1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb/ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/errno.h> /* for -ENODEV */ 14 #include <linux/delay.h> /* for mdelay() */ 15 #include <linux/interrupt.h> /* for in_interrupt() */ 16 #include <linux/list.h> /* for struct list_head */ 17 #include <linux/kref.h> /* for struct kref */ 18 #include <linux/device.h> /* for struct device */ 19 #include <linux/fs.h> /* for struct file_operations */ 20 #include <linux/completion.h> /* for struct completion */ 21 #include <linux/sched.h> /* for current && schedule_timeout */ 22 #include <linux/mutex.h> /* for struct mutex */ 23 24 struct usb_device; 25 struct usb_driver; 26 27 /*-------------------------------------------------------------------------*/ 28 29 /* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44 struct ep_device; 45 46 /** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * 56 * USB requests are always queued to a given endpoint, identified by a 57 * descriptor within an active interface in a given USB configuration. 58 */ 59 struct usb_host_endpoint { 60 struct usb_endpoint_descriptor desc; 61 struct list_head urb_list; 62 void *hcpriv; 63 struct ep_device *ep_dev; /* For sysfs info */ 64 65 unsigned char *extra; /* Extra descriptors */ 66 int extralen; 67 }; 68 69 /* host-side wrapper for one interface setting's parsed descriptors */ 70 struct usb_host_interface { 71 struct usb_interface_descriptor desc; 72 73 /* array of desc.bNumEndpoint endpoints associated with this 74 * interface setting. these will be in no particular order. 75 */ 76 struct usb_host_endpoint *endpoint; 77 78 char *string; /* iInterface string, if present */ 79 unsigned char *extra; /* Extra descriptors */ 80 int extralen; 81 }; 82 83 enum usb_interface_condition { 84 USB_INTERFACE_UNBOUND = 0, 85 USB_INTERFACE_BINDING, 86 USB_INTERFACE_BOUND, 87 USB_INTERFACE_UNBINDING, 88 }; 89 90 /** 91 * struct usb_interface - what usb device drivers talk to 92 * @altsetting: array of interface structures, one for each alternate 93 * setting that may be selected. Each one includes a set of 94 * endpoint configurations. They will be in no particular order. 95 * @num_altsetting: number of altsettings defined. 96 * @cur_altsetting: the current altsetting. 97 * @driver: the USB driver that is bound to this interface. 98 * @minor: the minor number assigned to this interface, if this 99 * interface is bound to a driver that uses the USB major number. 100 * If this interface does not use the USB major, this field should 101 * be unused. The driver should set this value in the probe() 102 * function of the driver, after it has been assigned a minor 103 * number from the USB core by calling usb_register_dev(). 104 * @condition: binding state of the interface: not bound, binding 105 * (in probe()), bound to a driver, or unbinding (in disconnect()) 106 * @is_active: flag set when the interface is bound and not suspended. 107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 108 * capability during autosuspend. 109 * @dev: driver model's view of this device 110 * @usb_dev: if an interface is bound to the USB major, this will point 111 * to the sysfs representation for that device. 112 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 113 * allowed unless the counter is 0. 114 * 115 * USB device drivers attach to interfaces on a physical device. Each 116 * interface encapsulates a single high level function, such as feeding 117 * an audio stream to a speaker or reporting a change in a volume control. 118 * Many USB devices only have one interface. The protocol used to talk to 119 * an interface's endpoints can be defined in a usb "class" specification, 120 * or by a product's vendor. The (default) control endpoint is part of 121 * every interface, but is never listed among the interface's descriptors. 122 * 123 * The driver that is bound to the interface can use standard driver model 124 * calls such as dev_get_drvdata() on the dev member of this structure. 125 * 126 * Each interface may have alternate settings. The initial configuration 127 * of a device sets altsetting 0, but the device driver can change 128 * that setting using usb_set_interface(). Alternate settings are often 129 * used to control the use of periodic endpoints, such as by having 130 * different endpoints use different amounts of reserved USB bandwidth. 131 * All standards-conformant USB devices that use isochronous endpoints 132 * will use them in non-default settings. 133 * 134 * The USB specification says that alternate setting numbers must run from 135 * 0 to one less than the total number of alternate settings. But some 136 * devices manage to mess this up, and the structures aren't necessarily 137 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 138 * look up an alternate setting in the altsetting array based on its number. 139 */ 140 struct usb_interface { 141 /* array of alternate settings for this interface, 142 * stored in no particular order */ 143 struct usb_host_interface *altsetting; 144 145 struct usb_host_interface *cur_altsetting; /* the currently 146 * active alternate setting */ 147 unsigned num_altsetting; /* number of alternate settings */ 148 149 int minor; /* minor number this interface is 150 * bound to */ 151 enum usb_interface_condition condition; /* state of binding */ 152 unsigned is_active:1; /* the interface is not suspended */ 153 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 154 155 struct device dev; /* interface specific device info */ 156 struct device *usb_dev; /* pointer to the usb class's device, if any */ 157 int pm_usage_cnt; /* usage counter for autosuspend */ 158 }; 159 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 160 #define interface_to_usbdev(intf) \ 161 container_of(intf->dev.parent, struct usb_device, dev) 162 163 static inline void *usb_get_intfdata (struct usb_interface *intf) 164 { 165 return dev_get_drvdata (&intf->dev); 166 } 167 168 static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 169 { 170 dev_set_drvdata(&intf->dev, data); 171 } 172 173 struct usb_interface *usb_get_intf(struct usb_interface *intf); 174 void usb_put_intf(struct usb_interface *intf); 175 176 /* this maximum is arbitrary */ 177 #define USB_MAXINTERFACES 32 178 179 /** 180 * struct usb_interface_cache - long-term representation of a device interface 181 * @num_altsetting: number of altsettings defined. 182 * @ref: reference counter. 183 * @altsetting: variable-length array of interface structures, one for 184 * each alternate setting that may be selected. Each one includes a 185 * set of endpoint configurations. They will be in no particular order. 186 * 187 * These structures persist for the lifetime of a usb_device, unlike 188 * struct usb_interface (which persists only as long as its configuration 189 * is installed). The altsetting arrays can be accessed through these 190 * structures at any time, permitting comparison of configurations and 191 * providing support for the /proc/bus/usb/devices pseudo-file. 192 */ 193 struct usb_interface_cache { 194 unsigned num_altsetting; /* number of alternate settings */ 195 struct kref ref; /* reference counter */ 196 197 /* variable-length array of alternate settings for this interface, 198 * stored in no particular order */ 199 struct usb_host_interface altsetting[0]; 200 }; 201 #define ref_to_usb_interface_cache(r) \ 202 container_of(r, struct usb_interface_cache, ref) 203 #define altsetting_to_usb_interface_cache(a) \ 204 container_of(a, struct usb_interface_cache, altsetting[0]) 205 206 /** 207 * struct usb_host_config - representation of a device's configuration 208 * @desc: the device's configuration descriptor. 209 * @string: pointer to the cached version of the iConfiguration string, if 210 * present for this configuration. 211 * @interface: array of pointers to usb_interface structures, one for each 212 * interface in the configuration. The number of interfaces is stored 213 * in desc.bNumInterfaces. These pointers are valid only while the 214 * the configuration is active. 215 * @intf_cache: array of pointers to usb_interface_cache structures, one 216 * for each interface in the configuration. These structures exist 217 * for the entire life of the device. 218 * @extra: pointer to buffer containing all extra descriptors associated 219 * with this configuration (those preceding the first interface 220 * descriptor). 221 * @extralen: length of the extra descriptors buffer. 222 * 223 * USB devices may have multiple configurations, but only one can be active 224 * at any time. Each encapsulates a different operational environment; 225 * for example, a dual-speed device would have separate configurations for 226 * full-speed and high-speed operation. The number of configurations 227 * available is stored in the device descriptor as bNumConfigurations. 228 * 229 * A configuration can contain multiple interfaces. Each corresponds to 230 * a different function of the USB device, and all are available whenever 231 * the configuration is active. The USB standard says that interfaces 232 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 233 * of devices get this wrong. In addition, the interface array is not 234 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 235 * look up an interface entry based on its number. 236 * 237 * Device drivers should not attempt to activate configurations. The choice 238 * of which configuration to install is a policy decision based on such 239 * considerations as available power, functionality provided, and the user's 240 * desires (expressed through userspace tools). However, drivers can call 241 * usb_reset_configuration() to reinitialize the current configuration and 242 * all its interfaces. 243 */ 244 struct usb_host_config { 245 struct usb_config_descriptor desc; 246 247 char *string; /* iConfiguration string, if present */ 248 /* the interfaces associated with this configuration, 249 * stored in no particular order */ 250 struct usb_interface *interface[USB_MAXINTERFACES]; 251 252 /* Interface information available even when this is not the 253 * active configuration */ 254 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 255 256 unsigned char *extra; /* Extra descriptors */ 257 int extralen; 258 }; 259 260 int __usb_get_extra_descriptor(char *buffer, unsigned size, 261 unsigned char type, void **ptr); 262 #define usb_get_extra_descriptor(ifpoint,type,ptr)\ 263 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 264 type,(void**)ptr) 265 266 /* ----------------------------------------------------------------------- */ 267 268 /* USB device number allocation bitmap */ 269 struct usb_devmap { 270 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 271 }; 272 273 /* 274 * Allocated per bus (tree of devices) we have: 275 */ 276 struct usb_bus { 277 struct device *controller; /* host/master side hardware */ 278 int busnum; /* Bus number (in order of reg) */ 279 char *bus_name; /* stable id (PCI slot_name etc) */ 280 u8 uses_dma; /* Does the host controller use DMA? */ 281 u8 otg_port; /* 0, or number of OTG/HNP port */ 282 unsigned is_b_host:1; /* true during some HNP roleswitches */ 283 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 284 285 int devnum_next; /* Next open device number in 286 * round-robin allocation */ 287 288 struct usb_devmap devmap; /* device address allocation map */ 289 struct usb_device *root_hub; /* Root hub */ 290 struct list_head bus_list; /* list of busses */ 291 292 int bandwidth_allocated; /* on this bus: how much of the time 293 * reserved for periodic (intr/iso) 294 * requests is used, on average? 295 * Units: microseconds/frame. 296 * Limits: Full/low speed reserve 90%, 297 * while high speed reserves 80%. 298 */ 299 int bandwidth_int_reqs; /* number of Interrupt requests */ 300 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 301 302 #ifdef CONFIG_USB_DEVICEFS 303 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 304 #endif 305 struct class_device *class_dev; /* class device for this bus */ 306 307 #if defined(CONFIG_USB_MON) 308 struct mon_bus *mon_bus; /* non-null when associated */ 309 int monitored; /* non-zero when monitored */ 310 #endif 311 }; 312 313 /* ----------------------------------------------------------------------- */ 314 315 /* This is arbitrary. 316 * From USB 2.0 spec Table 11-13, offset 7, a hub can 317 * have up to 255 ports. The most yet reported is 10. 318 * 319 * Current Wireless USB host hardware (Intel i1480 for example) allows 320 * up to 22 devices to connect. Upcoming hardware might raise that 321 * limit. Because the arrays need to add a bit for hub status data, we 322 * do 31, so plus one evens out to four bytes. 323 */ 324 #define USB_MAXCHILDREN (31) 325 326 struct usb_tt; 327 328 /* 329 * struct usb_device - kernel's representation of a USB device 330 * 331 * FIXME: Write the kerneldoc! 332 * 333 * Usbcore drivers should not set usbdev->state directly. Instead use 334 * usb_set_device_state(). 335 */ 336 struct usb_device { 337 int devnum; /* Address on USB bus */ 338 char devpath [16]; /* Use in messages: /port/port/... */ 339 enum usb_device_state state; /* configured, not attached, etc */ 340 enum usb_device_speed speed; /* high/full/low (or error) */ 341 342 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 343 int ttport; /* device port on that tt hub */ 344 345 unsigned int toggle[2]; /* one bit for each endpoint 346 * ([0] = IN, [1] = OUT) */ 347 348 struct usb_device *parent; /* our hub, unless we're the root */ 349 struct usb_bus *bus; /* Bus we're part of */ 350 struct usb_host_endpoint ep0; 351 352 struct device dev; /* Generic device interface */ 353 354 struct usb_device_descriptor descriptor;/* Descriptor */ 355 struct usb_host_config *config; /* All of the configs */ 356 357 struct usb_host_config *actconfig;/* the active configuration */ 358 struct usb_host_endpoint *ep_in[16]; 359 struct usb_host_endpoint *ep_out[16]; 360 361 char **rawdescriptors; /* Raw descriptors for each config */ 362 363 unsigned short bus_mA; /* Current available from the bus */ 364 u8 portnum; /* Parent port number (origin 1) */ 365 u8 level; /* Number of USB hub ancestors */ 366 367 unsigned discon_suspended:1; /* Disconnected while suspended */ 368 unsigned have_langid:1; /* whether string_langid is valid */ 369 int string_langid; /* language ID for strings */ 370 371 /* static strings from the device */ 372 char *product; /* iProduct string, if present */ 373 char *manufacturer; /* iManufacturer string, if present */ 374 char *serial; /* iSerialNumber string, if present */ 375 376 struct list_head filelist; 377 #ifdef CONFIG_USB_DEVICE_CLASS 378 struct device *usb_classdev; 379 #endif 380 #ifdef CONFIG_USB_DEVICEFS 381 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 382 #endif 383 /* 384 * Child devices - these can be either new devices 385 * (if this is a hub device), or different instances 386 * of this same device. 387 * 388 * Each instance needs its own set of data structures. 389 */ 390 391 int maxchild; /* Number of ports if hub */ 392 struct usb_device *children[USB_MAXCHILDREN]; 393 394 int pm_usage_cnt; /* usage counter for autosuspend */ 395 u32 quirks; /* quirks of the whole device */ 396 397 #ifdef CONFIG_PM 398 struct delayed_work autosuspend; /* for delayed autosuspends */ 399 struct mutex pm_mutex; /* protects PM operations */ 400 401 unsigned long last_busy; /* time of last use */ 402 int autosuspend_delay; /* in jiffies */ 403 404 unsigned auto_pm:1; /* autosuspend/resume in progress */ 405 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 406 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */ 407 unsigned autoresume_disabled:1; /* disabled by the user */ 408 #endif 409 }; 410 #define to_usb_device(d) container_of(d, struct usb_device, dev) 411 412 extern struct usb_device *usb_get_dev(struct usb_device *dev); 413 extern void usb_put_dev(struct usb_device *dev); 414 415 /* USB device locking */ 416 #define usb_lock_device(udev) down(&(udev)->dev.sem) 417 #define usb_unlock_device(udev) up(&(udev)->dev.sem) 418 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 419 extern int usb_lock_device_for_reset(struct usb_device *udev, 420 const struct usb_interface *iface); 421 422 /* USB port reset for device reinitialization */ 423 extern int usb_reset_device(struct usb_device *dev); 424 extern int usb_reset_composite_device(struct usb_device *dev, 425 struct usb_interface *iface); 426 427 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 428 429 /* USB autosuspend and autoresume */ 430 #ifdef CONFIG_USB_SUSPEND 431 extern int usb_autopm_set_interface(struct usb_interface *intf); 432 extern int usb_autopm_get_interface(struct usb_interface *intf); 433 extern void usb_autopm_put_interface(struct usb_interface *intf); 434 435 static inline void usb_autopm_enable(struct usb_interface *intf) 436 { 437 intf->pm_usage_cnt = 0; 438 usb_autopm_set_interface(intf); 439 } 440 441 static inline void usb_autopm_disable(struct usb_interface *intf) 442 { 443 intf->pm_usage_cnt = 1; 444 usb_autopm_set_interface(intf); 445 } 446 447 static inline void usb_mark_last_busy(struct usb_device *udev) 448 { 449 udev->last_busy = jiffies; 450 } 451 452 #else 453 454 static inline int usb_autopm_set_interface(struct usb_interface *intf) 455 { return 0; } 456 457 static inline int usb_autopm_get_interface(struct usb_interface *intf) 458 { return 0; } 459 460 static inline void usb_autopm_put_interface(struct usb_interface *intf) 461 { } 462 static inline void usb_autopm_enable(struct usb_interface *intf) 463 { } 464 static inline void usb_autopm_disable(struct usb_interface *intf) 465 { } 466 static inline void usb_mark_last_busy(struct usb_device *udev) 467 { } 468 #endif 469 470 /*-------------------------------------------------------------------------*/ 471 472 /* for drivers using iso endpoints */ 473 extern int usb_get_current_frame_number (struct usb_device *usb_dev); 474 475 /* used these for multi-interface device registration */ 476 extern int usb_driver_claim_interface(struct usb_driver *driver, 477 struct usb_interface *iface, void* priv); 478 479 /** 480 * usb_interface_claimed - returns true iff an interface is claimed 481 * @iface: the interface being checked 482 * 483 * Returns true (nonzero) iff the interface is claimed, else false (zero). 484 * Callers must own the driver model's usb bus readlock. So driver 485 * probe() entries don't need extra locking, but other call contexts 486 * may need to explicitly claim that lock. 487 * 488 */ 489 static inline int usb_interface_claimed(struct usb_interface *iface) { 490 return (iface->dev.driver != NULL); 491 } 492 493 extern void usb_driver_release_interface(struct usb_driver *driver, 494 struct usb_interface *iface); 495 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 496 const struct usb_device_id *id); 497 extern int usb_match_one_id(struct usb_interface *interface, 498 const struct usb_device_id *id); 499 500 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 501 int minor); 502 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 503 unsigned ifnum); 504 extern struct usb_host_interface *usb_altnum_to_altsetting( 505 const struct usb_interface *intf, unsigned int altnum); 506 507 508 /** 509 * usb_make_path - returns stable device path in the usb tree 510 * @dev: the device whose path is being constructed 511 * @buf: where to put the string 512 * @size: how big is "buf"? 513 * 514 * Returns length of the string (> 0) or negative if size was too small. 515 * 516 * This identifier is intended to be "stable", reflecting physical paths in 517 * hardware such as physical bus addresses for host controllers or ports on 518 * USB hubs. That makes it stay the same until systems are physically 519 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 520 * controllers. Adding and removing devices, including virtual root hubs 521 * in host controller driver modules, does not change these path identifers; 522 * neither does rebooting or re-enumerating. These are more useful identifiers 523 * than changeable ("unstable") ones like bus numbers or device addresses. 524 * 525 * With a partial exception for devices connected to USB 2.0 root hubs, these 526 * identifiers are also predictable. So long as the device tree isn't changed, 527 * plugging any USB device into a given hub port always gives it the same path. 528 * Because of the use of "companion" controllers, devices connected to ports on 529 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 530 * high speed, and a different one if they are full or low speed. 531 */ 532 static inline int usb_make_path (struct usb_device *dev, char *buf, 533 size_t size) 534 { 535 int actual; 536 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 537 dev->devpath); 538 return (actual >= (int)size) ? -1 : actual; 539 } 540 541 /*-------------------------------------------------------------------------*/ 542 543 /** 544 * usb_endpoint_dir_in - check if the endpoint has IN direction 545 * @epd: endpoint to be checked 546 * 547 * Returns true if the endpoint is of type IN, otherwise it returns false. 548 */ 549 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 550 { 551 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 552 } 553 554 /** 555 * usb_endpoint_dir_out - check if the endpoint has OUT direction 556 * @epd: endpoint to be checked 557 * 558 * Returns true if the endpoint is of type OUT, otherwise it returns false. 559 */ 560 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd) 561 { 562 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 563 } 564 565 /** 566 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 567 * @epd: endpoint to be checked 568 * 569 * Returns true if the endpoint is of type bulk, otherwise it returns false. 570 */ 571 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd) 572 { 573 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 574 USB_ENDPOINT_XFER_BULK); 575 } 576 577 /** 578 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 579 * @epd: endpoint to be checked 580 * 581 * Returns true if the endpoint is of type control, otherwise it returns false. 582 */ 583 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd) 584 { 585 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 586 USB_ENDPOINT_XFER_CONTROL); 587 } 588 589 /** 590 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 591 * @epd: endpoint to be checked 592 * 593 * Returns true if the endpoint is of type interrupt, otherwise it returns 594 * false. 595 */ 596 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd) 597 { 598 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 599 USB_ENDPOINT_XFER_INT); 600 } 601 602 /** 603 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 604 * @epd: endpoint to be checked 605 * 606 * Returns true if the endpoint is of type isochronous, otherwise it returns 607 * false. 608 */ 609 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd) 610 { 611 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 612 USB_ENDPOINT_XFER_ISOC); 613 } 614 615 /** 616 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 617 * @epd: endpoint to be checked 618 * 619 * Returns true if the endpoint has bulk transfer type and IN direction, 620 * otherwise it returns false. 621 */ 622 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd) 623 { 624 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 625 } 626 627 /** 628 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 629 * @epd: endpoint to be checked 630 * 631 * Returns true if the endpoint has bulk transfer type and OUT direction, 632 * otherwise it returns false. 633 */ 634 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd) 635 { 636 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 637 } 638 639 /** 640 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 641 * @epd: endpoint to be checked 642 * 643 * Returns true if the endpoint has interrupt transfer type and IN direction, 644 * otherwise it returns false. 645 */ 646 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd) 647 { 648 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 649 } 650 651 /** 652 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 653 * @epd: endpoint to be checked 654 * 655 * Returns true if the endpoint has interrupt transfer type and OUT direction, 656 * otherwise it returns false. 657 */ 658 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd) 659 { 660 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 661 } 662 663 /** 664 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 665 * @epd: endpoint to be checked 666 * 667 * Returns true if the endpoint has isochronous transfer type and IN direction, 668 * otherwise it returns false. 669 */ 670 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd) 671 { 672 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 673 } 674 675 /** 676 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 677 * @epd: endpoint to be checked 678 * 679 * Returns true if the endpoint has isochronous transfer type and OUT direction, 680 * otherwise it returns false. 681 */ 682 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd) 683 { 684 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 685 } 686 687 /*-------------------------------------------------------------------------*/ 688 689 #define USB_DEVICE_ID_MATCH_DEVICE \ 690 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 691 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 692 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 693 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 694 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 695 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 696 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 697 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 698 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 699 #define USB_DEVICE_ID_MATCH_INT_INFO \ 700 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 701 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 702 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 703 704 /** 705 * USB_DEVICE - macro used to describe a specific usb device 706 * @vend: the 16 bit USB Vendor ID 707 * @prod: the 16 bit USB Product ID 708 * 709 * This macro is used to create a struct usb_device_id that matches a 710 * specific device. 711 */ 712 #define USB_DEVICE(vend,prod) \ 713 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 714 .idProduct = (prod) 715 /** 716 * USB_DEVICE_VER - macro used to describe a specific usb device with a 717 * version range 718 * @vend: the 16 bit USB Vendor ID 719 * @prod: the 16 bit USB Product ID 720 * @lo: the bcdDevice_lo value 721 * @hi: the bcdDevice_hi value 722 * 723 * This macro is used to create a struct usb_device_id that matches a 724 * specific device, with a version range. 725 */ 726 #define USB_DEVICE_VER(vend,prod,lo,hi) \ 727 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 728 .idVendor = (vend), .idProduct = (prod), \ 729 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 730 731 /** 732 * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb 733 * device with a specific interface protocol 734 * @vend: the 16 bit USB Vendor ID 735 * @prod: the 16 bit USB Product ID 736 * @pr: bInterfaceProtocol value 737 * 738 * This macro is used to create a struct usb_device_id that matches a 739 * specific interface protocol of devices. 740 */ 741 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \ 742 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 743 .idVendor = (vend), \ 744 .idProduct = (prod), \ 745 .bInterfaceProtocol = (pr) 746 747 /** 748 * USB_DEVICE_INFO - macro used to describe a class of usb devices 749 * @cl: bDeviceClass value 750 * @sc: bDeviceSubClass value 751 * @pr: bDeviceProtocol value 752 * 753 * This macro is used to create a struct usb_device_id that matches a 754 * specific class of devices. 755 */ 756 #define USB_DEVICE_INFO(cl,sc,pr) \ 757 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 758 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 759 760 /** 761 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 762 * @cl: bInterfaceClass value 763 * @sc: bInterfaceSubClass value 764 * @pr: bInterfaceProtocol value 765 * 766 * This macro is used to create a struct usb_device_id that matches a 767 * specific class of interfaces. 768 */ 769 #define USB_INTERFACE_INFO(cl,sc,pr) \ 770 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 771 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 772 773 /* ----------------------------------------------------------------------- */ 774 775 /* Stuff for dynamic usb ids */ 776 struct usb_dynids { 777 spinlock_t lock; 778 struct list_head list; 779 }; 780 781 struct usb_dynid { 782 struct list_head node; 783 struct usb_device_id id; 784 }; 785 786 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 787 struct device_driver *driver, 788 const char *buf, size_t count); 789 790 /** 791 * struct usbdrv_wrap - wrapper for driver-model structure 792 * @driver: The driver-model core driver structure. 793 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 794 */ 795 struct usbdrv_wrap { 796 struct device_driver driver; 797 int for_devices; 798 }; 799 800 /** 801 * struct usb_driver - identifies USB interface driver to usbcore 802 * @name: The driver name should be unique among USB drivers, 803 * and should normally be the same as the module name. 804 * @probe: Called to see if the driver is willing to manage a particular 805 * interface on a device. If it is, probe returns zero and uses 806 * dev_set_drvdata() to associate driver-specific data with the 807 * interface. It may also use usb_set_interface() to specify the 808 * appropriate altsetting. If unwilling to manage the interface, 809 * return a negative errno value. 810 * @disconnect: Called when the interface is no longer accessible, usually 811 * because its device has been (or is being) disconnected or the 812 * driver module is being unloaded. 813 * @ioctl: Used for drivers that want to talk to userspace through 814 * the "usbfs" filesystem. This lets devices provide ways to 815 * expose information to user space regardless of where they 816 * do (or don't) show up otherwise in the filesystem. 817 * @suspend: Called when the device is going to be suspended by the system. 818 * @resume: Called when the device is being resumed by the system. 819 * @pre_reset: Called by usb_reset_composite_device() when the device 820 * is about to be reset. 821 * @post_reset: Called by usb_reset_composite_device() after the device 822 * has been reset. 823 * @id_table: USB drivers use ID table to support hotplugging. 824 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 825 * or your driver's probe function will never get called. 826 * @dynids: used internally to hold the list of dynamically added device 827 * ids for this driver. 828 * @drvwrap: Driver-model core structure wrapper. 829 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 830 * added to this driver by preventing the sysfs file from being created. 831 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 832 * for interfaces bound to this driver. 833 * 834 * USB interface drivers must provide a name, probe() and disconnect() 835 * methods, and an id_table. Other driver fields are optional. 836 * 837 * The id_table is used in hotplugging. It holds a set of descriptors, 838 * and specialized data may be associated with each entry. That table 839 * is used by both user and kernel mode hotplugging support. 840 * 841 * The probe() and disconnect() methods are called in a context where 842 * they can sleep, but they should avoid abusing the privilege. Most 843 * work to connect to a device should be done when the device is opened, 844 * and undone at the last close. The disconnect code needs to address 845 * concurrency issues with respect to open() and close() methods, as 846 * well as forcing all pending I/O requests to complete (by unlinking 847 * them as necessary, and blocking until the unlinks complete). 848 */ 849 struct usb_driver { 850 const char *name; 851 852 int (*probe) (struct usb_interface *intf, 853 const struct usb_device_id *id); 854 855 void (*disconnect) (struct usb_interface *intf); 856 857 int (*ioctl) (struct usb_interface *intf, unsigned int code, 858 void *buf); 859 860 int (*suspend) (struct usb_interface *intf, pm_message_t message); 861 int (*resume) (struct usb_interface *intf); 862 863 void (*pre_reset) (struct usb_interface *intf); 864 void (*post_reset) (struct usb_interface *intf); 865 866 const struct usb_device_id *id_table; 867 868 struct usb_dynids dynids; 869 struct usbdrv_wrap drvwrap; 870 unsigned int no_dynamic_id:1; 871 unsigned int supports_autosuspend:1; 872 }; 873 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 874 875 /** 876 * struct usb_device_driver - identifies USB device driver to usbcore 877 * @name: The driver name should be unique among USB drivers, 878 * and should normally be the same as the module name. 879 * @probe: Called to see if the driver is willing to manage a particular 880 * device. If it is, probe returns zero and uses dev_set_drvdata() 881 * to associate driver-specific data with the device. If unwilling 882 * to manage the device, return a negative errno value. 883 * @disconnect: Called when the device is no longer accessible, usually 884 * because it has been (or is being) disconnected or the driver's 885 * module is being unloaded. 886 * @suspend: Called when the device is going to be suspended by the system. 887 * @resume: Called when the device is being resumed by the system. 888 * @drvwrap: Driver-model core structure wrapper. 889 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 890 * for devices bound to this driver. 891 * 892 * USB drivers must provide all the fields listed above except drvwrap. 893 */ 894 struct usb_device_driver { 895 const char *name; 896 897 int (*probe) (struct usb_device *udev); 898 void (*disconnect) (struct usb_device *udev); 899 900 int (*suspend) (struct usb_device *udev, pm_message_t message); 901 int (*resume) (struct usb_device *udev); 902 struct usbdrv_wrap drvwrap; 903 unsigned int supports_autosuspend:1; 904 }; 905 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 906 drvwrap.driver) 907 908 extern struct bus_type usb_bus_type; 909 910 /** 911 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 912 * @name: the usb class device name for this driver. Will show up in sysfs. 913 * @fops: pointer to the struct file_operations of this driver. 914 * @minor_base: the start of the minor range for this driver. 915 * 916 * This structure is used for the usb_register_dev() and 917 * usb_unregister_dev() functions, to consolidate a number of the 918 * parameters used for them. 919 */ 920 struct usb_class_driver { 921 char *name; 922 const struct file_operations *fops; 923 int minor_base; 924 }; 925 926 /* 927 * use these in module_init()/module_exit() 928 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 929 */ 930 extern int usb_register_driver(struct usb_driver *, struct module *, 931 const char *); 932 static inline int usb_register(struct usb_driver *driver) 933 { 934 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 935 } 936 extern void usb_deregister(struct usb_driver *); 937 938 extern int usb_register_device_driver(struct usb_device_driver *, 939 struct module *); 940 extern void usb_deregister_device_driver(struct usb_device_driver *); 941 942 extern int usb_register_dev(struct usb_interface *intf, 943 struct usb_class_driver *class_driver); 944 extern void usb_deregister_dev(struct usb_interface *intf, 945 struct usb_class_driver *class_driver); 946 947 extern int usb_disabled(void); 948 949 /* ----------------------------------------------------------------------- */ 950 951 /* 952 * URB support, for asynchronous request completions 953 */ 954 955 /* 956 * urb->transfer_flags: 957 */ 958 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 959 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 960 * ignored */ 961 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 962 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 963 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 964 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 965 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 966 * needed */ 967 968 struct usb_iso_packet_descriptor { 969 unsigned int offset; 970 unsigned int length; /* expected length */ 971 unsigned int actual_length; 972 int status; 973 }; 974 975 struct urb; 976 977 typedef void (*usb_complete_t)(struct urb *); 978 979 /** 980 * struct urb - USB Request Block 981 * @urb_list: For use by current owner of the URB. 982 * @pipe: Holds endpoint number, direction, type, and more. 983 * Create these values with the eight macros available; 984 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 985 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 986 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 987 * numbers range from zero to fifteen. Note that "in" endpoint two 988 * is a different endpoint (and pipe) from "out" endpoint two. 989 * The current configuration controls the existence, type, and 990 * maximum packet size of any given endpoint. 991 * @dev: Identifies the USB device to perform the request. 992 * @status: This is read in non-iso completion functions to get the 993 * status of the particular request. ISO requests only use it 994 * to tell whether the URB was unlinked; detailed status for 995 * each frame is in the fields of the iso_frame-desc. 996 * @transfer_flags: A variety of flags may be used to affect how URB 997 * submission, unlinking, or operation are handled. Different 998 * kinds of URB can use different flags. 999 * @transfer_buffer: This identifies the buffer to (or from) which 1000 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1001 * is set). This buffer must be suitable for DMA; allocate it with 1002 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1003 * of this buffer will be modified. This buffer is used for the data 1004 * stage of control transfers. 1005 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1006 * the device driver is saying that it provided this DMA address, 1007 * which the host controller driver should use in preference to the 1008 * transfer_buffer. 1009 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1010 * be broken up into chunks according to the current maximum packet 1011 * size for the endpoint, which is a function of the configuration 1012 * and is encoded in the pipe. When the length is zero, neither 1013 * transfer_buffer nor transfer_dma is used. 1014 * @actual_length: This is read in non-iso completion functions, and 1015 * it tells how many bytes (out of transfer_buffer_length) were 1016 * transferred. It will normally be the same as requested, unless 1017 * either an error was reported or a short read was performed. 1018 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1019 * short reads be reported as errors. 1020 * @setup_packet: Only used for control transfers, this points to eight bytes 1021 * of setup data. Control transfers always start by sending this data 1022 * to the device. Then transfer_buffer is read or written, if needed. 1023 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1024 * device driver has provided this DMA address for the setup packet. 1025 * The host controller driver should use this in preference to 1026 * setup_packet. 1027 * @start_frame: Returns the initial frame for isochronous transfers. 1028 * @number_of_packets: Lists the number of ISO transfer buffers. 1029 * @interval: Specifies the polling interval for interrupt or isochronous 1030 * transfers. The units are frames (milliseconds) for for full and low 1031 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1032 * @error_count: Returns the number of ISO transfers that reported errors. 1033 * @context: For use in completion functions. This normally points to 1034 * request-specific driver context. 1035 * @complete: Completion handler. This URB is passed as the parameter to the 1036 * completion function. The completion function may then do what 1037 * it likes with the URB, including resubmitting or freeing it. 1038 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1039 * collect the transfer status for each buffer. 1040 * 1041 * This structure identifies USB transfer requests. URBs must be allocated by 1042 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1043 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1044 * are submitted using usb_submit_urb(), and pending requests may be canceled 1045 * using usb_unlink_urb() or usb_kill_urb(). 1046 * 1047 * Data Transfer Buffers: 1048 * 1049 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1050 * taken from the general page pool. That is provided by transfer_buffer 1051 * (control requests also use setup_packet), and host controller drivers 1052 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1053 * mapping operations can be expensive on some platforms (perhaps using a dma 1054 * bounce buffer or talking to an IOMMU), 1055 * although they're cheap on commodity x86 and ppc hardware. 1056 * 1057 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1058 * which tell the host controller driver that no such mapping is needed since 1059 * the device driver is DMA-aware. For example, a device driver might 1060 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1061 * When these transfer flags are provided, host controller drivers will 1062 * attempt to use the dma addresses found in the transfer_dma and/or 1063 * setup_dma fields rather than determining a dma address themselves. (Note 1064 * that transfer_buffer and setup_packet must still be set because not all 1065 * host controllers use DMA, nor do virtual root hubs). 1066 * 1067 * Initialization: 1068 * 1069 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1070 * zero), and complete fields. All URBs must also initialize 1071 * transfer_buffer and transfer_buffer_length. They may provide the 1072 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1073 * to be treated as errors; that flag is invalid for write requests. 1074 * 1075 * Bulk URBs may 1076 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1077 * should always terminate with a short packet, even if it means adding an 1078 * extra zero length packet. 1079 * 1080 * Control URBs must provide a setup_packet. The setup_packet and 1081 * transfer_buffer may each be mapped for DMA or not, independently of 1082 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1083 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1084 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1085 * 1086 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1087 * or, for highspeed devices, 125 microsecond units) 1088 * to poll for transfers. After the URB has been submitted, the interval 1089 * field reflects how the transfer was actually scheduled. 1090 * The polling interval may be more frequent than requested. 1091 * For example, some controllers have a maximum interval of 32 milliseconds, 1092 * while others support intervals of up to 1024 milliseconds. 1093 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1094 * endpoints, as well as high speed interrupt endpoints, the encoding of 1095 * the transfer interval in the endpoint descriptor is logarithmic. 1096 * Device drivers must convert that value to linear units themselves.) 1097 * 1098 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1099 * the host controller to schedule the transfer as soon as bandwidth 1100 * utilization allows, and then set start_frame to reflect the actual frame 1101 * selected during submission. Otherwise drivers must specify the start_frame 1102 * and handle the case where the transfer can't begin then. However, drivers 1103 * won't know how bandwidth is currently allocated, and while they can 1104 * find the current frame using usb_get_current_frame_number () they can't 1105 * know the range for that frame number. (Ranges for frame counter values 1106 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1107 * 1108 * Isochronous URBs have a different data transfer model, in part because 1109 * the quality of service is only "best effort". Callers provide specially 1110 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1111 * at the end. Each such packet is an individual ISO transfer. Isochronous 1112 * URBs are normally queued, submitted by drivers to arrange that 1113 * transfers are at least double buffered, and then explicitly resubmitted 1114 * in completion handlers, so 1115 * that data (such as audio or video) streams at as constant a rate as the 1116 * host controller scheduler can support. 1117 * 1118 * Completion Callbacks: 1119 * 1120 * The completion callback is made in_interrupt(), and one of the first 1121 * things that a completion handler should do is check the status field. 1122 * The status field is provided for all URBs. It is used to report 1123 * unlinked URBs, and status for all non-ISO transfers. It should not 1124 * be examined before the URB is returned to the completion handler. 1125 * 1126 * The context field is normally used to link URBs back to the relevant 1127 * driver or request state. 1128 * 1129 * When the completion callback is invoked for non-isochronous URBs, the 1130 * actual_length field tells how many bytes were transferred. This field 1131 * is updated even when the URB terminated with an error or was unlinked. 1132 * 1133 * ISO transfer status is reported in the status and actual_length fields 1134 * of the iso_frame_desc array, and the number of errors is reported in 1135 * error_count. Completion callbacks for ISO transfers will normally 1136 * (re)submit URBs to ensure a constant transfer rate. 1137 * 1138 * Note that even fields marked "public" should not be touched by the driver 1139 * when the urb is owned by the hcd, that is, since the call to 1140 * usb_submit_urb() till the entry into the completion routine. 1141 */ 1142 struct urb 1143 { 1144 /* private: usb core and host controller only fields in the urb */ 1145 struct kref kref; /* reference count of the URB */ 1146 spinlock_t lock; /* lock for the URB */ 1147 void *hcpriv; /* private data for host controller */ 1148 atomic_t use_count; /* concurrent submissions counter */ 1149 u8 reject; /* submissions will fail */ 1150 1151 /* public: documented fields in the urb that can be used by drivers */ 1152 struct list_head urb_list; /* list head for use by the urb's 1153 * current owner */ 1154 struct usb_device *dev; /* (in) pointer to associated device */ 1155 unsigned int pipe; /* (in) pipe information */ 1156 int status; /* (return) non-ISO status */ 1157 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1158 void *transfer_buffer; /* (in) associated data buffer */ 1159 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1160 int transfer_buffer_length; /* (in) data buffer length */ 1161 int actual_length; /* (return) actual transfer length */ 1162 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1163 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1164 int start_frame; /* (modify) start frame (ISO) */ 1165 int number_of_packets; /* (in) number of ISO packets */ 1166 int interval; /* (modify) transfer interval 1167 * (INT/ISO) */ 1168 int error_count; /* (return) number of ISO errors */ 1169 void *context; /* (in) context for completion */ 1170 usb_complete_t complete; /* (in) completion routine */ 1171 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1172 /* (in) ISO ONLY */ 1173 }; 1174 1175 /* ----------------------------------------------------------------------- */ 1176 1177 /** 1178 * usb_fill_control_urb - initializes a control urb 1179 * @urb: pointer to the urb to initialize. 1180 * @dev: pointer to the struct usb_device for this urb. 1181 * @pipe: the endpoint pipe 1182 * @setup_packet: pointer to the setup_packet buffer 1183 * @transfer_buffer: pointer to the transfer buffer 1184 * @buffer_length: length of the transfer buffer 1185 * @complete_fn: pointer to the usb_complete_t function 1186 * @context: what to set the urb context to. 1187 * 1188 * Initializes a control urb with the proper information needed to submit 1189 * it to a device. 1190 */ 1191 static inline void usb_fill_control_urb (struct urb *urb, 1192 struct usb_device *dev, 1193 unsigned int pipe, 1194 unsigned char *setup_packet, 1195 void *transfer_buffer, 1196 int buffer_length, 1197 usb_complete_t complete_fn, 1198 void *context) 1199 { 1200 spin_lock_init(&urb->lock); 1201 urb->dev = dev; 1202 urb->pipe = pipe; 1203 urb->setup_packet = setup_packet; 1204 urb->transfer_buffer = transfer_buffer; 1205 urb->transfer_buffer_length = buffer_length; 1206 urb->complete = complete_fn; 1207 urb->context = context; 1208 } 1209 1210 /** 1211 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1212 * @urb: pointer to the urb to initialize. 1213 * @dev: pointer to the struct usb_device for this urb. 1214 * @pipe: the endpoint pipe 1215 * @transfer_buffer: pointer to the transfer buffer 1216 * @buffer_length: length of the transfer buffer 1217 * @complete_fn: pointer to the usb_complete_t function 1218 * @context: what to set the urb context to. 1219 * 1220 * Initializes a bulk urb with the proper information needed to submit it 1221 * to a device. 1222 */ 1223 static inline void usb_fill_bulk_urb (struct urb *urb, 1224 struct usb_device *dev, 1225 unsigned int pipe, 1226 void *transfer_buffer, 1227 int buffer_length, 1228 usb_complete_t complete_fn, 1229 void *context) 1230 { 1231 spin_lock_init(&urb->lock); 1232 urb->dev = dev; 1233 urb->pipe = pipe; 1234 urb->transfer_buffer = transfer_buffer; 1235 urb->transfer_buffer_length = buffer_length; 1236 urb->complete = complete_fn; 1237 urb->context = context; 1238 } 1239 1240 /** 1241 * usb_fill_int_urb - macro to help initialize a interrupt urb 1242 * @urb: pointer to the urb to initialize. 1243 * @dev: pointer to the struct usb_device for this urb. 1244 * @pipe: the endpoint pipe 1245 * @transfer_buffer: pointer to the transfer buffer 1246 * @buffer_length: length of the transfer buffer 1247 * @complete_fn: pointer to the usb_complete_t function 1248 * @context: what to set the urb context to. 1249 * @interval: what to set the urb interval to, encoded like 1250 * the endpoint descriptor's bInterval value. 1251 * 1252 * Initializes a interrupt urb with the proper information needed to submit 1253 * it to a device. 1254 * Note that high speed interrupt endpoints use a logarithmic encoding of 1255 * the endpoint interval, and express polling intervals in microframes 1256 * (eight per millisecond) rather than in frames (one per millisecond). 1257 */ 1258 static inline void usb_fill_int_urb (struct urb *urb, 1259 struct usb_device *dev, 1260 unsigned int pipe, 1261 void *transfer_buffer, 1262 int buffer_length, 1263 usb_complete_t complete_fn, 1264 void *context, 1265 int interval) 1266 { 1267 spin_lock_init(&urb->lock); 1268 urb->dev = dev; 1269 urb->pipe = pipe; 1270 urb->transfer_buffer = transfer_buffer; 1271 urb->transfer_buffer_length = buffer_length; 1272 urb->complete = complete_fn; 1273 urb->context = context; 1274 if (dev->speed == USB_SPEED_HIGH) 1275 urb->interval = 1 << (interval - 1); 1276 else 1277 urb->interval = interval; 1278 urb->start_frame = -1; 1279 } 1280 1281 extern void usb_init_urb(struct urb *urb); 1282 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1283 extern void usb_free_urb(struct urb *urb); 1284 #define usb_put_urb usb_free_urb 1285 extern struct urb *usb_get_urb(struct urb *urb); 1286 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1287 extern int usb_unlink_urb(struct urb *urb); 1288 extern void usb_kill_urb(struct urb *urb); 1289 1290 void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1291 gfp_t mem_flags, dma_addr_t *dma); 1292 void usb_buffer_free (struct usb_device *dev, size_t size, 1293 void *addr, dma_addr_t dma); 1294 1295 #if 0 1296 struct urb *usb_buffer_map (struct urb *urb); 1297 void usb_buffer_dmasync (struct urb *urb); 1298 void usb_buffer_unmap (struct urb *urb); 1299 #endif 1300 1301 struct scatterlist; 1302 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe, 1303 struct scatterlist *sg, int nents); 1304 #if 0 1305 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe, 1306 struct scatterlist *sg, int n_hw_ents); 1307 #endif 1308 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe, 1309 struct scatterlist *sg, int n_hw_ents); 1310 1311 /*-------------------------------------------------------------------* 1312 * SYNCHRONOUS CALL SUPPORT * 1313 *-------------------------------------------------------------------*/ 1314 1315 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1316 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1317 void *data, __u16 size, int timeout); 1318 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1319 void *data, int len, int *actual_length, int timeout); 1320 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1321 void *data, int len, int *actual_length, 1322 int timeout); 1323 1324 /* wrappers around usb_control_msg() for the most common standard requests */ 1325 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1326 unsigned char descindex, void *buf, int size); 1327 extern int usb_get_status(struct usb_device *dev, 1328 int type, int target, void *data); 1329 extern int usb_string(struct usb_device *dev, int index, 1330 char *buf, size_t size); 1331 1332 /* wrappers that also update important state inside usbcore */ 1333 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1334 extern int usb_reset_configuration(struct usb_device *dev); 1335 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1336 1337 /* this request isn't really synchronous, but it belongs with the others */ 1338 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1339 1340 /* 1341 * timeouts, in milliseconds, used for sending/receiving control messages 1342 * they typically complete within a few frames (msec) after they're issued 1343 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1344 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1345 */ 1346 #define USB_CTRL_GET_TIMEOUT 5000 1347 #define USB_CTRL_SET_TIMEOUT 5000 1348 1349 1350 /** 1351 * struct usb_sg_request - support for scatter/gather I/O 1352 * @status: zero indicates success, else negative errno 1353 * @bytes: counts bytes transferred. 1354 * 1355 * These requests are initialized using usb_sg_init(), and then are used 1356 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1357 * members of the request object aren't for driver access. 1358 * 1359 * The status and bytecount values are valid only after usb_sg_wait() 1360 * returns. If the status is zero, then the bytecount matches the total 1361 * from the request. 1362 * 1363 * After an error completion, drivers may need to clear a halt condition 1364 * on the endpoint. 1365 */ 1366 struct usb_sg_request { 1367 int status; 1368 size_t bytes; 1369 1370 /* 1371 * members below are private: to usbcore, 1372 * and are not provided for driver access! 1373 */ 1374 spinlock_t lock; 1375 1376 struct usb_device *dev; 1377 int pipe; 1378 struct scatterlist *sg; 1379 int nents; 1380 1381 int entries; 1382 struct urb **urbs; 1383 1384 int count; 1385 struct completion complete; 1386 }; 1387 1388 int usb_sg_init ( 1389 struct usb_sg_request *io, 1390 struct usb_device *dev, 1391 unsigned pipe, 1392 unsigned period, 1393 struct scatterlist *sg, 1394 int nents, 1395 size_t length, 1396 gfp_t mem_flags 1397 ); 1398 void usb_sg_cancel (struct usb_sg_request *io); 1399 void usb_sg_wait (struct usb_sg_request *io); 1400 1401 1402 /* ----------------------------------------------------------------------- */ 1403 1404 /* 1405 * For various legacy reasons, Linux has a small cookie that's paired with 1406 * a struct usb_device to identify an endpoint queue. Queue characteristics 1407 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1408 * an unsigned int encoded as: 1409 * 1410 * - direction: bit 7 (0 = Host-to-Device [Out], 1411 * 1 = Device-to-Host [In] ... 1412 * like endpoint bEndpointAddress) 1413 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1414 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1415 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1416 * 10 = control, 11 = bulk) 1417 * 1418 * Given the device address and endpoint descriptor, pipes are redundant. 1419 */ 1420 1421 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1422 /* (yet ... they're the values used by usbfs) */ 1423 #define PIPE_ISOCHRONOUS 0 1424 #define PIPE_INTERRUPT 1 1425 #define PIPE_CONTROL 2 1426 #define PIPE_BULK 3 1427 1428 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1429 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1430 1431 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1432 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1433 1434 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1435 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1436 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1437 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1438 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1439 1440 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1441 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1442 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1443 #define usb_settoggle(dev, ep, out, bit) \ 1444 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1445 ((bit) << (ep))) 1446 1447 1448 static inline unsigned int __create_pipe(struct usb_device *dev, 1449 unsigned int endpoint) 1450 { 1451 return (dev->devnum << 8) | (endpoint << 15); 1452 } 1453 1454 /* Create various pipes... */ 1455 #define usb_sndctrlpipe(dev,endpoint) \ 1456 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1457 #define usb_rcvctrlpipe(dev,endpoint) \ 1458 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1459 #define usb_sndisocpipe(dev,endpoint) \ 1460 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1461 #define usb_rcvisocpipe(dev,endpoint) \ 1462 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1463 #define usb_sndbulkpipe(dev,endpoint) \ 1464 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1465 #define usb_rcvbulkpipe(dev,endpoint) \ 1466 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1467 #define usb_sndintpipe(dev,endpoint) \ 1468 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1469 #define usb_rcvintpipe(dev,endpoint) \ 1470 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1471 1472 /*-------------------------------------------------------------------------*/ 1473 1474 static inline __u16 1475 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1476 { 1477 struct usb_host_endpoint *ep; 1478 unsigned epnum = usb_pipeendpoint(pipe); 1479 1480 if (is_out) { 1481 WARN_ON(usb_pipein(pipe)); 1482 ep = udev->ep_out[epnum]; 1483 } else { 1484 WARN_ON(usb_pipeout(pipe)); 1485 ep = udev->ep_in[epnum]; 1486 } 1487 if (!ep) 1488 return 0; 1489 1490 /* NOTE: only 0x07ff bits are for packet size... */ 1491 return le16_to_cpu(ep->desc.wMaxPacketSize); 1492 } 1493 1494 /* ----------------------------------------------------------------------- */ 1495 1496 /* Events from the usb core */ 1497 #define USB_DEVICE_ADD 0x0001 1498 #define USB_DEVICE_REMOVE 0x0002 1499 #define USB_BUS_ADD 0x0003 1500 #define USB_BUS_REMOVE 0x0004 1501 extern void usb_register_notify(struct notifier_block *nb); 1502 extern void usb_unregister_notify(struct notifier_block *nb); 1503 1504 #ifdef DEBUG 1505 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1506 __FILE__ , ## arg) 1507 #else 1508 #define dbg(format, arg...) do {} while (0) 1509 #endif 1510 1511 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1512 __FILE__ , ## arg) 1513 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1514 __FILE__ , ## arg) 1515 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1516 __FILE__ , ## arg) 1517 1518 1519 #endif /* __KERNEL__ */ 1520 1521 #endif 1522