a device driver might 1116 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1117 * When these transfer flags are provided, host controller drivers will 1118 * attempt to use the dma addresses found in the transfer_dma and/or 1119 * setup_dma fields rather than determining a dma address themselves. (Note 1120 * that transfer_buffer and setup_packet must still be set because not all 1121 * host controllers use DMA, nor do virtual root hubs). 1122 * 1123 * Initialization: 1124 * 1125 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1126 * zero), and complete fields. All URBs must also initialize 1127 * transfer_buffer and transfer_buffer_length. They may provide the 1128 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1129 * to be treated as errors; that flag is invalid for write requests. 1130 * 1131 * Bulk URBs may 1132 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1133 * should always terminate with a short packet, even if it means adding an 1134 * extra zero length packet. 1135 * 1136 * Control URBs must provide a setup_packet. The setup_packet and 1137 * transfer_buffer may each be mapped for DMA or not, independently of 1138 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1139 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1140 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1141 * 1142 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1143 * or, for highspeed devices, 125 microsecond units) 1144 * to poll for transfers. After the URB has been submitted, the interval 1145 * field reflects how the transfer was actually scheduled. 1146 * The polling interval may be more frequent than requested. 1147 * For example, some controllers have a maximum interval of 32 milliseconds, 1148 * while others support intervals of up to 1024 milliseconds. 1149 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1150 * endpoints, as well as high speed interrupt endpoints, the encoding of 1151 * the transfer interval in the endpoint descriptor is logarithmic. 1152 * Device drivers must convert that value to linear units themselves.) 1153 * 1154 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1155 * the host controller to schedule the transfer as soon as bandwidth 1156 * utilization allows, and then set start_frame to reflect the actual frame 1157 * selected during submission. Otherwise drivers must specify the start_frame 1158 * and handle the case where the transfer can't begin then. However, drivers 1159 * won't know how bandwidth is currently allocated, and while they can 1160 * find the current frame using usb_get_current_frame_number () they can't 1161 * know the range for that frame number. (Ranges for frame counter values 1162 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1163 * 1164 * Isochronous URBs have a different data transfer model, in part because 1165 * the quality of service is only "best effort". Callers provide specially 1166 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1167 * at the end. Each such packet is an individual ISO transfer. Isochronous 1168 * URBs are normally queued, submitted by drivers to arrange that 1169 * transfers are at least double buffered, and then explicitly resubmitted 1170 * in completion handlers, so 1171 * that data (such as audio or video) streams at as constant a rate as the 1172 * host controller scheduler can support. 1173 * 1174 * Completion Callbacks: 1175 * 1176 * The completion callback is made in_interrupt(), and one of the first 1177 * things that a completion handler should do is check the status field. 1178 * The status field is provided for all URBs. It is used to report 1179 * unlinked URBs, and status for all non-ISO transfers. It should not 1180 * be examined before the URB is returned to the completion handler. 1181 * 1182 * The context field is normally used to link URBs back to the relevant 1183 * driver or request state. 1184 * 1185 * When the completion callback is invoked for non-isochronous URBs, the 1186 * actual_length field tells how many bytes were transferred. This field 1187 * is updated even when the URB terminated with an error or was unlinked. 1188 * 1189 * ISO transfer status is reported in the status and actual_length fields 1190 * of the iso_frame_desc array, and the number of errors is reported in 1191 * error_count. Completion callbacks for ISO transfers will normally 1192 * (re)submit URBs to ensure a constant transfer rate. 1193 * 1194 * Note that even fields marked "public" should not be touched by the driver 1195 * when the urb is owned by the hcd, that is, since the call to 1196 * usb_submit_urb() till the entry into the completion routine. 1197 */ 1198 struct urb 1199 { 1200 /* private: usb core and host controller only fields in the urb */ 1201 struct kref kref; /* reference count of the URB */ 1202 spinlock_t lock; /* lock for the URB */ 1203 void *hcpriv; /* private data for host controller */ 1204 atomic_t use_count; /* concurrent submissions counter */ 1205 u8 reject; /* submissions will fail */ 1206 1207 /* public: documented fields in the urb that can be used by drivers */ 1208 struct list_head urb_list; /* list head for use by the urb's 1209 * current owner */ 1210 struct list_head anchor_list; /* the URB may be anchored by the driver */ 1211 struct usb_anchor *anchor; 1212 struct usb_device *dev; /* (in) pointer to associated device */ 1213 unsigned int pipe; /* (in) pipe information */ 1214 int status; /* (return) non-ISO status */ 1215 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1216 void *transfer_buffer; /* (in) associated data buffer */ 1217 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1218 int transfer_buffer_length; /* (in) data buffer length */ 1219 int actual_length; /* (return) actual transfer length */ 1220 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1221 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1222 int start_frame; /* (modify) start frame (ISO) */ 1223 int number_of_packets; /* (in) number of ISO packets */ 1224 int interval; /* (modify) transfer interval 1225 * (INT/ISO) */ 1226 int error_count; /* (return) number of ISO errors */ 1227 void *context; /* (in) context for completion */ 1228 usb_complete_t complete; /* (in) completion routine */ 1229 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1230 /* (in) ISO ONLY */ 1231 }; 1232 1233 /* ----------------------------------------------------------------------- */ 1234 1235 /** 1236 * usb_fill_control_urb - initializes a control urb 1237 * @urb: pointer to the urb to initialize. 1238 * @dev: pointer to the struct usb_device for this urb. 1239 * @pipe: the endpoint pipe 1240 * @setup_packet: pointer to the setup_packet buffer 1241 * @transfer_buffer: pointer to the transfer buffer 1242 * @buffer_length: length of the transfer buffer 1243 * @complete_fn: pointer to the usb_complete_t function 1244 * @context: what to set the urb context to. 1245 * 1246 * Initializes a control urb with the proper information needed to submit 1247 * it to a device. 1248 */ 1249 static inline void usb_fill_control_urb (struct urb *urb, 1250 struct usb_device *dev, 1251 unsigned int pipe, 1252 unsigned char *setup_packet, 1253 void *transfer_buffer, 1254 int buffer_length, 1255 usb_complete_t complete_fn, 1256 void *context) 1257 { 1258 spin_lock_init(&urb->lock); 1259 urb->dev = dev; 1260 urb->pipe = pipe; 1261 urb->setup_packet = setup_packet; 1262 urb->transfer_buffer = transfer_buffer; 1263 urb->transfer_buffer_length = buffer_length; 1264 urb->complete = complete_fn; 1265 urb->context = context; 1266 } 1267 1268 /** 1269 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1270 * @urb: pointer to the urb to initialize. 1271 * @dev: pointer to the struct usb_device for this urb. 1272 * @pipe: the endpoint pipe 1273 * @transfer_buffer: pointer to the transfer buffer 1274 * @buffer_length: length of the transfer buffer 1275 * @complete_fn: pointer to the usb_complete_t function 1276 * @context: what to set the urb context to. 1277 * 1278 * Initializes a bulk urb with the proper information needed to submit it 1279 * to a device. 1280 */ 1281 static inline void usb_fill_bulk_urb (struct urb *urb, 1282 struct usb_device *dev, 1283 unsigned int pipe, 1284 void *transfer_buffer, 1285 int buffer_length, 1286 usb_complete_t complete_fn, 1287 void *context) 1288 { 1289 spin_lock_init(&urb->lock); 1290 urb->dev = dev; 1291 urb->pipe = pipe; 1292 urb->transfer_buffer = transfer_buffer; 1293 urb->transfer_buffer_length = buffer_length; 1294 urb->complete = complete_fn; 1295 urb->context = context; 1296 } 1297 1298 /** 1299 * usb_fill_int_urb - macro to help initialize a interrupt urb 1300 * @urb: pointer to the urb to initialize. 1301 * @dev: pointer to the struct usb_device for this urb. 1302 * @pipe: the endpoint pipe 1303 * @transfer_buffer: pointer to the transfer buffer 1304 * @buffer_length: length of the transfer buffer 1305 * @complete_fn: pointer to the usb_complete_t function 1306 * @context: what to set the urb context to. 1307 * @interval: what to set the urb interval to, encoded like 1308 * the endpoint descriptor's bInterval value. 1309 * 1310 * Initializes a interrupt urb with the proper information needed to submit 1311 * it to a device. 1312 * Note that high speed interrupt endpoints use a logarithmic encoding of 1313 * the endpoint interval, and express polling intervals in microframes 1314 * (eight per millisecond) rather than in frames (one per millisecond). 1315 */ 1316 static inline void usb_fill_int_urb (struct urb *urb, 1317 struct usb_device *dev, 1318 unsigned int pipe, 1319 void *transfer_buffer, 1320 int buffer_length, 1321 usb_complete_t complete_fn, 1322 void *context, 1323 int interval) 1324 { 1325 spin_lock_init(&urb->lock); 1326 urb->dev = dev; 1327 urb->pipe = pipe; 1328 urb->transfer_buffer = transfer_buffer; 1329 urb->transfer_buffer_length = buffer_length; 1330 urb->complete = complete_fn; 1331 urb->context = context; 1332 if (dev->speed == USB_SPEED_HIGH) 1333 urb->interval = 1 << (interval - 1); 1334 else 1335 urb->interval = interval; 1336 urb->start_frame = -1; 1337 } 1338 1339 extern void usb_init_urb(struct urb *urb); 1340 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1341 extern void usb_free_urb(struct urb *urb); 1342 #define usb_put_urb usb_free_urb 1343 extern struct urb *usb_get_urb(struct urb *urb); 1344 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1345 extern int usb_unlink_urb(struct urb *urb); 1346 extern void usb_kill_urb(struct urb *urb); 1347 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1348 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1349 extern void usb_unanchor_urb(struct urb *urb); 1350 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1351 unsigned int timeout); 1352 1353 void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1354 gfp_t mem_flags, dma_addr_t *dma); 1355 void usb_buffer_free (struct usb_device *dev, size_t size, 1356 void *addr, dma_addr_t dma); 1357 1358 #if 0 1359 struct urb *usb_buffer_map (struct urb *urb); 1360 void usb_buffer_dmasync (struct urb *urb); 1361 void usb_buffer_unmap (struct urb *urb); 1362 #endif 1363 1364 struct scatterlist; 1365 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe, 1366 struct scatterlist *sg, int nents); 1367 #if 0 1368 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe, 1369 struct scatterlist *sg, int n_hw_ents); 1370 #endif 1371 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe, 1372 struct scatterlist *sg, int n_hw_ents); 1373 1374 /*-------------------------------------------------------------------* 1375 * SYNCHRONOUS CALL SUPPORT * 1376 *-------------------------------------------------------------------*/ 1377 1378 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1379 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1380 void *data, __u16 size, int timeout); 1381 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1382 void *data, int len, int *actual_length, int timeout); 1383 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1384 void *data, int len, int *actual_length, 1385 int timeout); 1386 1387 /* wrappers around usb_control_msg() for the most common standard requests */ 1388 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1389 unsigned char descindex, void *buf, int size); 1390 extern int usb_get_status(struct usb_device *dev, 1391 int type, int target, void *data); 1392 extern int usb_string(struct usb_device *dev, int index, 1393 char *buf, size_t size); 1394 1395 /* wrappers that also update important state inside usbcore */ 1396 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1397 extern int usb_reset_configuration(struct usb_device *dev); 1398 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1399 1400 /* this request isn't really synchronous, but it belongs with the others */ 1401 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1402 1403 /* 1404 * timeouts, in milliseconds, used for sending/receiving control messages 1405 * they typically complete within a few frames (msec) after they're issued 1406 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1407 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1408 */ 1409 #define USB_CTRL_GET_TIMEOUT 5000 1410 #define USB_CTRL_SET_TIMEOUT 5000 1411 1412 1413 /** 1414 * struct usb_sg_request - support for scatter/gather I/O 1415 * @status: zero indicates success, else negative errno 1416 * @bytes: counts bytes transferred. 1417 * 1418 * These requests are initialized using usb_sg_init(), and then are used 1419 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1420 * members of the request object aren't for driver access. 1421 * 1422 * The status and bytecount values are valid only after usb_sg_wait() 1423 * returns. If the status is zero, then the bytecount matches the total 1424 * from the request. 1425 * 1426 * After an error completion, drivers may need to clear a halt condition 1427 * on the endpoint. 1428 */ 1429 struct usb_sg_request { 1430 int status; 1431 size_t bytes; 1432 1433 /* 1434 * members below are private: to usbcore, 1435 * and are not provided for driver access! 1436 */ 1437 spinlock_t lock; 1438 1439 struct usb_device *dev; 1440 int pipe; 1441 struct scatterlist *sg; 1442 int nents; 1443 1444 int entries; 1445 struct urb **urbs; 1446 1447 int count; 1448 struct completion complete; 1449 }; 1450 1451 int usb_sg_init ( 1452 struct usb_sg_request *io, 1453 struct usb_device *dev, 1454 unsigned pipe, 1455 unsigned period, 1456 struct scatterlist *sg, 1457 int nents, 1458 size_t length, 1459 gfp_t mem_flags 1460 ); 1461 void usb_sg_cancel (struct usb_sg_request *io); 1462 void usb_sg_wait (struct usb_sg_request *io); 1463 1464 1465 /* ----------------------------------------------------------------------- */ 1466 1467 /* 1468 * For various legacy reasons, Linux has a small cookie that's paired with 1469 * a struct usb_device to identify an endpoint queue. Queue characteristics 1470 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1471 * an unsigned int encoded as: 1472 * 1473 * - direction: bit 7 (0 = Host-to-Device [Out], 1474 * 1 = Device-to-Host [In] ... 1475 * like endpoint bEndpointAddress) 1476 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1477 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1478 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1479 * 10 = control, 11 = bulk) 1480 * 1481 * Given the device address and endpoint descriptor, pipes are redundant. 1482 */ 1483 1484 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1485 /* (yet ... they're the values used by usbfs) */ 1486 #define PIPE_ISOCHRONOUS 0 1487 #define PIPE_INTERRUPT 1 1488 #define PIPE_CONTROL 2 1489 #define PIPE_BULK 3 1490 1491 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1492 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1493 1494 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1495 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1496 1497 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1498 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1499 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1500 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1501 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1502 1503 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1504 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1505 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1506 #define usb_settoggle(dev, ep, out, bit) \ 1507 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1508 ((bit) << (ep))) 1509 1510 1511 static inline unsigned int __create_pipe(struct usb_device *dev, 1512 unsigned int endpoint) 1513 { 1514 return (dev->devnum << 8) | (endpoint << 15); 1515 } 1516 1517 /* Create various pipes... */ 1518 #define usb_sndctrlpipe(dev,endpoint) \ 1519 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1520 #define usb_rcvctrlpipe(dev,endpoint) \ 1521 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1522 #define usb_sndisocpipe(dev,endpoint) \ 1523 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1524 #define usb_rcvisocpipe(dev,endpoint) \ 1525 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1526 #define usb_sndbulkpipe(dev,endpoint) \ 1527 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1528 #define usb_rcvbulkpipe(dev,endpoint) \ 1529 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1530 #define usb_sndintpipe(dev,endpoint) \ 1531 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1532 #define usb_rcvintpipe(dev,endpoint) \ 1533 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1534 1535 /*-------------------------------------------------------------------------*/ 1536 1537 static inline __u16 1538 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1539 { 1540 struct usb_host_endpoint *ep; 1541 unsigned epnum = usb_pipeendpoint(pipe); 1542 1543 if (is_out) { 1544 WARN_ON(usb_pipein(pipe)); 1545 ep = udev->ep_out[epnum]; 1546 } else { 1547 WARN_ON(usb_pipeout(pipe)); 1548 ep = udev->ep_in[epnum]; 1549 } 1550 if (!ep) 1551 return 0; 1552 1553 /* NOTE: only 0x07ff bits are for packet size... */ 1554 return le16_to_cpu(ep->desc.wMaxPacketSize); 1555 } 1556 1557 /* ----------------------------------------------------------------------- */ 1558 1559 /* Events from the usb core */ 1560 #define USB_DEVICE_ADD 0x0001 1561 #define USB_DEVICE_REMOVE 0x0002 1562 #define USB_BUS_ADD 0x0003 1563 #define USB_BUS_REMOVE 0x0004 1564 extern void usb_register_notify(struct notifier_block *nb); 1565 extern void usb_unregister_notify(struct notifier_block *nb); 1566 1567 #ifdef DEBUG 1568 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1569 __FILE__ , ## arg) 1570 #else 1571 #define dbg(format, arg...) do {} while (0) 1572 #endif 1573 1574 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1575 __FILE__ , ## arg) 1576 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1577 __FILE__ , ## arg) 1578 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1579 __FILE__ , ## arg) 1580 1581 1582 #endif /* __KERNEL__ */ 1583 1584 #endif 1585