1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb/ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/errno.h> /* for -ENODEV */ 14 #include <linux/delay.h> /* for mdelay() */ 15 #include <linux/interrupt.h> /* for in_interrupt() */ 16 #include <linux/list.h> /* for struct list_head */ 17 #include <linux/kref.h> /* for struct kref */ 18 #include <linux/device.h> /* for struct device */ 19 #include <linux/fs.h> /* for struct file_operations */ 20 #include <linux/completion.h> /* for struct completion */ 21 #include <linux/sched.h> /* for current && schedule_timeout */ 22 #include <linux/mutex.h> /* for struct mutex */ 23 24 struct usb_device; 25 struct usb_driver; 26 27 /*-------------------------------------------------------------------------*/ 28 29 /* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44 struct ep_device; 45 46 /** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * 56 * USB requests are always queued to a given endpoint, identified by a 57 * descriptor within an active interface in a given USB configuration. 58 */ 59 struct usb_host_endpoint { 60 struct usb_endpoint_descriptor desc; 61 struct list_head urb_list; 62 void *hcpriv; 63 struct ep_device *ep_dev; /* For sysfs info */ 64 65 unsigned char *extra; /* Extra descriptors */ 66 int extralen; 67 }; 68 69 /* host-side wrapper for one interface setting's parsed descriptors */ 70 struct usb_host_interface { 71 struct usb_interface_descriptor desc; 72 73 /* array of desc.bNumEndpoint endpoints associated with this 74 * interface setting. these will be in no particular order. 75 */ 76 struct usb_host_endpoint *endpoint; 77 78 char *string; /* iInterface string, if present */ 79 unsigned char *extra; /* Extra descriptors */ 80 int extralen; 81 }; 82 83 enum usb_interface_condition { 84 USB_INTERFACE_UNBOUND = 0, 85 USB_INTERFACE_BINDING, 86 USB_INTERFACE_BOUND, 87 USB_INTERFACE_UNBINDING, 88 }; 89 90 /** 91 * struct usb_interface - what usb device drivers talk to 92 * @altsetting: array of interface structures, one for each alternate 93 * setting that may be selected. Each one includes a set of 94 * endpoint configurations. They will be in no particular order. 95 * @num_altsetting: number of altsettings defined. 96 * @cur_altsetting: the current altsetting. 97 * @driver: the USB driver that is bound to this interface. 98 * @minor: the minor number assigned to this interface, if this 99 * interface is bound to a driver that uses the USB major number. 100 * If this interface does not use the USB major, this field should 101 * be unused. The driver should set this value in the probe() 102 * function of the driver, after it has been assigned a minor 103 * number from the USB core by calling usb_register_dev(). 104 * @condition: binding state of the interface: not bound, binding 105 * (in probe()), bound to a driver, or unbinding (in disconnect()) 106 * @is_active: flag set when the interface is bound and not suspended. 107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 108 * capability during autosuspend. 109 * @dev: driver model's view of this device 110 * @usb_dev: if an interface is bound to the USB major, this will point 111 * to the sysfs representation for that device. 112 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 113 * allowed unless the counter is 0. 114 * 115 * USB device drivers attach to interfaces on a physical device. Each 116 * interface encapsulates a single high level function, such as feeding 117 * an audio stream to a speaker or reporting a change in a volume control. 118 * Many USB devices only have one interface. The protocol used to talk to 119 * an interface's endpoints can be defined in a usb "class" specification, 120 * or by a product's vendor. The (default) control endpoint is part of 121 * every interface, but is never listed among the interface's descriptors. 122 * 123 * The driver that is bound to the interface can use standard driver model 124 * calls such as dev_get_drvdata() on the dev member of this structure. 125 * 126 * Each interface may have alternate settings. The initial configuration 127 * of a device sets altsetting 0, but the device driver can change 128 * that setting using usb_set_interface(). Alternate settings are often 129 * used to control the the use of periodic endpoints, such as by having 130 * different endpoints use different amounts of reserved USB bandwidth. 131 * All standards-conformant USB devices that use isochronous endpoints 132 * will use them in non-default settings. 133 * 134 * The USB specification says that alternate setting numbers must run from 135 * 0 to one less than the total number of alternate settings. But some 136 * devices manage to mess this up, and the structures aren't necessarily 137 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 138 * look up an alternate setting in the altsetting array based on its number. 139 */ 140 struct usb_interface { 141 /* array of alternate settings for this interface, 142 * stored in no particular order */ 143 struct usb_host_interface *altsetting; 144 145 struct usb_host_interface *cur_altsetting; /* the currently 146 * active alternate setting */ 147 unsigned num_altsetting; /* number of alternate settings */ 148 149 int minor; /* minor number this interface is 150 * bound to */ 151 enum usb_interface_condition condition; /* state of binding */ 152 unsigned is_active:1; /* the interface is not suspended */ 153 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 154 155 struct device dev; /* interface specific device info */ 156 struct device *usb_dev; /* pointer to the usb class's device, if any */ 157 int pm_usage_cnt; /* usage counter for autosuspend */ 158 }; 159 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 160 #define interface_to_usbdev(intf) \ 161 container_of(intf->dev.parent, struct usb_device, dev) 162 163 static inline void *usb_get_intfdata (struct usb_interface *intf) 164 { 165 return dev_get_drvdata (&intf->dev); 166 } 167 168 static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 169 { 170 dev_set_drvdata(&intf->dev, data); 171 } 172 173 struct usb_interface *usb_get_intf(struct usb_interface *intf); 174 void usb_put_intf(struct usb_interface *intf); 175 176 /* this maximum is arbitrary */ 177 #define USB_MAXINTERFACES 32 178 179 /** 180 * struct usb_interface_cache - long-term representation of a device interface 181 * @num_altsetting: number of altsettings defined. 182 * @ref: reference counter. 183 * @altsetting: variable-length array of interface structures, one for 184 * each alternate setting that may be selected. Each one includes a 185 * set of endpoint configurations. They will be in no particular order. 186 * 187 * These structures persist for the lifetime of a usb_device, unlike 188 * struct usb_interface (which persists only as long as its configuration 189 * is installed). The altsetting arrays can be accessed through these 190 * structures at any time, permitting comparison of configurations and 191 * providing support for the /proc/bus/usb/devices pseudo-file. 192 */ 193 struct usb_interface_cache { 194 unsigned num_altsetting; /* number of alternate settings */ 195 struct kref ref; /* reference counter */ 196 197 /* variable-length array of alternate settings for this interface, 198 * stored in no particular order */ 199 struct usb_host_interface altsetting[0]; 200 }; 201 #define ref_to_usb_interface_cache(r) \ 202 container_of(r, struct usb_interface_cache, ref) 203 #define altsetting_to_usb_interface_cache(a) \ 204 container_of(a, struct usb_interface_cache, altsetting[0]) 205 206 /** 207 * struct usb_host_config - representation of a device's configuration 208 * @desc: the device's configuration descriptor. 209 * @string: pointer to the cached version of the iConfiguration string, if 210 * present for this configuration. 211 * @interface: array of pointers to usb_interface structures, one for each 212 * interface in the configuration. The number of interfaces is stored 213 * in desc.bNumInterfaces. These pointers are valid only while the 214 * the configuration is active. 215 * @intf_cache: array of pointers to usb_interface_cache structures, one 216 * for each interface in the configuration. These structures exist 217 * for the entire life of the device. 218 * @extra: pointer to buffer containing all extra descriptors associated 219 * with this configuration (those preceding the first interface 220 * descriptor). 221 * @extralen: length of the extra descriptors buffer. 222 * 223 * USB devices may have multiple configurations, but only one can be active 224 * at any time. Each encapsulates a different operational environment; 225 * for example, a dual-speed device would have separate configurations for 226 * full-speed and high-speed operation. The number of configurations 227 * available is stored in the device descriptor as bNumConfigurations. 228 * 229 * A configuration can contain multiple interfaces. Each corresponds to 230 * a different function of the USB device, and all are available whenever 231 * the configuration is active. The USB standard says that interfaces 232 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 233 * of devices get this wrong. In addition, the interface array is not 234 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 235 * look up an interface entry based on its number. 236 * 237 * Device drivers should not attempt to activate configurations. The choice 238 * of which configuration to install is a policy decision based on such 239 * considerations as available power, functionality provided, and the user's 240 * desires (expressed through userspace tools). However, drivers can call 241 * usb_reset_configuration() to reinitialize the current configuration and 242 * all its interfaces. 243 */ 244 struct usb_host_config { 245 struct usb_config_descriptor desc; 246 247 char *string; /* iConfiguration string, if present */ 248 /* the interfaces associated with this configuration, 249 * stored in no particular order */ 250 struct usb_interface *interface[USB_MAXINTERFACES]; 251 252 /* Interface information available even when this is not the 253 * active configuration */ 254 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 255 256 unsigned char *extra; /* Extra descriptors */ 257 int extralen; 258 }; 259 260 int __usb_get_extra_descriptor(char *buffer, unsigned size, 261 unsigned char type, void **ptr); 262 #define usb_get_extra_descriptor(ifpoint,type,ptr)\ 263 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 264 type,(void**)ptr) 265 266 /* ----------------------------------------------------------------------- */ 267 268 /* USB device number allocation bitmap */ 269 struct usb_devmap { 270 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 271 }; 272 273 /* 274 * Allocated per bus (tree of devices) we have: 275 */ 276 struct usb_bus { 277 struct device *controller; /* host/master side hardware */ 278 int busnum; /* Bus number (in order of reg) */ 279 char *bus_name; /* stable id (PCI slot_name etc) */ 280 u8 uses_dma; /* Does the host controller use DMA? */ 281 u8 otg_port; /* 0, or number of OTG/HNP port */ 282 unsigned is_b_host:1; /* true during some HNP roleswitches */ 283 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 284 285 int devnum_next; /* Next open device number in 286 * round-robin allocation */ 287 288 struct usb_devmap devmap; /* device address allocation map */ 289 struct usb_device *root_hub; /* Root hub */ 290 struct list_head bus_list; /* list of busses */ 291 292 int bandwidth_allocated; /* on this bus: how much of the time 293 * reserved for periodic (intr/iso) 294 * requests is used, on average? 295 * Units: microseconds/frame. 296 * Limits: Full/low speed reserve 90%, 297 * while high speed reserves 80%. 298 */ 299 int bandwidth_int_reqs; /* number of Interrupt requests */ 300 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 301 302 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 303 304 struct class_device *class_dev; /* class device for this bus */ 305 306 #if defined(CONFIG_USB_MON) 307 struct mon_bus *mon_bus; /* non-null when associated */ 308 int monitored; /* non-zero when monitored */ 309 #endif 310 }; 311 312 /* ----------------------------------------------------------------------- */ 313 314 /* This is arbitrary. 315 * From USB 2.0 spec Table 11-13, offset 7, a hub can 316 * have up to 255 ports. The most yet reported is 10. 317 * 318 * Current Wireless USB host hardware (Intel i1480 for example) allows 319 * up to 22 devices to connect. Upcoming hardware might raise that 320 * limit. Because the arrays need to add a bit for hub status data, we 321 * do 31, so plus one evens out to four bytes. 322 */ 323 #define USB_MAXCHILDREN (31) 324 325 struct usb_tt; 326 327 /* 328 * struct usb_device - kernel's representation of a USB device 329 * 330 * FIXME: Write the kerneldoc! 331 * 332 * Usbcore drivers should not set usbdev->state directly. Instead use 333 * usb_set_device_state(). 334 */ 335 struct usb_device { 336 int devnum; /* Address on USB bus */ 337 char devpath [16]; /* Use in messages: /port/port/... */ 338 enum usb_device_state state; /* configured, not attached, etc */ 339 enum usb_device_speed speed; /* high/full/low (or error) */ 340 341 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 342 int ttport; /* device port on that tt hub */ 343 344 unsigned int toggle[2]; /* one bit for each endpoint 345 * ([0] = IN, [1] = OUT) */ 346 347 struct usb_device *parent; /* our hub, unless we're the root */ 348 struct usb_bus *bus; /* Bus we're part of */ 349 struct usb_host_endpoint ep0; 350 351 struct device dev; /* Generic device interface */ 352 353 struct usb_device_descriptor descriptor;/* Descriptor */ 354 struct usb_host_config *config; /* All of the configs */ 355 356 struct usb_host_config *actconfig;/* the active configuration */ 357 struct usb_host_endpoint *ep_in[16]; 358 struct usb_host_endpoint *ep_out[16]; 359 360 char **rawdescriptors; /* Raw descriptors for each config */ 361 362 unsigned short bus_mA; /* Current available from the bus */ 363 u8 portnum; /* Parent port number (origin 1) */ 364 u8 level; /* Number of USB hub ancestors */ 365 366 unsigned discon_suspended:1; /* Disconnected while suspended */ 367 unsigned have_langid:1; /* whether string_langid is valid */ 368 int string_langid; /* language ID for strings */ 369 370 /* static strings from the device */ 371 char *product; /* iProduct string, if present */ 372 char *manufacturer; /* iManufacturer string, if present */ 373 char *serial; /* iSerialNumber string, if present */ 374 375 struct list_head filelist; 376 struct device *usbfs_dev; 377 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 378 379 /* 380 * Child devices - these can be either new devices 381 * (if this is a hub device), or different instances 382 * of this same device. 383 * 384 * Each instance needs its own set of data structures. 385 */ 386 387 int maxchild; /* Number of ports if hub */ 388 struct usb_device *children[USB_MAXCHILDREN]; 389 390 int pm_usage_cnt; /* usage counter for autosuspend */ 391 #ifdef CONFIG_PM 392 struct delayed_work autosuspend; /* for delayed autosuspends */ 393 struct mutex pm_mutex; /* protects PM operations */ 394 395 unsigned auto_pm:1; /* autosuspend/resume in progress */ 396 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 397 #endif 398 }; 399 #define to_usb_device(d) container_of(d, struct usb_device, dev) 400 401 extern struct usb_device *usb_get_dev(struct usb_device *dev); 402 extern void usb_put_dev(struct usb_device *dev); 403 404 /* USB device locking */ 405 #define usb_lock_device(udev) down(&(udev)->dev.sem) 406 #define usb_unlock_device(udev) up(&(udev)->dev.sem) 407 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 408 extern int usb_lock_device_for_reset(struct usb_device *udev, 409 const struct usb_interface *iface); 410 411 /* USB port reset for device reinitialization */ 412 extern int usb_reset_device(struct usb_device *dev); 413 extern int usb_reset_composite_device(struct usb_device *dev, 414 struct usb_interface *iface); 415 416 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 417 418 /* USB autosuspend and autoresume */ 419 #ifdef CONFIG_USB_SUSPEND 420 extern int usb_autopm_set_interface(struct usb_interface *intf); 421 extern int usb_autopm_get_interface(struct usb_interface *intf); 422 extern void usb_autopm_put_interface(struct usb_interface *intf); 423 424 static inline void usb_autopm_enable(struct usb_interface *intf) 425 { 426 intf->pm_usage_cnt = 0; 427 usb_autopm_set_interface(intf); 428 } 429 430 static inline void usb_autopm_disable(struct usb_interface *intf) 431 { 432 intf->pm_usage_cnt = 1; 433 usb_autopm_set_interface(intf); 434 } 435 436 #else 437 438 static inline int usb_autopm_set_interface(struct usb_interface *intf) 439 { return 0; } 440 441 static inline int usb_autopm_get_interface(struct usb_interface *intf) 442 { return 0; } 443 444 static inline void usb_autopm_put_interface(struct usb_interface *intf) 445 { } 446 static inline void usb_autopm_enable(struct usb_interface *intf) 447 { } 448 static inline void usb_autopm_disable(struct usb_interface *intf) 449 { } 450 #endif 451 452 /*-------------------------------------------------------------------------*/ 453 454 /* for drivers using iso endpoints */ 455 extern int usb_get_current_frame_number (struct usb_device *usb_dev); 456 457 /* used these for multi-interface device registration */ 458 extern int usb_driver_claim_interface(struct usb_driver *driver, 459 struct usb_interface *iface, void* priv); 460 461 /** 462 * usb_interface_claimed - returns true iff an interface is claimed 463 * @iface: the interface being checked 464 * 465 * Returns true (nonzero) iff the interface is claimed, else false (zero). 466 * Callers must own the driver model's usb bus readlock. So driver 467 * probe() entries don't need extra locking, but other call contexts 468 * may need to explicitly claim that lock. 469 * 470 */ 471 static inline int usb_interface_claimed(struct usb_interface *iface) { 472 return (iface->dev.driver != NULL); 473 } 474 475 extern void usb_driver_release_interface(struct usb_driver *driver, 476 struct usb_interface *iface); 477 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 478 const struct usb_device_id *id); 479 extern int usb_match_one_id(struct usb_interface *interface, 480 const struct usb_device_id *id); 481 482 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 483 int minor); 484 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 485 unsigned ifnum); 486 extern struct usb_host_interface *usb_altnum_to_altsetting( 487 const struct usb_interface *intf, unsigned int altnum); 488 489 490 /** 491 * usb_make_path - returns stable device path in the usb tree 492 * @dev: the device whose path is being constructed 493 * @buf: where to put the string 494 * @size: how big is "buf"? 495 * 496 * Returns length of the string (> 0) or negative if size was too small. 497 * 498 * This identifier is intended to be "stable", reflecting physical paths in 499 * hardware such as physical bus addresses for host controllers or ports on 500 * USB hubs. That makes it stay the same until systems are physically 501 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 502 * controllers. Adding and removing devices, including virtual root hubs 503 * in host controller driver modules, does not change these path identifers; 504 * neither does rebooting or re-enumerating. These are more useful identifiers 505 * than changeable ("unstable") ones like bus numbers or device addresses. 506 * 507 * With a partial exception for devices connected to USB 2.0 root hubs, these 508 * identifiers are also predictable. So long as the device tree isn't changed, 509 * plugging any USB device into a given hub port always gives it the same path. 510 * Because of the use of "companion" controllers, devices connected to ports on 511 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 512 * high speed, and a different one if they are full or low speed. 513 */ 514 static inline int usb_make_path (struct usb_device *dev, char *buf, 515 size_t size) 516 { 517 int actual; 518 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 519 dev->devpath); 520 return (actual >= (int)size) ? -1 : actual; 521 } 522 523 /*-------------------------------------------------------------------------*/ 524 525 /** 526 * usb_endpoint_dir_in - check if the endpoint has IN direction 527 * @epd: endpoint to be checked 528 * 529 * Returns true if the endpoint is of type IN, otherwise it returns false. 530 */ 531 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 532 { 533 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 534 } 535 536 /** 537 * usb_endpoint_dir_out - check if the endpoint has OUT direction 538 * @epd: endpoint to be checked 539 * 540 * Returns true if the endpoint is of type OUT, otherwise it returns false. 541 */ 542 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd) 543 { 544 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 545 } 546 547 /** 548 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 549 * @epd: endpoint to be checked 550 * 551 * Returns true if the endpoint is of type bulk, otherwise it returns false. 552 */ 553 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd) 554 { 555 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 556 USB_ENDPOINT_XFER_BULK); 557 } 558 559 /** 560 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 561 * @epd: endpoint to be checked 562 * 563 * Returns true if the endpoint is of type control, otherwise it returns false. 564 */ 565 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd) 566 { 567 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 568 USB_ENDPOINT_XFER_CONTROL); 569 } 570 571 /** 572 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 573 * @epd: endpoint to be checked 574 * 575 * Returns true if the endpoint is of type interrupt, otherwise it returns 576 * false. 577 */ 578 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd) 579 { 580 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 581 USB_ENDPOINT_XFER_INT); 582 } 583 584 /** 585 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 586 * @epd: endpoint to be checked 587 * 588 * Returns true if the endpoint is of type isochronous, otherwise it returns 589 * false. 590 */ 591 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd) 592 { 593 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 594 USB_ENDPOINT_XFER_ISOC); 595 } 596 597 /** 598 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 599 * @epd: endpoint to be checked 600 * 601 * Returns true if the endpoint has bulk transfer type and IN direction, 602 * otherwise it returns false. 603 */ 604 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd) 605 { 606 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 607 } 608 609 /** 610 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 611 * @epd: endpoint to be checked 612 * 613 * Returns true if the endpoint has bulk transfer type and OUT direction, 614 * otherwise it returns false. 615 */ 616 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd) 617 { 618 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 619 } 620 621 /** 622 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 623 * @epd: endpoint to be checked 624 * 625 * Returns true if the endpoint has interrupt transfer type and IN direction, 626 * otherwise it returns false. 627 */ 628 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd) 629 { 630 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 631 } 632 633 /** 634 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 635 * @epd: endpoint to be checked 636 * 637 * Returns true if the endpoint has interrupt transfer type and OUT direction, 638 * otherwise it returns false. 639 */ 640 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd) 641 { 642 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 643 } 644 645 /** 646 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 647 * @epd: endpoint to be checked 648 * 649 * Returns true if the endpoint has isochronous transfer type and IN direction, 650 * otherwise it returns false. 651 */ 652 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd) 653 { 654 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 655 } 656 657 /** 658 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 659 * @epd: endpoint to be checked 660 * 661 * Returns true if the endpoint has isochronous transfer type and OUT direction, 662 * otherwise it returns false. 663 */ 664 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd) 665 { 666 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 667 } 668 669 /*-------------------------------------------------------------------------*/ 670 671 #define USB_DEVICE_ID_MATCH_DEVICE \ 672 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 673 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 674 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 675 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 676 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 677 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 678 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 679 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 680 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 681 #define USB_DEVICE_ID_MATCH_INT_INFO \ 682 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 683 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 684 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 685 686 /** 687 * USB_DEVICE - macro used to describe a specific usb device 688 * @vend: the 16 bit USB Vendor ID 689 * @prod: the 16 bit USB Product ID 690 * 691 * This macro is used to create a struct usb_device_id that matches a 692 * specific device. 693 */ 694 #define USB_DEVICE(vend,prod) \ 695 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 696 .idProduct = (prod) 697 /** 698 * USB_DEVICE_VER - macro used to describe a specific usb device with a 699 * version range 700 * @vend: the 16 bit USB Vendor ID 701 * @prod: the 16 bit USB Product ID 702 * @lo: the bcdDevice_lo value 703 * @hi: the bcdDevice_hi value 704 * 705 * This macro is used to create a struct usb_device_id that matches a 706 * specific device, with a version range. 707 */ 708 #define USB_DEVICE_VER(vend,prod,lo,hi) \ 709 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 710 .idVendor = (vend), .idProduct = (prod), \ 711 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 712 713 /** 714 * USB_DEVICE_INFO - macro used to describe a class of usb devices 715 * @cl: bDeviceClass value 716 * @sc: bDeviceSubClass value 717 * @pr: bDeviceProtocol value 718 * 719 * This macro is used to create a struct usb_device_id that matches a 720 * specific class of devices. 721 */ 722 #define USB_DEVICE_INFO(cl,sc,pr) \ 723 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 724 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 725 726 /** 727 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 728 * @cl: bInterfaceClass value 729 * @sc: bInterfaceSubClass value 730 * @pr: bInterfaceProtocol value 731 * 732 * This macro is used to create a struct usb_device_id that matches a 733 * specific class of interfaces. 734 */ 735 #define USB_INTERFACE_INFO(cl,sc,pr) \ 736 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 737 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 738 739 /* ----------------------------------------------------------------------- */ 740 741 /* Stuff for dynamic usb ids */ 742 struct usb_dynids { 743 spinlock_t lock; 744 struct list_head list; 745 }; 746 747 struct usb_dynid { 748 struct list_head node; 749 struct usb_device_id id; 750 }; 751 752 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 753 struct device_driver *driver, 754 const char *buf, size_t count); 755 756 /** 757 * struct usbdrv_wrap - wrapper for driver-model structure 758 * @driver: The driver-model core driver structure. 759 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 760 */ 761 struct usbdrv_wrap { 762 struct device_driver driver; 763 int for_devices; 764 }; 765 766 /** 767 * struct usb_driver - identifies USB interface driver to usbcore 768 * @name: The driver name should be unique among USB drivers, 769 * and should normally be the same as the module name. 770 * @probe: Called to see if the driver is willing to manage a particular 771 * interface on a device. If it is, probe returns zero and uses 772 * dev_set_drvdata() to associate driver-specific data with the 773 * interface. It may also use usb_set_interface() to specify the 774 * appropriate altsetting. If unwilling to manage the interface, 775 * return a negative errno value. 776 * @disconnect: Called when the interface is no longer accessible, usually 777 * because its device has been (or is being) disconnected or the 778 * driver module is being unloaded. 779 * @ioctl: Used for drivers that want to talk to userspace through 780 * the "usbfs" filesystem. This lets devices provide ways to 781 * expose information to user space regardless of where they 782 * do (or don't) show up otherwise in the filesystem. 783 * @suspend: Called when the device is going to be suspended by the system. 784 * @resume: Called when the device is being resumed by the system. 785 * @pre_reset: Called by usb_reset_composite_device() when the device 786 * is about to be reset. 787 * @post_reset: Called by usb_reset_composite_device() after the device 788 * has been reset. 789 * @id_table: USB drivers use ID table to support hotplugging. 790 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 791 * or your driver's probe function will never get called. 792 * @dynids: used internally to hold the list of dynamically added device 793 * ids for this driver. 794 * @drvwrap: Driver-model core structure wrapper. 795 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 796 * added to this driver by preventing the sysfs file from being created. 797 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 798 * for interfaces bound to this driver. 799 * 800 * USB interface drivers must provide a name, probe() and disconnect() 801 * methods, and an id_table. Other driver fields are optional. 802 * 803 * The id_table is used in hotplugging. It holds a set of descriptors, 804 * and specialized data may be associated with each entry. That table 805 * is used by both user and kernel mode hotplugging support. 806 * 807 * The probe() and disconnect() methods are called in a context where 808 * they can sleep, but they should avoid abusing the privilege. Most 809 * work to connect to a device should be done when the device is opened, 810 * and undone at the last close. The disconnect code needs to address 811 * concurrency issues with respect to open() and close() methods, as 812 * well as forcing all pending I/O requests to complete (by unlinking 813 * them as necessary, and blocking until the unlinks complete). 814 */ 815 struct usb_driver { 816 const char *name; 817 818 int (*probe) (struct usb_interface *intf, 819 const struct usb_device_id *id); 820 821 void (*disconnect) (struct usb_interface *intf); 822 823 int (*ioctl) (struct usb_interface *intf, unsigned int code, 824 void *buf); 825 826 int (*suspend) (struct usb_interface *intf, pm_message_t message); 827 int (*resume) (struct usb_interface *intf); 828 829 void (*pre_reset) (struct usb_interface *intf); 830 void (*post_reset) (struct usb_interface *intf); 831 832 const struct usb_device_id *id_table; 833 834 struct usb_dynids dynids; 835 struct usbdrv_wrap drvwrap; 836 unsigned int no_dynamic_id:1; 837 unsigned int supports_autosuspend:1; 838 }; 839 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 840 841 /** 842 * struct usb_device_driver - identifies USB device driver to usbcore 843 * @name: The driver name should be unique among USB drivers, 844 * and should normally be the same as the module name. 845 * @probe: Called to see if the driver is willing to manage a particular 846 * device. If it is, probe returns zero and uses dev_set_drvdata() 847 * to associate driver-specific data with the device. If unwilling 848 * to manage the device, return a negative errno value. 849 * @disconnect: Called when the device is no longer accessible, usually 850 * because it has been (or is being) disconnected or the driver's 851 * module is being unloaded. 852 * @suspend: Called when the device is going to be suspended by the system. 853 * @resume: Called when the device is being resumed by the system. 854 * @drvwrap: Driver-model core structure wrapper. 855 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 856 * for devices bound to this driver. 857 * 858 * USB drivers must provide all the fields listed above except drvwrap. 859 */ 860 struct usb_device_driver { 861 const char *name; 862 863 int (*probe) (struct usb_device *udev); 864 void (*disconnect) (struct usb_device *udev); 865 866 int (*suspend) (struct usb_device *udev, pm_message_t message); 867 int (*resume) (struct usb_device *udev); 868 struct usbdrv_wrap drvwrap; 869 unsigned int supports_autosuspend:1; 870 }; 871 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 872 drvwrap.driver) 873 874 extern struct bus_type usb_bus_type; 875 876 /** 877 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 878 * @name: the usb class device name for this driver. Will show up in sysfs. 879 * @fops: pointer to the struct file_operations of this driver. 880 * @minor_base: the start of the minor range for this driver. 881 * 882 * This structure is used for the usb_register_dev() and 883 * usb_unregister_dev() functions, to consolidate a number of the 884 * parameters used for them. 885 */ 886 struct usb_class_driver { 887 char *name; 888 const struct file_operations *fops; 889 int minor_base; 890 }; 891 892 /* 893 * use these in module_init()/module_exit() 894 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 895 */ 896 extern int usb_register_driver(struct usb_driver *, struct module *, 897 const char *); 898 static inline int usb_register(struct usb_driver *driver) 899 { 900 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 901 } 902 extern void usb_deregister(struct usb_driver *); 903 904 extern int usb_register_device_driver(struct usb_device_driver *, 905 struct module *); 906 extern void usb_deregister_device_driver(struct usb_device_driver *); 907 908 extern int usb_register_dev(struct usb_interface *intf, 909 struct usb_class_driver *class_driver); 910 extern void usb_deregister_dev(struct usb_interface *intf, 911 struct usb_class_driver *class_driver); 912 913 extern int usb_disabled(void); 914 915 /* ----------------------------------------------------------------------- */ 916 917 /* 918 * URB support, for asynchronous request completions 919 */ 920 921 /* 922 * urb->transfer_flags: 923 */ 924 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 925 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 926 * ignored */ 927 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 928 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 929 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 930 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 931 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 932 * needed */ 933 934 struct usb_iso_packet_descriptor { 935 unsigned int offset; 936 unsigned int length; /* expected length */ 937 unsigned int actual_length; 938 unsigned int status; 939 }; 940 941 struct urb; 942 943 typedef void (*usb_complete_t)(struct urb *); 944 945 /** 946 * struct urb - USB Request Block 947 * @urb_list: For use by current owner of the URB. 948 * @pipe: Holds endpoint number, direction, type, and more. 949 * Create these values with the eight macros available; 950 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 951 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 952 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 953 * numbers range from zero to fifteen. Note that "in" endpoint two 954 * is a different endpoint (and pipe) from "out" endpoint two. 955 * The current configuration controls the existence, type, and 956 * maximum packet size of any given endpoint. 957 * @dev: Identifies the USB device to perform the request. 958 * @status: This is read in non-iso completion functions to get the 959 * status of the particular request. ISO requests only use it 960 * to tell whether the URB was unlinked; detailed status for 961 * each frame is in the fields of the iso_frame-desc. 962 * @transfer_flags: A variety of flags may be used to affect how URB 963 * submission, unlinking, or operation are handled. Different 964 * kinds of URB can use different flags. 965 * @transfer_buffer: This identifies the buffer to (or from) which 966 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 967 * is set). This buffer must be suitable for DMA; allocate it with 968 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 969 * of this buffer will be modified. This buffer is used for the data 970 * stage of control transfers. 971 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 972 * the device driver is saying that it provided this DMA address, 973 * which the host controller driver should use in preference to the 974 * transfer_buffer. 975 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 976 * be broken up into chunks according to the current maximum packet 977 * size for the endpoint, which is a function of the configuration 978 * and is encoded in the pipe. When the length is zero, neither 979 * transfer_buffer nor transfer_dma is used. 980 * @actual_length: This is read in non-iso completion functions, and 981 * it tells how many bytes (out of transfer_buffer_length) were 982 * transferred. It will normally be the same as requested, unless 983 * either an error was reported or a short read was performed. 984 * The URB_SHORT_NOT_OK transfer flag may be used to make such 985 * short reads be reported as errors. 986 * @setup_packet: Only used for control transfers, this points to eight bytes 987 * of setup data. Control transfers always start by sending this data 988 * to the device. Then transfer_buffer is read or written, if needed. 989 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 990 * device driver has provided this DMA address for the setup packet. 991 * The host controller driver should use this in preference to 992 * setup_packet. 993 * @start_frame: Returns the initial frame for isochronous transfers. 994 * @number_of_packets: Lists the number of ISO transfer buffers. 995 * @interval: Specifies the polling interval for interrupt or isochronous 996 * transfers. The units are frames (milliseconds) for for full and low 997 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 998 * @error_count: Returns the number of ISO transfers that reported errors. 999 * @context: For use in completion functions. This normally points to 1000 * request-specific driver context. 1001 * @complete: Completion handler. This URB is passed as the parameter to the 1002 * completion function. The completion function may then do what 1003 * it likes with the URB, including resubmitting or freeing it. 1004 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1005 * collect the transfer status for each buffer. 1006 * 1007 * This structure identifies USB transfer requests. URBs must be allocated by 1008 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1009 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1010 * are submitted using usb_submit_urb(), and pending requests may be canceled 1011 * using usb_unlink_urb() or usb_kill_urb(). 1012 * 1013 * Data Transfer Buffers: 1014 * 1015 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1016 * taken from the general page pool. That is provided by transfer_buffer 1017 * (control requests also use setup_packet), and host controller drivers 1018 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1019 * mapping operations can be expensive on some platforms (perhaps using a dma 1020 * bounce buffer or talking to an IOMMU), 1021 * although they're cheap on commodity x86 and ppc hardware. 1022 * 1023 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1024 * which tell the host controller driver that no such mapping is needed since 1025 * the device driver is DMA-aware. For example, a device driver might 1026 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1027 * When these transfer flags are provided, host controller drivers will 1028 * attempt to use the dma addresses found in the transfer_dma and/or 1029 * setup_dma fields rather than determining a dma address themselves. (Note 1030 * that transfer_buffer and setup_packet must still be set because not all 1031 * host controllers use DMA, nor do virtual root hubs). 1032 * 1033 * Initialization: 1034 * 1035 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1036 * zero), and complete fields. All URBs must also initialize 1037 * transfer_buffer and transfer_buffer_length. They may provide the 1038 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1039 * to be treated as errors; that flag is invalid for write requests. 1040 * 1041 * Bulk URBs may 1042 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1043 * should always terminate with a short packet, even if it means adding an 1044 * extra zero length packet. 1045 * 1046 * Control URBs must provide a setup_packet. The setup_packet and 1047 * transfer_buffer may each be mapped for DMA or not, independently of 1048 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1049 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1050 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1051 * 1052 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1053 * or, for highspeed devices, 125 microsecond units) 1054 * to poll for transfers. After the URB has been submitted, the interval 1055 * field reflects how the transfer was actually scheduled. 1056 * The polling interval may be more frequent than requested. 1057 * For example, some controllers have a maximum interval of 32 milliseconds, 1058 * while others support intervals of up to 1024 milliseconds. 1059 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1060 * endpoints, as well as high speed interrupt endpoints, the encoding of 1061 * the transfer interval in the endpoint descriptor is logarithmic. 1062 * Device drivers must convert that value to linear units themselves.) 1063 * 1064 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1065 * the host controller to schedule the transfer as soon as bandwidth 1066 * utilization allows, and then set start_frame to reflect the actual frame 1067 * selected during submission. Otherwise drivers must specify the start_frame 1068 * and handle the case where the transfer can't begin then. However, drivers 1069 * won't know how bandwidth is currently allocated, and while they can 1070 * find the current frame using usb_get_current_frame_number () they can't 1071 * know the range for that frame number. (Ranges for frame counter values 1072 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1073 * 1074 * Isochronous URBs have a different data transfer model, in part because 1075 * the quality of service is only "best effort". Callers provide specially 1076 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1077 * at the end. Each such packet is an individual ISO transfer. Isochronous 1078 * URBs are normally queued, submitted by drivers to arrange that 1079 * transfers are at least double buffered, and then explicitly resubmitted 1080 * in completion handlers, so 1081 * that data (such as audio or video) streams at as constant a rate as the 1082 * host controller scheduler can support. 1083 * 1084 * Completion Callbacks: 1085 * 1086 * The completion callback is made in_interrupt(), and one of the first 1087 * things that a completion handler should do is check the status field. 1088 * The status field is provided for all URBs. It is used to report 1089 * unlinked URBs, and status for all non-ISO transfers. It should not 1090 * be examined before the URB is returned to the completion handler. 1091 * 1092 * The context field is normally used to link URBs back to the relevant 1093 * driver or request state. 1094 * 1095 * When the completion callback is invoked for non-isochronous URBs, the 1096 * actual_length field tells how many bytes were transferred. This field 1097 * is updated even when the URB terminated with an error or was unlinked. 1098 * 1099 * ISO transfer status is reported in the status and actual_length fields 1100 * of the iso_frame_desc array, and the number of errors is reported in 1101 * error_count. Completion callbacks for ISO transfers will normally 1102 * (re)submit URBs to ensure a constant transfer rate. 1103 * 1104 * Note that even fields marked "public" should not be touched by the driver 1105 * when the urb is owned by the hcd, that is, since the call to 1106 * usb_submit_urb() till the entry into the completion routine. 1107 */ 1108 struct urb 1109 { 1110 /* private: usb core and host controller only fields in the urb */ 1111 struct kref kref; /* reference count of the URB */ 1112 spinlock_t lock; /* lock for the URB */ 1113 void *hcpriv; /* private data for host controller */ 1114 atomic_t use_count; /* concurrent submissions counter */ 1115 u8 reject; /* submissions will fail */ 1116 1117 /* public: documented fields in the urb that can be used by drivers */ 1118 struct list_head urb_list; /* list head for use by the urb's 1119 * current owner */ 1120 struct usb_device *dev; /* (in) pointer to associated device */ 1121 unsigned int pipe; /* (in) pipe information */ 1122 int status; /* (return) non-ISO status */ 1123 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1124 void *transfer_buffer; /* (in) associated data buffer */ 1125 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1126 int transfer_buffer_length; /* (in) data buffer length */ 1127 int actual_length; /* (return) actual transfer length */ 1128 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1129 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1130 int start_frame; /* (modify) start frame (ISO) */ 1131 int number_of_packets; /* (in) number of ISO packets */ 1132 int interval; /* (modify) transfer interval 1133 * (INT/ISO) */ 1134 int error_count; /* (return) number of ISO errors */ 1135 void *context; /* (in) context for completion */ 1136 usb_complete_t complete; /* (in) completion routine */ 1137 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1138 /* (in) ISO ONLY */ 1139 }; 1140 1141 /* ----------------------------------------------------------------------- */ 1142 1143 /** 1144 * usb_fill_control_urb - initializes a control urb 1145 * @urb: pointer to the urb to initialize. 1146 * @dev: pointer to the struct usb_device for this urb. 1147 * @pipe: the endpoint pipe 1148 * @setup_packet: pointer to the setup_packet buffer 1149 * @transfer_buffer: pointer to the transfer buffer 1150 * @buffer_length: length of the transfer buffer 1151 * @complete_fn: pointer to the usb_complete_t function 1152 * @context: what to set the urb context to. 1153 * 1154 * Initializes a control urb with the proper information needed to submit 1155 * it to a device. 1156 */ 1157 static inline void usb_fill_control_urb (struct urb *urb, 1158 struct usb_device *dev, 1159 unsigned int pipe, 1160 unsigned char *setup_packet, 1161 void *transfer_buffer, 1162 int buffer_length, 1163 usb_complete_t complete_fn, 1164 void *context) 1165 { 1166 spin_lock_init(&urb->lock); 1167 urb->dev = dev; 1168 urb->pipe = pipe; 1169 urb->setup_packet = setup_packet; 1170 urb->transfer_buffer = transfer_buffer; 1171 urb->transfer_buffer_length = buffer_length; 1172 urb->complete = complete_fn; 1173 urb->context = context; 1174 } 1175 1176 /** 1177 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1178 * @urb: pointer to the urb to initialize. 1179 * @dev: pointer to the struct usb_device for this urb. 1180 * @pipe: the endpoint pipe 1181 * @transfer_buffer: pointer to the transfer buffer 1182 * @buffer_length: length of the transfer buffer 1183 * @complete_fn: pointer to the usb_complete_t function 1184 * @context: what to set the urb context to. 1185 * 1186 * Initializes a bulk urb with the proper information needed to submit it 1187 * to a device. 1188 */ 1189 static inline void usb_fill_bulk_urb (struct urb *urb, 1190 struct usb_device *dev, 1191 unsigned int pipe, 1192 void *transfer_buffer, 1193 int buffer_length, 1194 usb_complete_t complete_fn, 1195 void *context) 1196 { 1197 spin_lock_init(&urb->lock); 1198 urb->dev = dev; 1199 urb->pipe = pipe; 1200 urb->transfer_buffer = transfer_buffer; 1201 urb->transfer_buffer_length = buffer_length; 1202 urb->complete = complete_fn; 1203 urb->context = context; 1204 } 1205 1206 /** 1207 * usb_fill_int_urb - macro to help initialize a interrupt urb 1208 * @urb: pointer to the urb to initialize. 1209 * @dev: pointer to the struct usb_device for this urb. 1210 * @pipe: the endpoint pipe 1211 * @transfer_buffer: pointer to the transfer buffer 1212 * @buffer_length: length of the transfer buffer 1213 * @complete_fn: pointer to the usb_complete_t function 1214 * @context: what to set the urb context to. 1215 * @interval: what to set the urb interval to, encoded like 1216 * the endpoint descriptor's bInterval value. 1217 * 1218 * Initializes a interrupt urb with the proper information needed to submit 1219 * it to a device. 1220 * Note that high speed interrupt endpoints use a logarithmic encoding of 1221 * the endpoint interval, and express polling intervals in microframes 1222 * (eight per millisecond) rather than in frames (one per millisecond). 1223 */ 1224 static inline void usb_fill_int_urb (struct urb *urb, 1225 struct usb_device *dev, 1226 unsigned int pipe, 1227 void *transfer_buffer, 1228 int buffer_length, 1229 usb_complete_t complete_fn, 1230 void *context, 1231 int interval) 1232 { 1233 spin_lock_init(&urb->lock); 1234 urb->dev = dev; 1235 urb->pipe = pipe; 1236 urb->transfer_buffer = transfer_buffer; 1237 urb->transfer_buffer_length = buffer_length; 1238 urb->complete = complete_fn; 1239 urb->context = context; 1240 if (dev->speed == USB_SPEED_HIGH) 1241 urb->interval = 1 << (interval - 1); 1242 else 1243 urb->interval = interval; 1244 urb->start_frame = -1; 1245 } 1246 1247 extern void usb_init_urb(struct urb *urb); 1248 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1249 extern void usb_free_urb(struct urb *urb); 1250 #define usb_put_urb usb_free_urb 1251 extern struct urb *usb_get_urb(struct urb *urb); 1252 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1253 extern int usb_unlink_urb(struct urb *urb); 1254 extern void usb_kill_urb(struct urb *urb); 1255 1256 void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1257 gfp_t mem_flags, dma_addr_t *dma); 1258 void usb_buffer_free (struct usb_device *dev, size_t size, 1259 void *addr, dma_addr_t dma); 1260 1261 #if 0 1262 struct urb *usb_buffer_map (struct urb *urb); 1263 void usb_buffer_dmasync (struct urb *urb); 1264 void usb_buffer_unmap (struct urb *urb); 1265 #endif 1266 1267 struct scatterlist; 1268 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe, 1269 struct scatterlist *sg, int nents); 1270 #if 0 1271 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe, 1272 struct scatterlist *sg, int n_hw_ents); 1273 #endif 1274 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe, 1275 struct scatterlist *sg, int n_hw_ents); 1276 1277 /*-------------------------------------------------------------------* 1278 * SYNCHRONOUS CALL SUPPORT * 1279 *-------------------------------------------------------------------*/ 1280 1281 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1282 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1283 void *data, __u16 size, int timeout); 1284 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1285 void *data, int len, int *actual_length, int timeout); 1286 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1287 void *data, int len, int *actual_length, 1288 int timeout); 1289 1290 /* wrappers around usb_control_msg() for the most common standard requests */ 1291 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1292 unsigned char descindex, void *buf, int size); 1293 extern int usb_get_status(struct usb_device *dev, 1294 int type, int target, void *data); 1295 extern int usb_string(struct usb_device *dev, int index, 1296 char *buf, size_t size); 1297 1298 /* wrappers that also update important state inside usbcore */ 1299 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1300 extern int usb_reset_configuration(struct usb_device *dev); 1301 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1302 1303 /* this request isn't really synchronous, but it belongs with the others */ 1304 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1305 1306 /* 1307 * timeouts, in milliseconds, used for sending/receiving control messages 1308 * they typically complete within a few frames (msec) after they're issued 1309 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1310 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1311 */ 1312 #define USB_CTRL_GET_TIMEOUT 5000 1313 #define USB_CTRL_SET_TIMEOUT 5000 1314 1315 1316 /** 1317 * struct usb_sg_request - support for scatter/gather I/O 1318 * @status: zero indicates success, else negative errno 1319 * @bytes: counts bytes transferred. 1320 * 1321 * These requests are initialized using usb_sg_init(), and then are used 1322 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1323 * members of the request object aren't for driver access. 1324 * 1325 * The status and bytecount values are valid only after usb_sg_wait() 1326 * returns. If the status is zero, then the bytecount matches the total 1327 * from the request. 1328 * 1329 * After an error completion, drivers may need to clear a halt condition 1330 * on the endpoint. 1331 */ 1332 struct usb_sg_request { 1333 int status; 1334 size_t bytes; 1335 1336 /* 1337 * members below are private: to usbcore, 1338 * and are not provided for driver access! 1339 */ 1340 spinlock_t lock; 1341 1342 struct usb_device *dev; 1343 int pipe; 1344 struct scatterlist *sg; 1345 int nents; 1346 1347 int entries; 1348 struct urb **urbs; 1349 1350 int count; 1351 struct completion complete; 1352 }; 1353 1354 int usb_sg_init ( 1355 struct usb_sg_request *io, 1356 struct usb_device *dev, 1357 unsigned pipe, 1358 unsigned period, 1359 struct scatterlist *sg, 1360 int nents, 1361 size_t length, 1362 gfp_t mem_flags 1363 ); 1364 void usb_sg_cancel (struct usb_sg_request *io); 1365 void usb_sg_wait (struct usb_sg_request *io); 1366 1367 1368 /* ----------------------------------------------------------------------- */ 1369 1370 /* 1371 * For various legacy reasons, Linux has a small cookie that's paired with 1372 * a struct usb_device to identify an endpoint queue. Queue characteristics 1373 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1374 * an unsigned int encoded as: 1375 * 1376 * - direction: bit 7 (0 = Host-to-Device [Out], 1377 * 1 = Device-to-Host [In] ... 1378 * like endpoint bEndpointAddress) 1379 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1380 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1381 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1382 * 10 = control, 11 = bulk) 1383 * 1384 * Given the device address and endpoint descriptor, pipes are redundant. 1385 */ 1386 1387 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1388 /* (yet ... they're the values used by usbfs) */ 1389 #define PIPE_ISOCHRONOUS 0 1390 #define PIPE_INTERRUPT 1 1391 #define PIPE_CONTROL 2 1392 #define PIPE_BULK 3 1393 1394 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1395 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1396 1397 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1398 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1399 1400 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1401 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1402 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1403 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1404 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1405 1406 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1407 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1408 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1409 #define usb_settoggle(dev, ep, out, bit) \ 1410 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1411 ((bit) << (ep))) 1412 1413 1414 static inline unsigned int __create_pipe(struct usb_device *dev, 1415 unsigned int endpoint) 1416 { 1417 return (dev->devnum << 8) | (endpoint << 15); 1418 } 1419 1420 /* Create various pipes... */ 1421 #define usb_sndctrlpipe(dev,endpoint) \ 1422 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1423 #define usb_rcvctrlpipe(dev,endpoint) \ 1424 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1425 #define usb_sndisocpipe(dev,endpoint) \ 1426 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1427 #define usb_rcvisocpipe(dev,endpoint) \ 1428 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1429 #define usb_sndbulkpipe(dev,endpoint) \ 1430 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1431 #define usb_rcvbulkpipe(dev,endpoint) \ 1432 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1433 #define usb_sndintpipe(dev,endpoint) \ 1434 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1435 #define usb_rcvintpipe(dev,endpoint) \ 1436 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1437 1438 /*-------------------------------------------------------------------------*/ 1439 1440 static inline __u16 1441 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1442 { 1443 struct usb_host_endpoint *ep; 1444 unsigned epnum = usb_pipeendpoint(pipe); 1445 1446 if (is_out) { 1447 WARN_ON(usb_pipein(pipe)); 1448 ep = udev->ep_out[epnum]; 1449 } else { 1450 WARN_ON(usb_pipeout(pipe)); 1451 ep = udev->ep_in[epnum]; 1452 } 1453 if (!ep) 1454 return 0; 1455 1456 /* NOTE: only 0x07ff bits are for packet size... */ 1457 return le16_to_cpu(ep->desc.wMaxPacketSize); 1458 } 1459 1460 /* ----------------------------------------------------------------------- */ 1461 1462 /* Events from the usb core */ 1463 #define USB_DEVICE_ADD 0x0001 1464 #define USB_DEVICE_REMOVE 0x0002 1465 #define USB_BUS_ADD 0x0003 1466 #define USB_BUS_REMOVE 0x0004 1467 extern void usb_register_notify(struct notifier_block *nb); 1468 extern void usb_unregister_notify(struct notifier_block *nb); 1469 1470 #ifdef DEBUG 1471 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1472 __FILE__ , ## arg) 1473 #else 1474 #define dbg(format, arg...) do {} while (0) 1475 #endif 1476 1477 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1478 __FILE__ , ## arg) 1479 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1480 __FILE__ , ## arg) 1481 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1482 __FILE__ , ## arg) 1483 1484 1485 #endif /* __KERNEL__ */ 1486 1487 #endif 1488