1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_USB_H 3 #define __LINUX_USB_H 4 5 #include <linux/mod_devicetable.h> 6 #include <linux/usb/ch9.h> 7 8 #define USB_MAJOR 180 9 #define USB_DEVICE_MAJOR 189 10 11 12 #ifdef __KERNEL__ 13 14 #include <linux/errno.h> /* for -ENODEV */ 15 #include <linux/delay.h> /* for mdelay() */ 16 #include <linux/interrupt.h> /* for in_interrupt() */ 17 #include <linux/list.h> /* for struct list_head */ 18 #include <linux/kref.h> /* for struct kref */ 19 #include <linux/device.h> /* for struct device */ 20 #include <linux/fs.h> /* for struct file_operations */ 21 #include <linux/completion.h> /* for struct completion */ 22 #include <linux/sched.h> /* for current && schedule_timeout */ 23 #include <linux/mutex.h> /* for struct mutex */ 24 #include <linux/pm_runtime.h> /* for runtime PM */ 25 26 struct usb_device; 27 struct usb_driver; 28 struct wusb_dev; 29 30 /*-------------------------------------------------------------------------*/ 31 32 /* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48 struct ep_device; 49 50 /** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67 struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79 }; 80 81 /* host-side wrapper for one interface setting's parsed descriptors */ 82 struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94 }; 95 96 enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101 }; 102 103 int __must_check 104 usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110 int __must_check 111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117 static inline int __must_check 118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120 { 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122 } 123 124 static inline int __must_check 125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127 { 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129 } 130 131 static inline int __must_check 132 usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134 { 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136 } 137 138 static inline int __must_check 139 usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141 { 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143 } 144 145 static inline int __must_check 146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148 { 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150 } 151 152 static inline int __must_check 153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155 { 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157 } 158 159 static inline int __must_check 160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162 { 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164 } 165 166 static inline int __must_check 167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169 { 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171 } 172 173 /** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232 struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 struct work_struct reset_ws; /* for resets in atomic context */ 260 }; 261 262 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev) 263 264 static inline void *usb_get_intfdata(struct usb_interface *intf) 265 { 266 return dev_get_drvdata(&intf->dev); 267 } 268 269 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 270 { 271 dev_set_drvdata(&intf->dev, data); 272 } 273 274 struct usb_interface *usb_get_intf(struct usb_interface *intf); 275 void usb_put_intf(struct usb_interface *intf); 276 277 /* Hard limit */ 278 #define USB_MAXENDPOINTS 30 279 /* this maximum is arbitrary */ 280 #define USB_MAXINTERFACES 32 281 #define USB_MAXIADS (USB_MAXINTERFACES/2) 282 283 /* 284 * USB Resume Timer: Every Host controller driver should drive the resume 285 * signalling on the bus for the amount of time defined by this macro. 286 * 287 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 288 * 289 * Note that the USB Specification states we should drive resume for *at least* 290 * 20 ms, but it doesn't give an upper bound. This creates two possible 291 * situations which we want to avoid: 292 * 293 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 294 * us to fail USB Electrical Tests, thus failing Certification 295 * 296 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 297 * and while we can argue that's against the USB Specification, we don't have 298 * control over which devices a certification laboratory will be using for 299 * certification. If CertLab uses a device which was tested against Windows and 300 * that happens to have relaxed resume signalling rules, we might fall into 301 * situations where we fail interoperability and electrical tests. 302 * 303 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 304 * should cope with both LPJ calibration errors and devices not following every 305 * detail of the USB Specification. 306 */ 307 #define USB_RESUME_TIMEOUT 40 /* ms */ 308 309 /** 310 * struct usb_interface_cache - long-term representation of a device interface 311 * @num_altsetting: number of altsettings defined. 312 * @ref: reference counter. 313 * @altsetting: variable-length array of interface structures, one for 314 * each alternate setting that may be selected. Each one includes a 315 * set of endpoint configurations. They will be in no particular order. 316 * 317 * These structures persist for the lifetime of a usb_device, unlike 318 * struct usb_interface (which persists only as long as its configuration 319 * is installed). The altsetting arrays can be accessed through these 320 * structures at any time, permitting comparison of configurations and 321 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 322 */ 323 struct usb_interface_cache { 324 unsigned num_altsetting; /* number of alternate settings */ 325 struct kref ref; /* reference counter */ 326 327 /* variable-length array of alternate settings for this interface, 328 * stored in no particular order */ 329 struct usb_host_interface altsetting[]; 330 }; 331 #define ref_to_usb_interface_cache(r) \ 332 container_of(r, struct usb_interface_cache, ref) 333 #define altsetting_to_usb_interface_cache(a) \ 334 container_of(a, struct usb_interface_cache, altsetting[0]) 335 336 /** 337 * struct usb_host_config - representation of a device's configuration 338 * @desc: the device's configuration descriptor. 339 * @string: pointer to the cached version of the iConfiguration string, if 340 * present for this configuration. 341 * @intf_assoc: list of any interface association descriptors in this config 342 * @interface: array of pointers to usb_interface structures, one for each 343 * interface in the configuration. The number of interfaces is stored 344 * in desc.bNumInterfaces. These pointers are valid only while the 345 * configuration is active. 346 * @intf_cache: array of pointers to usb_interface_cache structures, one 347 * for each interface in the configuration. These structures exist 348 * for the entire life of the device. 349 * @extra: pointer to buffer containing all extra descriptors associated 350 * with this configuration (those preceding the first interface 351 * descriptor). 352 * @extralen: length of the extra descriptors buffer. 353 * 354 * USB devices may have multiple configurations, but only one can be active 355 * at any time. Each encapsulates a different operational environment; 356 * for example, a dual-speed device would have separate configurations for 357 * full-speed and high-speed operation. The number of configurations 358 * available is stored in the device descriptor as bNumConfigurations. 359 * 360 * A configuration can contain multiple interfaces. Each corresponds to 361 * a different function of the USB device, and all are available whenever 362 * the configuration is active. The USB standard says that interfaces 363 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 364 * of devices get this wrong. In addition, the interface array is not 365 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 366 * look up an interface entry based on its number. 367 * 368 * Device drivers should not attempt to activate configurations. The choice 369 * of which configuration to install is a policy decision based on such 370 * considerations as available power, functionality provided, and the user's 371 * desires (expressed through userspace tools). However, drivers can call 372 * usb_reset_configuration() to reinitialize the current configuration and 373 * all its interfaces. 374 */ 375 struct usb_host_config { 376 struct usb_config_descriptor desc; 377 378 char *string; /* iConfiguration string, if present */ 379 380 /* List of any Interface Association Descriptors in this 381 * configuration. */ 382 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 383 384 /* the interfaces associated with this configuration, 385 * stored in no particular order */ 386 struct usb_interface *interface[USB_MAXINTERFACES]; 387 388 /* Interface information available even when this is not the 389 * active configuration */ 390 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 391 392 unsigned char *extra; /* Extra descriptors */ 393 int extralen; 394 }; 395 396 /* USB2.0 and USB3.0 device BOS descriptor set */ 397 struct usb_host_bos { 398 struct usb_bos_descriptor *desc; 399 400 /* wireless cap descriptor is handled by wusb */ 401 struct usb_ext_cap_descriptor *ext_cap; 402 struct usb_ss_cap_descriptor *ss_cap; 403 struct usb_ssp_cap_descriptor *ssp_cap; 404 struct usb_ss_container_id_descriptor *ss_id; 405 struct usb_ptm_cap_descriptor *ptm_cap; 406 }; 407 408 int __usb_get_extra_descriptor(char *buffer, unsigned size, 409 unsigned char type, void **ptr, size_t min); 410 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 411 __usb_get_extra_descriptor((ifpoint)->extra, \ 412 (ifpoint)->extralen, \ 413 type, (void **)ptr, sizeof(**(ptr))) 414 415 /* ----------------------------------------------------------------------- */ 416 417 /* USB device number allocation bitmap */ 418 struct usb_devmap { 419 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 420 }; 421 422 /* 423 * Allocated per bus (tree of devices) we have: 424 */ 425 struct usb_bus { 426 struct device *controller; /* host side hardware */ 427 struct device *sysdev; /* as seen from firmware or bus */ 428 int busnum; /* Bus number (in order of reg) */ 429 const char *bus_name; /* stable id (PCI slot_name etc) */ 430 u8 uses_pio_for_control; /* 431 * Does the host controller use PIO 432 * for control transfers? 433 */ 434 u8 otg_port; /* 0, or number of OTG/HNP port */ 435 unsigned is_b_host:1; /* true during some HNP roleswitches */ 436 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 437 unsigned no_stop_on_short:1; /* 438 * Quirk: some controllers don't stop 439 * the ep queue on a short transfer 440 * with the URB_SHORT_NOT_OK flag set. 441 */ 442 unsigned no_sg_constraint:1; /* no sg constraint */ 443 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 444 445 int devnum_next; /* Next open device number in 446 * round-robin allocation */ 447 struct mutex devnum_next_mutex; /* devnum_next mutex */ 448 449 struct usb_devmap devmap; /* device address allocation map */ 450 struct usb_device *root_hub; /* Root hub */ 451 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 452 453 int bandwidth_allocated; /* on this bus: how much of the time 454 * reserved for periodic (intr/iso) 455 * requests is used, on average? 456 * Units: microseconds/frame. 457 * Limits: Full/low speed reserve 90%, 458 * while high speed reserves 80%. 459 */ 460 int bandwidth_int_reqs; /* number of Interrupt requests */ 461 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 462 463 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 464 465 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 466 struct mon_bus *mon_bus; /* non-null when associated */ 467 int monitored; /* non-zero when monitored */ 468 #endif 469 }; 470 471 struct usb_dev_state; 472 473 /* ----------------------------------------------------------------------- */ 474 475 struct usb_tt; 476 477 enum usb_port_connect_type { 478 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 479 USB_PORT_CONNECT_TYPE_HOT_PLUG, 480 USB_PORT_CONNECT_TYPE_HARD_WIRED, 481 USB_PORT_NOT_USED, 482 }; 483 484 /* 485 * USB port quirks. 486 */ 487 488 /* For the given port, prefer the old (faster) enumeration scheme. */ 489 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 490 491 /* Decrease TRSTRCY to 10ms during device enumeration. */ 492 #define USB_PORT_QUIRK_FAST_ENUM BIT(1) 493 494 /* 495 * USB 2.0 Link Power Management (LPM) parameters. 496 */ 497 struct usb2_lpm_parameters { 498 /* Best effort service latency indicate how long the host will drive 499 * resume on an exit from L1. 500 */ 501 unsigned int besl; 502 503 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 504 * When the timer counts to zero, the parent hub will initiate a LPM 505 * transition to L1. 506 */ 507 int timeout; 508 }; 509 510 /* 511 * USB 3.0 Link Power Management (LPM) parameters. 512 * 513 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 514 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 515 * All three are stored in nanoseconds. 516 */ 517 struct usb3_lpm_parameters { 518 /* 519 * Maximum exit latency (MEL) for the host to send a packet to the 520 * device (either a Ping for isoc endpoints, or a data packet for 521 * interrupt endpoints), the hubs to decode the packet, and for all hubs 522 * in the path to transition the links to U0. 523 */ 524 unsigned int mel; 525 /* 526 * Maximum exit latency for a device-initiated LPM transition to bring 527 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 528 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 529 */ 530 unsigned int pel; 531 532 /* 533 * The System Exit Latency (SEL) includes PEL, and three other 534 * latencies. After a device initiates a U0 transition, it will take 535 * some time from when the device sends the ERDY to when it will finally 536 * receive the data packet. Basically, SEL should be the worse-case 537 * latency from when a device starts initiating a U0 transition to when 538 * it will get data. 539 */ 540 unsigned int sel; 541 /* 542 * The idle timeout value that is currently programmed into the parent 543 * hub for this device. When the timer counts to zero, the parent hub 544 * will initiate an LPM transition to either U1 or U2. 545 */ 546 int timeout; 547 }; 548 549 /** 550 * struct usb_device - kernel's representation of a USB device 551 * @devnum: device number; address on a USB bus 552 * @devpath: device ID string for use in messages (e.g., /port/...) 553 * @route: tree topology hex string for use with xHCI 554 * @state: device state: configured, not attached, etc. 555 * @speed: device speed: high/full/low (or error) 556 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 557 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 558 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 559 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 560 * @ttport: device port on that tt hub 561 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 562 * @parent: our hub, unless we're the root 563 * @bus: bus we're part of 564 * @ep0: endpoint 0 data (default control pipe) 565 * @dev: generic device interface 566 * @descriptor: USB device descriptor 567 * @bos: USB device BOS descriptor set 568 * @config: all of the device's configs 569 * @actconfig: the active configuration 570 * @ep_in: array of IN endpoints 571 * @ep_out: array of OUT endpoints 572 * @rawdescriptors: raw descriptors for each config 573 * @bus_mA: Current available from the bus 574 * @portnum: parent port number (origin 1) 575 * @level: number of USB hub ancestors 576 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 577 * @can_submit: URBs may be submitted 578 * @persist_enabled: USB_PERSIST enabled for this device 579 * @reset_in_progress: the device is being reset 580 * @have_langid: whether string_langid is valid 581 * @authorized: policy has said we can use it; 582 * (user space) policy determines if we authorize this device to be 583 * used or not. By default, wired USB devices are authorized. 584 * WUSB devices are not, until we authorize them from user space. 585 * FIXME -- complete doc 586 * @authenticated: Crypto authentication passed 587 * @wusb: device is Wireless USB 588 * @lpm_capable: device supports LPM 589 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 590 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 591 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 592 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 593 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 594 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 595 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 596 * @string_langid: language ID for strings 597 * @product: iProduct string, if present (static) 598 * @manufacturer: iManufacturer string, if present (static) 599 * @serial: iSerialNumber string, if present (static) 600 * @filelist: usbfs files that are open to this device 601 * @maxchild: number of ports if hub 602 * @quirks: quirks of the whole device 603 * @urbnum: number of URBs submitted for the whole device 604 * @active_duration: total time device is not suspended 605 * @connect_time: time device was first connected 606 * @do_remote_wakeup: remote wakeup should be enabled 607 * @reset_resume: needs reset instead of resume 608 * @port_is_suspended: the upstream port is suspended (L2 or U3) 609 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 610 * specific data for the device. 611 * @slot_id: Slot ID assigned by xHCI 612 * @removable: Device can be physically removed from this port 613 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 614 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 615 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 616 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 617 * to keep track of the number of functions that require USB 3.0 Link Power 618 * Management to be disabled for this usb_device. This count should only 619 * be manipulated by those functions, with the bandwidth_mutex is held. 620 * @hub_delay: cached value consisting of: 621 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 622 * Will be used as wValue for SetIsochDelay requests. 623 * @use_generic_driver: ask driver core to reprobe using the generic driver. 624 * 625 * Notes: 626 * Usbcore drivers should not set usbdev->state directly. Instead use 627 * usb_set_device_state(). 628 */ 629 struct usb_device { 630 int devnum; 631 char devpath[16]; 632 u32 route; 633 enum usb_device_state state; 634 enum usb_device_speed speed; 635 unsigned int rx_lanes; 636 unsigned int tx_lanes; 637 enum usb_ssp_rate ssp_rate; 638 639 struct usb_tt *tt; 640 int ttport; 641 642 unsigned int toggle[2]; 643 644 struct usb_device *parent; 645 struct usb_bus *bus; 646 struct usb_host_endpoint ep0; 647 648 struct device dev; 649 650 struct usb_device_descriptor descriptor; 651 struct usb_host_bos *bos; 652 struct usb_host_config *config; 653 654 struct usb_host_config *actconfig; 655 struct usb_host_endpoint *ep_in[16]; 656 struct usb_host_endpoint *ep_out[16]; 657 658 char **rawdescriptors; 659 660 unsigned short bus_mA; 661 u8 portnum; 662 u8 level; 663 u8 devaddr; 664 665 unsigned can_submit:1; 666 unsigned persist_enabled:1; 667 unsigned reset_in_progress:1; 668 unsigned have_langid:1; 669 unsigned authorized:1; 670 unsigned authenticated:1; 671 unsigned wusb:1; 672 unsigned lpm_capable:1; 673 unsigned lpm_devinit_allow:1; 674 unsigned usb2_hw_lpm_capable:1; 675 unsigned usb2_hw_lpm_besl_capable:1; 676 unsigned usb2_hw_lpm_enabled:1; 677 unsigned usb2_hw_lpm_allowed:1; 678 unsigned usb3_lpm_u1_enabled:1; 679 unsigned usb3_lpm_u2_enabled:1; 680 int string_langid; 681 682 /* static strings from the device */ 683 char *product; 684 char *manufacturer; 685 char *serial; 686 687 struct list_head filelist; 688 689 int maxchild; 690 691 u32 quirks; 692 atomic_t urbnum; 693 694 unsigned long active_duration; 695 696 #ifdef CONFIG_PM 697 unsigned long connect_time; 698 699 unsigned do_remote_wakeup:1; 700 unsigned reset_resume:1; 701 unsigned port_is_suspended:1; 702 #endif 703 struct wusb_dev *wusb_dev; 704 int slot_id; 705 struct usb2_lpm_parameters l1_params; 706 struct usb3_lpm_parameters u1_params; 707 struct usb3_lpm_parameters u2_params; 708 unsigned lpm_disable_count; 709 710 u16 hub_delay; 711 unsigned use_generic_driver:1; 712 }; 713 714 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev) 715 716 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 717 { 718 return to_usb_device(intf->dev.parent); 719 } 720 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 721 { 722 return to_usb_device((const struct device *)intf->dev.parent); 723 } 724 725 #define interface_to_usbdev(intf) \ 726 _Generic((intf), \ 727 const struct usb_interface *: __intf_to_usbdev_const, \ 728 struct usb_interface *: __intf_to_usbdev)(intf) 729 730 extern struct usb_device *usb_get_dev(struct usb_device *dev); 731 extern void usb_put_dev(struct usb_device *dev); 732 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 733 int port1); 734 735 /** 736 * usb_hub_for_each_child - iterate over all child devices on the hub 737 * @hdev: USB device belonging to the usb hub 738 * @port1: portnum associated with child device 739 * @child: child device pointer 740 */ 741 #define usb_hub_for_each_child(hdev, port1, child) \ 742 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 743 port1 <= hdev->maxchild; \ 744 child = usb_hub_find_child(hdev, ++port1)) \ 745 if (!child) continue; else 746 747 /* USB device locking */ 748 #define usb_lock_device(udev) device_lock(&(udev)->dev) 749 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 750 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 751 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 752 extern int usb_lock_device_for_reset(struct usb_device *udev, 753 const struct usb_interface *iface); 754 755 /* USB port reset for device reinitialization */ 756 extern int usb_reset_device(struct usb_device *dev); 757 extern void usb_queue_reset_device(struct usb_interface *dev); 758 759 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 760 761 #ifdef CONFIG_ACPI 762 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 763 bool enable); 764 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 765 #else 766 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 767 bool enable) { return 0; } 768 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 769 { return true; } 770 #endif 771 772 /* USB autosuspend and autoresume */ 773 #ifdef CONFIG_PM 774 extern void usb_enable_autosuspend(struct usb_device *udev); 775 extern void usb_disable_autosuspend(struct usb_device *udev); 776 777 extern int usb_autopm_get_interface(struct usb_interface *intf); 778 extern void usb_autopm_put_interface(struct usb_interface *intf); 779 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 780 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 781 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 782 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 783 784 static inline void usb_mark_last_busy(struct usb_device *udev) 785 { 786 pm_runtime_mark_last_busy(&udev->dev); 787 } 788 789 #else 790 791 static inline int usb_enable_autosuspend(struct usb_device *udev) 792 { return 0; } 793 static inline int usb_disable_autosuspend(struct usb_device *udev) 794 { return 0; } 795 796 static inline int usb_autopm_get_interface(struct usb_interface *intf) 797 { return 0; } 798 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 799 { return 0; } 800 801 static inline void usb_autopm_put_interface(struct usb_interface *intf) 802 { } 803 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 804 { } 805 static inline void usb_autopm_get_interface_no_resume( 806 struct usb_interface *intf) 807 { } 808 static inline void usb_autopm_put_interface_no_suspend( 809 struct usb_interface *intf) 810 { } 811 static inline void usb_mark_last_busy(struct usb_device *udev) 812 { } 813 #endif 814 815 extern int usb_disable_lpm(struct usb_device *udev); 816 extern void usb_enable_lpm(struct usb_device *udev); 817 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 818 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 819 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 820 821 extern int usb_disable_ltm(struct usb_device *udev); 822 extern void usb_enable_ltm(struct usb_device *udev); 823 824 static inline bool usb_device_supports_ltm(struct usb_device *udev) 825 { 826 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 827 return false; 828 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 829 } 830 831 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 832 { 833 return udev && udev->bus && udev->bus->no_sg_constraint; 834 } 835 836 837 /*-------------------------------------------------------------------------*/ 838 839 /* for drivers using iso endpoints */ 840 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 841 842 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 843 extern int usb_alloc_streams(struct usb_interface *interface, 844 struct usb_host_endpoint **eps, unsigned int num_eps, 845 unsigned int num_streams, gfp_t mem_flags); 846 847 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 848 extern int usb_free_streams(struct usb_interface *interface, 849 struct usb_host_endpoint **eps, unsigned int num_eps, 850 gfp_t mem_flags); 851 852 /* used these for multi-interface device registration */ 853 extern int usb_driver_claim_interface(struct usb_driver *driver, 854 struct usb_interface *iface, void *data); 855 856 /** 857 * usb_interface_claimed - returns true iff an interface is claimed 858 * @iface: the interface being checked 859 * 860 * Return: %true (nonzero) iff the interface is claimed, else %false 861 * (zero). 862 * 863 * Note: 864 * Callers must own the driver model's usb bus readlock. So driver 865 * probe() entries don't need extra locking, but other call contexts 866 * may need to explicitly claim that lock. 867 * 868 */ 869 static inline int usb_interface_claimed(struct usb_interface *iface) 870 { 871 return (iface->dev.driver != NULL); 872 } 873 874 extern void usb_driver_release_interface(struct usb_driver *driver, 875 struct usb_interface *iface); 876 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 877 const struct usb_device_id *id); 878 extern int usb_match_one_id(struct usb_interface *interface, 879 const struct usb_device_id *id); 880 881 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 882 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 883 int minor); 884 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 885 unsigned ifnum); 886 extern struct usb_host_interface *usb_altnum_to_altsetting( 887 const struct usb_interface *intf, unsigned int altnum); 888 extern struct usb_host_interface *usb_find_alt_setting( 889 struct usb_host_config *config, 890 unsigned int iface_num, 891 unsigned int alt_num); 892 893 /* port claiming functions */ 894 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 895 struct usb_dev_state *owner); 896 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 897 struct usb_dev_state *owner); 898 899 /** 900 * usb_make_path - returns stable device path in the usb tree 901 * @dev: the device whose path is being constructed 902 * @buf: where to put the string 903 * @size: how big is "buf"? 904 * 905 * Return: Length of the string (> 0) or negative if size was too small. 906 * 907 * Note: 908 * This identifier is intended to be "stable", reflecting physical paths in 909 * hardware such as physical bus addresses for host controllers or ports on 910 * USB hubs. That makes it stay the same until systems are physically 911 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 912 * controllers. Adding and removing devices, including virtual root hubs 913 * in host controller driver modules, does not change these path identifiers; 914 * neither does rebooting or re-enumerating. These are more useful identifiers 915 * than changeable ("unstable") ones like bus numbers or device addresses. 916 * 917 * With a partial exception for devices connected to USB 2.0 root hubs, these 918 * identifiers are also predictable. So long as the device tree isn't changed, 919 * plugging any USB device into a given hub port always gives it the same path. 920 * Because of the use of "companion" controllers, devices connected to ports on 921 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 922 * high speed, and a different one if they are full or low speed. 923 */ 924 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 925 { 926 int actual; 927 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 928 dev->devpath); 929 return (actual >= (int)size) ? -1 : actual; 930 } 931 932 /*-------------------------------------------------------------------------*/ 933 934 #define USB_DEVICE_ID_MATCH_DEVICE \ 935 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 936 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 937 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 938 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 939 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 940 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 941 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 942 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 943 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 944 #define USB_DEVICE_ID_MATCH_INT_INFO \ 945 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 946 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 947 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 948 949 /** 950 * USB_DEVICE - macro used to describe a specific usb device 951 * @vend: the 16 bit USB Vendor ID 952 * @prod: the 16 bit USB Product ID 953 * 954 * This macro is used to create a struct usb_device_id that matches a 955 * specific device. 956 */ 957 #define USB_DEVICE(vend, prod) \ 958 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 959 .idVendor = (vend), \ 960 .idProduct = (prod) 961 /** 962 * USB_DEVICE_VER - describe a specific usb device with a version range 963 * @vend: the 16 bit USB Vendor ID 964 * @prod: the 16 bit USB Product ID 965 * @lo: the bcdDevice_lo value 966 * @hi: the bcdDevice_hi value 967 * 968 * This macro is used to create a struct usb_device_id that matches a 969 * specific device, with a version range. 970 */ 971 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 972 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 973 .idVendor = (vend), \ 974 .idProduct = (prod), \ 975 .bcdDevice_lo = (lo), \ 976 .bcdDevice_hi = (hi) 977 978 /** 979 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 980 * @vend: the 16 bit USB Vendor ID 981 * @prod: the 16 bit USB Product ID 982 * @cl: bInterfaceClass value 983 * 984 * This macro is used to create a struct usb_device_id that matches a 985 * specific interface class of devices. 986 */ 987 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 988 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 989 USB_DEVICE_ID_MATCH_INT_CLASS, \ 990 .idVendor = (vend), \ 991 .idProduct = (prod), \ 992 .bInterfaceClass = (cl) 993 994 /** 995 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 996 * @vend: the 16 bit USB Vendor ID 997 * @prod: the 16 bit USB Product ID 998 * @pr: bInterfaceProtocol value 999 * 1000 * This macro is used to create a struct usb_device_id that matches a 1001 * specific interface protocol of devices. 1002 */ 1003 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1004 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1005 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1006 .idVendor = (vend), \ 1007 .idProduct = (prod), \ 1008 .bInterfaceProtocol = (pr) 1009 1010 /** 1011 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1012 * @vend: the 16 bit USB Vendor ID 1013 * @prod: the 16 bit USB Product ID 1014 * @num: bInterfaceNumber value 1015 * 1016 * This macro is used to create a struct usb_device_id that matches a 1017 * specific interface number of devices. 1018 */ 1019 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1020 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1021 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1022 .idVendor = (vend), \ 1023 .idProduct = (prod), \ 1024 .bInterfaceNumber = (num) 1025 1026 /** 1027 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1028 * @cl: bDeviceClass value 1029 * @sc: bDeviceSubClass value 1030 * @pr: bDeviceProtocol value 1031 * 1032 * This macro is used to create a struct usb_device_id that matches a 1033 * specific class of devices. 1034 */ 1035 #define USB_DEVICE_INFO(cl, sc, pr) \ 1036 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1037 .bDeviceClass = (cl), \ 1038 .bDeviceSubClass = (sc), \ 1039 .bDeviceProtocol = (pr) 1040 1041 /** 1042 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1043 * @cl: bInterfaceClass value 1044 * @sc: bInterfaceSubClass value 1045 * @pr: bInterfaceProtocol value 1046 * 1047 * This macro is used to create a struct usb_device_id that matches a 1048 * specific class of interfaces. 1049 */ 1050 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1051 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1052 .bInterfaceClass = (cl), \ 1053 .bInterfaceSubClass = (sc), \ 1054 .bInterfaceProtocol = (pr) 1055 1056 /** 1057 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1058 * @vend: the 16 bit USB Vendor ID 1059 * @prod: the 16 bit USB Product ID 1060 * @cl: bInterfaceClass value 1061 * @sc: bInterfaceSubClass value 1062 * @pr: bInterfaceProtocol value 1063 * 1064 * This macro is used to create a struct usb_device_id that matches a 1065 * specific device with a specific class of interfaces. 1066 * 1067 * This is especially useful when explicitly matching devices that have 1068 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1069 */ 1070 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1071 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1072 | USB_DEVICE_ID_MATCH_DEVICE, \ 1073 .idVendor = (vend), \ 1074 .idProduct = (prod), \ 1075 .bInterfaceClass = (cl), \ 1076 .bInterfaceSubClass = (sc), \ 1077 .bInterfaceProtocol = (pr) 1078 1079 /** 1080 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1081 * @vend: the 16 bit USB Vendor ID 1082 * @cl: bInterfaceClass value 1083 * @sc: bInterfaceSubClass value 1084 * @pr: bInterfaceProtocol value 1085 * 1086 * This macro is used to create a struct usb_device_id that matches a 1087 * specific vendor with a specific class of interfaces. 1088 * 1089 * This is especially useful when explicitly matching devices that have 1090 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1091 */ 1092 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1093 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1094 | USB_DEVICE_ID_MATCH_VENDOR, \ 1095 .idVendor = (vend), \ 1096 .bInterfaceClass = (cl), \ 1097 .bInterfaceSubClass = (sc), \ 1098 .bInterfaceProtocol = (pr) 1099 1100 /* ----------------------------------------------------------------------- */ 1101 1102 /* Stuff for dynamic usb ids */ 1103 struct usb_dynids { 1104 spinlock_t lock; 1105 struct list_head list; 1106 }; 1107 1108 struct usb_dynid { 1109 struct list_head node; 1110 struct usb_device_id id; 1111 }; 1112 1113 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1114 const struct usb_device_id *id_table, 1115 struct device_driver *driver, 1116 const char *buf, size_t count); 1117 1118 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1119 1120 /** 1121 * struct usbdrv_wrap - wrapper for driver-model structure 1122 * @driver: The driver-model core driver structure. 1123 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1124 */ 1125 struct usbdrv_wrap { 1126 struct device_driver driver; 1127 int for_devices; 1128 }; 1129 1130 /** 1131 * struct usb_driver - identifies USB interface driver to usbcore 1132 * @name: The driver name should be unique among USB drivers, 1133 * and should normally be the same as the module name. 1134 * @probe: Called to see if the driver is willing to manage a particular 1135 * interface on a device. If it is, probe returns zero and uses 1136 * usb_set_intfdata() to associate driver-specific data with the 1137 * interface. It may also use usb_set_interface() to specify the 1138 * appropriate altsetting. If unwilling to manage the interface, 1139 * return -ENODEV, if genuine IO errors occurred, an appropriate 1140 * negative errno value. 1141 * @disconnect: Called when the interface is no longer accessible, usually 1142 * because its device has been (or is being) disconnected or the 1143 * driver module is being unloaded. 1144 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1145 * the "usbfs" filesystem. This lets devices provide ways to 1146 * expose information to user space regardless of where they 1147 * do (or don't) show up otherwise in the filesystem. 1148 * @suspend: Called when the device is going to be suspended by the 1149 * system either from system sleep or runtime suspend context. The 1150 * return value will be ignored in system sleep context, so do NOT 1151 * try to continue using the device if suspend fails in this case. 1152 * Instead, let the resume or reset-resume routine recover from 1153 * the failure. 1154 * @resume: Called when the device is being resumed by the system. 1155 * @reset_resume: Called when the suspended device has been reset instead 1156 * of being resumed. 1157 * @pre_reset: Called by usb_reset_device() when the device is about to be 1158 * reset. This routine must not return until the driver has no active 1159 * URBs for the device, and no more URBs may be submitted until the 1160 * post_reset method is called. 1161 * @post_reset: Called by usb_reset_device() after the device 1162 * has been reset 1163 * @id_table: USB drivers use ID table to support hotplugging. 1164 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1165 * or your driver's probe function will never get called. 1166 * @dev_groups: Attributes attached to the device that will be created once it 1167 * is bound to the driver. 1168 * @dynids: used internally to hold the list of dynamically added device 1169 * ids for this driver. 1170 * @drvwrap: Driver-model core structure wrapper. 1171 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1172 * added to this driver by preventing the sysfs file from being created. 1173 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1174 * for interfaces bound to this driver. 1175 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1176 * endpoints before calling the driver's disconnect method. 1177 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1178 * to initiate lower power link state transitions when an idle timeout 1179 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1180 * 1181 * USB interface drivers must provide a name, probe() and disconnect() 1182 * methods, and an id_table. Other driver fields are optional. 1183 * 1184 * The id_table is used in hotplugging. It holds a set of descriptors, 1185 * and specialized data may be associated with each entry. That table 1186 * is used by both user and kernel mode hotplugging support. 1187 * 1188 * The probe() and disconnect() methods are called in a context where 1189 * they can sleep, but they should avoid abusing the privilege. Most 1190 * work to connect to a device should be done when the device is opened, 1191 * and undone at the last close. The disconnect code needs to address 1192 * concurrency issues with respect to open() and close() methods, as 1193 * well as forcing all pending I/O requests to complete (by unlinking 1194 * them as necessary, and blocking until the unlinks complete). 1195 */ 1196 struct usb_driver { 1197 const char *name; 1198 1199 int (*probe) (struct usb_interface *intf, 1200 const struct usb_device_id *id); 1201 1202 void (*disconnect) (struct usb_interface *intf); 1203 1204 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1205 void *buf); 1206 1207 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1208 int (*resume) (struct usb_interface *intf); 1209 int (*reset_resume)(struct usb_interface *intf); 1210 1211 int (*pre_reset)(struct usb_interface *intf); 1212 int (*post_reset)(struct usb_interface *intf); 1213 1214 const struct usb_device_id *id_table; 1215 const struct attribute_group **dev_groups; 1216 1217 struct usb_dynids dynids; 1218 struct usbdrv_wrap drvwrap; 1219 unsigned int no_dynamic_id:1; 1220 unsigned int supports_autosuspend:1; 1221 unsigned int disable_hub_initiated_lpm:1; 1222 unsigned int soft_unbind:1; 1223 }; 1224 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1225 1226 /** 1227 * struct usb_device_driver - identifies USB device driver to usbcore 1228 * @name: The driver name should be unique among USB drivers, 1229 * and should normally be the same as the module name. 1230 * @match: If set, used for better device/driver matching. 1231 * @probe: Called to see if the driver is willing to manage a particular 1232 * device. If it is, probe returns zero and uses dev_set_drvdata() 1233 * to associate driver-specific data with the device. If unwilling 1234 * to manage the device, return a negative errno value. 1235 * @disconnect: Called when the device is no longer accessible, usually 1236 * because it has been (or is being) disconnected or the driver's 1237 * module is being unloaded. 1238 * @suspend: Called when the device is going to be suspended by the system. 1239 * @resume: Called when the device is being resumed by the system. 1240 * @dev_groups: Attributes attached to the device that will be created once it 1241 * is bound to the driver. 1242 * @drvwrap: Driver-model core structure wrapper. 1243 * @id_table: used with @match() to select better matching driver at 1244 * probe() time. 1245 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1246 * for devices bound to this driver. 1247 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1248 * resume and suspend functions will be called in addition to the driver's 1249 * own, so this part of the setup does not need to be replicated. 1250 * 1251 * USB drivers must provide all the fields listed above except drvwrap, 1252 * match, and id_table. 1253 */ 1254 struct usb_device_driver { 1255 const char *name; 1256 1257 bool (*match) (struct usb_device *udev); 1258 int (*probe) (struct usb_device *udev); 1259 void (*disconnect) (struct usb_device *udev); 1260 1261 int (*suspend) (struct usb_device *udev, pm_message_t message); 1262 int (*resume) (struct usb_device *udev, pm_message_t message); 1263 const struct attribute_group **dev_groups; 1264 struct usbdrv_wrap drvwrap; 1265 const struct usb_device_id *id_table; 1266 unsigned int supports_autosuspend:1; 1267 unsigned int generic_subclass:1; 1268 }; 1269 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1270 drvwrap.driver) 1271 1272 /** 1273 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1274 * @name: the usb class device name for this driver. Will show up in sysfs. 1275 * @devnode: Callback to provide a naming hint for a possible 1276 * device node to create. 1277 * @fops: pointer to the struct file_operations of this driver. 1278 * @minor_base: the start of the minor range for this driver. 1279 * 1280 * This structure is used for the usb_register_dev() and 1281 * usb_deregister_dev() functions, to consolidate a number of the 1282 * parameters used for them. 1283 */ 1284 struct usb_class_driver { 1285 char *name; 1286 char *(*devnode)(const struct device *dev, umode_t *mode); 1287 const struct file_operations *fops; 1288 int minor_base; 1289 }; 1290 1291 /* 1292 * use these in module_init()/module_exit() 1293 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1294 */ 1295 extern int usb_register_driver(struct usb_driver *, struct module *, 1296 const char *); 1297 1298 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1299 #define usb_register(driver) \ 1300 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1301 1302 extern void usb_deregister(struct usb_driver *); 1303 1304 /** 1305 * module_usb_driver() - Helper macro for registering a USB driver 1306 * @__usb_driver: usb_driver struct 1307 * 1308 * Helper macro for USB drivers which do not do anything special in module 1309 * init/exit. This eliminates a lot of boilerplate. Each module may only 1310 * use this macro once, and calling it replaces module_init() and module_exit() 1311 */ 1312 #define module_usb_driver(__usb_driver) \ 1313 module_driver(__usb_driver, usb_register, \ 1314 usb_deregister) 1315 1316 extern int usb_register_device_driver(struct usb_device_driver *, 1317 struct module *); 1318 extern void usb_deregister_device_driver(struct usb_device_driver *); 1319 1320 extern int usb_register_dev(struct usb_interface *intf, 1321 struct usb_class_driver *class_driver); 1322 extern void usb_deregister_dev(struct usb_interface *intf, 1323 struct usb_class_driver *class_driver); 1324 1325 extern int usb_disabled(void); 1326 1327 /* ----------------------------------------------------------------------- */ 1328 1329 /* 1330 * URB support, for asynchronous request completions 1331 */ 1332 1333 /* 1334 * urb->transfer_flags: 1335 * 1336 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1337 */ 1338 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1339 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1340 * slot in the schedule */ 1341 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1342 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1343 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1344 * needed */ 1345 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1346 1347 /* The following flags are used internally by usbcore and HCDs */ 1348 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1349 #define URB_DIR_OUT 0 1350 #define URB_DIR_MASK URB_DIR_IN 1351 1352 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1353 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1354 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1355 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1356 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1357 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1358 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1359 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1360 1361 struct usb_iso_packet_descriptor { 1362 unsigned int offset; 1363 unsigned int length; /* expected length */ 1364 unsigned int actual_length; 1365 int status; 1366 }; 1367 1368 struct urb; 1369 1370 struct usb_anchor { 1371 struct list_head urb_list; 1372 wait_queue_head_t wait; 1373 spinlock_t lock; 1374 atomic_t suspend_wakeups; 1375 unsigned int poisoned:1; 1376 }; 1377 1378 static inline void init_usb_anchor(struct usb_anchor *anchor) 1379 { 1380 memset(anchor, 0, sizeof(*anchor)); 1381 INIT_LIST_HEAD(&anchor->urb_list); 1382 init_waitqueue_head(&anchor->wait); 1383 spin_lock_init(&anchor->lock); 1384 } 1385 1386 typedef void (*usb_complete_t)(struct urb *); 1387 1388 /** 1389 * struct urb - USB Request Block 1390 * @urb_list: For use by current owner of the URB. 1391 * @anchor_list: membership in the list of an anchor 1392 * @anchor: to anchor URBs to a common mooring 1393 * @ep: Points to the endpoint's data structure. Will eventually 1394 * replace @pipe. 1395 * @pipe: Holds endpoint number, direction, type, and more. 1396 * Create these values with the eight macros available; 1397 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1398 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1399 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1400 * numbers range from zero to fifteen. Note that "in" endpoint two 1401 * is a different endpoint (and pipe) from "out" endpoint two. 1402 * The current configuration controls the existence, type, and 1403 * maximum packet size of any given endpoint. 1404 * @stream_id: the endpoint's stream ID for bulk streams 1405 * @dev: Identifies the USB device to perform the request. 1406 * @status: This is read in non-iso completion functions to get the 1407 * status of the particular request. ISO requests only use it 1408 * to tell whether the URB was unlinked; detailed status for 1409 * each frame is in the fields of the iso_frame-desc. 1410 * @transfer_flags: A variety of flags may be used to affect how URB 1411 * submission, unlinking, or operation are handled. Different 1412 * kinds of URB can use different flags. 1413 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1414 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1415 * (however, do not leave garbage in transfer_buffer even then). 1416 * This buffer must be suitable for DMA; allocate it with 1417 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1418 * of this buffer will be modified. This buffer is used for the data 1419 * stage of control transfers. 1420 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1421 * the device driver is saying that it provided this DMA address, 1422 * which the host controller driver should use in preference to the 1423 * transfer_buffer. 1424 * @sg: scatter gather buffer list, the buffer size of each element in 1425 * the list (except the last) must be divisible by the endpoint's 1426 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1427 * @num_mapped_sgs: (internal) number of mapped sg entries 1428 * @num_sgs: number of entries in the sg list 1429 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1430 * be broken up into chunks according to the current maximum packet 1431 * size for the endpoint, which is a function of the configuration 1432 * and is encoded in the pipe. When the length is zero, neither 1433 * transfer_buffer nor transfer_dma is used. 1434 * @actual_length: This is read in non-iso completion functions, and 1435 * it tells how many bytes (out of transfer_buffer_length) were 1436 * transferred. It will normally be the same as requested, unless 1437 * either an error was reported or a short read was performed. 1438 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1439 * short reads be reported as errors. 1440 * @setup_packet: Only used for control transfers, this points to eight bytes 1441 * of setup data. Control transfers always start by sending this data 1442 * to the device. Then transfer_buffer is read or written, if needed. 1443 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1444 * this field; setup_packet must point to a valid buffer. 1445 * @start_frame: Returns the initial frame for isochronous transfers. 1446 * @number_of_packets: Lists the number of ISO transfer buffers. 1447 * @interval: Specifies the polling interval for interrupt or isochronous 1448 * transfers. The units are frames (milliseconds) for full and low 1449 * speed devices, and microframes (1/8 millisecond) for highspeed 1450 * and SuperSpeed devices. 1451 * @error_count: Returns the number of ISO transfers that reported errors. 1452 * @context: For use in completion functions. This normally points to 1453 * request-specific driver context. 1454 * @complete: Completion handler. This URB is passed as the parameter to the 1455 * completion function. The completion function may then do what 1456 * it likes with the URB, including resubmitting or freeing it. 1457 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1458 * collect the transfer status for each buffer. 1459 * 1460 * This structure identifies USB transfer requests. URBs must be allocated by 1461 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1462 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1463 * are submitted using usb_submit_urb(), and pending requests may be canceled 1464 * using usb_unlink_urb() or usb_kill_urb(). 1465 * 1466 * Data Transfer Buffers: 1467 * 1468 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1469 * taken from the general page pool. That is provided by transfer_buffer 1470 * (control requests also use setup_packet), and host controller drivers 1471 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1472 * mapping operations can be expensive on some platforms (perhaps using a dma 1473 * bounce buffer or talking to an IOMMU), 1474 * although they're cheap on commodity x86 and ppc hardware. 1475 * 1476 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1477 * which tells the host controller driver that no such mapping is needed for 1478 * the transfer_buffer since 1479 * the device driver is DMA-aware. For example, a device driver might 1480 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1481 * When this transfer flag is provided, host controller drivers will 1482 * attempt to use the dma address found in the transfer_dma 1483 * field rather than determining a dma address themselves. 1484 * 1485 * Note that transfer_buffer must still be set if the controller 1486 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1487 * to root hub. If you have to transfer between highmem zone and the device 1488 * on such controller, create a bounce buffer or bail out with an error. 1489 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1490 * capable, assign NULL to it, so that usbmon knows not to use the value. 1491 * The setup_packet must always be set, so it cannot be located in highmem. 1492 * 1493 * Initialization: 1494 * 1495 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1496 * zero), and complete fields. All URBs must also initialize 1497 * transfer_buffer and transfer_buffer_length. They may provide the 1498 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1499 * to be treated as errors; that flag is invalid for write requests. 1500 * 1501 * Bulk URBs may 1502 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1503 * should always terminate with a short packet, even if it means adding an 1504 * extra zero length packet. 1505 * 1506 * Control URBs must provide a valid pointer in the setup_packet field. 1507 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1508 * beforehand. 1509 * 1510 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1511 * or, for highspeed devices, 125 microsecond units) 1512 * to poll for transfers. After the URB has been submitted, the interval 1513 * field reflects how the transfer was actually scheduled. 1514 * The polling interval may be more frequent than requested. 1515 * For example, some controllers have a maximum interval of 32 milliseconds, 1516 * while others support intervals of up to 1024 milliseconds. 1517 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1518 * endpoints, as well as high speed interrupt endpoints, the encoding of 1519 * the transfer interval in the endpoint descriptor is logarithmic. 1520 * Device drivers must convert that value to linear units themselves.) 1521 * 1522 * If an isochronous endpoint queue isn't already running, the host 1523 * controller will schedule a new URB to start as soon as bandwidth 1524 * utilization allows. If the queue is running then a new URB will be 1525 * scheduled to start in the first transfer slot following the end of the 1526 * preceding URB, if that slot has not already expired. If the slot has 1527 * expired (which can happen when IRQ delivery is delayed for a long time), 1528 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1529 * is clear then the URB will be scheduled to start in the expired slot, 1530 * implying that some of its packets will not be transferred; if the flag 1531 * is set then the URB will be scheduled in the first unexpired slot, 1532 * breaking the queue's synchronization. Upon URB completion, the 1533 * start_frame field will be set to the (micro)frame number in which the 1534 * transfer was scheduled. Ranges for frame counter values are HC-specific 1535 * and can go from as low as 256 to as high as 65536 frames. 1536 * 1537 * Isochronous URBs have a different data transfer model, in part because 1538 * the quality of service is only "best effort". Callers provide specially 1539 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1540 * at the end. Each such packet is an individual ISO transfer. Isochronous 1541 * URBs are normally queued, submitted by drivers to arrange that 1542 * transfers are at least double buffered, and then explicitly resubmitted 1543 * in completion handlers, so 1544 * that data (such as audio or video) streams at as constant a rate as the 1545 * host controller scheduler can support. 1546 * 1547 * Completion Callbacks: 1548 * 1549 * The completion callback is made in_interrupt(), and one of the first 1550 * things that a completion handler should do is check the status field. 1551 * The status field is provided for all URBs. It is used to report 1552 * unlinked URBs, and status for all non-ISO transfers. It should not 1553 * be examined before the URB is returned to the completion handler. 1554 * 1555 * The context field is normally used to link URBs back to the relevant 1556 * driver or request state. 1557 * 1558 * When the completion callback is invoked for non-isochronous URBs, the 1559 * actual_length field tells how many bytes were transferred. This field 1560 * is updated even when the URB terminated with an error or was unlinked. 1561 * 1562 * ISO transfer status is reported in the status and actual_length fields 1563 * of the iso_frame_desc array, and the number of errors is reported in 1564 * error_count. Completion callbacks for ISO transfers will normally 1565 * (re)submit URBs to ensure a constant transfer rate. 1566 * 1567 * Note that even fields marked "public" should not be touched by the driver 1568 * when the urb is owned by the hcd, that is, since the call to 1569 * usb_submit_urb() till the entry into the completion routine. 1570 */ 1571 struct urb { 1572 /* private: usb core and host controller only fields in the urb */ 1573 struct kref kref; /* reference count of the URB */ 1574 int unlinked; /* unlink error code */ 1575 void *hcpriv; /* private data for host controller */ 1576 atomic_t use_count; /* concurrent submissions counter */ 1577 atomic_t reject; /* submissions will fail */ 1578 1579 /* public: documented fields in the urb that can be used by drivers */ 1580 struct list_head urb_list; /* list head for use by the urb's 1581 * current owner */ 1582 struct list_head anchor_list; /* the URB may be anchored */ 1583 struct usb_anchor *anchor; 1584 struct usb_device *dev; /* (in) pointer to associated device */ 1585 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1586 unsigned int pipe; /* (in) pipe information */ 1587 unsigned int stream_id; /* (in) stream ID */ 1588 int status; /* (return) non-ISO status */ 1589 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1590 void *transfer_buffer; /* (in) associated data buffer */ 1591 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1592 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1593 int num_mapped_sgs; /* (internal) mapped sg entries */ 1594 int num_sgs; /* (in) number of entries in the sg list */ 1595 u32 transfer_buffer_length; /* (in) data buffer length */ 1596 u32 actual_length; /* (return) actual transfer length */ 1597 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1598 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1599 int start_frame; /* (modify) start frame (ISO) */ 1600 int number_of_packets; /* (in) number of ISO packets */ 1601 int interval; /* (modify) transfer interval 1602 * (INT/ISO) */ 1603 int error_count; /* (return) number of ISO errors */ 1604 void *context; /* (in) context for completion */ 1605 usb_complete_t complete; /* (in) completion routine */ 1606 struct usb_iso_packet_descriptor iso_frame_desc[]; 1607 /* (in) ISO ONLY */ 1608 }; 1609 1610 /* ----------------------------------------------------------------------- */ 1611 1612 /** 1613 * usb_fill_control_urb - initializes a control urb 1614 * @urb: pointer to the urb to initialize. 1615 * @dev: pointer to the struct usb_device for this urb. 1616 * @pipe: the endpoint pipe 1617 * @setup_packet: pointer to the setup_packet buffer 1618 * @transfer_buffer: pointer to the transfer buffer 1619 * @buffer_length: length of the transfer buffer 1620 * @complete_fn: pointer to the usb_complete_t function 1621 * @context: what to set the urb context to. 1622 * 1623 * Initializes a control urb with the proper information needed to submit 1624 * it to a device. 1625 */ 1626 static inline void usb_fill_control_urb(struct urb *urb, 1627 struct usb_device *dev, 1628 unsigned int pipe, 1629 unsigned char *setup_packet, 1630 void *transfer_buffer, 1631 int buffer_length, 1632 usb_complete_t complete_fn, 1633 void *context) 1634 { 1635 urb->dev = dev; 1636 urb->pipe = pipe; 1637 urb->setup_packet = setup_packet; 1638 urb->transfer_buffer = transfer_buffer; 1639 urb->transfer_buffer_length = buffer_length; 1640 urb->complete = complete_fn; 1641 urb->context = context; 1642 } 1643 1644 /** 1645 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1646 * @urb: pointer to the urb to initialize. 1647 * @dev: pointer to the struct usb_device for this urb. 1648 * @pipe: the endpoint pipe 1649 * @transfer_buffer: pointer to the transfer buffer 1650 * @buffer_length: length of the transfer buffer 1651 * @complete_fn: pointer to the usb_complete_t function 1652 * @context: what to set the urb context to. 1653 * 1654 * Initializes a bulk urb with the proper information needed to submit it 1655 * to a device. 1656 */ 1657 static inline void usb_fill_bulk_urb(struct urb *urb, 1658 struct usb_device *dev, 1659 unsigned int pipe, 1660 void *transfer_buffer, 1661 int buffer_length, 1662 usb_complete_t complete_fn, 1663 void *context) 1664 { 1665 urb->dev = dev; 1666 urb->pipe = pipe; 1667 urb->transfer_buffer = transfer_buffer; 1668 urb->transfer_buffer_length = buffer_length; 1669 urb->complete = complete_fn; 1670 urb->context = context; 1671 } 1672 1673 /** 1674 * usb_fill_int_urb - macro to help initialize a interrupt urb 1675 * @urb: pointer to the urb to initialize. 1676 * @dev: pointer to the struct usb_device for this urb. 1677 * @pipe: the endpoint pipe 1678 * @transfer_buffer: pointer to the transfer buffer 1679 * @buffer_length: length of the transfer buffer 1680 * @complete_fn: pointer to the usb_complete_t function 1681 * @context: what to set the urb context to. 1682 * @interval: what to set the urb interval to, encoded like 1683 * the endpoint descriptor's bInterval value. 1684 * 1685 * Initializes a interrupt urb with the proper information needed to submit 1686 * it to a device. 1687 * 1688 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1689 * encoding of the endpoint interval, and express polling intervals in 1690 * microframes (eight per millisecond) rather than in frames (one per 1691 * millisecond). 1692 * 1693 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1694 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1695 * through to the host controller, rather than being translated into microframe 1696 * units. 1697 */ 1698 static inline void usb_fill_int_urb(struct urb *urb, 1699 struct usb_device *dev, 1700 unsigned int pipe, 1701 void *transfer_buffer, 1702 int buffer_length, 1703 usb_complete_t complete_fn, 1704 void *context, 1705 int interval) 1706 { 1707 urb->dev = dev; 1708 urb->pipe = pipe; 1709 urb->transfer_buffer = transfer_buffer; 1710 urb->transfer_buffer_length = buffer_length; 1711 urb->complete = complete_fn; 1712 urb->context = context; 1713 1714 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1715 /* make sure interval is within allowed range */ 1716 interval = clamp(interval, 1, 16); 1717 1718 urb->interval = 1 << (interval - 1); 1719 } else { 1720 urb->interval = interval; 1721 } 1722 1723 urb->start_frame = -1; 1724 } 1725 1726 extern void usb_init_urb(struct urb *urb); 1727 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1728 extern void usb_free_urb(struct urb *urb); 1729 #define usb_put_urb usb_free_urb 1730 extern struct urb *usb_get_urb(struct urb *urb); 1731 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1732 extern int usb_unlink_urb(struct urb *urb); 1733 extern void usb_kill_urb(struct urb *urb); 1734 extern void usb_poison_urb(struct urb *urb); 1735 extern void usb_unpoison_urb(struct urb *urb); 1736 extern void usb_block_urb(struct urb *urb); 1737 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1738 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1739 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1740 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1741 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1742 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1743 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1744 extern void usb_unanchor_urb(struct urb *urb); 1745 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1746 unsigned int timeout); 1747 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1748 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1749 extern int usb_anchor_empty(struct usb_anchor *anchor); 1750 1751 #define usb_unblock_urb usb_unpoison_urb 1752 1753 /** 1754 * usb_urb_dir_in - check if an URB describes an IN transfer 1755 * @urb: URB to be checked 1756 * 1757 * Return: 1 if @urb describes an IN transfer (device-to-host), 1758 * otherwise 0. 1759 */ 1760 static inline int usb_urb_dir_in(struct urb *urb) 1761 { 1762 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1763 } 1764 1765 /** 1766 * usb_urb_dir_out - check if an URB describes an OUT transfer 1767 * @urb: URB to be checked 1768 * 1769 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1770 * otherwise 0. 1771 */ 1772 static inline int usb_urb_dir_out(struct urb *urb) 1773 { 1774 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1775 } 1776 1777 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1778 int usb_urb_ep_type_check(const struct urb *urb); 1779 1780 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1781 gfp_t mem_flags, dma_addr_t *dma); 1782 void usb_free_coherent(struct usb_device *dev, size_t size, 1783 void *addr, dma_addr_t dma); 1784 1785 #if 0 1786 struct urb *usb_buffer_map(struct urb *urb); 1787 void usb_buffer_dmasync(struct urb *urb); 1788 void usb_buffer_unmap(struct urb *urb); 1789 #endif 1790 1791 struct scatterlist; 1792 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1793 struct scatterlist *sg, int nents); 1794 #if 0 1795 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1796 struct scatterlist *sg, int n_hw_ents); 1797 #endif 1798 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1799 struct scatterlist *sg, int n_hw_ents); 1800 1801 /*-------------------------------------------------------------------* 1802 * SYNCHRONOUS CALL SUPPORT * 1803 *-------------------------------------------------------------------*/ 1804 1805 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1806 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1807 void *data, __u16 size, int timeout); 1808 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1809 void *data, int len, int *actual_length, int timeout); 1810 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1811 void *data, int len, int *actual_length, 1812 int timeout); 1813 1814 /* wrappers around usb_control_msg() for the most common standard requests */ 1815 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1816 __u8 requesttype, __u16 value, __u16 index, 1817 const void *data, __u16 size, int timeout, 1818 gfp_t memflags); 1819 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1820 __u8 requesttype, __u16 value, __u16 index, 1821 void *data, __u16 size, int timeout, 1822 gfp_t memflags); 1823 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1824 unsigned char descindex, void *buf, int size); 1825 extern int usb_get_status(struct usb_device *dev, 1826 int recip, int type, int target, void *data); 1827 1828 static inline int usb_get_std_status(struct usb_device *dev, 1829 int recip, int target, void *data) 1830 { 1831 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1832 data); 1833 } 1834 1835 static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1836 { 1837 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1838 0, data); 1839 } 1840 1841 extern int usb_string(struct usb_device *dev, int index, 1842 char *buf, size_t size); 1843 1844 /* wrappers that also update important state inside usbcore */ 1845 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1846 extern int usb_reset_configuration(struct usb_device *dev); 1847 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1848 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1849 1850 /* this request isn't really synchronous, but it belongs with the others */ 1851 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1852 1853 /* choose and set configuration for device */ 1854 extern int usb_choose_configuration(struct usb_device *udev); 1855 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1856 1857 /* 1858 * timeouts, in milliseconds, used for sending/receiving control messages 1859 * they typically complete within a few frames (msec) after they're issued 1860 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1861 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1862 */ 1863 #define USB_CTRL_GET_TIMEOUT 5000 1864 #define USB_CTRL_SET_TIMEOUT 5000 1865 1866 1867 /** 1868 * struct usb_sg_request - support for scatter/gather I/O 1869 * @status: zero indicates success, else negative errno 1870 * @bytes: counts bytes transferred. 1871 * 1872 * These requests are initialized using usb_sg_init(), and then are used 1873 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1874 * members of the request object aren't for driver access. 1875 * 1876 * The status and bytecount values are valid only after usb_sg_wait() 1877 * returns. If the status is zero, then the bytecount matches the total 1878 * from the request. 1879 * 1880 * After an error completion, drivers may need to clear a halt condition 1881 * on the endpoint. 1882 */ 1883 struct usb_sg_request { 1884 int status; 1885 size_t bytes; 1886 1887 /* private: 1888 * members below are private to usbcore, 1889 * and are not provided for driver access! 1890 */ 1891 spinlock_t lock; 1892 1893 struct usb_device *dev; 1894 int pipe; 1895 1896 int entries; 1897 struct urb **urbs; 1898 1899 int count; 1900 struct completion complete; 1901 }; 1902 1903 int usb_sg_init( 1904 struct usb_sg_request *io, 1905 struct usb_device *dev, 1906 unsigned pipe, 1907 unsigned period, 1908 struct scatterlist *sg, 1909 int nents, 1910 size_t length, 1911 gfp_t mem_flags 1912 ); 1913 void usb_sg_cancel(struct usb_sg_request *io); 1914 void usb_sg_wait(struct usb_sg_request *io); 1915 1916 1917 /* ----------------------------------------------------------------------- */ 1918 1919 /* 1920 * For various legacy reasons, Linux has a small cookie that's paired with 1921 * a struct usb_device to identify an endpoint queue. Queue characteristics 1922 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1923 * an unsigned int encoded as: 1924 * 1925 * - direction: bit 7 (0 = Host-to-Device [Out], 1926 * 1 = Device-to-Host [In] ... 1927 * like endpoint bEndpointAddress) 1928 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1929 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1930 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1931 * 10 = control, 11 = bulk) 1932 * 1933 * Given the device address and endpoint descriptor, pipes are redundant. 1934 */ 1935 1936 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1937 /* (yet ... they're the values used by usbfs) */ 1938 #define PIPE_ISOCHRONOUS 0 1939 #define PIPE_INTERRUPT 1 1940 #define PIPE_CONTROL 2 1941 #define PIPE_BULK 3 1942 1943 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1944 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1945 1946 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1947 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1948 1949 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1950 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1951 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1952 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1953 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1954 1955 static inline unsigned int __create_pipe(struct usb_device *dev, 1956 unsigned int endpoint) 1957 { 1958 return (dev->devnum << 8) | (endpoint << 15); 1959 } 1960 1961 /* Create various pipes... */ 1962 #define usb_sndctrlpipe(dev, endpoint) \ 1963 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1964 #define usb_rcvctrlpipe(dev, endpoint) \ 1965 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1966 #define usb_sndisocpipe(dev, endpoint) \ 1967 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1968 #define usb_rcvisocpipe(dev, endpoint) \ 1969 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1970 #define usb_sndbulkpipe(dev, endpoint) \ 1971 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1972 #define usb_rcvbulkpipe(dev, endpoint) \ 1973 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1974 #define usb_sndintpipe(dev, endpoint) \ 1975 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1976 #define usb_rcvintpipe(dev, endpoint) \ 1977 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1978 1979 static inline struct usb_host_endpoint * 1980 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1981 { 1982 struct usb_host_endpoint **eps; 1983 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1984 return eps[usb_pipeendpoint(pipe)]; 1985 } 1986 1987 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 1988 { 1989 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 1990 1991 if (!ep) 1992 return 0; 1993 1994 /* NOTE: only 0x07ff bits are for packet size... */ 1995 return usb_endpoint_maxp(&ep->desc); 1996 } 1997 1998 /* translate USB error codes to codes user space understands */ 1999 static inline int usb_translate_errors(int error_code) 2000 { 2001 switch (error_code) { 2002 case 0: 2003 case -ENOMEM: 2004 case -ENODEV: 2005 case -EOPNOTSUPP: 2006 return error_code; 2007 default: 2008 return -EIO; 2009 } 2010 } 2011 2012 /* Events from the usb core */ 2013 #define USB_DEVICE_ADD 0x0001 2014 #define USB_DEVICE_REMOVE 0x0002 2015 #define USB_BUS_ADD 0x0003 2016 #define USB_BUS_REMOVE 0x0004 2017 extern void usb_register_notify(struct notifier_block *nb); 2018 extern void usb_unregister_notify(struct notifier_block *nb); 2019 2020 /* debugfs stuff */ 2021 extern struct dentry *usb_debug_root; 2022 2023 /* LED triggers */ 2024 enum usb_led_event { 2025 USB_LED_EVENT_HOST = 0, 2026 USB_LED_EVENT_GADGET = 1, 2027 }; 2028 2029 #ifdef CONFIG_USB_LED_TRIG 2030 extern void usb_led_activity(enum usb_led_event ev); 2031 #else 2032 static inline void usb_led_activity(enum usb_led_event ev) {} 2033 #endif 2034 2035 #endif /* __KERNEL__ */ 2036 2037 #endif 2038