xref: /linux-6.15/include/linux/usb.h (revision c4399016)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 
24 struct usb_device;
25 struct usb_driver;
26 
27 /*-------------------------------------------------------------------------*/
28 
29 /*
30  * Host-side wrappers for standard USB descriptors ... these are parsed
31  * from the data provided by devices.  Parsing turns them from a flat
32  * sequence of descriptors into a hierarchy:
33  *
34  *  - devices have one (usually) or more configs;
35  *  - configs have one (often) or more interfaces;
36  *  - interfaces have one (usually) or more settings;
37  *  - each interface setting has zero or (usually) more endpoints.
38  *
39  * And there might be other descriptors mixed in with those.
40  *
41  * Devices may also have class-specific or vendor-specific descriptors.
42  */
43 
44 struct ep_device;
45 
46 /**
47  * struct usb_host_endpoint - host-side endpoint descriptor and queue
48  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49  * @urb_list: urbs queued to this endpoint; maintained by usbcore
50  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51  *	with one or more transfer descriptors (TDs) per urb
52  * @ep_dev: ep_device for sysfs info
53  * @extra: descriptors following this endpoint in the configuration
54  * @extralen: how many bytes of "extra" are valid
55  *
56  * USB requests are always queued to a given endpoint, identified by a
57  * descriptor within an active interface in a given USB configuration.
58  */
59 struct usb_host_endpoint {
60 	struct usb_endpoint_descriptor	desc;
61 	struct list_head		urb_list;
62 	void				*hcpriv;
63 	struct ep_device 		*ep_dev;	/* For sysfs info */
64 
65 	unsigned char *extra;   /* Extra descriptors */
66 	int extralen;
67 };
68 
69 /* host-side wrapper for one interface setting's parsed descriptors */
70 struct usb_host_interface {
71 	struct usb_interface_descriptor	desc;
72 
73 	/* array of desc.bNumEndpoint endpoints associated with this
74 	 * interface setting.  these will be in no particular order.
75 	 */
76 	struct usb_host_endpoint *endpoint;
77 
78 	char *string;		/* iInterface string, if present */
79 	unsigned char *extra;   /* Extra descriptors */
80 	int extralen;
81 };
82 
83 enum usb_interface_condition {
84 	USB_INTERFACE_UNBOUND = 0,
85 	USB_INTERFACE_BINDING,
86 	USB_INTERFACE_BOUND,
87 	USB_INTERFACE_UNBINDING,
88 };
89 
90 /**
91  * struct usb_interface - what usb device drivers talk to
92  * @altsetting: array of interface structures, one for each alternate
93  * 	setting that may be selected.  Each one includes a set of
94  * 	endpoint configurations.  They will be in no particular order.
95  * @num_altsetting: number of altsettings defined.
96  * @cur_altsetting: the current altsetting.
97  * @driver: the USB driver that is bound to this interface.
98  * @minor: the minor number assigned to this interface, if this
99  *	interface is bound to a driver that uses the USB major number.
100  *	If this interface does not use the USB major, this field should
101  *	be unused.  The driver should set this value in the probe()
102  *	function of the driver, after it has been assigned a minor
103  *	number from the USB core by calling usb_register_dev().
104  * @condition: binding state of the interface: not bound, binding
105  *	(in probe()), bound to a driver, or unbinding (in disconnect())
106  * @is_active: flag set when the interface is bound and not suspended.
107  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
108  *	capability during autosuspend.
109  * @dev: driver model's view of this device
110  * @usb_dev: if an interface is bound to the USB major, this will point
111  *	to the sysfs representation for that device.
112  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
113  *	allowed unless the counter is 0.
114  *
115  * USB device drivers attach to interfaces on a physical device.  Each
116  * interface encapsulates a single high level function, such as feeding
117  * an audio stream to a speaker or reporting a change in a volume control.
118  * Many USB devices only have one interface.  The protocol used to talk to
119  * an interface's endpoints can be defined in a usb "class" specification,
120  * or by a product's vendor.  The (default) control endpoint is part of
121  * every interface, but is never listed among the interface's descriptors.
122  *
123  * The driver that is bound to the interface can use standard driver model
124  * calls such as dev_get_drvdata() on the dev member of this structure.
125  *
126  * Each interface may have alternate settings.  The initial configuration
127  * of a device sets altsetting 0, but the device driver can change
128  * that setting using usb_set_interface().  Alternate settings are often
129  * used to control the use of periodic endpoints, such as by having
130  * different endpoints use different amounts of reserved USB bandwidth.
131  * All standards-conformant USB devices that use isochronous endpoints
132  * will use them in non-default settings.
133  *
134  * The USB specification says that alternate setting numbers must run from
135  * 0 to one less than the total number of alternate settings.  But some
136  * devices manage to mess this up, and the structures aren't necessarily
137  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
138  * look up an alternate setting in the altsetting array based on its number.
139  */
140 struct usb_interface {
141 	/* array of alternate settings for this interface,
142 	 * stored in no particular order */
143 	struct usb_host_interface *altsetting;
144 
145 	struct usb_host_interface *cur_altsetting;	/* the currently
146 					 * active alternate setting */
147 	unsigned num_altsetting;	/* number of alternate settings */
148 
149 	/* If there is an interface association descriptor then it will list
150 	 * the associated interfaces */
151 	struct usb_interface_assoc_descriptor *intf_assoc;
152 
153 	int minor;			/* minor number this interface is
154 					 * bound to */
155 	enum usb_interface_condition condition;		/* state of binding */
156 	unsigned is_active:1;		/* the interface is not suspended */
157 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
158 
159 	struct device dev;		/* interface specific device info */
160 	struct device *usb_dev;		/* pointer to the usb class's device, if any */
161 	int pm_usage_cnt;		/* usage counter for autosuspend */
162 };
163 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
164 #define	interface_to_usbdev(intf) \
165 	container_of(intf->dev.parent, struct usb_device, dev)
166 
167 static inline void *usb_get_intfdata (struct usb_interface *intf)
168 {
169 	return dev_get_drvdata (&intf->dev);
170 }
171 
172 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
173 {
174 	dev_set_drvdata(&intf->dev, data);
175 }
176 
177 struct usb_interface *usb_get_intf(struct usb_interface *intf);
178 void usb_put_intf(struct usb_interface *intf);
179 
180 /* this maximum is arbitrary */
181 #define USB_MAXINTERFACES	32
182 #define USB_MAXIADS		USB_MAXINTERFACES/2
183 
184 /**
185  * struct usb_interface_cache - long-term representation of a device interface
186  * @num_altsetting: number of altsettings defined.
187  * @ref: reference counter.
188  * @altsetting: variable-length array of interface structures, one for
189  *	each alternate setting that may be selected.  Each one includes a
190  *	set of endpoint configurations.  They will be in no particular order.
191  *
192  * These structures persist for the lifetime of a usb_device, unlike
193  * struct usb_interface (which persists only as long as its configuration
194  * is installed).  The altsetting arrays can be accessed through these
195  * structures at any time, permitting comparison of configurations and
196  * providing support for the /proc/bus/usb/devices pseudo-file.
197  */
198 struct usb_interface_cache {
199 	unsigned num_altsetting;	/* number of alternate settings */
200 	struct kref ref;		/* reference counter */
201 
202 	/* variable-length array of alternate settings for this interface,
203 	 * stored in no particular order */
204 	struct usb_host_interface altsetting[0];
205 };
206 #define	ref_to_usb_interface_cache(r) \
207 		container_of(r, struct usb_interface_cache, ref)
208 #define	altsetting_to_usb_interface_cache(a) \
209 		container_of(a, struct usb_interface_cache, altsetting[0])
210 
211 /**
212  * struct usb_host_config - representation of a device's configuration
213  * @desc: the device's configuration descriptor.
214  * @string: pointer to the cached version of the iConfiguration string, if
215  *	present for this configuration.
216  * @interface: array of pointers to usb_interface structures, one for each
217  *	interface in the configuration.  The number of interfaces is stored
218  *	in desc.bNumInterfaces.  These pointers are valid only while the
219  *	the configuration is active.
220  * @intf_cache: array of pointers to usb_interface_cache structures, one
221  *	for each interface in the configuration.  These structures exist
222  *	for the entire life of the device.
223  * @extra: pointer to buffer containing all extra descriptors associated
224  *	with this configuration (those preceding the first interface
225  *	descriptor).
226  * @extralen: length of the extra descriptors buffer.
227  *
228  * USB devices may have multiple configurations, but only one can be active
229  * at any time.  Each encapsulates a different operational environment;
230  * for example, a dual-speed device would have separate configurations for
231  * full-speed and high-speed operation.  The number of configurations
232  * available is stored in the device descriptor as bNumConfigurations.
233  *
234  * A configuration can contain multiple interfaces.  Each corresponds to
235  * a different function of the USB device, and all are available whenever
236  * the configuration is active.  The USB standard says that interfaces
237  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
238  * of devices get this wrong.  In addition, the interface array is not
239  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
240  * look up an interface entry based on its number.
241  *
242  * Device drivers should not attempt to activate configurations.  The choice
243  * of which configuration to install is a policy decision based on such
244  * considerations as available power, functionality provided, and the user's
245  * desires (expressed through userspace tools).  However, drivers can call
246  * usb_reset_configuration() to reinitialize the current configuration and
247  * all its interfaces.
248  */
249 struct usb_host_config {
250 	struct usb_config_descriptor	desc;
251 
252 	char *string;		/* iConfiguration string, if present */
253 
254 	/* List of any Interface Association Descriptors in this
255 	 * configuration. */
256 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
257 
258 	/* the interfaces associated with this configuration,
259 	 * stored in no particular order */
260 	struct usb_interface *interface[USB_MAXINTERFACES];
261 
262 	/* Interface information available even when this is not the
263 	 * active configuration */
264 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
265 
266 	unsigned char *extra;   /* Extra descriptors */
267 	int extralen;
268 };
269 
270 int __usb_get_extra_descriptor(char *buffer, unsigned size,
271 	unsigned char type, void **ptr);
272 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
273 	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
274 		type,(void**)ptr)
275 
276 /* ----------------------------------------------------------------------- */
277 
278 /* USB device number allocation bitmap */
279 struct usb_devmap {
280 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
281 };
282 
283 /*
284  * Allocated per bus (tree of devices) we have:
285  */
286 struct usb_bus {
287 	struct device *controller;	/* host/master side hardware */
288 	int busnum;			/* Bus number (in order of reg) */
289 	char *bus_name;			/* stable id (PCI slot_name etc) */
290 	u8 uses_dma;			/* Does the host controller use DMA? */
291 	u8 otg_port;			/* 0, or number of OTG/HNP port */
292 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
293 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
294 
295 	int devnum_next;		/* Next open device number in
296 					 * round-robin allocation */
297 
298 	struct usb_devmap devmap;	/* device address allocation map */
299 	struct usb_device *root_hub;	/* Root hub */
300 	struct list_head bus_list;	/* list of busses */
301 
302 	int bandwidth_allocated;	/* on this bus: how much of the time
303 					 * reserved for periodic (intr/iso)
304 					 * requests is used, on average?
305 					 * Units: microseconds/frame.
306 					 * Limits: Full/low speed reserve 90%,
307 					 * while high speed reserves 80%.
308 					 */
309 	int bandwidth_int_reqs;		/* number of Interrupt requests */
310 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
311 
312 #ifdef CONFIG_USB_DEVICEFS
313 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
314 #endif
315 	struct class_device *class_dev;	/* class device for this bus */
316 
317 #if defined(CONFIG_USB_MON)
318 	struct mon_bus *mon_bus;	/* non-null when associated */
319 	int monitored;			/* non-zero when monitored */
320 #endif
321 };
322 
323 /* ----------------------------------------------------------------------- */
324 
325 /* This is arbitrary.
326  * From USB 2.0 spec Table 11-13, offset 7, a hub can
327  * have up to 255 ports. The most yet reported is 10.
328  *
329  * Current Wireless USB host hardware (Intel i1480 for example) allows
330  * up to 22 devices to connect. Upcoming hardware might raise that
331  * limit. Because the arrays need to add a bit for hub status data, we
332  * do 31, so plus one evens out to four bytes.
333  */
334 #define USB_MAXCHILDREN		(31)
335 
336 struct usb_tt;
337 
338 /*
339  * struct usb_device - kernel's representation of a USB device
340  *
341  * FIXME: Write the kerneldoc!
342  *
343  * Usbcore drivers should not set usbdev->state directly.  Instead use
344  * usb_set_device_state().
345  */
346 struct usb_device {
347 	int		devnum;		/* Address on USB bus */
348 	char		devpath [16];	/* Use in messages: /port/port/... */
349 	enum usb_device_state	state;	/* configured, not attached, etc */
350 	enum usb_device_speed	speed;	/* high/full/low (or error) */
351 
352 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
353 	int		ttport;		/* device port on that tt hub */
354 
355 	unsigned int toggle[2];		/* one bit for each endpoint
356 					 * ([0] = IN, [1] = OUT) */
357 
358 	struct usb_device *parent;	/* our hub, unless we're the root */
359 	struct usb_bus *bus;		/* Bus we're part of */
360 	struct usb_host_endpoint ep0;
361 
362 	struct device dev;		/* Generic device interface */
363 
364 	struct usb_device_descriptor descriptor;/* Descriptor */
365 	struct usb_host_config *config;	/* All of the configs */
366 
367 	struct usb_host_config *actconfig;/* the active configuration */
368 	struct usb_host_endpoint *ep_in[16];
369 	struct usb_host_endpoint *ep_out[16];
370 
371 	char **rawdescriptors;		/* Raw descriptors for each config */
372 
373 	unsigned short bus_mA;		/* Current available from the bus */
374 	u8 portnum;			/* Parent port number (origin 1) */
375 	u8 level;			/* Number of USB hub ancestors */
376 
377 	unsigned discon_suspended:1;	/* Disconnected while suspended */
378 	unsigned have_langid:1;		/* whether string_langid is valid */
379 	int string_langid;		/* language ID for strings */
380 
381 	/* static strings from the device */
382 	char *product;			/* iProduct string, if present */
383 	char *manufacturer;		/* iManufacturer string, if present */
384 	char *serial;			/* iSerialNumber string, if present */
385 
386 	struct list_head filelist;
387 #ifdef CONFIG_USB_DEVICE_CLASS
388 	struct device *usb_classdev;
389 #endif
390 #ifdef CONFIG_USB_DEVICEFS
391 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
392 #endif
393 	/*
394 	 * Child devices - these can be either new devices
395 	 * (if this is a hub device), or different instances
396 	 * of this same device.
397 	 *
398 	 * Each instance needs its own set of data structures.
399 	 */
400 
401 	int maxchild;			/* Number of ports if hub */
402 	struct usb_device *children[USB_MAXCHILDREN];
403 
404 	int pm_usage_cnt;		/* usage counter for autosuspend */
405 	u32 quirks;			/* quirks of the whole device */
406 
407 #ifdef CONFIG_PM
408 	struct delayed_work autosuspend; /* for delayed autosuspends */
409 	struct mutex pm_mutex;		/* protects PM operations */
410 
411 	unsigned long last_busy;	/* time of last use */
412 	int autosuspend_delay;		/* in jiffies */
413 
414 	unsigned auto_pm:1;		/* autosuspend/resume in progress */
415 	unsigned do_remote_wakeup:1;	/* remote wakeup should be enabled */
416 	unsigned reset_resume:1;	/* needs reset instead of resume */
417 	unsigned persist_enabled:1;	/* USB_PERSIST enabled for this dev */
418 	unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
419 	unsigned autoresume_disabled:1;  /*  disabled by the user */
420 #endif
421 };
422 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
423 
424 extern struct usb_device *usb_get_dev(struct usb_device *dev);
425 extern void usb_put_dev(struct usb_device *dev);
426 
427 /* USB device locking */
428 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
429 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
430 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
431 extern int usb_lock_device_for_reset(struct usb_device *udev,
432 				     const struct usb_interface *iface);
433 
434 /* USB port reset for device reinitialization */
435 extern int usb_reset_device(struct usb_device *dev);
436 extern int usb_reset_composite_device(struct usb_device *dev,
437 		struct usb_interface *iface);
438 
439 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
440 
441 /* USB autosuspend and autoresume */
442 #ifdef CONFIG_USB_SUSPEND
443 extern int usb_autopm_set_interface(struct usb_interface *intf);
444 extern int usb_autopm_get_interface(struct usb_interface *intf);
445 extern void usb_autopm_put_interface(struct usb_interface *intf);
446 
447 static inline void usb_autopm_enable(struct usb_interface *intf)
448 {
449 	intf->pm_usage_cnt = 0;
450 	usb_autopm_set_interface(intf);
451 }
452 
453 static inline void usb_autopm_disable(struct usb_interface *intf)
454 {
455 	intf->pm_usage_cnt = 1;
456 	usb_autopm_set_interface(intf);
457 }
458 
459 static inline void usb_mark_last_busy(struct usb_device *udev)
460 {
461 	udev->last_busy = jiffies;
462 }
463 
464 #else
465 
466 static inline int usb_autopm_set_interface(struct usb_interface *intf)
467 { return 0; }
468 
469 static inline int usb_autopm_get_interface(struct usb_interface *intf)
470 { return 0; }
471 
472 static inline void usb_autopm_put_interface(struct usb_interface *intf)
473 { }
474 static inline void usb_autopm_enable(struct usb_interface *intf)
475 { }
476 static inline void usb_autopm_disable(struct usb_interface *intf)
477 { }
478 static inline void usb_mark_last_busy(struct usb_device *udev)
479 { }
480 #endif
481 
482 /*-------------------------------------------------------------------------*/
483 
484 /* for drivers using iso endpoints */
485 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
486 
487 /* used these for multi-interface device registration */
488 extern int usb_driver_claim_interface(struct usb_driver *driver,
489 			struct usb_interface *iface, void* priv);
490 
491 /**
492  * usb_interface_claimed - returns true iff an interface is claimed
493  * @iface: the interface being checked
494  *
495  * Returns true (nonzero) iff the interface is claimed, else false (zero).
496  * Callers must own the driver model's usb bus readlock.  So driver
497  * probe() entries don't need extra locking, but other call contexts
498  * may need to explicitly claim that lock.
499  *
500  */
501 static inline int usb_interface_claimed(struct usb_interface *iface) {
502 	return (iface->dev.driver != NULL);
503 }
504 
505 extern void usb_driver_release_interface(struct usb_driver *driver,
506 			struct usb_interface *iface);
507 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
508 					 const struct usb_device_id *id);
509 extern int usb_match_one_id(struct usb_interface *interface,
510 			    const struct usb_device_id *id);
511 
512 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
513 		int minor);
514 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
515 		unsigned ifnum);
516 extern struct usb_host_interface *usb_altnum_to_altsetting(
517 		const struct usb_interface *intf, unsigned int altnum);
518 
519 
520 /**
521  * usb_make_path - returns stable device path in the usb tree
522  * @dev: the device whose path is being constructed
523  * @buf: where to put the string
524  * @size: how big is "buf"?
525  *
526  * Returns length of the string (> 0) or negative if size was too small.
527  *
528  * This identifier is intended to be "stable", reflecting physical paths in
529  * hardware such as physical bus addresses for host controllers or ports on
530  * USB hubs.  That makes it stay the same until systems are physically
531  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
532  * controllers.  Adding and removing devices, including virtual root hubs
533  * in host controller driver modules, does not change these path identifers;
534  * neither does rebooting or re-enumerating.  These are more useful identifiers
535  * than changeable ("unstable") ones like bus numbers or device addresses.
536  *
537  * With a partial exception for devices connected to USB 2.0 root hubs, these
538  * identifiers are also predictable.  So long as the device tree isn't changed,
539  * plugging any USB device into a given hub port always gives it the same path.
540  * Because of the use of "companion" controllers, devices connected to ports on
541  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
542  * high speed, and a different one if they are full or low speed.
543  */
544 static inline int usb_make_path (struct usb_device *dev, char *buf,
545 		size_t size)
546 {
547 	int actual;
548 	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
549 			dev->devpath);
550 	return (actual >= (int)size) ? -1 : actual;
551 }
552 
553 /*-------------------------------------------------------------------------*/
554 
555 /**
556  * usb_endpoint_dir_in - check if the endpoint has IN direction
557  * @epd: endpoint to be checked
558  *
559  * Returns true if the endpoint is of type IN, otherwise it returns false.
560  */
561 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
562 {
563 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
564 }
565 
566 /**
567  * usb_endpoint_dir_out - check if the endpoint has OUT direction
568  * @epd: endpoint to be checked
569  *
570  * Returns true if the endpoint is of type OUT, otherwise it returns false.
571  */
572 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
573 {
574 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
575 }
576 
577 /**
578  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
579  * @epd: endpoint to be checked
580  *
581  * Returns true if the endpoint is of type bulk, otherwise it returns false.
582  */
583 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
584 {
585 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
586 		USB_ENDPOINT_XFER_BULK);
587 }
588 
589 /**
590  * usb_endpoint_xfer_control - check if the endpoint has control transfer type
591  * @epd: endpoint to be checked
592  *
593  * Returns true if the endpoint is of type control, otherwise it returns false.
594  */
595 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
596 {
597 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
598 		USB_ENDPOINT_XFER_CONTROL);
599 }
600 
601 /**
602  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
603  * @epd: endpoint to be checked
604  *
605  * Returns true if the endpoint is of type interrupt, otherwise it returns
606  * false.
607  */
608 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
609 {
610 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
611 		USB_ENDPOINT_XFER_INT);
612 }
613 
614 /**
615  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
616  * @epd: endpoint to be checked
617  *
618  * Returns true if the endpoint is of type isochronous, otherwise it returns
619  * false.
620  */
621 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
622 {
623 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
624 		USB_ENDPOINT_XFER_ISOC);
625 }
626 
627 /**
628  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
629  * @epd: endpoint to be checked
630  *
631  * Returns true if the endpoint has bulk transfer type and IN direction,
632  * otherwise it returns false.
633  */
634 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
635 {
636 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
637 }
638 
639 /**
640  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
641  * @epd: endpoint to be checked
642  *
643  * Returns true if the endpoint has bulk transfer type and OUT direction,
644  * otherwise it returns false.
645  */
646 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
647 {
648 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
649 }
650 
651 /**
652  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
653  * @epd: endpoint to be checked
654  *
655  * Returns true if the endpoint has interrupt transfer type and IN direction,
656  * otherwise it returns false.
657  */
658 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
659 {
660 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
661 }
662 
663 /**
664  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
665  * @epd: endpoint to be checked
666  *
667  * Returns true if the endpoint has interrupt transfer type and OUT direction,
668  * otherwise it returns false.
669  */
670 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
671 {
672 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
673 }
674 
675 /**
676  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
677  * @epd: endpoint to be checked
678  *
679  * Returns true if the endpoint has isochronous transfer type and IN direction,
680  * otherwise it returns false.
681  */
682 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
683 {
684 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
685 }
686 
687 /**
688  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
689  * @epd: endpoint to be checked
690  *
691  * Returns true if the endpoint has isochronous transfer type and OUT direction,
692  * otherwise it returns false.
693  */
694 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
695 {
696 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
697 }
698 
699 /*-------------------------------------------------------------------------*/
700 
701 #define USB_DEVICE_ID_MATCH_DEVICE \
702 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
703 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
704 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
705 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
706 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
707 #define USB_DEVICE_ID_MATCH_DEV_INFO \
708 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
709 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
710 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
711 #define USB_DEVICE_ID_MATCH_INT_INFO \
712 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
713 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
714 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
715 
716 /**
717  * USB_DEVICE - macro used to describe a specific usb device
718  * @vend: the 16 bit USB Vendor ID
719  * @prod: the 16 bit USB Product ID
720  *
721  * This macro is used to create a struct usb_device_id that matches a
722  * specific device.
723  */
724 #define USB_DEVICE(vend,prod) \
725 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
726 			.idProduct = (prod)
727 /**
728  * USB_DEVICE_VER - macro used to describe a specific usb device with a
729  *		version range
730  * @vend: the 16 bit USB Vendor ID
731  * @prod: the 16 bit USB Product ID
732  * @lo: the bcdDevice_lo value
733  * @hi: the bcdDevice_hi value
734  *
735  * This macro is used to create a struct usb_device_id that matches a
736  * specific device, with a version range.
737  */
738 #define USB_DEVICE_VER(vend,prod,lo,hi) \
739 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
740 	.idVendor = (vend), .idProduct = (prod), \
741 	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
742 
743 /**
744  * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb
745  *		device with a specific interface protocol
746  * @vend: the 16 bit USB Vendor ID
747  * @prod: the 16 bit USB Product ID
748  * @pr: bInterfaceProtocol value
749  *
750  * This macro is used to create a struct usb_device_id that matches a
751  * specific interface protocol of devices.
752  */
753 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \
754 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
755 	.idVendor = (vend), \
756 	.idProduct = (prod), \
757 	.bInterfaceProtocol = (pr)
758 
759 /**
760  * USB_DEVICE_INFO - macro used to describe a class of usb devices
761  * @cl: bDeviceClass value
762  * @sc: bDeviceSubClass value
763  * @pr: bDeviceProtocol value
764  *
765  * This macro is used to create a struct usb_device_id that matches a
766  * specific class of devices.
767  */
768 #define USB_DEVICE_INFO(cl,sc,pr) \
769 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
770 	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
771 
772 /**
773  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
774  * @cl: bInterfaceClass value
775  * @sc: bInterfaceSubClass value
776  * @pr: bInterfaceProtocol value
777  *
778  * This macro is used to create a struct usb_device_id that matches a
779  * specific class of interfaces.
780  */
781 #define USB_INTERFACE_INFO(cl,sc,pr) \
782 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
783 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
784 
785 /**
786  * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device
787  * 		with a class of usb interfaces
788  * @vend: the 16 bit USB Vendor ID
789  * @prod: the 16 bit USB Product ID
790  * @cl: bInterfaceClass value
791  * @sc: bInterfaceSubClass value
792  * @pr: bInterfaceProtocol value
793  *
794  * This macro is used to create a struct usb_device_id that matches a
795  * specific device with a specific class of interfaces.
796  *
797  * This is especially useful when explicitly matching devices that have
798  * vendor specific bDeviceClass values, but standards-compliant interfaces.
799  */
800 #define USB_DEVICE_AND_INTERFACE_INFO(vend,prod,cl,sc,pr) \
801 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
802 		| USB_DEVICE_ID_MATCH_DEVICE, \
803 	.idVendor = (vend), .idProduct = (prod), \
804 	.bInterfaceClass = (cl), \
805 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
806 
807 /* ----------------------------------------------------------------------- */
808 
809 /* Stuff for dynamic usb ids */
810 struct usb_dynids {
811 	spinlock_t lock;
812 	struct list_head list;
813 };
814 
815 struct usb_dynid {
816 	struct list_head node;
817 	struct usb_device_id id;
818 };
819 
820 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
821 				struct device_driver *driver,
822 				const char *buf, size_t count);
823 
824 /**
825  * struct usbdrv_wrap - wrapper for driver-model structure
826  * @driver: The driver-model core driver structure.
827  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
828  */
829 struct usbdrv_wrap {
830 	struct device_driver driver;
831 	int for_devices;
832 };
833 
834 /**
835  * struct usb_driver - identifies USB interface driver to usbcore
836  * @name: The driver name should be unique among USB drivers,
837  *	and should normally be the same as the module name.
838  * @probe: Called to see if the driver is willing to manage a particular
839  *	interface on a device.  If it is, probe returns zero and uses
840  *	dev_set_drvdata() to associate driver-specific data with the
841  *	interface.  It may also use usb_set_interface() to specify the
842  *	appropriate altsetting.  If unwilling to manage the interface,
843  *	return a negative errno value.
844  * @disconnect: Called when the interface is no longer accessible, usually
845  *	because its device has been (or is being) disconnected or the
846  *	driver module is being unloaded.
847  * @ioctl: Used for drivers that want to talk to userspace through
848  *	the "usbfs" filesystem.  This lets devices provide ways to
849  *	expose information to user space regardless of where they
850  *	do (or don't) show up otherwise in the filesystem.
851  * @suspend: Called when the device is going to be suspended by the system.
852  * @resume: Called when the device is being resumed by the system.
853  * @reset_resume: Called when the suspended device has been reset instead
854  *	of being resumed.
855  * @pre_reset: Called by usb_reset_composite_device() when the device
856  *	is about to be reset.
857  * @post_reset: Called by usb_reset_composite_device() after the device
858  *	has been reset, or in lieu of @resume following a reset-resume
859  *	(i.e., the device is reset instead of being resumed, as might
860  *	happen if power was lost).  The second argument tells which is
861  *	the reason.
862  * @id_table: USB drivers use ID table to support hotplugging.
863  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
864  *	or your driver's probe function will never get called.
865  * @dynids: used internally to hold the list of dynamically added device
866  *	ids for this driver.
867  * @drvwrap: Driver-model core structure wrapper.
868  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
869  *	added to this driver by preventing the sysfs file from being created.
870  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
871  *	for interfaces bound to this driver.
872  *
873  * USB interface drivers must provide a name, probe() and disconnect()
874  * methods, and an id_table.  Other driver fields are optional.
875  *
876  * The id_table is used in hotplugging.  It holds a set of descriptors,
877  * and specialized data may be associated with each entry.  That table
878  * is used by both user and kernel mode hotplugging support.
879  *
880  * The probe() and disconnect() methods are called in a context where
881  * they can sleep, but they should avoid abusing the privilege.  Most
882  * work to connect to a device should be done when the device is opened,
883  * and undone at the last close.  The disconnect code needs to address
884  * concurrency issues with respect to open() and close() methods, as
885  * well as forcing all pending I/O requests to complete (by unlinking
886  * them as necessary, and blocking until the unlinks complete).
887  */
888 struct usb_driver {
889 	const char *name;
890 
891 	int (*probe) (struct usb_interface *intf,
892 		      const struct usb_device_id *id);
893 
894 	void (*disconnect) (struct usb_interface *intf);
895 
896 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
897 			void *buf);
898 
899 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
900 	int (*resume) (struct usb_interface *intf);
901 	int (*reset_resume)(struct usb_interface *intf);
902 
903 	int (*pre_reset)(struct usb_interface *intf);
904 	int (*post_reset)(struct usb_interface *intf);
905 
906 	const struct usb_device_id *id_table;
907 
908 	struct usb_dynids dynids;
909 	struct usbdrv_wrap drvwrap;
910 	unsigned int no_dynamic_id:1;
911 	unsigned int supports_autosuspend:1;
912 };
913 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
914 
915 /**
916  * struct usb_device_driver - identifies USB device driver to usbcore
917  * @name: The driver name should be unique among USB drivers,
918  *	and should normally be the same as the module name.
919  * @probe: Called to see if the driver is willing to manage a particular
920  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
921  *	to associate driver-specific data with the device.  If unwilling
922  *	to manage the device, return a negative errno value.
923  * @disconnect: Called when the device is no longer accessible, usually
924  *	because it has been (or is being) disconnected or the driver's
925  *	module is being unloaded.
926  * @suspend: Called when the device is going to be suspended by the system.
927  * @resume: Called when the device is being resumed by the system.
928  * @drvwrap: Driver-model core structure wrapper.
929  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
930  *	for devices bound to this driver.
931  *
932  * USB drivers must provide all the fields listed above except drvwrap.
933  */
934 struct usb_device_driver {
935 	const char *name;
936 
937 	int (*probe) (struct usb_device *udev);
938 	void (*disconnect) (struct usb_device *udev);
939 
940 	int (*suspend) (struct usb_device *udev, pm_message_t message);
941 	int (*resume) (struct usb_device *udev);
942 	struct usbdrv_wrap drvwrap;
943 	unsigned int supports_autosuspend:1;
944 };
945 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
946 		drvwrap.driver)
947 
948 extern struct bus_type usb_bus_type;
949 
950 /**
951  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
952  * @name: the usb class device name for this driver.  Will show up in sysfs.
953  * @fops: pointer to the struct file_operations of this driver.
954  * @minor_base: the start of the minor range for this driver.
955  *
956  * This structure is used for the usb_register_dev() and
957  * usb_unregister_dev() functions, to consolidate a number of the
958  * parameters used for them.
959  */
960 struct usb_class_driver {
961 	char *name;
962 	const struct file_operations *fops;
963 	int minor_base;
964 };
965 
966 /*
967  * use these in module_init()/module_exit()
968  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
969  */
970 extern int usb_register_driver(struct usb_driver *, struct module *,
971 			       const char *);
972 static inline int usb_register(struct usb_driver *driver)
973 {
974 	return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
975 }
976 extern void usb_deregister(struct usb_driver *);
977 
978 extern int usb_register_device_driver(struct usb_device_driver *,
979 			struct module *);
980 extern void usb_deregister_device_driver(struct usb_device_driver *);
981 
982 extern int usb_register_dev(struct usb_interface *intf,
983 			    struct usb_class_driver *class_driver);
984 extern void usb_deregister_dev(struct usb_interface *intf,
985 			       struct usb_class_driver *class_driver);
986 
987 extern int usb_disabled(void);
988 
989 /* ----------------------------------------------------------------------- */
990 
991 /*
992  * URB support, for asynchronous request completions
993  */
994 
995 /*
996  * urb->transfer_flags:
997  */
998 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
999 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
1000 					 * ignored */
1001 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1002 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
1003 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1004 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1005 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1006 					 * needed */
1007 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1008 
1009 struct usb_iso_packet_descriptor {
1010 	unsigned int offset;
1011 	unsigned int length;		/* expected length */
1012 	unsigned int actual_length;
1013 	int status;
1014 };
1015 
1016 struct urb;
1017 
1018 struct usb_anchor {
1019 	struct list_head urb_list;
1020 	wait_queue_head_t wait;
1021 	spinlock_t lock;
1022 };
1023 
1024 static inline void init_usb_anchor(struct usb_anchor *anchor)
1025 {
1026 	INIT_LIST_HEAD(&anchor->urb_list);
1027 	init_waitqueue_head(&anchor->wait);
1028 	spin_lock_init(&anchor->lock);
1029 }
1030 
1031 typedef void (*usb_complete_t)(struct urb *);
1032 
1033 /**
1034  * struct urb - USB Request Block
1035  * @urb_list: For use by current owner of the URB.
1036  * @anchor_list: membership in the list of an anchor
1037  * @anchor: to anchor URBs to a common mooring
1038  * @pipe: Holds endpoint number, direction, type, and more.
1039  *	Create these values with the eight macros available;
1040  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1041  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1042  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1043  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1044  *	is a different endpoint (and pipe) from "out" endpoint two.
1045  *	The current configuration controls the existence, type, and
1046  *	maximum packet size of any given endpoint.
1047  * @dev: Identifies the USB device to perform the request.
1048  * @status: This is read in non-iso completion functions to get the
1049  *	status of the particular request.  ISO requests only use it
1050  *	to tell whether the URB was unlinked; detailed status for
1051  *	each frame is in the fields of the iso_frame-desc.
1052  * @transfer_flags: A variety of flags may be used to affect how URB
1053  *	submission, unlinking, or operation are handled.  Different
1054  *	kinds of URB can use different flags.
1055  * @transfer_buffer:  This identifies the buffer to (or from) which
1056  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1057  *	is set).  This buffer must be suitable for DMA; allocate it with
1058  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1059  *	of this buffer will be modified.  This buffer is used for the data
1060  *	stage of control transfers.
1061  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1062  *	the device driver is saying that it provided this DMA address,
1063  *	which the host controller driver should use in preference to the
1064  *	transfer_buffer.
1065  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1066  *	be broken up into chunks according to the current maximum packet
1067  *	size for the endpoint, which is a function of the configuration
1068  *	and is encoded in the pipe.  When the length is zero, neither
1069  *	transfer_buffer nor transfer_dma is used.
1070  * @actual_length: This is read in non-iso completion functions, and
1071  *	it tells how many bytes (out of transfer_buffer_length) were
1072  *	transferred.  It will normally be the same as requested, unless
1073  *	either an error was reported or a short read was performed.
1074  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1075  *	short reads be reported as errors.
1076  * @setup_packet: Only used for control transfers, this points to eight bytes
1077  *	of setup data.  Control transfers always start by sending this data
1078  *	to the device.  Then transfer_buffer is read or written, if needed.
1079  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1080  *	device driver has provided this DMA address for the setup packet.
1081  *	The host controller driver should use this in preference to
1082  *	setup_packet.
1083  * @start_frame: Returns the initial frame for isochronous transfers.
1084  * @number_of_packets: Lists the number of ISO transfer buffers.
1085  * @interval: Specifies the polling interval for interrupt or isochronous
1086  *	transfers.  The units are frames (milliseconds) for for full and low
1087  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
1088  * @error_count: Returns the number of ISO transfers that reported errors.
1089  * @context: For use in completion functions.  This normally points to
1090  *	request-specific driver context.
1091  * @complete: Completion handler. This URB is passed as the parameter to the
1092  *	completion function.  The completion function may then do what
1093  *	it likes with the URB, including resubmitting or freeing it.
1094  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1095  *	collect the transfer status for each buffer.
1096  *
1097  * This structure identifies USB transfer requests.  URBs must be allocated by
1098  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1099  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1100  * are submitted using usb_submit_urb(), and pending requests may be canceled
1101  * using usb_unlink_urb() or usb_kill_urb().
1102  *
1103  * Data Transfer Buffers:
1104  *
1105  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1106  * taken from the general page pool.  That is provided by transfer_buffer
1107  * (control requests also use setup_packet), and host controller drivers
1108  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1109  * mapping operations can be expensive on some platforms (perhaps using a dma
1110  * bounce buffer or talking to an IOMMU),
1111  * although they're cheap on commodity x86 and ppc hardware.
1112  *
1113  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1114  * which tell the host controller driver that no such mapping is needed since
1115  * the device driver is DMA-aware.  For example, a device driver might
1116  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1117  * When these transfer flags are provided, host controller drivers will
1118  * attempt to use the dma addresses found in the transfer_dma and/or
1119  * setup_dma fields rather than determining a dma address themselves.  (Note
1120  * that transfer_buffer and setup_packet must still be set because not all
1121  * host controllers use DMA, nor do virtual root hubs).
1122  *
1123  * Initialization:
1124  *
1125  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1126  * zero), and complete fields.  All URBs must also initialize
1127  * transfer_buffer and transfer_buffer_length.  They may provide the
1128  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1129  * to be treated as errors; that flag is invalid for write requests.
1130  *
1131  * Bulk URBs may
1132  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1133  * should always terminate with a short packet, even if it means adding an
1134  * extra zero length packet.
1135  *
1136  * Control URBs must provide a setup_packet.  The setup_packet and
1137  * transfer_buffer may each be mapped for DMA or not, independently of
1138  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1139  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1140  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1141  *
1142  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1143  * or, for highspeed devices, 125 microsecond units)
1144  * to poll for transfers.  After the URB has been submitted, the interval
1145  * field reflects how the transfer was actually scheduled.
1146  * The polling interval may be more frequent than requested.
1147  * For example, some controllers have a maximum interval of 32 milliseconds,
1148  * while others support intervals of up to 1024 milliseconds.
1149  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1150  * endpoints, as well as high speed interrupt endpoints, the encoding of
1151  * the transfer interval in the endpoint descriptor is logarithmic.
1152  * Device drivers must convert that value to linear units themselves.)
1153  *
1154  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1155  * the host controller to schedule the transfer as soon as bandwidth
1156  * utilization allows, and then set start_frame to reflect the actual frame
1157  * selected during submission.  Otherwise drivers must specify the start_frame
1158  * and handle the case where the transfer can't begin then.  However, drivers
1159  * won't know how bandwidth is currently allocated, and while they can
1160  * find the current frame using usb_get_current_frame_number () they can't
1161  * know the range for that frame number.  (Ranges for frame counter values
1162  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1163  *
1164  * Isochronous URBs have a different data transfer model, in part because
1165  * the quality of service is only "best effort".  Callers provide specially
1166  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1167  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1168  * URBs are normally queued, submitted by drivers to arrange that
1169  * transfers are at least double buffered, and then explicitly resubmitted
1170  * in completion handlers, so
1171  * that data (such as audio or video) streams at as constant a rate as the
1172  * host controller scheduler can support.
1173  *
1174  * Completion Callbacks:
1175  *
1176  * The completion callback is made in_interrupt(), and one of the first
1177  * things that a completion handler should do is check the status field.
1178  * The status field is provided for all URBs.  It is used to report
1179  * unlinked URBs, and status for all non-ISO transfers.  It should not
1180  * be examined before the URB is returned to the completion handler.
1181  *
1182  * The context field is normally used to link URBs back to the relevant
1183  * driver or request state.
1184  *
1185  * When the completion callback is invoked for non-isochronous URBs, the
1186  * actual_length field tells how many bytes were transferred.  This field
1187  * is updated even when the URB terminated with an error or was unlinked.
1188  *
1189  * ISO transfer status is reported in the status and actual_length fields
1190  * of the iso_frame_desc array, and the number of errors is reported in
1191  * error_count.  Completion callbacks for ISO transfers will normally
1192  * (re)submit URBs to ensure a constant transfer rate.
1193  *
1194  * Note that even fields marked "public" should not be touched by the driver
1195  * when the urb is owned by the hcd, that is, since the call to
1196  * usb_submit_urb() till the entry into the completion routine.
1197  */
1198 struct urb
1199 {
1200 	/* private: usb core and host controller only fields in the urb */
1201 	struct kref kref;		/* reference count of the URB */
1202 	spinlock_t lock;		/* lock for the URB */
1203 	void *hcpriv;			/* private data for host controller */
1204 	atomic_t use_count;		/* concurrent submissions counter */
1205 	u8 reject;			/* submissions will fail */
1206 
1207 	/* public: documented fields in the urb that can be used by drivers */
1208 	struct list_head urb_list;	/* list head for use by the urb's
1209 					 * current owner */
1210 	struct list_head anchor_list;	/* the URB may be anchored by the driver */
1211 	struct usb_anchor *anchor;
1212 	struct usb_device *dev; 	/* (in) pointer to associated device */
1213 	unsigned int pipe;		/* (in) pipe information */
1214 	int status;			/* (return) non-ISO status */
1215 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1216 	void *transfer_buffer;		/* (in) associated data buffer */
1217 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1218 	int transfer_buffer_length;	/* (in) data buffer length */
1219 	int actual_length;		/* (return) actual transfer length */
1220 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1221 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1222 	int start_frame;		/* (modify) start frame (ISO) */
1223 	int number_of_packets;		/* (in) number of ISO packets */
1224 	int interval;			/* (modify) transfer interval
1225 					 * (INT/ISO) */
1226 	int error_count;		/* (return) number of ISO errors */
1227 	void *context;			/* (in) context for completion */
1228 	usb_complete_t complete;	/* (in) completion routine */
1229 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1230 					/* (in) ISO ONLY */
1231 };
1232 
1233 /* ----------------------------------------------------------------------- */
1234 
1235 /**
1236  * usb_fill_control_urb - initializes a control urb
1237  * @urb: pointer to the urb to initialize.
1238  * @dev: pointer to the struct usb_device for this urb.
1239  * @pipe: the endpoint pipe
1240  * @setup_packet: pointer to the setup_packet buffer
1241  * @transfer_buffer: pointer to the transfer buffer
1242  * @buffer_length: length of the transfer buffer
1243  * @complete_fn: pointer to the usb_complete_t function
1244  * @context: what to set the urb context to.
1245  *
1246  * Initializes a control urb with the proper information needed to submit
1247  * it to a device.
1248  */
1249 static inline void usb_fill_control_urb (struct urb *urb,
1250 					 struct usb_device *dev,
1251 					 unsigned int pipe,
1252 					 unsigned char *setup_packet,
1253 					 void *transfer_buffer,
1254 					 int buffer_length,
1255 					 usb_complete_t complete_fn,
1256 					 void *context)
1257 {
1258 	spin_lock_init(&urb->lock);
1259 	urb->dev = dev;
1260 	urb->pipe = pipe;
1261 	urb->setup_packet = setup_packet;
1262 	urb->transfer_buffer = transfer_buffer;
1263 	urb->transfer_buffer_length = buffer_length;
1264 	urb->complete = complete_fn;
1265 	urb->context = context;
1266 }
1267 
1268 /**
1269  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1270  * @urb: pointer to the urb to initialize.
1271  * @dev: pointer to the struct usb_device for this urb.
1272  * @pipe: the endpoint pipe
1273  * @transfer_buffer: pointer to the transfer buffer
1274  * @buffer_length: length of the transfer buffer
1275  * @complete_fn: pointer to the usb_complete_t function
1276  * @context: what to set the urb context to.
1277  *
1278  * Initializes a bulk urb with the proper information needed to submit it
1279  * to a device.
1280  */
1281 static inline void usb_fill_bulk_urb (struct urb *urb,
1282 				      struct usb_device *dev,
1283 				      unsigned int pipe,
1284 				      void *transfer_buffer,
1285 				      int buffer_length,
1286 				      usb_complete_t complete_fn,
1287 				      void *context)
1288 {
1289 	spin_lock_init(&urb->lock);
1290 	urb->dev = dev;
1291 	urb->pipe = pipe;
1292 	urb->transfer_buffer = transfer_buffer;
1293 	urb->transfer_buffer_length = buffer_length;
1294 	urb->complete = complete_fn;
1295 	urb->context = context;
1296 }
1297 
1298 /**
1299  * usb_fill_int_urb - macro to help initialize a interrupt urb
1300  * @urb: pointer to the urb to initialize.
1301  * @dev: pointer to the struct usb_device for this urb.
1302  * @pipe: the endpoint pipe
1303  * @transfer_buffer: pointer to the transfer buffer
1304  * @buffer_length: length of the transfer buffer
1305  * @complete_fn: pointer to the usb_complete_t function
1306  * @context: what to set the urb context to.
1307  * @interval: what to set the urb interval to, encoded like
1308  *	the endpoint descriptor's bInterval value.
1309  *
1310  * Initializes a interrupt urb with the proper information needed to submit
1311  * it to a device.
1312  * Note that high speed interrupt endpoints use a logarithmic encoding of
1313  * the endpoint interval, and express polling intervals in microframes
1314  * (eight per millisecond) rather than in frames (one per millisecond).
1315  */
1316 static inline void usb_fill_int_urb (struct urb *urb,
1317 				     struct usb_device *dev,
1318 				     unsigned int pipe,
1319 				     void *transfer_buffer,
1320 				     int buffer_length,
1321 				     usb_complete_t complete_fn,
1322 				     void *context,
1323 				     int interval)
1324 {
1325 	spin_lock_init(&urb->lock);
1326 	urb->dev = dev;
1327 	urb->pipe = pipe;
1328 	urb->transfer_buffer = transfer_buffer;
1329 	urb->transfer_buffer_length = buffer_length;
1330 	urb->complete = complete_fn;
1331 	urb->context = context;
1332 	if (dev->speed == USB_SPEED_HIGH)
1333 		urb->interval = 1 << (interval - 1);
1334 	else
1335 		urb->interval = interval;
1336 	urb->start_frame = -1;
1337 }
1338 
1339 extern void usb_init_urb(struct urb *urb);
1340 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1341 extern void usb_free_urb(struct urb *urb);
1342 #define usb_put_urb usb_free_urb
1343 extern struct urb *usb_get_urb(struct urb *urb);
1344 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1345 extern int usb_unlink_urb(struct urb *urb);
1346 extern void usb_kill_urb(struct urb *urb);
1347 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1348 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1349 extern void usb_unanchor_urb(struct urb *urb);
1350 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1351 					 unsigned int timeout);
1352 
1353 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1354 	gfp_t mem_flags, dma_addr_t *dma);
1355 void usb_buffer_free (struct usb_device *dev, size_t size,
1356 	void *addr, dma_addr_t dma);
1357 
1358 #if 0
1359 struct urb *usb_buffer_map (struct urb *urb);
1360 void usb_buffer_dmasync (struct urb *urb);
1361 void usb_buffer_unmap (struct urb *urb);
1362 #endif
1363 
1364 struct scatterlist;
1365 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1366 		      struct scatterlist *sg, int nents);
1367 #if 0
1368 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1369 			   struct scatterlist *sg, int n_hw_ents);
1370 #endif
1371 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1372 			 struct scatterlist *sg, int n_hw_ents);
1373 
1374 /*-------------------------------------------------------------------*
1375  *                         SYNCHRONOUS CALL SUPPORT                  *
1376  *-------------------------------------------------------------------*/
1377 
1378 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1379 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1380 	void *data, __u16 size, int timeout);
1381 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1382 	void *data, int len, int *actual_length, int timeout);
1383 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1384 	void *data, int len, int *actual_length,
1385 	int timeout);
1386 
1387 /* wrappers around usb_control_msg() for the most common standard requests */
1388 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1389 	unsigned char descindex, void *buf, int size);
1390 extern int usb_get_status(struct usb_device *dev,
1391 	int type, int target, void *data);
1392 extern int usb_string(struct usb_device *dev, int index,
1393 	char *buf, size_t size);
1394 
1395 /* wrappers that also update important state inside usbcore */
1396 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1397 extern int usb_reset_configuration(struct usb_device *dev);
1398 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1399 
1400 /* this request isn't really synchronous, but it belongs with the others */
1401 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1402 
1403 /*
1404  * timeouts, in milliseconds, used for sending/receiving control messages
1405  * they typically complete within a few frames (msec) after they're issued
1406  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1407  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1408  */
1409 #define USB_CTRL_GET_TIMEOUT	5000
1410 #define USB_CTRL_SET_TIMEOUT	5000
1411 
1412 
1413 /**
1414  * struct usb_sg_request - support for scatter/gather I/O
1415  * @status: zero indicates success, else negative errno
1416  * @bytes: counts bytes transferred.
1417  *
1418  * These requests are initialized using usb_sg_init(), and then are used
1419  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1420  * members of the request object aren't for driver access.
1421  *
1422  * The status and bytecount values are valid only after usb_sg_wait()
1423  * returns.  If the status is zero, then the bytecount matches the total
1424  * from the request.
1425  *
1426  * After an error completion, drivers may need to clear a halt condition
1427  * on the endpoint.
1428  */
1429 struct usb_sg_request {
1430 	int			status;
1431 	size_t			bytes;
1432 
1433 	/*
1434 	 * members below are private: to usbcore,
1435 	 * and are not provided for driver access!
1436 	 */
1437 	spinlock_t		lock;
1438 
1439 	struct usb_device	*dev;
1440 	int			pipe;
1441 	struct scatterlist	*sg;
1442 	int			nents;
1443 
1444 	int			entries;
1445 	struct urb		**urbs;
1446 
1447 	int			count;
1448 	struct completion	complete;
1449 };
1450 
1451 int usb_sg_init (
1452 	struct usb_sg_request	*io,
1453 	struct usb_device	*dev,
1454 	unsigned		pipe,
1455 	unsigned		period,
1456 	struct scatterlist	*sg,
1457 	int			nents,
1458 	size_t			length,
1459 	gfp_t			mem_flags
1460 );
1461 void usb_sg_cancel (struct usb_sg_request *io);
1462 void usb_sg_wait (struct usb_sg_request *io);
1463 
1464 
1465 /* ----------------------------------------------------------------------- */
1466 
1467 /*
1468  * For various legacy reasons, Linux has a small cookie that's paired with
1469  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1470  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1471  * an unsigned int encoded as:
1472  *
1473  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1474  *					 1 = Device-to-Host [In] ...
1475  *					like endpoint bEndpointAddress)
1476  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1477  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1478  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1479  *					 10 = control, 11 = bulk)
1480  *
1481  * Given the device address and endpoint descriptor, pipes are redundant.
1482  */
1483 
1484 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1485 /* (yet ... they're the values used by usbfs) */
1486 #define PIPE_ISOCHRONOUS		0
1487 #define PIPE_INTERRUPT			1
1488 #define PIPE_CONTROL			2
1489 #define PIPE_BULK			3
1490 
1491 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1492 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1493 
1494 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1495 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1496 
1497 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1498 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1499 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1500 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1501 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1502 
1503 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1504 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1505 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1506 #define usb_settoggle(dev, ep, out, bit) \
1507 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1508 		 ((bit) << (ep)))
1509 
1510 
1511 static inline unsigned int __create_pipe(struct usb_device *dev,
1512 		unsigned int endpoint)
1513 {
1514 	return (dev->devnum << 8) | (endpoint << 15);
1515 }
1516 
1517 /* Create various pipes... */
1518 #define usb_sndctrlpipe(dev,endpoint)	\
1519 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1520 #define usb_rcvctrlpipe(dev,endpoint)	\
1521 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1522 #define usb_sndisocpipe(dev,endpoint)	\
1523 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1524 #define usb_rcvisocpipe(dev,endpoint)	\
1525 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1526 #define usb_sndbulkpipe(dev,endpoint)	\
1527 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1528 #define usb_rcvbulkpipe(dev,endpoint)	\
1529 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1530 #define usb_sndintpipe(dev,endpoint)	\
1531 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1532 #define usb_rcvintpipe(dev,endpoint)	\
1533 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1534 
1535 /*-------------------------------------------------------------------------*/
1536 
1537 static inline __u16
1538 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1539 {
1540 	struct usb_host_endpoint	*ep;
1541 	unsigned			epnum = usb_pipeendpoint(pipe);
1542 
1543 	if (is_out) {
1544 		WARN_ON(usb_pipein(pipe));
1545 		ep = udev->ep_out[epnum];
1546 	} else {
1547 		WARN_ON(usb_pipeout(pipe));
1548 		ep = udev->ep_in[epnum];
1549 	}
1550 	if (!ep)
1551 		return 0;
1552 
1553 	/* NOTE:  only 0x07ff bits are for packet size... */
1554 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1555 }
1556 
1557 /* ----------------------------------------------------------------------- */
1558 
1559 /* Events from the usb core */
1560 #define USB_DEVICE_ADD		0x0001
1561 #define USB_DEVICE_REMOVE	0x0002
1562 #define USB_BUS_ADD		0x0003
1563 #define USB_BUS_REMOVE		0x0004
1564 extern void usb_register_notify(struct notifier_block *nb);
1565 extern void usb_unregister_notify(struct notifier_block *nb);
1566 
1567 #ifdef DEBUG
1568 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1569 	__FILE__ , ## arg)
1570 #else
1571 #define dbg(format, arg...) do {} while (0)
1572 #endif
1573 
1574 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1575 	__FILE__ , ## arg)
1576 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1577 	__FILE__ , ## arg)
1578 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1579 	__FILE__ , ## arg)
1580 
1581 
1582 #endif  /* __KERNEL__ */
1583 
1584 #endif
1585