xref: /linux-6.15/include/linux/usb.h (revision 96532151)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 
24 struct usb_device;
25 struct usb_driver;
26 
27 /*-------------------------------------------------------------------------*/
28 
29 /*
30  * Host-side wrappers for standard USB descriptors ... these are parsed
31  * from the data provided by devices.  Parsing turns them from a flat
32  * sequence of descriptors into a hierarchy:
33  *
34  *  - devices have one (usually) or more configs;
35  *  - configs have one (often) or more interfaces;
36  *  - interfaces have one (usually) or more settings;
37  *  - each interface setting has zero or (usually) more endpoints.
38  *
39  * And there might be other descriptors mixed in with those.
40  *
41  * Devices may also have class-specific or vendor-specific descriptors.
42  */
43 
44 struct ep_device;
45 
46 /**
47  * struct usb_host_endpoint - host-side endpoint descriptor and queue
48  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49  * @urb_list: urbs queued to this endpoint; maintained by usbcore
50  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51  *	with one or more transfer descriptors (TDs) per urb
52  * @ep_dev: ep_device for sysfs info
53  * @extra: descriptors following this endpoint in the configuration
54  * @extralen: how many bytes of "extra" are valid
55  *
56  * USB requests are always queued to a given endpoint, identified by a
57  * descriptor within an active interface in a given USB configuration.
58  */
59 struct usb_host_endpoint {
60 	struct usb_endpoint_descriptor	desc;
61 	struct list_head		urb_list;
62 	void				*hcpriv;
63 	struct ep_device 		*ep_dev;	/* For sysfs info */
64 
65 	unsigned char *extra;   /* Extra descriptors */
66 	int extralen;
67 };
68 
69 /* host-side wrapper for one interface setting's parsed descriptors */
70 struct usb_host_interface {
71 	struct usb_interface_descriptor	desc;
72 
73 	/* array of desc.bNumEndpoint endpoints associated with this
74 	 * interface setting.  these will be in no particular order.
75 	 */
76 	struct usb_host_endpoint *endpoint;
77 
78 	char *string;		/* iInterface string, if present */
79 	unsigned char *extra;   /* Extra descriptors */
80 	int extralen;
81 };
82 
83 enum usb_interface_condition {
84 	USB_INTERFACE_UNBOUND = 0,
85 	USB_INTERFACE_BINDING,
86 	USB_INTERFACE_BOUND,
87 	USB_INTERFACE_UNBINDING,
88 };
89 
90 /**
91  * struct usb_interface - what usb device drivers talk to
92  * @altsetting: array of interface structures, one for each alternate
93  * 	setting that may be selected.  Each one includes a set of
94  * 	endpoint configurations.  They will be in no particular order.
95  * @num_altsetting: number of altsettings defined.
96  * @cur_altsetting: the current altsetting.
97  * @driver: the USB driver that is bound to this interface.
98  * @minor: the minor number assigned to this interface, if this
99  *	interface is bound to a driver that uses the USB major number.
100  *	If this interface does not use the USB major, this field should
101  *	be unused.  The driver should set this value in the probe()
102  *	function of the driver, after it has been assigned a minor
103  *	number from the USB core by calling usb_register_dev().
104  * @condition: binding state of the interface: not bound, binding
105  *	(in probe()), bound to a driver, or unbinding (in disconnect())
106  * @is_active: flag set when the interface is bound and not suspended.
107  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
108  *	capability during autosuspend.
109  * @dev: driver model's view of this device
110  * @usb_dev: if an interface is bound to the USB major, this will point
111  *	to the sysfs representation for that device.
112  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
113  *	allowed unless the counter is 0.
114  *
115  * USB device drivers attach to interfaces on a physical device.  Each
116  * interface encapsulates a single high level function, such as feeding
117  * an audio stream to a speaker or reporting a change in a volume control.
118  * Many USB devices only have one interface.  The protocol used to talk to
119  * an interface's endpoints can be defined in a usb "class" specification,
120  * or by a product's vendor.  The (default) control endpoint is part of
121  * every interface, but is never listed among the interface's descriptors.
122  *
123  * The driver that is bound to the interface can use standard driver model
124  * calls such as dev_get_drvdata() on the dev member of this structure.
125  *
126  * Each interface may have alternate settings.  The initial configuration
127  * of a device sets altsetting 0, but the device driver can change
128  * that setting using usb_set_interface().  Alternate settings are often
129  * used to control the use of periodic endpoints, such as by having
130  * different endpoints use different amounts of reserved USB bandwidth.
131  * All standards-conformant USB devices that use isochronous endpoints
132  * will use them in non-default settings.
133  *
134  * The USB specification says that alternate setting numbers must run from
135  * 0 to one less than the total number of alternate settings.  But some
136  * devices manage to mess this up, and the structures aren't necessarily
137  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
138  * look up an alternate setting in the altsetting array based on its number.
139  */
140 struct usb_interface {
141 	/* array of alternate settings for this interface,
142 	 * stored in no particular order */
143 	struct usb_host_interface *altsetting;
144 
145 	struct usb_host_interface *cur_altsetting;	/* the currently
146 					 * active alternate setting */
147 	unsigned num_altsetting;	/* number of alternate settings */
148 
149 	int minor;			/* minor number this interface is
150 					 * bound to */
151 	enum usb_interface_condition condition;		/* state of binding */
152 	unsigned is_active:1;		/* the interface is not suspended */
153 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
154 
155 	struct device dev;		/* interface specific device info */
156 	struct device *usb_dev;		/* pointer to the usb class's device, if any */
157 	int pm_usage_cnt;		/* usage counter for autosuspend */
158 };
159 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
160 #define	interface_to_usbdev(intf) \
161 	container_of(intf->dev.parent, struct usb_device, dev)
162 
163 static inline void *usb_get_intfdata (struct usb_interface *intf)
164 {
165 	return dev_get_drvdata (&intf->dev);
166 }
167 
168 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
169 {
170 	dev_set_drvdata(&intf->dev, data);
171 }
172 
173 struct usb_interface *usb_get_intf(struct usb_interface *intf);
174 void usb_put_intf(struct usb_interface *intf);
175 
176 /* this maximum is arbitrary */
177 #define USB_MAXINTERFACES	32
178 
179 /**
180  * struct usb_interface_cache - long-term representation of a device interface
181  * @num_altsetting: number of altsettings defined.
182  * @ref: reference counter.
183  * @altsetting: variable-length array of interface structures, one for
184  *	each alternate setting that may be selected.  Each one includes a
185  *	set of endpoint configurations.  They will be in no particular order.
186  *
187  * These structures persist for the lifetime of a usb_device, unlike
188  * struct usb_interface (which persists only as long as its configuration
189  * is installed).  The altsetting arrays can be accessed through these
190  * structures at any time, permitting comparison of configurations and
191  * providing support for the /proc/bus/usb/devices pseudo-file.
192  */
193 struct usb_interface_cache {
194 	unsigned num_altsetting;	/* number of alternate settings */
195 	struct kref ref;		/* reference counter */
196 
197 	/* variable-length array of alternate settings for this interface,
198 	 * stored in no particular order */
199 	struct usb_host_interface altsetting[0];
200 };
201 #define	ref_to_usb_interface_cache(r) \
202 		container_of(r, struct usb_interface_cache, ref)
203 #define	altsetting_to_usb_interface_cache(a) \
204 		container_of(a, struct usb_interface_cache, altsetting[0])
205 
206 /**
207  * struct usb_host_config - representation of a device's configuration
208  * @desc: the device's configuration descriptor.
209  * @string: pointer to the cached version of the iConfiguration string, if
210  *	present for this configuration.
211  * @interface: array of pointers to usb_interface structures, one for each
212  *	interface in the configuration.  The number of interfaces is stored
213  *	in desc.bNumInterfaces.  These pointers are valid only while the
214  *	the configuration is active.
215  * @intf_cache: array of pointers to usb_interface_cache structures, one
216  *	for each interface in the configuration.  These structures exist
217  *	for the entire life of the device.
218  * @extra: pointer to buffer containing all extra descriptors associated
219  *	with this configuration (those preceding the first interface
220  *	descriptor).
221  * @extralen: length of the extra descriptors buffer.
222  *
223  * USB devices may have multiple configurations, but only one can be active
224  * at any time.  Each encapsulates a different operational environment;
225  * for example, a dual-speed device would have separate configurations for
226  * full-speed and high-speed operation.  The number of configurations
227  * available is stored in the device descriptor as bNumConfigurations.
228  *
229  * A configuration can contain multiple interfaces.  Each corresponds to
230  * a different function of the USB device, and all are available whenever
231  * the configuration is active.  The USB standard says that interfaces
232  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
233  * of devices get this wrong.  In addition, the interface array is not
234  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
235  * look up an interface entry based on its number.
236  *
237  * Device drivers should not attempt to activate configurations.  The choice
238  * of which configuration to install is a policy decision based on such
239  * considerations as available power, functionality provided, and the user's
240  * desires (expressed through userspace tools).  However, drivers can call
241  * usb_reset_configuration() to reinitialize the current configuration and
242  * all its interfaces.
243  */
244 struct usb_host_config {
245 	struct usb_config_descriptor	desc;
246 
247 	char *string;		/* iConfiguration string, if present */
248 	/* the interfaces associated with this configuration,
249 	 * stored in no particular order */
250 	struct usb_interface *interface[USB_MAXINTERFACES];
251 
252 	/* Interface information available even when this is not the
253 	 * active configuration */
254 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
255 
256 	unsigned char *extra;   /* Extra descriptors */
257 	int extralen;
258 };
259 
260 int __usb_get_extra_descriptor(char *buffer, unsigned size,
261 	unsigned char type, void **ptr);
262 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
263 	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
264 		type,(void**)ptr)
265 
266 /* ----------------------------------------------------------------------- */
267 
268 /* USB device number allocation bitmap */
269 struct usb_devmap {
270 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
271 };
272 
273 /*
274  * Allocated per bus (tree of devices) we have:
275  */
276 struct usb_bus {
277 	struct device *controller;	/* host/master side hardware */
278 	int busnum;			/* Bus number (in order of reg) */
279 	char *bus_name;			/* stable id (PCI slot_name etc) */
280 	u8 uses_dma;			/* Does the host controller use DMA? */
281 	u8 otg_port;			/* 0, or number of OTG/HNP port */
282 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
283 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
284 
285 	int devnum_next;		/* Next open device number in
286 					 * round-robin allocation */
287 
288 	struct usb_devmap devmap;	/* device address allocation map */
289 	struct usb_device *root_hub;	/* Root hub */
290 	struct list_head bus_list;	/* list of busses */
291 
292 	int bandwidth_allocated;	/* on this bus: how much of the time
293 					 * reserved for periodic (intr/iso)
294 					 * requests is used, on average?
295 					 * Units: microseconds/frame.
296 					 * Limits: Full/low speed reserve 90%,
297 					 * while high speed reserves 80%.
298 					 */
299 	int bandwidth_int_reqs;		/* number of Interrupt requests */
300 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
301 
302 #ifdef CONFIG_USB_DEVICEFS
303 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
304 #endif
305 	struct class_device *class_dev;	/* class device for this bus */
306 
307 #if defined(CONFIG_USB_MON)
308 	struct mon_bus *mon_bus;	/* non-null when associated */
309 	int monitored;			/* non-zero when monitored */
310 #endif
311 };
312 
313 /* ----------------------------------------------------------------------- */
314 
315 /* This is arbitrary.
316  * From USB 2.0 spec Table 11-13, offset 7, a hub can
317  * have up to 255 ports. The most yet reported is 10.
318  *
319  * Current Wireless USB host hardware (Intel i1480 for example) allows
320  * up to 22 devices to connect. Upcoming hardware might raise that
321  * limit. Because the arrays need to add a bit for hub status data, we
322  * do 31, so plus one evens out to four bytes.
323  */
324 #define USB_MAXCHILDREN		(31)
325 
326 struct usb_tt;
327 
328 /*
329  * struct usb_device - kernel's representation of a USB device
330  *
331  * FIXME: Write the kerneldoc!
332  *
333  * Usbcore drivers should not set usbdev->state directly.  Instead use
334  * usb_set_device_state().
335  */
336 struct usb_device {
337 	int		devnum;		/* Address on USB bus */
338 	char		devpath [16];	/* Use in messages: /port/port/... */
339 	enum usb_device_state	state;	/* configured, not attached, etc */
340 	enum usb_device_speed	speed;	/* high/full/low (or error) */
341 
342 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
343 	int		ttport;		/* device port on that tt hub */
344 
345 	unsigned int toggle[2];		/* one bit for each endpoint
346 					 * ([0] = IN, [1] = OUT) */
347 
348 	struct usb_device *parent;	/* our hub, unless we're the root */
349 	struct usb_bus *bus;		/* Bus we're part of */
350 	struct usb_host_endpoint ep0;
351 
352 	struct device dev;		/* Generic device interface */
353 
354 	struct usb_device_descriptor descriptor;/* Descriptor */
355 	struct usb_host_config *config;	/* All of the configs */
356 
357 	struct usb_host_config *actconfig;/* the active configuration */
358 	struct usb_host_endpoint *ep_in[16];
359 	struct usb_host_endpoint *ep_out[16];
360 
361 	char **rawdescriptors;		/* Raw descriptors for each config */
362 
363 	unsigned short bus_mA;		/* Current available from the bus */
364 	u8 portnum;			/* Parent port number (origin 1) */
365 	u8 level;			/* Number of USB hub ancestors */
366 
367 	unsigned discon_suspended:1;	/* Disconnected while suspended */
368 	unsigned have_langid:1;		/* whether string_langid is valid */
369 	int string_langid;		/* language ID for strings */
370 
371 	/* static strings from the device */
372 	char *product;			/* iProduct string, if present */
373 	char *manufacturer;		/* iManufacturer string, if present */
374 	char *serial;			/* iSerialNumber string, if present */
375 
376 	struct list_head filelist;
377 #ifdef CONFIG_USB_DEVICE_CLASS
378 	struct device *usb_classdev;
379 #endif
380 #ifdef CONFIG_USB_DEVICEFS
381 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
382 #endif
383 	/*
384 	 * Child devices - these can be either new devices
385 	 * (if this is a hub device), or different instances
386 	 * of this same device.
387 	 *
388 	 * Each instance needs its own set of data structures.
389 	 */
390 
391 	int maxchild;			/* Number of ports if hub */
392 	struct usb_device *children[USB_MAXCHILDREN];
393 
394 	int pm_usage_cnt;		/* usage counter for autosuspend */
395 	u32 quirks;			/* quirks of the whole device */
396 
397 #ifdef CONFIG_PM
398 	struct delayed_work autosuspend; /* for delayed autosuspends */
399 	struct mutex pm_mutex;		/* protects PM operations */
400 
401 	unsigned long last_busy;	/* time of last use */
402 	int autosuspend_delay;		/* in jiffies */
403 
404 	unsigned auto_pm:1;		/* autosuspend/resume in progress */
405 	unsigned do_remote_wakeup:1;	/* remote wakeup should be enabled */
406 	unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
407 	unsigned autoresume_disabled:1;  /*  disabled by the user */
408 #endif
409 };
410 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
411 
412 extern struct usb_device *usb_get_dev(struct usb_device *dev);
413 extern void usb_put_dev(struct usb_device *dev);
414 
415 /* USB device locking */
416 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
417 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
418 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
419 extern int usb_lock_device_for_reset(struct usb_device *udev,
420 				     const struct usb_interface *iface);
421 
422 /* USB port reset for device reinitialization */
423 extern int usb_reset_device(struct usb_device *dev);
424 extern int usb_reset_composite_device(struct usb_device *dev,
425 		struct usb_interface *iface);
426 
427 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
428 
429 /* USB autosuspend and autoresume */
430 #ifdef CONFIG_USB_SUSPEND
431 extern int usb_autopm_set_interface(struct usb_interface *intf);
432 extern int usb_autopm_get_interface(struct usb_interface *intf);
433 extern void usb_autopm_put_interface(struct usb_interface *intf);
434 
435 static inline void usb_autopm_enable(struct usb_interface *intf)
436 {
437 	intf->pm_usage_cnt = 0;
438 	usb_autopm_set_interface(intf);
439 }
440 
441 static inline void usb_autopm_disable(struct usb_interface *intf)
442 {
443 	intf->pm_usage_cnt = 1;
444 	usb_autopm_set_interface(intf);
445 }
446 
447 static inline void usb_mark_last_busy(struct usb_device *udev)
448 {
449 	udev->last_busy = jiffies;
450 }
451 
452 #else
453 
454 static inline int usb_autopm_set_interface(struct usb_interface *intf)
455 { return 0; }
456 
457 static inline int usb_autopm_get_interface(struct usb_interface *intf)
458 { return 0; }
459 
460 static inline void usb_autopm_put_interface(struct usb_interface *intf)
461 { }
462 static inline void usb_autopm_enable(struct usb_interface *intf)
463 { }
464 static inline void usb_autopm_disable(struct usb_interface *intf)
465 { }
466 static inline void usb_mark_last_busy(struct usb_device *udev)
467 { }
468 #endif
469 
470 /*-------------------------------------------------------------------------*/
471 
472 /* for drivers using iso endpoints */
473 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
474 
475 /* used these for multi-interface device registration */
476 extern int usb_driver_claim_interface(struct usb_driver *driver,
477 			struct usb_interface *iface, void* priv);
478 
479 /**
480  * usb_interface_claimed - returns true iff an interface is claimed
481  * @iface: the interface being checked
482  *
483  * Returns true (nonzero) iff the interface is claimed, else false (zero).
484  * Callers must own the driver model's usb bus readlock.  So driver
485  * probe() entries don't need extra locking, but other call contexts
486  * may need to explicitly claim that lock.
487  *
488  */
489 static inline int usb_interface_claimed(struct usb_interface *iface) {
490 	return (iface->dev.driver != NULL);
491 }
492 
493 extern void usb_driver_release_interface(struct usb_driver *driver,
494 			struct usb_interface *iface);
495 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
496 					 const struct usb_device_id *id);
497 extern int usb_match_one_id(struct usb_interface *interface,
498 			    const struct usb_device_id *id);
499 
500 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
501 		int minor);
502 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
503 		unsigned ifnum);
504 extern struct usb_host_interface *usb_altnum_to_altsetting(
505 		const struct usb_interface *intf, unsigned int altnum);
506 
507 
508 /**
509  * usb_make_path - returns stable device path in the usb tree
510  * @dev: the device whose path is being constructed
511  * @buf: where to put the string
512  * @size: how big is "buf"?
513  *
514  * Returns length of the string (> 0) or negative if size was too small.
515  *
516  * This identifier is intended to be "stable", reflecting physical paths in
517  * hardware such as physical bus addresses for host controllers or ports on
518  * USB hubs.  That makes it stay the same until systems are physically
519  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
520  * controllers.  Adding and removing devices, including virtual root hubs
521  * in host controller driver modules, does not change these path identifers;
522  * neither does rebooting or re-enumerating.  These are more useful identifiers
523  * than changeable ("unstable") ones like bus numbers or device addresses.
524  *
525  * With a partial exception for devices connected to USB 2.0 root hubs, these
526  * identifiers are also predictable.  So long as the device tree isn't changed,
527  * plugging any USB device into a given hub port always gives it the same path.
528  * Because of the use of "companion" controllers, devices connected to ports on
529  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
530  * high speed, and a different one if they are full or low speed.
531  */
532 static inline int usb_make_path (struct usb_device *dev, char *buf,
533 		size_t size)
534 {
535 	int actual;
536 	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
537 			dev->devpath);
538 	return (actual >= (int)size) ? -1 : actual;
539 }
540 
541 /*-------------------------------------------------------------------------*/
542 
543 /**
544  * usb_endpoint_dir_in - check if the endpoint has IN direction
545  * @epd: endpoint to be checked
546  *
547  * Returns true if the endpoint is of type IN, otherwise it returns false.
548  */
549 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
550 {
551 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
552 }
553 
554 /**
555  * usb_endpoint_dir_out - check if the endpoint has OUT direction
556  * @epd: endpoint to be checked
557  *
558  * Returns true if the endpoint is of type OUT, otherwise it returns false.
559  */
560 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
561 {
562 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
563 }
564 
565 /**
566  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
567  * @epd: endpoint to be checked
568  *
569  * Returns true if the endpoint is of type bulk, otherwise it returns false.
570  */
571 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
572 {
573 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
574 		USB_ENDPOINT_XFER_BULK);
575 }
576 
577 /**
578  * usb_endpoint_xfer_control - check if the endpoint has control transfer type
579  * @epd: endpoint to be checked
580  *
581  * Returns true if the endpoint is of type control, otherwise it returns false.
582  */
583 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
584 {
585 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
586 		USB_ENDPOINT_XFER_CONTROL);
587 }
588 
589 /**
590  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
591  * @epd: endpoint to be checked
592  *
593  * Returns true if the endpoint is of type interrupt, otherwise it returns
594  * false.
595  */
596 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
597 {
598 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
599 		USB_ENDPOINT_XFER_INT);
600 }
601 
602 /**
603  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
604  * @epd: endpoint to be checked
605  *
606  * Returns true if the endpoint is of type isochronous, otherwise it returns
607  * false.
608  */
609 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
610 {
611 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
612 		USB_ENDPOINT_XFER_ISOC);
613 }
614 
615 /**
616  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
617  * @epd: endpoint to be checked
618  *
619  * Returns true if the endpoint has bulk transfer type and IN direction,
620  * otherwise it returns false.
621  */
622 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
623 {
624 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
625 }
626 
627 /**
628  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
629  * @epd: endpoint to be checked
630  *
631  * Returns true if the endpoint has bulk transfer type and OUT direction,
632  * otherwise it returns false.
633  */
634 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
635 {
636 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
637 }
638 
639 /**
640  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
641  * @epd: endpoint to be checked
642  *
643  * Returns true if the endpoint has interrupt transfer type and IN direction,
644  * otherwise it returns false.
645  */
646 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
647 {
648 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
649 }
650 
651 /**
652  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
653  * @epd: endpoint to be checked
654  *
655  * Returns true if the endpoint has interrupt transfer type and OUT direction,
656  * otherwise it returns false.
657  */
658 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
659 {
660 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
661 }
662 
663 /**
664  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
665  * @epd: endpoint to be checked
666  *
667  * Returns true if the endpoint has isochronous transfer type and IN direction,
668  * otherwise it returns false.
669  */
670 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
671 {
672 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
673 }
674 
675 /**
676  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
677  * @epd: endpoint to be checked
678  *
679  * Returns true if the endpoint has isochronous transfer type and OUT direction,
680  * otherwise it returns false.
681  */
682 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
683 {
684 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
685 }
686 
687 /*-------------------------------------------------------------------------*/
688 
689 #define USB_DEVICE_ID_MATCH_DEVICE \
690 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
691 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
692 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
693 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
694 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
695 #define USB_DEVICE_ID_MATCH_DEV_INFO \
696 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
697 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
698 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
699 #define USB_DEVICE_ID_MATCH_INT_INFO \
700 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
701 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
702 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
703 
704 /**
705  * USB_DEVICE - macro used to describe a specific usb device
706  * @vend: the 16 bit USB Vendor ID
707  * @prod: the 16 bit USB Product ID
708  *
709  * This macro is used to create a struct usb_device_id that matches a
710  * specific device.
711  */
712 #define USB_DEVICE(vend,prod) \
713 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
714 			.idProduct = (prod)
715 /**
716  * USB_DEVICE_VER - macro used to describe a specific usb device with a
717  *		version range
718  * @vend: the 16 bit USB Vendor ID
719  * @prod: the 16 bit USB Product ID
720  * @lo: the bcdDevice_lo value
721  * @hi: the bcdDevice_hi value
722  *
723  * This macro is used to create a struct usb_device_id that matches a
724  * specific device, with a version range.
725  */
726 #define USB_DEVICE_VER(vend,prod,lo,hi) \
727 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
728 	.idVendor = (vend), .idProduct = (prod), \
729 	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
730 
731 /**
732  * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb
733  *		device with a specific interface protocol
734  * @vend: the 16 bit USB Vendor ID
735  * @prod: the 16 bit USB Product ID
736  * @pr: bInterfaceProtocol value
737  *
738  * This macro is used to create a struct usb_device_id that matches a
739  * specific interface protocol of devices.
740  */
741 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \
742 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
743 	.idVendor = (vend), \
744 	.idProduct = (prod), \
745 	.bInterfaceProtocol = (pr)
746 
747 /**
748  * USB_DEVICE_INFO - macro used to describe a class of usb devices
749  * @cl: bDeviceClass value
750  * @sc: bDeviceSubClass value
751  * @pr: bDeviceProtocol value
752  *
753  * This macro is used to create a struct usb_device_id that matches a
754  * specific class of devices.
755  */
756 #define USB_DEVICE_INFO(cl,sc,pr) \
757 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
758 	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
759 
760 /**
761  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
762  * @cl: bInterfaceClass value
763  * @sc: bInterfaceSubClass value
764  * @pr: bInterfaceProtocol value
765  *
766  * This macro is used to create a struct usb_device_id that matches a
767  * specific class of interfaces.
768  */
769 #define USB_INTERFACE_INFO(cl,sc,pr) \
770 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
771 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
772 
773 /* ----------------------------------------------------------------------- */
774 
775 /* Stuff for dynamic usb ids */
776 struct usb_dynids {
777 	spinlock_t lock;
778 	struct list_head list;
779 };
780 
781 struct usb_dynid {
782 	struct list_head node;
783 	struct usb_device_id id;
784 };
785 
786 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
787 				struct device_driver *driver,
788 				const char *buf, size_t count);
789 
790 /**
791  * struct usbdrv_wrap - wrapper for driver-model structure
792  * @driver: The driver-model core driver structure.
793  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
794  */
795 struct usbdrv_wrap {
796 	struct device_driver driver;
797 	int for_devices;
798 };
799 
800 /**
801  * struct usb_driver - identifies USB interface driver to usbcore
802  * @name: The driver name should be unique among USB drivers,
803  *	and should normally be the same as the module name.
804  * @probe: Called to see if the driver is willing to manage a particular
805  *	interface on a device.  If it is, probe returns zero and uses
806  *	dev_set_drvdata() to associate driver-specific data with the
807  *	interface.  It may also use usb_set_interface() to specify the
808  *	appropriate altsetting.  If unwilling to manage the interface,
809  *	return a negative errno value.
810  * @disconnect: Called when the interface is no longer accessible, usually
811  *	because its device has been (or is being) disconnected or the
812  *	driver module is being unloaded.
813  * @ioctl: Used for drivers that want to talk to userspace through
814  *	the "usbfs" filesystem.  This lets devices provide ways to
815  *	expose information to user space regardless of where they
816  *	do (or don't) show up otherwise in the filesystem.
817  * @suspend: Called when the device is going to be suspended by the system.
818  * @resume: Called when the device is being resumed by the system.
819  * @pre_reset: Called by usb_reset_composite_device() when the device
820  *	is about to be reset.
821  * @post_reset: Called by usb_reset_composite_device() after the device
822  *	has been reset.
823  * @id_table: USB drivers use ID table to support hotplugging.
824  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
825  *	or your driver's probe function will never get called.
826  * @dynids: used internally to hold the list of dynamically added device
827  *	ids for this driver.
828  * @drvwrap: Driver-model core structure wrapper.
829  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
830  *	added to this driver by preventing the sysfs file from being created.
831  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
832  *	for interfaces bound to this driver.
833  *
834  * USB interface drivers must provide a name, probe() and disconnect()
835  * methods, and an id_table.  Other driver fields are optional.
836  *
837  * The id_table is used in hotplugging.  It holds a set of descriptors,
838  * and specialized data may be associated with each entry.  That table
839  * is used by both user and kernel mode hotplugging support.
840  *
841  * The probe() and disconnect() methods are called in a context where
842  * they can sleep, but they should avoid abusing the privilege.  Most
843  * work to connect to a device should be done when the device is opened,
844  * and undone at the last close.  The disconnect code needs to address
845  * concurrency issues with respect to open() and close() methods, as
846  * well as forcing all pending I/O requests to complete (by unlinking
847  * them as necessary, and blocking until the unlinks complete).
848  */
849 struct usb_driver {
850 	const char *name;
851 
852 	int (*probe) (struct usb_interface *intf,
853 		      const struct usb_device_id *id);
854 
855 	void (*disconnect) (struct usb_interface *intf);
856 
857 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
858 			void *buf);
859 
860 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
861 	int (*resume) (struct usb_interface *intf);
862 
863 	void (*pre_reset) (struct usb_interface *intf);
864 	void (*post_reset) (struct usb_interface *intf);
865 
866 	const struct usb_device_id *id_table;
867 
868 	struct usb_dynids dynids;
869 	struct usbdrv_wrap drvwrap;
870 	unsigned int no_dynamic_id:1;
871 	unsigned int supports_autosuspend:1;
872 };
873 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
874 
875 /**
876  * struct usb_device_driver - identifies USB device driver to usbcore
877  * @name: The driver name should be unique among USB drivers,
878  *	and should normally be the same as the module name.
879  * @probe: Called to see if the driver is willing to manage a particular
880  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
881  *	to associate driver-specific data with the device.  If unwilling
882  *	to manage the device, return a negative errno value.
883  * @disconnect: Called when the device is no longer accessible, usually
884  *	because it has been (or is being) disconnected or the driver's
885  *	module is being unloaded.
886  * @suspend: Called when the device is going to be suspended by the system.
887  * @resume: Called when the device is being resumed by the system.
888  * @drvwrap: Driver-model core structure wrapper.
889  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
890  *	for devices bound to this driver.
891  *
892  * USB drivers must provide all the fields listed above except drvwrap.
893  */
894 struct usb_device_driver {
895 	const char *name;
896 
897 	int (*probe) (struct usb_device *udev);
898 	void (*disconnect) (struct usb_device *udev);
899 
900 	int (*suspend) (struct usb_device *udev, pm_message_t message);
901 	int (*resume) (struct usb_device *udev);
902 	struct usbdrv_wrap drvwrap;
903 	unsigned int supports_autosuspend:1;
904 };
905 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
906 		drvwrap.driver)
907 
908 extern struct bus_type usb_bus_type;
909 
910 /**
911  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
912  * @name: the usb class device name for this driver.  Will show up in sysfs.
913  * @fops: pointer to the struct file_operations of this driver.
914  * @minor_base: the start of the minor range for this driver.
915  *
916  * This structure is used for the usb_register_dev() and
917  * usb_unregister_dev() functions, to consolidate a number of the
918  * parameters used for them.
919  */
920 struct usb_class_driver {
921 	char *name;
922 	const struct file_operations *fops;
923 	int minor_base;
924 };
925 
926 /*
927  * use these in module_init()/module_exit()
928  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
929  */
930 extern int usb_register_driver(struct usb_driver *, struct module *,
931 			       const char *);
932 static inline int usb_register(struct usb_driver *driver)
933 {
934 	return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
935 }
936 extern void usb_deregister(struct usb_driver *);
937 
938 extern int usb_register_device_driver(struct usb_device_driver *,
939 			struct module *);
940 extern void usb_deregister_device_driver(struct usb_device_driver *);
941 
942 extern int usb_register_dev(struct usb_interface *intf,
943 			    struct usb_class_driver *class_driver);
944 extern void usb_deregister_dev(struct usb_interface *intf,
945 			       struct usb_class_driver *class_driver);
946 
947 extern int usb_disabled(void);
948 
949 /* ----------------------------------------------------------------------- */
950 
951 /*
952  * URB support, for asynchronous request completions
953  */
954 
955 /*
956  * urb->transfer_flags:
957  */
958 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
959 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
960 					 * ignored */
961 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
962 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
963 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
964 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
965 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
966 					 * needed */
967 
968 struct usb_iso_packet_descriptor {
969 	unsigned int offset;
970 	unsigned int length;		/* expected length */
971 	unsigned int actual_length;
972 	int status;
973 };
974 
975 struct urb;
976 
977 typedef void (*usb_complete_t)(struct urb *);
978 
979 /**
980  * struct urb - USB Request Block
981  * @urb_list: For use by current owner of the URB.
982  * @pipe: Holds endpoint number, direction, type, and more.
983  *	Create these values with the eight macros available;
984  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
985  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
986  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
987  *	numbers range from zero to fifteen.  Note that "in" endpoint two
988  *	is a different endpoint (and pipe) from "out" endpoint two.
989  *	The current configuration controls the existence, type, and
990  *	maximum packet size of any given endpoint.
991  * @dev: Identifies the USB device to perform the request.
992  * @status: This is read in non-iso completion functions to get the
993  *	status of the particular request.  ISO requests only use it
994  *	to tell whether the URB was unlinked; detailed status for
995  *	each frame is in the fields of the iso_frame-desc.
996  * @transfer_flags: A variety of flags may be used to affect how URB
997  *	submission, unlinking, or operation are handled.  Different
998  *	kinds of URB can use different flags.
999  * @transfer_buffer:  This identifies the buffer to (or from) which
1000  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1001  *	is set).  This buffer must be suitable for DMA; allocate it with
1002  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1003  *	of this buffer will be modified.  This buffer is used for the data
1004  *	stage of control transfers.
1005  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1006  *	the device driver is saying that it provided this DMA address,
1007  *	which the host controller driver should use in preference to the
1008  *	transfer_buffer.
1009  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1010  *	be broken up into chunks according to the current maximum packet
1011  *	size for the endpoint, which is a function of the configuration
1012  *	and is encoded in the pipe.  When the length is zero, neither
1013  *	transfer_buffer nor transfer_dma is used.
1014  * @actual_length: This is read in non-iso completion functions, and
1015  *	it tells how many bytes (out of transfer_buffer_length) were
1016  *	transferred.  It will normally be the same as requested, unless
1017  *	either an error was reported or a short read was performed.
1018  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1019  *	short reads be reported as errors.
1020  * @setup_packet: Only used for control transfers, this points to eight bytes
1021  *	of setup data.  Control transfers always start by sending this data
1022  *	to the device.  Then transfer_buffer is read or written, if needed.
1023  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1024  *	device driver has provided this DMA address for the setup packet.
1025  *	The host controller driver should use this in preference to
1026  *	setup_packet.
1027  * @start_frame: Returns the initial frame for isochronous transfers.
1028  * @number_of_packets: Lists the number of ISO transfer buffers.
1029  * @interval: Specifies the polling interval for interrupt or isochronous
1030  *	transfers.  The units are frames (milliseconds) for for full and low
1031  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
1032  * @error_count: Returns the number of ISO transfers that reported errors.
1033  * @context: For use in completion functions.  This normally points to
1034  *	request-specific driver context.
1035  * @complete: Completion handler. This URB is passed as the parameter to the
1036  *	completion function.  The completion function may then do what
1037  *	it likes with the URB, including resubmitting or freeing it.
1038  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1039  *	collect the transfer status for each buffer.
1040  *
1041  * This structure identifies USB transfer requests.  URBs must be allocated by
1042  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1043  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1044  * are submitted using usb_submit_urb(), and pending requests may be canceled
1045  * using usb_unlink_urb() or usb_kill_urb().
1046  *
1047  * Data Transfer Buffers:
1048  *
1049  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1050  * taken from the general page pool.  That is provided by transfer_buffer
1051  * (control requests also use setup_packet), and host controller drivers
1052  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1053  * mapping operations can be expensive on some platforms (perhaps using a dma
1054  * bounce buffer or talking to an IOMMU),
1055  * although they're cheap on commodity x86 and ppc hardware.
1056  *
1057  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1058  * which tell the host controller driver that no such mapping is needed since
1059  * the device driver is DMA-aware.  For example, a device driver might
1060  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1061  * When these transfer flags are provided, host controller drivers will
1062  * attempt to use the dma addresses found in the transfer_dma and/or
1063  * setup_dma fields rather than determining a dma address themselves.  (Note
1064  * that transfer_buffer and setup_packet must still be set because not all
1065  * host controllers use DMA, nor do virtual root hubs).
1066  *
1067  * Initialization:
1068  *
1069  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1070  * zero), and complete fields.  All URBs must also initialize
1071  * transfer_buffer and transfer_buffer_length.  They may provide the
1072  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1073  * to be treated as errors; that flag is invalid for write requests.
1074  *
1075  * Bulk URBs may
1076  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1077  * should always terminate with a short packet, even if it means adding an
1078  * extra zero length packet.
1079  *
1080  * Control URBs must provide a setup_packet.  The setup_packet and
1081  * transfer_buffer may each be mapped for DMA or not, independently of
1082  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1083  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1084  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1085  *
1086  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1087  * or, for highspeed devices, 125 microsecond units)
1088  * to poll for transfers.  After the URB has been submitted, the interval
1089  * field reflects how the transfer was actually scheduled.
1090  * The polling interval may be more frequent than requested.
1091  * For example, some controllers have a maximum interval of 32 milliseconds,
1092  * while others support intervals of up to 1024 milliseconds.
1093  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1094  * endpoints, as well as high speed interrupt endpoints, the encoding of
1095  * the transfer interval in the endpoint descriptor is logarithmic.
1096  * Device drivers must convert that value to linear units themselves.)
1097  *
1098  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1099  * the host controller to schedule the transfer as soon as bandwidth
1100  * utilization allows, and then set start_frame to reflect the actual frame
1101  * selected during submission.  Otherwise drivers must specify the start_frame
1102  * and handle the case where the transfer can't begin then.  However, drivers
1103  * won't know how bandwidth is currently allocated, and while they can
1104  * find the current frame using usb_get_current_frame_number () they can't
1105  * know the range for that frame number.  (Ranges for frame counter values
1106  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1107  *
1108  * Isochronous URBs have a different data transfer model, in part because
1109  * the quality of service is only "best effort".  Callers provide specially
1110  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1111  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1112  * URBs are normally queued, submitted by drivers to arrange that
1113  * transfers are at least double buffered, and then explicitly resubmitted
1114  * in completion handlers, so
1115  * that data (such as audio or video) streams at as constant a rate as the
1116  * host controller scheduler can support.
1117  *
1118  * Completion Callbacks:
1119  *
1120  * The completion callback is made in_interrupt(), and one of the first
1121  * things that a completion handler should do is check the status field.
1122  * The status field is provided for all URBs.  It is used to report
1123  * unlinked URBs, and status for all non-ISO transfers.  It should not
1124  * be examined before the URB is returned to the completion handler.
1125  *
1126  * The context field is normally used to link URBs back to the relevant
1127  * driver or request state.
1128  *
1129  * When the completion callback is invoked for non-isochronous URBs, the
1130  * actual_length field tells how many bytes were transferred.  This field
1131  * is updated even when the URB terminated with an error or was unlinked.
1132  *
1133  * ISO transfer status is reported in the status and actual_length fields
1134  * of the iso_frame_desc array, and the number of errors is reported in
1135  * error_count.  Completion callbacks for ISO transfers will normally
1136  * (re)submit URBs to ensure a constant transfer rate.
1137  *
1138  * Note that even fields marked "public" should not be touched by the driver
1139  * when the urb is owned by the hcd, that is, since the call to
1140  * usb_submit_urb() till the entry into the completion routine.
1141  */
1142 struct urb
1143 {
1144 	/* private: usb core and host controller only fields in the urb */
1145 	struct kref kref;		/* reference count of the URB */
1146 	spinlock_t lock;		/* lock for the URB */
1147 	void *hcpriv;			/* private data for host controller */
1148 	atomic_t use_count;		/* concurrent submissions counter */
1149 	u8 reject;			/* submissions will fail */
1150 
1151 	/* public: documented fields in the urb that can be used by drivers */
1152 	struct list_head urb_list;	/* list head for use by the urb's
1153 					 * current owner */
1154 	struct usb_device *dev; 	/* (in) pointer to associated device */
1155 	unsigned int pipe;		/* (in) pipe information */
1156 	int status;			/* (return) non-ISO status */
1157 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1158 	void *transfer_buffer;		/* (in) associated data buffer */
1159 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1160 	int transfer_buffer_length;	/* (in) data buffer length */
1161 	int actual_length;		/* (return) actual transfer length */
1162 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1163 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1164 	int start_frame;		/* (modify) start frame (ISO) */
1165 	int number_of_packets;		/* (in) number of ISO packets */
1166 	int interval;			/* (modify) transfer interval
1167 					 * (INT/ISO) */
1168 	int error_count;		/* (return) number of ISO errors */
1169 	void *context;			/* (in) context for completion */
1170 	usb_complete_t complete;	/* (in) completion routine */
1171 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1172 					/* (in) ISO ONLY */
1173 };
1174 
1175 /* ----------------------------------------------------------------------- */
1176 
1177 /**
1178  * usb_fill_control_urb - initializes a control urb
1179  * @urb: pointer to the urb to initialize.
1180  * @dev: pointer to the struct usb_device for this urb.
1181  * @pipe: the endpoint pipe
1182  * @setup_packet: pointer to the setup_packet buffer
1183  * @transfer_buffer: pointer to the transfer buffer
1184  * @buffer_length: length of the transfer buffer
1185  * @complete_fn: pointer to the usb_complete_t function
1186  * @context: what to set the urb context to.
1187  *
1188  * Initializes a control urb with the proper information needed to submit
1189  * it to a device.
1190  */
1191 static inline void usb_fill_control_urb (struct urb *urb,
1192 					 struct usb_device *dev,
1193 					 unsigned int pipe,
1194 					 unsigned char *setup_packet,
1195 					 void *transfer_buffer,
1196 					 int buffer_length,
1197 					 usb_complete_t complete_fn,
1198 					 void *context)
1199 {
1200 	spin_lock_init(&urb->lock);
1201 	urb->dev = dev;
1202 	urb->pipe = pipe;
1203 	urb->setup_packet = setup_packet;
1204 	urb->transfer_buffer = transfer_buffer;
1205 	urb->transfer_buffer_length = buffer_length;
1206 	urb->complete = complete_fn;
1207 	urb->context = context;
1208 }
1209 
1210 /**
1211  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1212  * @urb: pointer to the urb to initialize.
1213  * @dev: pointer to the struct usb_device for this urb.
1214  * @pipe: the endpoint pipe
1215  * @transfer_buffer: pointer to the transfer buffer
1216  * @buffer_length: length of the transfer buffer
1217  * @complete_fn: pointer to the usb_complete_t function
1218  * @context: what to set the urb context to.
1219  *
1220  * Initializes a bulk urb with the proper information needed to submit it
1221  * to a device.
1222  */
1223 static inline void usb_fill_bulk_urb (struct urb *urb,
1224 				      struct usb_device *dev,
1225 				      unsigned int pipe,
1226 				      void *transfer_buffer,
1227 				      int buffer_length,
1228 				      usb_complete_t complete_fn,
1229 				      void *context)
1230 {
1231 	spin_lock_init(&urb->lock);
1232 	urb->dev = dev;
1233 	urb->pipe = pipe;
1234 	urb->transfer_buffer = transfer_buffer;
1235 	urb->transfer_buffer_length = buffer_length;
1236 	urb->complete = complete_fn;
1237 	urb->context = context;
1238 }
1239 
1240 /**
1241  * usb_fill_int_urb - macro to help initialize a interrupt urb
1242  * @urb: pointer to the urb to initialize.
1243  * @dev: pointer to the struct usb_device for this urb.
1244  * @pipe: the endpoint pipe
1245  * @transfer_buffer: pointer to the transfer buffer
1246  * @buffer_length: length of the transfer buffer
1247  * @complete_fn: pointer to the usb_complete_t function
1248  * @context: what to set the urb context to.
1249  * @interval: what to set the urb interval to, encoded like
1250  *	the endpoint descriptor's bInterval value.
1251  *
1252  * Initializes a interrupt urb with the proper information needed to submit
1253  * it to a device.
1254  * Note that high speed interrupt endpoints use a logarithmic encoding of
1255  * the endpoint interval, and express polling intervals in microframes
1256  * (eight per millisecond) rather than in frames (one per millisecond).
1257  */
1258 static inline void usb_fill_int_urb (struct urb *urb,
1259 				     struct usb_device *dev,
1260 				     unsigned int pipe,
1261 				     void *transfer_buffer,
1262 				     int buffer_length,
1263 				     usb_complete_t complete_fn,
1264 				     void *context,
1265 				     int interval)
1266 {
1267 	spin_lock_init(&urb->lock);
1268 	urb->dev = dev;
1269 	urb->pipe = pipe;
1270 	urb->transfer_buffer = transfer_buffer;
1271 	urb->transfer_buffer_length = buffer_length;
1272 	urb->complete = complete_fn;
1273 	urb->context = context;
1274 	if (dev->speed == USB_SPEED_HIGH)
1275 		urb->interval = 1 << (interval - 1);
1276 	else
1277 		urb->interval = interval;
1278 	urb->start_frame = -1;
1279 }
1280 
1281 extern void usb_init_urb(struct urb *urb);
1282 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1283 extern void usb_free_urb(struct urb *urb);
1284 #define usb_put_urb usb_free_urb
1285 extern struct urb *usb_get_urb(struct urb *urb);
1286 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1287 extern int usb_unlink_urb(struct urb *urb);
1288 extern void usb_kill_urb(struct urb *urb);
1289 
1290 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1291 	gfp_t mem_flags, dma_addr_t *dma);
1292 void usb_buffer_free (struct usb_device *dev, size_t size,
1293 	void *addr, dma_addr_t dma);
1294 
1295 #if 0
1296 struct urb *usb_buffer_map (struct urb *urb);
1297 void usb_buffer_dmasync (struct urb *urb);
1298 void usb_buffer_unmap (struct urb *urb);
1299 #endif
1300 
1301 struct scatterlist;
1302 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1303 		      struct scatterlist *sg, int nents);
1304 #if 0
1305 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1306 			   struct scatterlist *sg, int n_hw_ents);
1307 #endif
1308 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1309 			 struct scatterlist *sg, int n_hw_ents);
1310 
1311 /*-------------------------------------------------------------------*
1312  *                         SYNCHRONOUS CALL SUPPORT                  *
1313  *-------------------------------------------------------------------*/
1314 
1315 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1316 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1317 	void *data, __u16 size, int timeout);
1318 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1319 	void *data, int len, int *actual_length, int timeout);
1320 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1321 	void *data, int len, int *actual_length,
1322 	int timeout);
1323 
1324 /* wrappers around usb_control_msg() for the most common standard requests */
1325 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1326 	unsigned char descindex, void *buf, int size);
1327 extern int usb_get_status(struct usb_device *dev,
1328 	int type, int target, void *data);
1329 extern int usb_string(struct usb_device *dev, int index,
1330 	char *buf, size_t size);
1331 
1332 /* wrappers that also update important state inside usbcore */
1333 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1334 extern int usb_reset_configuration(struct usb_device *dev);
1335 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1336 
1337 /* this request isn't really synchronous, but it belongs with the others */
1338 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1339 
1340 /*
1341  * timeouts, in milliseconds, used for sending/receiving control messages
1342  * they typically complete within a few frames (msec) after they're issued
1343  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1344  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1345  */
1346 #define USB_CTRL_GET_TIMEOUT	5000
1347 #define USB_CTRL_SET_TIMEOUT	5000
1348 
1349 
1350 /**
1351  * struct usb_sg_request - support for scatter/gather I/O
1352  * @status: zero indicates success, else negative errno
1353  * @bytes: counts bytes transferred.
1354  *
1355  * These requests are initialized using usb_sg_init(), and then are used
1356  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1357  * members of the request object aren't for driver access.
1358  *
1359  * The status and bytecount values are valid only after usb_sg_wait()
1360  * returns.  If the status is zero, then the bytecount matches the total
1361  * from the request.
1362  *
1363  * After an error completion, drivers may need to clear a halt condition
1364  * on the endpoint.
1365  */
1366 struct usb_sg_request {
1367 	int			status;
1368 	size_t			bytes;
1369 
1370 	/*
1371 	 * members below are private: to usbcore,
1372 	 * and are not provided for driver access!
1373 	 */
1374 	spinlock_t		lock;
1375 
1376 	struct usb_device	*dev;
1377 	int			pipe;
1378 	struct scatterlist	*sg;
1379 	int			nents;
1380 
1381 	int			entries;
1382 	struct urb		**urbs;
1383 
1384 	int			count;
1385 	struct completion	complete;
1386 };
1387 
1388 int usb_sg_init (
1389 	struct usb_sg_request	*io,
1390 	struct usb_device	*dev,
1391 	unsigned		pipe,
1392 	unsigned		period,
1393 	struct scatterlist	*sg,
1394 	int			nents,
1395 	size_t			length,
1396 	gfp_t			mem_flags
1397 );
1398 void usb_sg_cancel (struct usb_sg_request *io);
1399 void usb_sg_wait (struct usb_sg_request *io);
1400 
1401 
1402 /* ----------------------------------------------------------------------- */
1403 
1404 /*
1405  * For various legacy reasons, Linux has a small cookie that's paired with
1406  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1407  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1408  * an unsigned int encoded as:
1409  *
1410  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1411  *					 1 = Device-to-Host [In] ...
1412  *					like endpoint bEndpointAddress)
1413  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1414  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1415  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1416  *					 10 = control, 11 = bulk)
1417  *
1418  * Given the device address and endpoint descriptor, pipes are redundant.
1419  */
1420 
1421 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1422 /* (yet ... they're the values used by usbfs) */
1423 #define PIPE_ISOCHRONOUS		0
1424 #define PIPE_INTERRUPT			1
1425 #define PIPE_CONTROL			2
1426 #define PIPE_BULK			3
1427 
1428 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1429 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1430 
1431 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1432 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1433 
1434 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1435 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1436 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1437 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1438 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1439 
1440 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1441 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1442 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1443 #define usb_settoggle(dev, ep, out, bit) \
1444 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1445 		 ((bit) << (ep)))
1446 
1447 
1448 static inline unsigned int __create_pipe(struct usb_device *dev,
1449 		unsigned int endpoint)
1450 {
1451 	return (dev->devnum << 8) | (endpoint << 15);
1452 }
1453 
1454 /* Create various pipes... */
1455 #define usb_sndctrlpipe(dev,endpoint)	\
1456 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1457 #define usb_rcvctrlpipe(dev,endpoint)	\
1458 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1459 #define usb_sndisocpipe(dev,endpoint)	\
1460 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1461 #define usb_rcvisocpipe(dev,endpoint)	\
1462 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1463 #define usb_sndbulkpipe(dev,endpoint)	\
1464 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1465 #define usb_rcvbulkpipe(dev,endpoint)	\
1466 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1467 #define usb_sndintpipe(dev,endpoint)	\
1468 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1469 #define usb_rcvintpipe(dev,endpoint)	\
1470 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1471 
1472 /*-------------------------------------------------------------------------*/
1473 
1474 static inline __u16
1475 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1476 {
1477 	struct usb_host_endpoint	*ep;
1478 	unsigned			epnum = usb_pipeendpoint(pipe);
1479 
1480 	if (is_out) {
1481 		WARN_ON(usb_pipein(pipe));
1482 		ep = udev->ep_out[epnum];
1483 	} else {
1484 		WARN_ON(usb_pipeout(pipe));
1485 		ep = udev->ep_in[epnum];
1486 	}
1487 	if (!ep)
1488 		return 0;
1489 
1490 	/* NOTE:  only 0x07ff bits are for packet size... */
1491 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1492 }
1493 
1494 /* ----------------------------------------------------------------------- */
1495 
1496 /* Events from the usb core */
1497 #define USB_DEVICE_ADD		0x0001
1498 #define USB_DEVICE_REMOVE	0x0002
1499 #define USB_BUS_ADD		0x0003
1500 #define USB_BUS_REMOVE		0x0004
1501 extern void usb_register_notify(struct notifier_block *nb);
1502 extern void usb_unregister_notify(struct notifier_block *nb);
1503 
1504 #ifdef DEBUG
1505 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1506 	__FILE__ , ## arg)
1507 #else
1508 #define dbg(format, arg...) do {} while (0)
1509 #endif
1510 
1511 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1512 	__FILE__ , ## arg)
1513 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1514 	__FILE__ , ## arg)
1515 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1516 	__FILE__ , ## arg)
1517 
1518 
1519 #endif  /* __KERNEL__ */
1520 
1521 #endif
1522