xref: /linux-6.15/include/linux/usb.h (revision c0a9290e)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 
24 struct usb_device;
25 struct usb_driver;
26 
27 /*-------------------------------------------------------------------------*/
28 
29 /*
30  * Host-side wrappers for standard USB descriptors ... these are parsed
31  * from the data provided by devices.  Parsing turns them from a flat
32  * sequence of descriptors into a hierarchy:
33  *
34  *  - devices have one (usually) or more configs;
35  *  - configs have one (often) or more interfaces;
36  *  - interfaces have one (usually) or more settings;
37  *  - each interface setting has zero or (usually) more endpoints.
38  *
39  * And there might be other descriptors mixed in with those.
40  *
41  * Devices may also have class-specific or vendor-specific descriptors.
42  */
43 
44 struct ep_device;
45 
46 /**
47  * struct usb_host_endpoint - host-side endpoint descriptor and queue
48  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49  * @urb_list: urbs queued to this endpoint; maintained by usbcore
50  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51  *	with one or more transfer descriptors (TDs) per urb
52  * @ep_dev: ep_device for sysfs info
53  * @extra: descriptors following this endpoint in the configuration
54  * @extralen: how many bytes of "extra" are valid
55  * @enabled: URBs may be submitted to this endpoint
56  *
57  * USB requests are always queued to a given endpoint, identified by a
58  * descriptor within an active interface in a given USB configuration.
59  */
60 struct usb_host_endpoint {
61 	struct usb_endpoint_descriptor	desc;
62 	struct list_head		urb_list;
63 	void				*hcpriv;
64 	struct ep_device 		*ep_dev;	/* For sysfs info */
65 
66 	unsigned char *extra;   /* Extra descriptors */
67 	int extralen;
68 	int enabled;
69 };
70 
71 /* host-side wrapper for one interface setting's parsed descriptors */
72 struct usb_host_interface {
73 	struct usb_interface_descriptor	desc;
74 
75 	/* array of desc.bNumEndpoint endpoints associated with this
76 	 * interface setting.  these will be in no particular order.
77 	 */
78 	struct usb_host_endpoint *endpoint;
79 
80 	char *string;		/* iInterface string, if present */
81 	unsigned char *extra;   /* Extra descriptors */
82 	int extralen;
83 };
84 
85 enum usb_interface_condition {
86 	USB_INTERFACE_UNBOUND = 0,
87 	USB_INTERFACE_BINDING,
88 	USB_INTERFACE_BOUND,
89 	USB_INTERFACE_UNBINDING,
90 };
91 
92 /**
93  * struct usb_interface - what usb device drivers talk to
94  * @altsetting: array of interface structures, one for each alternate
95  * 	setting that may be selected.  Each one includes a set of
96  * 	endpoint configurations.  They will be in no particular order.
97  * @num_altsetting: number of altsettings defined.
98  * @cur_altsetting: the current altsetting.
99  * @intf_assoc: interface association descriptor
100  * @driver: the USB driver that is bound to this interface.
101  * @minor: the minor number assigned to this interface, if this
102  *	interface is bound to a driver that uses the USB major number.
103  *	If this interface does not use the USB major, this field should
104  *	be unused.  The driver should set this value in the probe()
105  *	function of the driver, after it has been assigned a minor
106  *	number from the USB core by calling usb_register_dev().
107  * @condition: binding state of the interface: not bound, binding
108  *	(in probe()), bound to a driver, or unbinding (in disconnect())
109  * @is_active: flag set when the interface is bound and not suspended.
110  * @sysfs_files_created: sysfs attributes exist
111  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
112  *	capability during autosuspend.
113  * @dev: driver model's view of this device
114  * @usb_dev: if an interface is bound to the USB major, this will point
115  *	to the sysfs representation for that device.
116  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
117  *	allowed unless the counter is 0.
118  *
119  * USB device drivers attach to interfaces on a physical device.  Each
120  * interface encapsulates a single high level function, such as feeding
121  * an audio stream to a speaker or reporting a change in a volume control.
122  * Many USB devices only have one interface.  The protocol used to talk to
123  * an interface's endpoints can be defined in a usb "class" specification,
124  * or by a product's vendor.  The (default) control endpoint is part of
125  * every interface, but is never listed among the interface's descriptors.
126  *
127  * The driver that is bound to the interface can use standard driver model
128  * calls such as dev_get_drvdata() on the dev member of this structure.
129  *
130  * Each interface may have alternate settings.  The initial configuration
131  * of a device sets altsetting 0, but the device driver can change
132  * that setting using usb_set_interface().  Alternate settings are often
133  * used to control the use of periodic endpoints, such as by having
134  * different endpoints use different amounts of reserved USB bandwidth.
135  * All standards-conformant USB devices that use isochronous endpoints
136  * will use them in non-default settings.
137  *
138  * The USB specification says that alternate setting numbers must run from
139  * 0 to one less than the total number of alternate settings.  But some
140  * devices manage to mess this up, and the structures aren't necessarily
141  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
142  * look up an alternate setting in the altsetting array based on its number.
143  */
144 struct usb_interface {
145 	/* array of alternate settings for this interface,
146 	 * stored in no particular order */
147 	struct usb_host_interface *altsetting;
148 
149 	struct usb_host_interface *cur_altsetting;	/* the currently
150 					 * active alternate setting */
151 	unsigned num_altsetting;	/* number of alternate settings */
152 
153 	/* If there is an interface association descriptor then it will list
154 	 * the associated interfaces */
155 	struct usb_interface_assoc_descriptor *intf_assoc;
156 
157 	int minor;			/* minor number this interface is
158 					 * bound to */
159 	enum usb_interface_condition condition;		/* state of binding */
160 	unsigned is_active:1;		/* the interface is not suspended */
161 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
162 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
163 
164 	struct device dev;		/* interface specific device info */
165 	struct device *usb_dev;
166 	int pm_usage_cnt;		/* usage counter for autosuspend */
167 };
168 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
169 #define	interface_to_usbdev(intf) \
170 	container_of(intf->dev.parent, struct usb_device, dev)
171 
172 static inline void *usb_get_intfdata(struct usb_interface *intf)
173 {
174 	return dev_get_drvdata(&intf->dev);
175 }
176 
177 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
178 {
179 	dev_set_drvdata(&intf->dev, data);
180 }
181 
182 struct usb_interface *usb_get_intf(struct usb_interface *intf);
183 void usb_put_intf(struct usb_interface *intf);
184 
185 /* this maximum is arbitrary */
186 #define USB_MAXINTERFACES	32
187 #define USB_MAXIADS		USB_MAXINTERFACES/2
188 
189 /**
190  * struct usb_interface_cache - long-term representation of a device interface
191  * @num_altsetting: number of altsettings defined.
192  * @ref: reference counter.
193  * @altsetting: variable-length array of interface structures, one for
194  *	each alternate setting that may be selected.  Each one includes a
195  *	set of endpoint configurations.  They will be in no particular order.
196  *
197  * These structures persist for the lifetime of a usb_device, unlike
198  * struct usb_interface (which persists only as long as its configuration
199  * is installed).  The altsetting arrays can be accessed through these
200  * structures at any time, permitting comparison of configurations and
201  * providing support for the /proc/bus/usb/devices pseudo-file.
202  */
203 struct usb_interface_cache {
204 	unsigned num_altsetting;	/* number of alternate settings */
205 	struct kref ref;		/* reference counter */
206 
207 	/* variable-length array of alternate settings for this interface,
208 	 * stored in no particular order */
209 	struct usb_host_interface altsetting[0];
210 };
211 #define	ref_to_usb_interface_cache(r) \
212 		container_of(r, struct usb_interface_cache, ref)
213 #define	altsetting_to_usb_interface_cache(a) \
214 		container_of(a, struct usb_interface_cache, altsetting[0])
215 
216 /**
217  * struct usb_host_config - representation of a device's configuration
218  * @desc: the device's configuration descriptor.
219  * @string: pointer to the cached version of the iConfiguration string, if
220  *	present for this configuration.
221  * @intf_assoc: list of any interface association descriptors in this config
222  * @interface: array of pointers to usb_interface structures, one for each
223  *	interface in the configuration.  The number of interfaces is stored
224  *	in desc.bNumInterfaces.  These pointers are valid only while the
225  *	the configuration is active.
226  * @intf_cache: array of pointers to usb_interface_cache structures, one
227  *	for each interface in the configuration.  These structures exist
228  *	for the entire life of the device.
229  * @extra: pointer to buffer containing all extra descriptors associated
230  *	with this configuration (those preceding the first interface
231  *	descriptor).
232  * @extralen: length of the extra descriptors buffer.
233  *
234  * USB devices may have multiple configurations, but only one can be active
235  * at any time.  Each encapsulates a different operational environment;
236  * for example, a dual-speed device would have separate configurations for
237  * full-speed and high-speed operation.  The number of configurations
238  * available is stored in the device descriptor as bNumConfigurations.
239  *
240  * A configuration can contain multiple interfaces.  Each corresponds to
241  * a different function of the USB device, and all are available whenever
242  * the configuration is active.  The USB standard says that interfaces
243  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
244  * of devices get this wrong.  In addition, the interface array is not
245  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
246  * look up an interface entry based on its number.
247  *
248  * Device drivers should not attempt to activate configurations.  The choice
249  * of which configuration to install is a policy decision based on such
250  * considerations as available power, functionality provided, and the user's
251  * desires (expressed through userspace tools).  However, drivers can call
252  * usb_reset_configuration() to reinitialize the current configuration and
253  * all its interfaces.
254  */
255 struct usb_host_config {
256 	struct usb_config_descriptor	desc;
257 
258 	char *string;		/* iConfiguration string, if present */
259 
260 	/* List of any Interface Association Descriptors in this
261 	 * configuration. */
262 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
263 
264 	/* the interfaces associated with this configuration,
265 	 * stored in no particular order */
266 	struct usb_interface *interface[USB_MAXINTERFACES];
267 
268 	/* Interface information available even when this is not the
269 	 * active configuration */
270 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
271 
272 	unsigned char *extra;   /* Extra descriptors */
273 	int extralen;
274 };
275 
276 int __usb_get_extra_descriptor(char *buffer, unsigned size,
277 	unsigned char type, void **ptr);
278 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
279 				__usb_get_extra_descriptor((ifpoint)->extra, \
280 				(ifpoint)->extralen, \
281 				type, (void **)ptr)
282 
283 /* ----------------------------------------------------------------------- */
284 
285 /* USB device number allocation bitmap */
286 struct usb_devmap {
287 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
288 };
289 
290 /*
291  * Allocated per bus (tree of devices) we have:
292  */
293 struct usb_bus {
294 	struct device *controller;	/* host/master side hardware */
295 	int busnum;			/* Bus number (in order of reg) */
296 	char *bus_name;			/* stable id (PCI slot_name etc) */
297 	u8 uses_dma;			/* Does the host controller use DMA? */
298 	u8 otg_port;			/* 0, or number of OTG/HNP port */
299 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
300 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
301 
302 	int devnum_next;		/* Next open device number in
303 					 * round-robin allocation */
304 
305 	struct usb_devmap devmap;	/* device address allocation map */
306 	struct usb_device *root_hub;	/* Root hub */
307 	struct list_head bus_list;	/* list of busses */
308 
309 	int bandwidth_allocated;	/* on this bus: how much of the time
310 					 * reserved for periodic (intr/iso)
311 					 * requests is used, on average?
312 					 * Units: microseconds/frame.
313 					 * Limits: Full/low speed reserve 90%,
314 					 * while high speed reserves 80%.
315 					 */
316 	int bandwidth_int_reqs;		/* number of Interrupt requests */
317 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
318 
319 #ifdef CONFIG_USB_DEVICEFS
320 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
321 #endif
322 	struct device *dev;		/* device for this bus */
323 
324 #if defined(CONFIG_USB_MON)
325 	struct mon_bus *mon_bus;	/* non-null when associated */
326 	int monitored;			/* non-zero when monitored */
327 #endif
328 };
329 
330 /* ----------------------------------------------------------------------- */
331 
332 /* This is arbitrary.
333  * From USB 2.0 spec Table 11-13, offset 7, a hub can
334  * have up to 255 ports. The most yet reported is 10.
335  *
336  * Current Wireless USB host hardware (Intel i1480 for example) allows
337  * up to 22 devices to connect. Upcoming hardware might raise that
338  * limit. Because the arrays need to add a bit for hub status data, we
339  * do 31, so plus one evens out to four bytes.
340  */
341 #define USB_MAXCHILDREN		(31)
342 
343 struct usb_tt;
344 
345 /*
346  * struct usb_device - kernel's representation of a USB device
347  *
348  * FIXME: Write the kerneldoc!
349  *
350  * Usbcore drivers should not set usbdev->state directly.  Instead use
351  * usb_set_device_state().
352  *
353  * @authorized: (user space) policy determines if we authorize this
354  *              device to be used or not. By default, wired USB
355  *              devices are authorized. WUSB devices are not, until we
356  *              authorize them from user space. FIXME -- complete doc
357  */
358 struct usb_device {
359 	int		devnum;		/* Address on USB bus */
360 	char		devpath [16];	/* Use in messages: /port/port/... */
361 	enum usb_device_state	state;	/* configured, not attached, etc */
362 	enum usb_device_speed	speed;	/* high/full/low (or error) */
363 
364 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
365 	int		ttport;		/* device port on that tt hub */
366 
367 	unsigned int toggle[2];		/* one bit for each endpoint
368 					 * ([0] = IN, [1] = OUT) */
369 
370 	struct usb_device *parent;	/* our hub, unless we're the root */
371 	struct usb_bus *bus;		/* Bus we're part of */
372 	struct usb_host_endpoint ep0;
373 
374 	struct device dev;		/* Generic device interface */
375 
376 	struct usb_device_descriptor descriptor;/* Descriptor */
377 	struct usb_host_config *config;	/* All of the configs */
378 
379 	struct usb_host_config *actconfig;/* the active configuration */
380 	struct usb_host_endpoint *ep_in[16];
381 	struct usb_host_endpoint *ep_out[16];
382 
383 	char **rawdescriptors;		/* Raw descriptors for each config */
384 
385 	unsigned short bus_mA;		/* Current available from the bus */
386 	u8 portnum;			/* Parent port number (origin 1) */
387 	u8 level;			/* Number of USB hub ancestors */
388 
389 	unsigned can_submit:1;		/* URBs may be submitted */
390 	unsigned discon_suspended:1;	/* Disconnected while suspended */
391 	unsigned have_langid:1;		/* whether string_langid is valid */
392 	unsigned authorized:1;		/* Policy has said we can use it */
393 	unsigned wusb:1;		/* Device is Wireless USB */
394 	int string_langid;		/* language ID for strings */
395 
396 	/* static strings from the device */
397 	char *product;			/* iProduct string, if present */
398 	char *manufacturer;		/* iManufacturer string, if present */
399 	char *serial;			/* iSerialNumber string, if present */
400 
401 	struct list_head filelist;
402 #ifdef CONFIG_USB_DEVICE_CLASS
403 	struct device *usb_classdev;
404 #endif
405 #ifdef CONFIG_USB_DEVICEFS
406 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
407 #endif
408 	/*
409 	 * Child devices - these can be either new devices
410 	 * (if this is a hub device), or different instances
411 	 * of this same device.
412 	 *
413 	 * Each instance needs its own set of data structures.
414 	 */
415 
416 	int maxchild;			/* Number of ports if hub */
417 	struct usb_device *children[USB_MAXCHILDREN];
418 
419 	int pm_usage_cnt;		/* usage counter for autosuspend */
420 	u32 quirks;			/* quirks of the whole device */
421 	atomic_t urbnum;		/* number of URBs submitted for
422 					   the whole device */
423 
424 	unsigned long active_duration;	/* total time device is not suspended */
425 
426 #ifdef CONFIG_PM
427 	struct delayed_work autosuspend; /* for delayed autosuspends */
428 	struct mutex pm_mutex;		/* protects PM operations */
429 
430 	unsigned long last_busy;	/* time of last use */
431 	int autosuspend_delay;		/* in jiffies */
432 	unsigned long connect_time;	/* time device was first connected */
433 
434 	unsigned auto_pm:1;		/* autosuspend/resume in progress */
435 	unsigned do_remote_wakeup:1;	/* remote wakeup should be enabled */
436 	unsigned reset_resume:1;	/* needs reset instead of resume */
437 	unsigned persist_enabled:1;	/* USB_PERSIST enabled for this dev */
438 	unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
439 	unsigned autoresume_disabled:1;  /*  disabled by the user */
440 	unsigned skip_sys_resume:1;	/* skip the next system resume */
441 #endif
442 };
443 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
444 
445 extern struct usb_device *usb_get_dev(struct usb_device *dev);
446 extern void usb_put_dev(struct usb_device *dev);
447 
448 /* USB device locking */
449 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
450 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
451 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
452 extern int usb_lock_device_for_reset(struct usb_device *udev,
453 				     const struct usb_interface *iface);
454 
455 /* USB port reset for device reinitialization */
456 extern int usb_reset_device(struct usb_device *dev);
457 extern int usb_reset_composite_device(struct usb_device *dev,
458 		struct usb_interface *iface);
459 
460 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
461 
462 /* USB autosuspend and autoresume */
463 #ifdef CONFIG_USB_SUSPEND
464 extern int usb_autopm_set_interface(struct usb_interface *intf);
465 extern int usb_autopm_get_interface(struct usb_interface *intf);
466 extern void usb_autopm_put_interface(struct usb_interface *intf);
467 
468 static inline void usb_autopm_enable(struct usb_interface *intf)
469 {
470 	intf->pm_usage_cnt = 0;
471 	usb_autopm_set_interface(intf);
472 }
473 
474 static inline void usb_autopm_disable(struct usb_interface *intf)
475 {
476 	intf->pm_usage_cnt = 1;
477 	usb_autopm_set_interface(intf);
478 }
479 
480 static inline void usb_mark_last_busy(struct usb_device *udev)
481 {
482 	udev->last_busy = jiffies;
483 }
484 
485 #else
486 
487 static inline int usb_autopm_set_interface(struct usb_interface *intf)
488 { return 0; }
489 
490 static inline int usb_autopm_get_interface(struct usb_interface *intf)
491 { return 0; }
492 
493 static inline void usb_autopm_put_interface(struct usb_interface *intf)
494 { }
495 static inline void usb_autopm_enable(struct usb_interface *intf)
496 { }
497 static inline void usb_autopm_disable(struct usb_interface *intf)
498 { }
499 static inline void usb_mark_last_busy(struct usb_device *udev)
500 { }
501 #endif
502 
503 /*-------------------------------------------------------------------------*/
504 
505 /* for drivers using iso endpoints */
506 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
507 
508 /* used these for multi-interface device registration */
509 extern int usb_driver_claim_interface(struct usb_driver *driver,
510 			struct usb_interface *iface, void *priv);
511 
512 /**
513  * usb_interface_claimed - returns true iff an interface is claimed
514  * @iface: the interface being checked
515  *
516  * Returns true (nonzero) iff the interface is claimed, else false (zero).
517  * Callers must own the driver model's usb bus readlock.  So driver
518  * probe() entries don't need extra locking, but other call contexts
519  * may need to explicitly claim that lock.
520  *
521  */
522 static inline int usb_interface_claimed(struct usb_interface *iface)
523 {
524 	return (iface->dev.driver != NULL);
525 }
526 
527 extern void usb_driver_release_interface(struct usb_driver *driver,
528 			struct usb_interface *iface);
529 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
530 					 const struct usb_device_id *id);
531 extern int usb_match_one_id(struct usb_interface *interface,
532 			    const struct usb_device_id *id);
533 
534 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
535 		int minor);
536 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
537 		unsigned ifnum);
538 extern struct usb_host_interface *usb_altnum_to_altsetting(
539 		const struct usb_interface *intf, unsigned int altnum);
540 
541 
542 /**
543  * usb_make_path - returns stable device path in the usb tree
544  * @dev: the device whose path is being constructed
545  * @buf: where to put the string
546  * @size: how big is "buf"?
547  *
548  * Returns length of the string (> 0) or negative if size was too small.
549  *
550  * This identifier is intended to be "stable", reflecting physical paths in
551  * hardware such as physical bus addresses for host controllers or ports on
552  * USB hubs.  That makes it stay the same until systems are physically
553  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
554  * controllers.  Adding and removing devices, including virtual root hubs
555  * in host controller driver modules, does not change these path identifers;
556  * neither does rebooting or re-enumerating.  These are more useful identifiers
557  * than changeable ("unstable") ones like bus numbers or device addresses.
558  *
559  * With a partial exception for devices connected to USB 2.0 root hubs, these
560  * identifiers are also predictable.  So long as the device tree isn't changed,
561  * plugging any USB device into a given hub port always gives it the same path.
562  * Because of the use of "companion" controllers, devices connected to ports on
563  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
564  * high speed, and a different one if they are full or low speed.
565  */
566 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
567 {
568 	int actual;
569 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
570 			  dev->devpath);
571 	return (actual >= (int)size) ? -1 : actual;
572 }
573 
574 /*-------------------------------------------------------------------------*/
575 
576 /**
577  * usb_endpoint_num - get the endpoint's number
578  * @epd: endpoint to be checked
579  *
580  * Returns @epd's number: 0 to 15.
581  */
582 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
583 {
584 	return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
585 }
586 
587 /**
588  * usb_endpoint_type - get the endpoint's transfer type
589  * @epd: endpoint to be checked
590  *
591  * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
592  * to @epd's transfer type.
593  */
594 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
595 {
596 	return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
597 }
598 
599 /**
600  * usb_endpoint_dir_in - check if the endpoint has IN direction
601  * @epd: endpoint to be checked
602  *
603  * Returns true if the endpoint is of type IN, otherwise it returns false.
604  */
605 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
606 {
607 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
608 }
609 
610 /**
611  * usb_endpoint_dir_out - check if the endpoint has OUT direction
612  * @epd: endpoint to be checked
613  *
614  * Returns true if the endpoint is of type OUT, otherwise it returns false.
615  */
616 static inline int usb_endpoint_dir_out(
617 				const struct usb_endpoint_descriptor *epd)
618 {
619 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
620 }
621 
622 /**
623  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
624  * @epd: endpoint to be checked
625  *
626  * Returns true if the endpoint is of type bulk, otherwise it returns false.
627  */
628 static inline int usb_endpoint_xfer_bulk(
629 				const struct usb_endpoint_descriptor *epd)
630 {
631 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
632 		USB_ENDPOINT_XFER_BULK);
633 }
634 
635 /**
636  * usb_endpoint_xfer_control - check if the endpoint has control transfer type
637  * @epd: endpoint to be checked
638  *
639  * Returns true if the endpoint is of type control, otherwise it returns false.
640  */
641 static inline int usb_endpoint_xfer_control(
642 				const struct usb_endpoint_descriptor *epd)
643 {
644 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
645 		USB_ENDPOINT_XFER_CONTROL);
646 }
647 
648 /**
649  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
650  * @epd: endpoint to be checked
651  *
652  * Returns true if the endpoint is of type interrupt, otherwise it returns
653  * false.
654  */
655 static inline int usb_endpoint_xfer_int(
656 				const struct usb_endpoint_descriptor *epd)
657 {
658 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
659 		USB_ENDPOINT_XFER_INT);
660 }
661 
662 /**
663  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
664  * @epd: endpoint to be checked
665  *
666  * Returns true if the endpoint is of type isochronous, otherwise it returns
667  * false.
668  */
669 static inline int usb_endpoint_xfer_isoc(
670 				const struct usb_endpoint_descriptor *epd)
671 {
672 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
673 		USB_ENDPOINT_XFER_ISOC);
674 }
675 
676 /**
677  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
678  * @epd: endpoint to be checked
679  *
680  * Returns true if the endpoint has bulk transfer type and IN direction,
681  * otherwise it returns false.
682  */
683 static inline int usb_endpoint_is_bulk_in(
684 				const struct usb_endpoint_descriptor *epd)
685 {
686 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
687 }
688 
689 /**
690  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
691  * @epd: endpoint to be checked
692  *
693  * Returns true if the endpoint has bulk transfer type and OUT direction,
694  * otherwise it returns false.
695  */
696 static inline int usb_endpoint_is_bulk_out(
697 				const struct usb_endpoint_descriptor *epd)
698 {
699 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
700 }
701 
702 /**
703  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
704  * @epd: endpoint to be checked
705  *
706  * Returns true if the endpoint has interrupt transfer type and IN direction,
707  * otherwise it returns false.
708  */
709 static inline int usb_endpoint_is_int_in(
710 				const struct usb_endpoint_descriptor *epd)
711 {
712 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
713 }
714 
715 /**
716  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
717  * @epd: endpoint to be checked
718  *
719  * Returns true if the endpoint has interrupt transfer type and OUT direction,
720  * otherwise it returns false.
721  */
722 static inline int usb_endpoint_is_int_out(
723 				const struct usb_endpoint_descriptor *epd)
724 {
725 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
726 }
727 
728 /**
729  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
730  * @epd: endpoint to be checked
731  *
732  * Returns true if the endpoint has isochronous transfer type and IN direction,
733  * otherwise it returns false.
734  */
735 static inline int usb_endpoint_is_isoc_in(
736 				const struct usb_endpoint_descriptor *epd)
737 {
738 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
739 }
740 
741 /**
742  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
743  * @epd: endpoint to be checked
744  *
745  * Returns true if the endpoint has isochronous transfer type and OUT direction,
746  * otherwise it returns false.
747  */
748 static inline int usb_endpoint_is_isoc_out(
749 				const struct usb_endpoint_descriptor *epd)
750 {
751 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
752 }
753 
754 /*-------------------------------------------------------------------------*/
755 
756 #define USB_DEVICE_ID_MATCH_DEVICE \
757 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
758 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
759 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
760 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
761 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
762 #define USB_DEVICE_ID_MATCH_DEV_INFO \
763 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
764 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
765 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
766 #define USB_DEVICE_ID_MATCH_INT_INFO \
767 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
768 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
769 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
770 
771 /**
772  * USB_DEVICE - macro used to describe a specific usb device
773  * @vend: the 16 bit USB Vendor ID
774  * @prod: the 16 bit USB Product ID
775  *
776  * This macro is used to create a struct usb_device_id that matches a
777  * specific device.
778  */
779 #define USB_DEVICE(vend,prod) \
780 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
781 	.idVendor = (vend), \
782 	.idProduct = (prod)
783 /**
784  * USB_DEVICE_VER - macro used to describe a specific usb device with a
785  *		version range
786  * @vend: the 16 bit USB Vendor ID
787  * @prod: the 16 bit USB Product ID
788  * @lo: the bcdDevice_lo value
789  * @hi: the bcdDevice_hi value
790  *
791  * This macro is used to create a struct usb_device_id that matches a
792  * specific device, with a version range.
793  */
794 #define USB_DEVICE_VER(vend, prod, lo, hi) \
795 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
796 	.idVendor = (vend), \
797 	.idProduct = (prod), \
798 	.bcdDevice_lo = (lo), \
799 	.bcdDevice_hi = (hi)
800 
801 /**
802  * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb
803  *		device with a specific interface protocol
804  * @vend: the 16 bit USB Vendor ID
805  * @prod: the 16 bit USB Product ID
806  * @pr: bInterfaceProtocol value
807  *
808  * This macro is used to create a struct usb_device_id that matches a
809  * specific interface protocol of devices.
810  */
811 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
812 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
813 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
814 	.idVendor = (vend), \
815 	.idProduct = (prod), \
816 	.bInterfaceProtocol = (pr)
817 
818 /**
819  * USB_DEVICE_INFO - macro used to describe a class of usb devices
820  * @cl: bDeviceClass value
821  * @sc: bDeviceSubClass value
822  * @pr: bDeviceProtocol value
823  *
824  * This macro is used to create a struct usb_device_id that matches a
825  * specific class of devices.
826  */
827 #define USB_DEVICE_INFO(cl, sc, pr) \
828 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
829 	.bDeviceClass = (cl), \
830 	.bDeviceSubClass = (sc), \
831 	.bDeviceProtocol = (pr)
832 
833 /**
834  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
835  * @cl: bInterfaceClass value
836  * @sc: bInterfaceSubClass value
837  * @pr: bInterfaceProtocol value
838  *
839  * This macro is used to create a struct usb_device_id that matches a
840  * specific class of interfaces.
841  */
842 #define USB_INTERFACE_INFO(cl, sc, pr) \
843 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
844 	.bInterfaceClass = (cl), \
845 	.bInterfaceSubClass = (sc), \
846 	.bInterfaceProtocol = (pr)
847 
848 /**
849  * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device
850  * 		with a class of usb interfaces
851  * @vend: the 16 bit USB Vendor ID
852  * @prod: the 16 bit USB Product ID
853  * @cl: bInterfaceClass value
854  * @sc: bInterfaceSubClass value
855  * @pr: bInterfaceProtocol value
856  *
857  * This macro is used to create a struct usb_device_id that matches a
858  * specific device with a specific class of interfaces.
859  *
860  * This is especially useful when explicitly matching devices that have
861  * vendor specific bDeviceClass values, but standards-compliant interfaces.
862  */
863 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
864 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
865 		| USB_DEVICE_ID_MATCH_DEVICE, \
866 	.idVendor = (vend), \
867 	.idProduct = (prod), \
868 	.bInterfaceClass = (cl), \
869 	.bInterfaceSubClass = (sc), \
870 	.bInterfaceProtocol = (pr)
871 
872 /* ----------------------------------------------------------------------- */
873 
874 /* Stuff for dynamic usb ids */
875 struct usb_dynids {
876 	spinlock_t lock;
877 	struct list_head list;
878 };
879 
880 struct usb_dynid {
881 	struct list_head node;
882 	struct usb_device_id id;
883 };
884 
885 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
886 				struct device_driver *driver,
887 				const char *buf, size_t count);
888 
889 /**
890  * struct usbdrv_wrap - wrapper for driver-model structure
891  * @driver: The driver-model core driver structure.
892  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
893  */
894 struct usbdrv_wrap {
895 	struct device_driver driver;
896 	int for_devices;
897 };
898 
899 /**
900  * struct usb_driver - identifies USB interface driver to usbcore
901  * @name: The driver name should be unique among USB drivers,
902  *	and should normally be the same as the module name.
903  * @probe: Called to see if the driver is willing to manage a particular
904  *	interface on a device.  If it is, probe returns zero and uses
905  *	dev_set_drvdata() to associate driver-specific data with the
906  *	interface.  It may also use usb_set_interface() to specify the
907  *	appropriate altsetting.  If unwilling to manage the interface,
908  *	return a negative errno value.
909  * @disconnect: Called when the interface is no longer accessible, usually
910  *	because its device has been (or is being) disconnected or the
911  *	driver module is being unloaded.
912  * @ioctl: Used for drivers that want to talk to userspace through
913  *	the "usbfs" filesystem.  This lets devices provide ways to
914  *	expose information to user space regardless of where they
915  *	do (or don't) show up otherwise in the filesystem.
916  * @suspend: Called when the device is going to be suspended by the system.
917  * @resume: Called when the device is being resumed by the system.
918  * @reset_resume: Called when the suspended device has been reset instead
919  *	of being resumed.
920  * @pre_reset: Called by usb_reset_composite_device() when the device
921  *	is about to be reset.
922  * @post_reset: Called by usb_reset_composite_device() after the device
923  *	has been reset, or in lieu of @resume following a reset-resume
924  *	(i.e., the device is reset instead of being resumed, as might
925  *	happen if power was lost).  The second argument tells which is
926  *	the reason.
927  * @id_table: USB drivers use ID table to support hotplugging.
928  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
929  *	or your driver's probe function will never get called.
930  * @dynids: used internally to hold the list of dynamically added device
931  *	ids for this driver.
932  * @drvwrap: Driver-model core structure wrapper.
933  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
934  *	added to this driver by preventing the sysfs file from being created.
935  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
936  *	for interfaces bound to this driver.
937  *
938  * USB interface drivers must provide a name, probe() and disconnect()
939  * methods, and an id_table.  Other driver fields are optional.
940  *
941  * The id_table is used in hotplugging.  It holds a set of descriptors,
942  * and specialized data may be associated with each entry.  That table
943  * is used by both user and kernel mode hotplugging support.
944  *
945  * The probe() and disconnect() methods are called in a context where
946  * they can sleep, but they should avoid abusing the privilege.  Most
947  * work to connect to a device should be done when the device is opened,
948  * and undone at the last close.  The disconnect code needs to address
949  * concurrency issues with respect to open() and close() methods, as
950  * well as forcing all pending I/O requests to complete (by unlinking
951  * them as necessary, and blocking until the unlinks complete).
952  */
953 struct usb_driver {
954 	const char *name;
955 
956 	int (*probe) (struct usb_interface *intf,
957 		      const struct usb_device_id *id);
958 
959 	void (*disconnect) (struct usb_interface *intf);
960 
961 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
962 			void *buf);
963 
964 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
965 	int (*resume) (struct usb_interface *intf);
966 	int (*reset_resume)(struct usb_interface *intf);
967 
968 	int (*pre_reset)(struct usb_interface *intf);
969 	int (*post_reset)(struct usb_interface *intf);
970 
971 	const struct usb_device_id *id_table;
972 
973 	struct usb_dynids dynids;
974 	struct usbdrv_wrap drvwrap;
975 	unsigned int no_dynamic_id:1;
976 	unsigned int supports_autosuspend:1;
977 };
978 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
979 
980 /**
981  * struct usb_device_driver - identifies USB device driver to usbcore
982  * @name: The driver name should be unique among USB drivers,
983  *	and should normally be the same as the module name.
984  * @probe: Called to see if the driver is willing to manage a particular
985  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
986  *	to associate driver-specific data with the device.  If unwilling
987  *	to manage the device, return a negative errno value.
988  * @disconnect: Called when the device is no longer accessible, usually
989  *	because it has been (or is being) disconnected or the driver's
990  *	module is being unloaded.
991  * @suspend: Called when the device is going to be suspended by the system.
992  * @resume: Called when the device is being resumed by the system.
993  * @drvwrap: Driver-model core structure wrapper.
994  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
995  *	for devices bound to this driver.
996  *
997  * USB drivers must provide all the fields listed above except drvwrap.
998  */
999 struct usb_device_driver {
1000 	const char *name;
1001 
1002 	int (*probe) (struct usb_device *udev);
1003 	void (*disconnect) (struct usb_device *udev);
1004 
1005 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1006 	int (*resume) (struct usb_device *udev);
1007 	struct usbdrv_wrap drvwrap;
1008 	unsigned int supports_autosuspend:1;
1009 };
1010 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1011 		drvwrap.driver)
1012 
1013 extern struct bus_type usb_bus_type;
1014 
1015 /**
1016  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1017  * @name: the usb class device name for this driver.  Will show up in sysfs.
1018  * @fops: pointer to the struct file_operations of this driver.
1019  * @minor_base: the start of the minor range for this driver.
1020  *
1021  * This structure is used for the usb_register_dev() and
1022  * usb_unregister_dev() functions, to consolidate a number of the
1023  * parameters used for them.
1024  */
1025 struct usb_class_driver {
1026 	char *name;
1027 	const struct file_operations *fops;
1028 	int minor_base;
1029 };
1030 
1031 /*
1032  * use these in module_init()/module_exit()
1033  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1034  */
1035 extern int usb_register_driver(struct usb_driver *, struct module *,
1036 			       const char *);
1037 static inline int usb_register(struct usb_driver *driver)
1038 {
1039 	return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1040 }
1041 extern void usb_deregister(struct usb_driver *);
1042 
1043 extern int usb_register_device_driver(struct usb_device_driver *,
1044 			struct module *);
1045 extern void usb_deregister_device_driver(struct usb_device_driver *);
1046 
1047 extern int usb_register_dev(struct usb_interface *intf,
1048 			    struct usb_class_driver *class_driver);
1049 extern void usb_deregister_dev(struct usb_interface *intf,
1050 			       struct usb_class_driver *class_driver);
1051 
1052 extern int usb_disabled(void);
1053 
1054 /* ----------------------------------------------------------------------- */
1055 
1056 /*
1057  * URB support, for asynchronous request completions
1058  */
1059 
1060 /*
1061  * urb->transfer_flags:
1062  *
1063  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1064  */
1065 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1066 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
1067 					 * ignored */
1068 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1069 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
1070 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1071 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1072 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1073 					 * needed */
1074 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1075 
1076 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1077 #define URB_DIR_OUT		0
1078 #define URB_DIR_MASK		URB_DIR_IN
1079 
1080 struct usb_iso_packet_descriptor {
1081 	unsigned int offset;
1082 	unsigned int length;		/* expected length */
1083 	unsigned int actual_length;
1084 	int status;
1085 };
1086 
1087 struct urb;
1088 
1089 struct usb_anchor {
1090 	struct list_head urb_list;
1091 	wait_queue_head_t wait;
1092 	spinlock_t lock;
1093 };
1094 
1095 static inline void init_usb_anchor(struct usb_anchor *anchor)
1096 {
1097 	INIT_LIST_HEAD(&anchor->urb_list);
1098 	init_waitqueue_head(&anchor->wait);
1099 	spin_lock_init(&anchor->lock);
1100 }
1101 
1102 typedef void (*usb_complete_t)(struct urb *);
1103 
1104 /**
1105  * struct urb - USB Request Block
1106  * @urb_list: For use by current owner of the URB.
1107  * @anchor_list: membership in the list of an anchor
1108  * @anchor: to anchor URBs to a common mooring
1109  * @ep: Points to the endpoint's data structure.  Will eventually
1110  *	replace @pipe.
1111  * @pipe: Holds endpoint number, direction, type, and more.
1112  *	Create these values with the eight macros available;
1113  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1114  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1115  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1116  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1117  *	is a different endpoint (and pipe) from "out" endpoint two.
1118  *	The current configuration controls the existence, type, and
1119  *	maximum packet size of any given endpoint.
1120  * @dev: Identifies the USB device to perform the request.
1121  * @status: This is read in non-iso completion functions to get the
1122  *	status of the particular request.  ISO requests only use it
1123  *	to tell whether the URB was unlinked; detailed status for
1124  *	each frame is in the fields of the iso_frame-desc.
1125  * @transfer_flags: A variety of flags may be used to affect how URB
1126  *	submission, unlinking, or operation are handled.  Different
1127  *	kinds of URB can use different flags.
1128  * @transfer_buffer:  This identifies the buffer to (or from) which
1129  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1130  *	is set).  This buffer must be suitable for DMA; allocate it with
1131  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1132  *	of this buffer will be modified.  This buffer is used for the data
1133  *	stage of control transfers.
1134  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1135  *	the device driver is saying that it provided this DMA address,
1136  *	which the host controller driver should use in preference to the
1137  *	transfer_buffer.
1138  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1139  *	be broken up into chunks according to the current maximum packet
1140  *	size for the endpoint, which is a function of the configuration
1141  *	and is encoded in the pipe.  When the length is zero, neither
1142  *	transfer_buffer nor transfer_dma is used.
1143  * @actual_length: This is read in non-iso completion functions, and
1144  *	it tells how many bytes (out of transfer_buffer_length) were
1145  *	transferred.  It will normally be the same as requested, unless
1146  *	either an error was reported or a short read was performed.
1147  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1148  *	short reads be reported as errors.
1149  * @setup_packet: Only used for control transfers, this points to eight bytes
1150  *	of setup data.  Control transfers always start by sending this data
1151  *	to the device.  Then transfer_buffer is read or written, if needed.
1152  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1153  *	device driver has provided this DMA address for the setup packet.
1154  *	The host controller driver should use this in preference to
1155  *	setup_packet.
1156  * @start_frame: Returns the initial frame for isochronous transfers.
1157  * @number_of_packets: Lists the number of ISO transfer buffers.
1158  * @interval: Specifies the polling interval for interrupt or isochronous
1159  *	transfers.  The units are frames (milliseconds) for for full and low
1160  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
1161  * @error_count: Returns the number of ISO transfers that reported errors.
1162  * @context: For use in completion functions.  This normally points to
1163  *	request-specific driver context.
1164  * @complete: Completion handler. This URB is passed as the parameter to the
1165  *	completion function.  The completion function may then do what
1166  *	it likes with the URB, including resubmitting or freeing it.
1167  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1168  *	collect the transfer status for each buffer.
1169  *
1170  * This structure identifies USB transfer requests.  URBs must be allocated by
1171  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1172  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1173  * are submitted using usb_submit_urb(), and pending requests may be canceled
1174  * using usb_unlink_urb() or usb_kill_urb().
1175  *
1176  * Data Transfer Buffers:
1177  *
1178  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1179  * taken from the general page pool.  That is provided by transfer_buffer
1180  * (control requests also use setup_packet), and host controller drivers
1181  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1182  * mapping operations can be expensive on some platforms (perhaps using a dma
1183  * bounce buffer or talking to an IOMMU),
1184  * although they're cheap on commodity x86 and ppc hardware.
1185  *
1186  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1187  * which tell the host controller driver that no such mapping is needed since
1188  * the device driver is DMA-aware.  For example, a device driver might
1189  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1190  * When these transfer flags are provided, host controller drivers will
1191  * attempt to use the dma addresses found in the transfer_dma and/or
1192  * setup_dma fields rather than determining a dma address themselves.  (Note
1193  * that transfer_buffer and setup_packet must still be set because not all
1194  * host controllers use DMA, nor do virtual root hubs).
1195  *
1196  * Initialization:
1197  *
1198  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1199  * zero), and complete fields.  All URBs must also initialize
1200  * transfer_buffer and transfer_buffer_length.  They may provide the
1201  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1202  * to be treated as errors; that flag is invalid for write requests.
1203  *
1204  * Bulk URBs may
1205  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1206  * should always terminate with a short packet, even if it means adding an
1207  * extra zero length packet.
1208  *
1209  * Control URBs must provide a setup_packet.  The setup_packet and
1210  * transfer_buffer may each be mapped for DMA or not, independently of
1211  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1212  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1213  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1214  *
1215  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1216  * or, for highspeed devices, 125 microsecond units)
1217  * to poll for transfers.  After the URB has been submitted, the interval
1218  * field reflects how the transfer was actually scheduled.
1219  * The polling interval may be more frequent than requested.
1220  * For example, some controllers have a maximum interval of 32 milliseconds,
1221  * while others support intervals of up to 1024 milliseconds.
1222  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1223  * endpoints, as well as high speed interrupt endpoints, the encoding of
1224  * the transfer interval in the endpoint descriptor is logarithmic.
1225  * Device drivers must convert that value to linear units themselves.)
1226  *
1227  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1228  * the host controller to schedule the transfer as soon as bandwidth
1229  * utilization allows, and then set start_frame to reflect the actual frame
1230  * selected during submission.  Otherwise drivers must specify the start_frame
1231  * and handle the case where the transfer can't begin then.  However, drivers
1232  * won't know how bandwidth is currently allocated, and while they can
1233  * find the current frame using usb_get_current_frame_number () they can't
1234  * know the range for that frame number.  (Ranges for frame counter values
1235  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1236  *
1237  * Isochronous URBs have a different data transfer model, in part because
1238  * the quality of service is only "best effort".  Callers provide specially
1239  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1240  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1241  * URBs are normally queued, submitted by drivers to arrange that
1242  * transfers are at least double buffered, and then explicitly resubmitted
1243  * in completion handlers, so
1244  * that data (such as audio or video) streams at as constant a rate as the
1245  * host controller scheduler can support.
1246  *
1247  * Completion Callbacks:
1248  *
1249  * The completion callback is made in_interrupt(), and one of the first
1250  * things that a completion handler should do is check the status field.
1251  * The status field is provided for all URBs.  It is used to report
1252  * unlinked URBs, and status for all non-ISO transfers.  It should not
1253  * be examined before the URB is returned to the completion handler.
1254  *
1255  * The context field is normally used to link URBs back to the relevant
1256  * driver or request state.
1257  *
1258  * When the completion callback is invoked for non-isochronous URBs, the
1259  * actual_length field tells how many bytes were transferred.  This field
1260  * is updated even when the URB terminated with an error or was unlinked.
1261  *
1262  * ISO transfer status is reported in the status and actual_length fields
1263  * of the iso_frame_desc array, and the number of errors is reported in
1264  * error_count.  Completion callbacks for ISO transfers will normally
1265  * (re)submit URBs to ensure a constant transfer rate.
1266  *
1267  * Note that even fields marked "public" should not be touched by the driver
1268  * when the urb is owned by the hcd, that is, since the call to
1269  * usb_submit_urb() till the entry into the completion routine.
1270  */
1271 struct urb {
1272 	/* private: usb core and host controller only fields in the urb */
1273 	struct kref kref;		/* reference count of the URB */
1274 	void *hcpriv;			/* private data for host controller */
1275 	atomic_t use_count;		/* concurrent submissions counter */
1276 	u8 reject;			/* submissions will fail */
1277 	int unlinked;			/* unlink error code */
1278 
1279 	/* public: documented fields in the urb that can be used by drivers */
1280 	struct list_head urb_list;	/* list head for use by the urb's
1281 					 * current owner */
1282 	struct list_head anchor_list;	/* the URB may be anchored */
1283 	struct usb_anchor *anchor;
1284 	struct usb_device *dev; 	/* (in) pointer to associated device */
1285 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1286 	unsigned int pipe;		/* (in) pipe information */
1287 	int status;			/* (return) non-ISO status */
1288 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1289 	void *transfer_buffer;		/* (in) associated data buffer */
1290 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1291 	int transfer_buffer_length;	/* (in) data buffer length */
1292 	int actual_length;		/* (return) actual transfer length */
1293 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1294 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1295 	int start_frame;		/* (modify) start frame (ISO) */
1296 	int number_of_packets;		/* (in) number of ISO packets */
1297 	int interval;			/* (modify) transfer interval
1298 					 * (INT/ISO) */
1299 	int error_count;		/* (return) number of ISO errors */
1300 	void *context;			/* (in) context for completion */
1301 	usb_complete_t complete;	/* (in) completion routine */
1302 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1303 					/* (in) ISO ONLY */
1304 };
1305 
1306 /* ----------------------------------------------------------------------- */
1307 
1308 /**
1309  * usb_fill_control_urb - initializes a control urb
1310  * @urb: pointer to the urb to initialize.
1311  * @dev: pointer to the struct usb_device for this urb.
1312  * @pipe: the endpoint pipe
1313  * @setup_packet: pointer to the setup_packet buffer
1314  * @transfer_buffer: pointer to the transfer buffer
1315  * @buffer_length: length of the transfer buffer
1316  * @complete_fn: pointer to the usb_complete_t function
1317  * @context: what to set the urb context to.
1318  *
1319  * Initializes a control urb with the proper information needed to submit
1320  * it to a device.
1321  */
1322 static inline void usb_fill_control_urb(struct urb *urb,
1323 					struct usb_device *dev,
1324 					unsigned int pipe,
1325 					unsigned char *setup_packet,
1326 					void *transfer_buffer,
1327 					int buffer_length,
1328 					usb_complete_t complete_fn,
1329 					void *context)
1330 {
1331 	urb->dev = dev;
1332 	urb->pipe = pipe;
1333 	urb->setup_packet = setup_packet;
1334 	urb->transfer_buffer = transfer_buffer;
1335 	urb->transfer_buffer_length = buffer_length;
1336 	urb->complete = complete_fn;
1337 	urb->context = context;
1338 }
1339 
1340 /**
1341  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1342  * @urb: pointer to the urb to initialize.
1343  * @dev: pointer to the struct usb_device for this urb.
1344  * @pipe: the endpoint pipe
1345  * @transfer_buffer: pointer to the transfer buffer
1346  * @buffer_length: length of the transfer buffer
1347  * @complete_fn: pointer to the usb_complete_t function
1348  * @context: what to set the urb context to.
1349  *
1350  * Initializes a bulk urb with the proper information needed to submit it
1351  * to a device.
1352  */
1353 static inline void usb_fill_bulk_urb(struct urb *urb,
1354 				     struct usb_device *dev,
1355 				     unsigned int pipe,
1356 				     void *transfer_buffer,
1357 				     int buffer_length,
1358 				     usb_complete_t complete_fn,
1359 				     void *context)
1360 {
1361 	urb->dev = dev;
1362 	urb->pipe = pipe;
1363 	urb->transfer_buffer = transfer_buffer;
1364 	urb->transfer_buffer_length = buffer_length;
1365 	urb->complete = complete_fn;
1366 	urb->context = context;
1367 }
1368 
1369 /**
1370  * usb_fill_int_urb - macro to help initialize a interrupt urb
1371  * @urb: pointer to the urb to initialize.
1372  * @dev: pointer to the struct usb_device for this urb.
1373  * @pipe: the endpoint pipe
1374  * @transfer_buffer: pointer to the transfer buffer
1375  * @buffer_length: length of the transfer buffer
1376  * @complete_fn: pointer to the usb_complete_t function
1377  * @context: what to set the urb context to.
1378  * @interval: what to set the urb interval to, encoded like
1379  *	the endpoint descriptor's bInterval value.
1380  *
1381  * Initializes a interrupt urb with the proper information needed to submit
1382  * it to a device.
1383  * Note that high speed interrupt endpoints use a logarithmic encoding of
1384  * the endpoint interval, and express polling intervals in microframes
1385  * (eight per millisecond) rather than in frames (one per millisecond).
1386  */
1387 static inline void usb_fill_int_urb(struct urb *urb,
1388 				    struct usb_device *dev,
1389 				    unsigned int pipe,
1390 				    void *transfer_buffer,
1391 				    int buffer_length,
1392 				    usb_complete_t complete_fn,
1393 				    void *context,
1394 				    int interval)
1395 {
1396 	urb->dev = dev;
1397 	urb->pipe = pipe;
1398 	urb->transfer_buffer = transfer_buffer;
1399 	urb->transfer_buffer_length = buffer_length;
1400 	urb->complete = complete_fn;
1401 	urb->context = context;
1402 	if (dev->speed == USB_SPEED_HIGH)
1403 		urb->interval = 1 << (interval - 1);
1404 	else
1405 		urb->interval = interval;
1406 	urb->start_frame = -1;
1407 }
1408 
1409 extern void usb_init_urb(struct urb *urb);
1410 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1411 extern void usb_free_urb(struct urb *urb);
1412 #define usb_put_urb usb_free_urb
1413 extern struct urb *usb_get_urb(struct urb *urb);
1414 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1415 extern int usb_unlink_urb(struct urb *urb);
1416 extern void usb_kill_urb(struct urb *urb);
1417 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1418 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1419 extern void usb_unanchor_urb(struct urb *urb);
1420 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1421 					 unsigned int timeout);
1422 
1423 /**
1424  * usb_urb_dir_in - check if an URB describes an IN transfer
1425  * @urb: URB to be checked
1426  *
1427  * Returns 1 if @urb describes an IN transfer (device-to-host),
1428  * otherwise 0.
1429  */
1430 static inline int usb_urb_dir_in(struct urb *urb)
1431 {
1432 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1433 }
1434 
1435 /**
1436  * usb_urb_dir_out - check if an URB describes an OUT transfer
1437  * @urb: URB to be checked
1438  *
1439  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1440  * otherwise 0.
1441  */
1442 static inline int usb_urb_dir_out(struct urb *urb)
1443 {
1444 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1445 }
1446 
1447 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1448 	gfp_t mem_flags, dma_addr_t *dma);
1449 void usb_buffer_free(struct usb_device *dev, size_t size,
1450 	void *addr, dma_addr_t dma);
1451 
1452 #if 0
1453 struct urb *usb_buffer_map(struct urb *urb);
1454 void usb_buffer_dmasync(struct urb *urb);
1455 void usb_buffer_unmap(struct urb *urb);
1456 #endif
1457 
1458 struct scatterlist;
1459 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1460 		      struct scatterlist *sg, int nents);
1461 #if 0
1462 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1463 			   struct scatterlist *sg, int n_hw_ents);
1464 #endif
1465 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1466 			 struct scatterlist *sg, int n_hw_ents);
1467 
1468 /*-------------------------------------------------------------------*
1469  *                         SYNCHRONOUS CALL SUPPORT                  *
1470  *-------------------------------------------------------------------*/
1471 
1472 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1473 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1474 	void *data, __u16 size, int timeout);
1475 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1476 	void *data, int len, int *actual_length, int timeout);
1477 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1478 	void *data, int len, int *actual_length,
1479 	int timeout);
1480 
1481 /* wrappers around usb_control_msg() for the most common standard requests */
1482 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1483 	unsigned char descindex, void *buf, int size);
1484 extern int usb_get_status(struct usb_device *dev,
1485 	int type, int target, void *data);
1486 extern int usb_string(struct usb_device *dev, int index,
1487 	char *buf, size_t size);
1488 
1489 /* wrappers that also update important state inside usbcore */
1490 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1491 extern int usb_reset_configuration(struct usb_device *dev);
1492 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1493 
1494 /* this request isn't really synchronous, but it belongs with the others */
1495 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1496 
1497 /*
1498  * timeouts, in milliseconds, used for sending/receiving control messages
1499  * they typically complete within a few frames (msec) after they're issued
1500  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1501  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1502  */
1503 #define USB_CTRL_GET_TIMEOUT	5000
1504 #define USB_CTRL_SET_TIMEOUT	5000
1505 
1506 
1507 /**
1508  * struct usb_sg_request - support for scatter/gather I/O
1509  * @status: zero indicates success, else negative errno
1510  * @bytes: counts bytes transferred.
1511  *
1512  * These requests are initialized using usb_sg_init(), and then are used
1513  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1514  * members of the request object aren't for driver access.
1515  *
1516  * The status and bytecount values are valid only after usb_sg_wait()
1517  * returns.  If the status is zero, then the bytecount matches the total
1518  * from the request.
1519  *
1520  * After an error completion, drivers may need to clear a halt condition
1521  * on the endpoint.
1522  */
1523 struct usb_sg_request {
1524 	int			status;
1525 	size_t			bytes;
1526 
1527 	/*
1528 	 * members below are private: to usbcore,
1529 	 * and are not provided for driver access!
1530 	 */
1531 	spinlock_t		lock;
1532 
1533 	struct usb_device	*dev;
1534 	int			pipe;
1535 	struct scatterlist	*sg;
1536 	int			nents;
1537 
1538 	int			entries;
1539 	struct urb		**urbs;
1540 
1541 	int			count;
1542 	struct completion	complete;
1543 };
1544 
1545 int usb_sg_init(
1546 	struct usb_sg_request	*io,
1547 	struct usb_device	*dev,
1548 	unsigned		pipe,
1549 	unsigned		period,
1550 	struct scatterlist	*sg,
1551 	int			nents,
1552 	size_t			length,
1553 	gfp_t			mem_flags
1554 );
1555 void usb_sg_cancel(struct usb_sg_request *io);
1556 void usb_sg_wait(struct usb_sg_request *io);
1557 
1558 
1559 /* ----------------------------------------------------------------------- */
1560 
1561 /*
1562  * For various legacy reasons, Linux has a small cookie that's paired with
1563  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1564  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1565  * an unsigned int encoded as:
1566  *
1567  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1568  *					 1 = Device-to-Host [In] ...
1569  *					like endpoint bEndpointAddress)
1570  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1571  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1572  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1573  *					 10 = control, 11 = bulk)
1574  *
1575  * Given the device address and endpoint descriptor, pipes are redundant.
1576  */
1577 
1578 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1579 /* (yet ... they're the values used by usbfs) */
1580 #define PIPE_ISOCHRONOUS		0
1581 #define PIPE_INTERRUPT			1
1582 #define PIPE_CONTROL			2
1583 #define PIPE_BULK			3
1584 
1585 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1586 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1587 
1588 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1589 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1590 
1591 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1592 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1593 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1594 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1595 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1596 
1597 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1598 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1599 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1600 #define usb_settoggle(dev, ep, out, bit) \
1601 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1602 		 ((bit) << (ep)))
1603 
1604 
1605 static inline unsigned int __create_pipe(struct usb_device *dev,
1606 		unsigned int endpoint)
1607 {
1608 	return (dev->devnum << 8) | (endpoint << 15);
1609 }
1610 
1611 /* Create various pipes... */
1612 #define usb_sndctrlpipe(dev,endpoint)	\
1613 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1614 #define usb_rcvctrlpipe(dev,endpoint)	\
1615 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1616 #define usb_sndisocpipe(dev,endpoint)	\
1617 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1618 #define usb_rcvisocpipe(dev,endpoint)	\
1619 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1620 #define usb_sndbulkpipe(dev,endpoint)	\
1621 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1622 #define usb_rcvbulkpipe(dev,endpoint)	\
1623 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1624 #define usb_sndintpipe(dev,endpoint)	\
1625 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1626 #define usb_rcvintpipe(dev,endpoint)	\
1627 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1628 
1629 /*-------------------------------------------------------------------------*/
1630 
1631 static inline __u16
1632 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1633 {
1634 	struct usb_host_endpoint	*ep;
1635 	unsigned			epnum = usb_pipeendpoint(pipe);
1636 
1637 	if (is_out) {
1638 		WARN_ON(usb_pipein(pipe));
1639 		ep = udev->ep_out[epnum];
1640 	} else {
1641 		WARN_ON(usb_pipeout(pipe));
1642 		ep = udev->ep_in[epnum];
1643 	}
1644 	if (!ep)
1645 		return 0;
1646 
1647 	/* NOTE:  only 0x07ff bits are for packet size... */
1648 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1649 }
1650 
1651 /* ----------------------------------------------------------------------- */
1652 
1653 /* Events from the usb core */
1654 #define USB_DEVICE_ADD		0x0001
1655 #define USB_DEVICE_REMOVE	0x0002
1656 #define USB_BUS_ADD		0x0003
1657 #define USB_BUS_REMOVE		0x0004
1658 extern void usb_register_notify(struct notifier_block *nb);
1659 extern void usb_unregister_notify(struct notifier_block *nb);
1660 
1661 #ifdef DEBUG
1662 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1663 	__FILE__ , ## arg)
1664 #else
1665 #define dbg(format, arg...) do {} while (0)
1666 #endif
1667 
1668 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1669 	__FILE__ , ## arg)
1670 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1671 	__FILE__ , ## arg)
1672 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1673 	__FILE__ , ## arg)
1674 
1675 
1676 #endif  /* __KERNEL__ */
1677 
1678 #endif
1679