xref: /linux-6.15/include/linux/usb.h (revision 93f14468)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *	with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  *
61  * USB requests are always queued to a given endpoint, identified by a
62  * descriptor within an active interface in a given USB configuration.
63  */
64 struct usb_host_endpoint {
65 	struct usb_endpoint_descriptor		desc;
66 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
67 	struct list_head		urb_list;
68 	void				*hcpriv;
69 	struct ep_device		*ep_dev;	/* For sysfs info */
70 
71 	unsigned char *extra;   /* Extra descriptors */
72 	int extralen;
73 	int enabled;
74 };
75 
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 	struct usb_interface_descriptor	desc;
79 
80 	int extralen;
81 	unsigned char *extra;   /* Extra descriptors */
82 
83 	/* array of desc.bNumEndpoint endpoints associated with this
84 	 * interface setting.  these will be in no particular order.
85 	 */
86 	struct usb_host_endpoint *endpoint;
87 
88 	char *string;		/* iInterface string, if present */
89 };
90 
91 enum usb_interface_condition {
92 	USB_INTERFACE_UNBOUND = 0,
93 	USB_INTERFACE_BINDING,
94 	USB_INTERFACE_BOUND,
95 	USB_INTERFACE_UNBINDING,
96 };
97 
98 /**
99  * struct usb_interface - what usb device drivers talk to
100  * @altsetting: array of interface structures, one for each alternate
101  *	setting that may be selected.  Each one includes a set of
102  *	endpoint configurations.  They will be in no particular order.
103  * @cur_altsetting: the current altsetting.
104  * @num_altsetting: number of altsettings defined.
105  * @intf_assoc: interface association descriptor
106  * @minor: the minor number assigned to this interface, if this
107  *	interface is bound to a driver that uses the USB major number.
108  *	If this interface does not use the USB major, this field should
109  *	be unused.  The driver should set this value in the probe()
110  *	function of the driver, after it has been assigned a minor
111  *	number from the USB core by calling usb_register_dev().
112  * @condition: binding state of the interface: not bound, binding
113  *	(in probe()), bound to a driver, or unbinding (in disconnect())
114  * @sysfs_files_created: sysfs attributes exist
115  * @ep_devs_created: endpoint child pseudo-devices exist
116  * @unregistering: flag set when the interface is being unregistered
117  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118  *	capability during autosuspend.
119  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120  *	has been deferred.
121  * @needs_binding: flag set when the driver should be re-probed or unbound
122  *	following a reset or suspend operation it doesn't support.
123  * @dev: driver model's view of this device
124  * @usb_dev: if an interface is bound to the USB major, this will point
125  *	to the sysfs representation for that device.
126  * @pm_usage_cnt: PM usage counter for this interface
127  * @reset_ws: Used for scheduling resets from atomic context.
128  * @reset_running: set to 1 if the interface is currently running a
129  *      queued reset so that usb_cancel_queued_reset() doesn't try to
130  *      remove from the workqueue when running inside the worker
131  *      thread. See __usb_queue_reset_device().
132  * @resetting_device: USB core reset the device, so use alt setting 0 as
133  *	current; needs bandwidth alloc after reset.
134  *
135  * USB device drivers attach to interfaces on a physical device.  Each
136  * interface encapsulates a single high level function, such as feeding
137  * an audio stream to a speaker or reporting a change in a volume control.
138  * Many USB devices only have one interface.  The protocol used to talk to
139  * an interface's endpoints can be defined in a usb "class" specification,
140  * or by a product's vendor.  The (default) control endpoint is part of
141  * every interface, but is never listed among the interface's descriptors.
142  *
143  * The driver that is bound to the interface can use standard driver model
144  * calls such as dev_get_drvdata() on the dev member of this structure.
145  *
146  * Each interface may have alternate settings.  The initial configuration
147  * of a device sets altsetting 0, but the device driver can change
148  * that setting using usb_set_interface().  Alternate settings are often
149  * used to control the use of periodic endpoints, such as by having
150  * different endpoints use different amounts of reserved USB bandwidth.
151  * All standards-conformant USB devices that use isochronous endpoints
152  * will use them in non-default settings.
153  *
154  * The USB specification says that alternate setting numbers must run from
155  * 0 to one less than the total number of alternate settings.  But some
156  * devices manage to mess this up, and the structures aren't necessarily
157  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
158  * look up an alternate setting in the altsetting array based on its number.
159  */
160 struct usb_interface {
161 	/* array of alternate settings for this interface,
162 	 * stored in no particular order */
163 	struct usb_host_interface *altsetting;
164 
165 	struct usb_host_interface *cur_altsetting;	/* the currently
166 					 * active alternate setting */
167 	unsigned num_altsetting;	/* number of alternate settings */
168 
169 	/* If there is an interface association descriptor then it will list
170 	 * the associated interfaces */
171 	struct usb_interface_assoc_descriptor *intf_assoc;
172 
173 	int minor;			/* minor number this interface is
174 					 * bound to */
175 	enum usb_interface_condition condition;		/* state of binding */
176 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
177 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
178 	unsigned unregistering:1;	/* unregistration is in progress */
179 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
180 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
181 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
182 	unsigned reset_running:1;
183 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
184 
185 	struct device dev;		/* interface specific device info */
186 	struct device *usb_dev;
187 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
188 	struct work_struct reset_ws;	/* for resets in atomic context */
189 };
190 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
191 
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 	return dev_get_drvdata(&intf->dev);
195 }
196 
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 	dev_set_drvdata(&intf->dev, data);
200 }
201 
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204 
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES	32
207 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
208 
209 /**
210  * struct usb_interface_cache - long-term representation of a device interface
211  * @num_altsetting: number of altsettings defined.
212  * @ref: reference counter.
213  * @altsetting: variable-length array of interface structures, one for
214  *	each alternate setting that may be selected.  Each one includes a
215  *	set of endpoint configurations.  They will be in no particular order.
216  *
217  * These structures persist for the lifetime of a usb_device, unlike
218  * struct usb_interface (which persists only as long as its configuration
219  * is installed).  The altsetting arrays can be accessed through these
220  * structures at any time, permitting comparison of configurations and
221  * providing support for the /proc/bus/usb/devices pseudo-file.
222  */
223 struct usb_interface_cache {
224 	unsigned num_altsetting;	/* number of alternate settings */
225 	struct kref ref;		/* reference counter */
226 
227 	/* variable-length array of alternate settings for this interface,
228 	 * stored in no particular order */
229 	struct usb_host_interface altsetting[0];
230 };
231 #define	ref_to_usb_interface_cache(r) \
232 		container_of(r, struct usb_interface_cache, ref)
233 #define	altsetting_to_usb_interface_cache(a) \
234 		container_of(a, struct usb_interface_cache, altsetting[0])
235 
236 /**
237  * struct usb_host_config - representation of a device's configuration
238  * @desc: the device's configuration descriptor.
239  * @string: pointer to the cached version of the iConfiguration string, if
240  *	present for this configuration.
241  * @intf_assoc: list of any interface association descriptors in this config
242  * @interface: array of pointers to usb_interface structures, one for each
243  *	interface in the configuration.  The number of interfaces is stored
244  *	in desc.bNumInterfaces.  These pointers are valid only while the
245  *	the configuration is active.
246  * @intf_cache: array of pointers to usb_interface_cache structures, one
247  *	for each interface in the configuration.  These structures exist
248  *	for the entire life of the device.
249  * @extra: pointer to buffer containing all extra descriptors associated
250  *	with this configuration (those preceding the first interface
251  *	descriptor).
252  * @extralen: length of the extra descriptors buffer.
253  *
254  * USB devices may have multiple configurations, but only one can be active
255  * at any time.  Each encapsulates a different operational environment;
256  * for example, a dual-speed device would have separate configurations for
257  * full-speed and high-speed operation.  The number of configurations
258  * available is stored in the device descriptor as bNumConfigurations.
259  *
260  * A configuration can contain multiple interfaces.  Each corresponds to
261  * a different function of the USB device, and all are available whenever
262  * the configuration is active.  The USB standard says that interfaces
263  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
264  * of devices get this wrong.  In addition, the interface array is not
265  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
266  * look up an interface entry based on its number.
267  *
268  * Device drivers should not attempt to activate configurations.  The choice
269  * of which configuration to install is a policy decision based on such
270  * considerations as available power, functionality provided, and the user's
271  * desires (expressed through userspace tools).  However, drivers can call
272  * usb_reset_configuration() to reinitialize the current configuration and
273  * all its interfaces.
274  */
275 struct usb_host_config {
276 	struct usb_config_descriptor	desc;
277 
278 	char *string;		/* iConfiguration string, if present */
279 
280 	/* List of any Interface Association Descriptors in this
281 	 * configuration. */
282 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283 
284 	/* the interfaces associated with this configuration,
285 	 * stored in no particular order */
286 	struct usb_interface *interface[USB_MAXINTERFACES];
287 
288 	/* Interface information available even when this is not the
289 	 * active configuration */
290 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291 
292 	unsigned char *extra;   /* Extra descriptors */
293 	int extralen;
294 };
295 
296 /* USB2.0 and USB3.0 device BOS descriptor set */
297 struct usb_host_bos {
298 	struct usb_bos_descriptor	*desc;
299 
300 	/* wireless cap descriptor is handled by wusb */
301 	struct usb_ext_cap_descriptor	*ext_cap;
302 	struct usb_ss_cap_descriptor	*ss_cap;
303 	struct usb_ss_container_id_descriptor	*ss_id;
304 };
305 
306 int __usb_get_extra_descriptor(char *buffer, unsigned size,
307 	unsigned char type, void **ptr);
308 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
309 				__usb_get_extra_descriptor((ifpoint)->extra, \
310 				(ifpoint)->extralen, \
311 				type, (void **)ptr)
312 
313 /* ----------------------------------------------------------------------- */
314 
315 /* USB device number allocation bitmap */
316 struct usb_devmap {
317 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
318 };
319 
320 /*
321  * Allocated per bus (tree of devices) we have:
322  */
323 struct usb_bus {
324 	struct device *controller;	/* host/master side hardware */
325 	int busnum;			/* Bus number (in order of reg) */
326 	const char *bus_name;		/* stable id (PCI slot_name etc) */
327 	u8 uses_dma;			/* Does the host controller use DMA? */
328 	u8 uses_pio_for_control;	/*
329 					 * Does the host controller use PIO
330 					 * for control transfers?
331 					 */
332 	u8 otg_port;			/* 0, or number of OTG/HNP port */
333 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
334 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
335 	unsigned no_stop_on_short:1;    /*
336 					 * Quirk: some controllers don't stop
337 					 * the ep queue on a short transfer
338 					 * with the URB_SHORT_NOT_OK flag set.
339 					 */
340 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
341 
342 	int devnum_next;		/* Next open device number in
343 					 * round-robin allocation */
344 
345 	struct usb_devmap devmap;	/* device address allocation map */
346 	struct usb_device *root_hub;	/* Root hub */
347 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
348 	struct list_head bus_list;	/* list of busses */
349 
350 	int bandwidth_allocated;	/* on this bus: how much of the time
351 					 * reserved for periodic (intr/iso)
352 					 * requests is used, on average?
353 					 * Units: microseconds/frame.
354 					 * Limits: Full/low speed reserve 90%,
355 					 * while high speed reserves 80%.
356 					 */
357 	int bandwidth_int_reqs;		/* number of Interrupt requests */
358 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
359 
360 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
361 
362 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
363 	struct mon_bus *mon_bus;	/* non-null when associated */
364 	int monitored;			/* non-zero when monitored */
365 #endif
366 };
367 
368 /* ----------------------------------------------------------------------- */
369 
370 /* This is arbitrary.
371  * From USB 2.0 spec Table 11-13, offset 7, a hub can
372  * have up to 255 ports. The most yet reported is 10.
373  *
374  * Current Wireless USB host hardware (Intel i1480 for example) allows
375  * up to 22 devices to connect. Upcoming hardware might raise that
376  * limit. Because the arrays need to add a bit for hub status data, we
377  * do 31, so plus one evens out to four bytes.
378  */
379 #define USB_MAXCHILDREN		(31)
380 
381 struct usb_tt;
382 
383 enum usb_device_removable {
384 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
385 	USB_DEVICE_REMOVABLE,
386 	USB_DEVICE_FIXED,
387 };
388 
389 enum usb_port_connect_type {
390 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
391 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
392 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
393 	USB_PORT_NOT_USED,
394 };
395 
396 /*
397  * USB 3.0 Link Power Management (LPM) parameters.
398  *
399  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
400  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
401  * All three are stored in nanoseconds.
402  */
403 struct usb3_lpm_parameters {
404 	/*
405 	 * Maximum exit latency (MEL) for the host to send a packet to the
406 	 * device (either a Ping for isoc endpoints, or a data packet for
407 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
408 	 * in the path to transition the links to U0.
409 	 */
410 	unsigned int mel;
411 	/*
412 	 * Maximum exit latency for a device-initiated LPM transition to bring
413 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
414 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
415 	 */
416 	unsigned int pel;
417 
418 	/*
419 	 * The System Exit Latency (SEL) includes PEL, and three other
420 	 * latencies.  After a device initiates a U0 transition, it will take
421 	 * some time from when the device sends the ERDY to when it will finally
422 	 * receive the data packet.  Basically, SEL should be the worse-case
423 	 * latency from when a device starts initiating a U0 transition to when
424 	 * it will get data.
425 	 */
426 	unsigned int sel;
427 	/*
428 	 * The idle timeout value that is currently programmed into the parent
429 	 * hub for this device.  When the timer counts to zero, the parent hub
430 	 * will initiate an LPM transition to either U1 or U2.
431 	 */
432 	int timeout;
433 };
434 
435 /**
436  * struct usb_device - kernel's representation of a USB device
437  * @devnum: device number; address on a USB bus
438  * @devpath: device ID string for use in messages (e.g., /port/...)
439  * @route: tree topology hex string for use with xHCI
440  * @state: device state: configured, not attached, etc.
441  * @speed: device speed: high/full/low (or error)
442  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
443  * @ttport: device port on that tt hub
444  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
445  * @parent: our hub, unless we're the root
446  * @bus: bus we're part of
447  * @ep0: endpoint 0 data (default control pipe)
448  * @dev: generic device interface
449  * @descriptor: USB device descriptor
450  * @bos: USB device BOS descriptor set
451  * @config: all of the device's configs
452  * @actconfig: the active configuration
453  * @ep_in: array of IN endpoints
454  * @ep_out: array of OUT endpoints
455  * @rawdescriptors: raw descriptors for each config
456  * @bus_mA: Current available from the bus
457  * @portnum: parent port number (origin 1)
458  * @level: number of USB hub ancestors
459  * @can_submit: URBs may be submitted
460  * @persist_enabled:  USB_PERSIST enabled for this device
461  * @have_langid: whether string_langid is valid
462  * @authorized: policy has said we can use it;
463  *	(user space) policy determines if we authorize this device to be
464  *	used or not. By default, wired USB devices are authorized.
465  *	WUSB devices are not, until we authorize them from user space.
466  *	FIXME -- complete doc
467  * @authenticated: Crypto authentication passed
468  * @wusb: device is Wireless USB
469  * @lpm_capable: device supports LPM
470  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
471  * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
472  * @usb3_lpm_enabled: USB3 hardware LPM enabled
473  * @string_langid: language ID for strings
474  * @product: iProduct string, if present (static)
475  * @manufacturer: iManufacturer string, if present (static)
476  * @serial: iSerialNumber string, if present (static)
477  * @filelist: usbfs files that are open to this device
478  * @maxchild: number of ports if hub
479  * @quirks: quirks of the whole device
480  * @urbnum: number of URBs submitted for the whole device
481  * @active_duration: total time device is not suspended
482  * @connect_time: time device was first connected
483  * @do_remote_wakeup:  remote wakeup should be enabled
484  * @reset_resume: needs reset instead of resume
485  * @port_is_suspended: the upstream port is suspended (L2 or U3)
486  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
487  *	specific data for the device.
488  * @slot_id: Slot ID assigned by xHCI
489  * @removable: Device can be physically removed from this port
490  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
491  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
492  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
493  *	to keep track of the number of functions that require USB 3.0 Link Power
494  *	Management to be disabled for this usb_device.  This count should only
495  *	be manipulated by those functions, with the bandwidth_mutex is held.
496  *
497  * Notes:
498  * Usbcore drivers should not set usbdev->state directly.  Instead use
499  * usb_set_device_state().
500  */
501 struct usb_device {
502 	int		devnum;
503 	char		devpath[16];
504 	u32		route;
505 	enum usb_device_state	state;
506 	enum usb_device_speed	speed;
507 
508 	struct usb_tt	*tt;
509 	int		ttport;
510 
511 	unsigned int toggle[2];
512 
513 	struct usb_device *parent;
514 	struct usb_bus *bus;
515 	struct usb_host_endpoint ep0;
516 
517 	struct device dev;
518 
519 	struct usb_device_descriptor descriptor;
520 	struct usb_host_bos *bos;
521 	struct usb_host_config *config;
522 
523 	struct usb_host_config *actconfig;
524 	struct usb_host_endpoint *ep_in[16];
525 	struct usb_host_endpoint *ep_out[16];
526 
527 	char **rawdescriptors;
528 
529 	unsigned short bus_mA;
530 	u8 portnum;
531 	u8 level;
532 
533 	unsigned can_submit:1;
534 	unsigned persist_enabled:1;
535 	unsigned have_langid:1;
536 	unsigned authorized:1;
537 	unsigned authenticated:1;
538 	unsigned wusb:1;
539 	unsigned lpm_capable:1;
540 	unsigned usb2_hw_lpm_capable:1;
541 	unsigned usb2_hw_lpm_enabled:1;
542 	unsigned usb3_lpm_enabled:1;
543 	int string_langid;
544 
545 	/* static strings from the device */
546 	char *product;
547 	char *manufacturer;
548 	char *serial;
549 
550 	struct list_head filelist;
551 
552 	int maxchild;
553 
554 	u32 quirks;
555 	atomic_t urbnum;
556 
557 	unsigned long active_duration;
558 
559 #ifdef CONFIG_PM
560 	unsigned long connect_time;
561 
562 	unsigned do_remote_wakeup:1;
563 	unsigned reset_resume:1;
564 	unsigned port_is_suspended:1;
565 #endif
566 	struct wusb_dev *wusb_dev;
567 	int slot_id;
568 	enum usb_device_removable removable;
569 	struct usb3_lpm_parameters u1_params;
570 	struct usb3_lpm_parameters u2_params;
571 	unsigned lpm_disable_count;
572 };
573 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
574 
575 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
576 {
577 	return to_usb_device(intf->dev.parent);
578 }
579 
580 extern struct usb_device *usb_get_dev(struct usb_device *dev);
581 extern void usb_put_dev(struct usb_device *dev);
582 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
583 	int port1);
584 
585 /**
586  * usb_hub_for_each_child - iterate over all child devices on the hub
587  * @hdev:  USB device belonging to the usb hub
588  * @port1: portnum associated with child device
589  * @child: child device pointer
590  */
591 #define usb_hub_for_each_child(hdev, port1, child) \
592 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
593 			port1 <= hdev->maxchild; \
594 			child = usb_hub_find_child(hdev, ++port1)) \
595 		if (!child) continue; else
596 
597 /* USB device locking */
598 #define usb_lock_device(udev)		device_lock(&(udev)->dev)
599 #define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
600 #define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
601 extern int usb_lock_device_for_reset(struct usb_device *udev,
602 				     const struct usb_interface *iface);
603 
604 /* USB port reset for device reinitialization */
605 extern int usb_reset_device(struct usb_device *dev);
606 extern void usb_queue_reset_device(struct usb_interface *dev);
607 
608 #ifdef CONFIG_ACPI
609 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
610 	bool enable);
611 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
612 #else
613 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
614 	bool enable) { return 0; }
615 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
616 	{ return true; }
617 #endif
618 
619 /* USB autosuspend and autoresume */
620 #ifdef CONFIG_PM_RUNTIME
621 extern void usb_enable_autosuspend(struct usb_device *udev);
622 extern void usb_disable_autosuspend(struct usb_device *udev);
623 
624 extern int usb_autopm_get_interface(struct usb_interface *intf);
625 extern void usb_autopm_put_interface(struct usb_interface *intf);
626 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
627 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
628 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
629 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
630 
631 static inline void usb_mark_last_busy(struct usb_device *udev)
632 {
633 	pm_runtime_mark_last_busy(&udev->dev);
634 }
635 
636 #else
637 
638 static inline int usb_enable_autosuspend(struct usb_device *udev)
639 { return 0; }
640 static inline int usb_disable_autosuspend(struct usb_device *udev)
641 { return 0; }
642 
643 static inline int usb_autopm_get_interface(struct usb_interface *intf)
644 { return 0; }
645 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
646 { return 0; }
647 
648 static inline void usb_autopm_put_interface(struct usb_interface *intf)
649 { }
650 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
651 { }
652 static inline void usb_autopm_get_interface_no_resume(
653 		struct usb_interface *intf)
654 { }
655 static inline void usb_autopm_put_interface_no_suspend(
656 		struct usb_interface *intf)
657 { }
658 static inline void usb_mark_last_busy(struct usb_device *udev)
659 { }
660 #endif
661 
662 extern int usb_disable_lpm(struct usb_device *udev);
663 extern void usb_enable_lpm(struct usb_device *udev);
664 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
665 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
666 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
667 
668 extern int usb_disable_ltm(struct usb_device *udev);
669 extern void usb_enable_ltm(struct usb_device *udev);
670 
671 static inline bool usb_device_supports_ltm(struct usb_device *udev)
672 {
673 	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
674 		return false;
675 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
676 }
677 
678 
679 /*-------------------------------------------------------------------------*/
680 
681 /* for drivers using iso endpoints */
682 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
683 
684 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
685 extern int usb_alloc_streams(struct usb_interface *interface,
686 		struct usb_host_endpoint **eps, unsigned int num_eps,
687 		unsigned int num_streams, gfp_t mem_flags);
688 
689 /* Reverts a group of bulk endpoints back to not using stream IDs. */
690 extern void usb_free_streams(struct usb_interface *interface,
691 		struct usb_host_endpoint **eps, unsigned int num_eps,
692 		gfp_t mem_flags);
693 
694 /* used these for multi-interface device registration */
695 extern int usb_driver_claim_interface(struct usb_driver *driver,
696 			struct usb_interface *iface, void *priv);
697 
698 /**
699  * usb_interface_claimed - returns true iff an interface is claimed
700  * @iface: the interface being checked
701  *
702  * Returns true (nonzero) iff the interface is claimed, else false (zero).
703  * Callers must own the driver model's usb bus readlock.  So driver
704  * probe() entries don't need extra locking, but other call contexts
705  * may need to explicitly claim that lock.
706  *
707  */
708 static inline int usb_interface_claimed(struct usb_interface *iface)
709 {
710 	return (iface->dev.driver != NULL);
711 }
712 
713 extern void usb_driver_release_interface(struct usb_driver *driver,
714 			struct usb_interface *iface);
715 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
716 					 const struct usb_device_id *id);
717 extern int usb_match_one_id(struct usb_interface *interface,
718 			    const struct usb_device_id *id);
719 
720 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
721 		int minor);
722 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
723 		unsigned ifnum);
724 extern struct usb_host_interface *usb_altnum_to_altsetting(
725 		const struct usb_interface *intf, unsigned int altnum);
726 extern struct usb_host_interface *usb_find_alt_setting(
727 		struct usb_host_config *config,
728 		unsigned int iface_num,
729 		unsigned int alt_num);
730 
731 
732 /**
733  * usb_make_path - returns stable device path in the usb tree
734  * @dev: the device whose path is being constructed
735  * @buf: where to put the string
736  * @size: how big is "buf"?
737  *
738  * Returns length of the string (> 0) or negative if size was too small.
739  *
740  * This identifier is intended to be "stable", reflecting physical paths in
741  * hardware such as physical bus addresses for host controllers or ports on
742  * USB hubs.  That makes it stay the same until systems are physically
743  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
744  * controllers.  Adding and removing devices, including virtual root hubs
745  * in host controller driver modules, does not change these path identifiers;
746  * neither does rebooting or re-enumerating.  These are more useful identifiers
747  * than changeable ("unstable") ones like bus numbers or device addresses.
748  *
749  * With a partial exception for devices connected to USB 2.0 root hubs, these
750  * identifiers are also predictable.  So long as the device tree isn't changed,
751  * plugging any USB device into a given hub port always gives it the same path.
752  * Because of the use of "companion" controllers, devices connected to ports on
753  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
754  * high speed, and a different one if they are full or low speed.
755  */
756 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
757 {
758 	int actual;
759 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
760 			  dev->devpath);
761 	return (actual >= (int)size) ? -1 : actual;
762 }
763 
764 /*-------------------------------------------------------------------------*/
765 
766 #define USB_DEVICE_ID_MATCH_DEVICE \
767 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
768 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
769 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
770 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
771 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
772 #define USB_DEVICE_ID_MATCH_DEV_INFO \
773 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
774 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
775 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
776 #define USB_DEVICE_ID_MATCH_INT_INFO \
777 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
778 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
779 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
780 
781 /**
782  * USB_DEVICE - macro used to describe a specific usb device
783  * @vend: the 16 bit USB Vendor ID
784  * @prod: the 16 bit USB Product ID
785  *
786  * This macro is used to create a struct usb_device_id that matches a
787  * specific device.
788  */
789 #define USB_DEVICE(vend, prod) \
790 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
791 	.idVendor = (vend), \
792 	.idProduct = (prod)
793 /**
794  * USB_DEVICE_VER - describe a specific usb device with a version range
795  * @vend: the 16 bit USB Vendor ID
796  * @prod: the 16 bit USB Product ID
797  * @lo: the bcdDevice_lo value
798  * @hi: the bcdDevice_hi value
799  *
800  * This macro is used to create a struct usb_device_id that matches a
801  * specific device, with a version range.
802  */
803 #define USB_DEVICE_VER(vend, prod, lo, hi) \
804 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
805 	.idVendor = (vend), \
806 	.idProduct = (prod), \
807 	.bcdDevice_lo = (lo), \
808 	.bcdDevice_hi = (hi)
809 
810 /**
811  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
812  * @vend: the 16 bit USB Vendor ID
813  * @prod: the 16 bit USB Product ID
814  * @cl: bInterfaceClass value
815  *
816  * This macro is used to create a struct usb_device_id that matches a
817  * specific interface class of devices.
818  */
819 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
820 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
821 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
822 	.idVendor = (vend), \
823 	.idProduct = (prod), \
824 	.bInterfaceClass = (cl)
825 
826 /**
827  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
828  * @vend: the 16 bit USB Vendor ID
829  * @prod: the 16 bit USB Product ID
830  * @pr: bInterfaceProtocol value
831  *
832  * This macro is used to create a struct usb_device_id that matches a
833  * specific interface protocol of devices.
834  */
835 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
836 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
837 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
838 	.idVendor = (vend), \
839 	.idProduct = (prod), \
840 	.bInterfaceProtocol = (pr)
841 
842 /**
843  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
844  * @vend: the 16 bit USB Vendor ID
845  * @prod: the 16 bit USB Product ID
846  * @num: bInterfaceNumber value
847  *
848  * This macro is used to create a struct usb_device_id that matches a
849  * specific interface number of devices.
850  */
851 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
852 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
853 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
854 	.idVendor = (vend), \
855 	.idProduct = (prod), \
856 	.bInterfaceNumber = (num)
857 
858 /**
859  * USB_DEVICE_INFO - macro used to describe a class of usb devices
860  * @cl: bDeviceClass value
861  * @sc: bDeviceSubClass value
862  * @pr: bDeviceProtocol value
863  *
864  * This macro is used to create a struct usb_device_id that matches a
865  * specific class of devices.
866  */
867 #define USB_DEVICE_INFO(cl, sc, pr) \
868 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
869 	.bDeviceClass = (cl), \
870 	.bDeviceSubClass = (sc), \
871 	.bDeviceProtocol = (pr)
872 
873 /**
874  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
875  * @cl: bInterfaceClass value
876  * @sc: bInterfaceSubClass value
877  * @pr: bInterfaceProtocol value
878  *
879  * This macro is used to create a struct usb_device_id that matches a
880  * specific class of interfaces.
881  */
882 #define USB_INTERFACE_INFO(cl, sc, pr) \
883 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
884 	.bInterfaceClass = (cl), \
885 	.bInterfaceSubClass = (sc), \
886 	.bInterfaceProtocol = (pr)
887 
888 /**
889  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
890  * @vend: the 16 bit USB Vendor ID
891  * @prod: the 16 bit USB Product ID
892  * @cl: bInterfaceClass value
893  * @sc: bInterfaceSubClass value
894  * @pr: bInterfaceProtocol value
895  *
896  * This macro is used to create a struct usb_device_id that matches a
897  * specific device with a specific class of interfaces.
898  *
899  * This is especially useful when explicitly matching devices that have
900  * vendor specific bDeviceClass values, but standards-compliant interfaces.
901  */
902 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
903 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
904 		| USB_DEVICE_ID_MATCH_DEVICE, \
905 	.idVendor = (vend), \
906 	.idProduct = (prod), \
907 	.bInterfaceClass = (cl), \
908 	.bInterfaceSubClass = (sc), \
909 	.bInterfaceProtocol = (pr)
910 
911 /**
912  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
913  * @vend: the 16 bit USB Vendor ID
914  * @cl: bInterfaceClass value
915  * @sc: bInterfaceSubClass value
916  * @pr: bInterfaceProtocol value
917  *
918  * This macro is used to create a struct usb_device_id that matches a
919  * specific vendor with a specific class of interfaces.
920  *
921  * This is especially useful when explicitly matching devices that have
922  * vendor specific bDeviceClass values, but standards-compliant interfaces.
923  */
924 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
925 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
926 		| USB_DEVICE_ID_MATCH_VENDOR, \
927 	.idVendor = (vend), \
928 	.bInterfaceClass = (cl), \
929 	.bInterfaceSubClass = (sc), \
930 	.bInterfaceProtocol = (pr)
931 
932 /* ----------------------------------------------------------------------- */
933 
934 /* Stuff for dynamic usb ids */
935 struct usb_dynids {
936 	spinlock_t lock;
937 	struct list_head list;
938 };
939 
940 struct usb_dynid {
941 	struct list_head node;
942 	struct usb_device_id id;
943 };
944 
945 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
946 				struct device_driver *driver,
947 				const char *buf, size_t count);
948 
949 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
950 
951 /**
952  * struct usbdrv_wrap - wrapper for driver-model structure
953  * @driver: The driver-model core driver structure.
954  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
955  */
956 struct usbdrv_wrap {
957 	struct device_driver driver;
958 	int for_devices;
959 };
960 
961 /**
962  * struct usb_driver - identifies USB interface driver to usbcore
963  * @name: The driver name should be unique among USB drivers,
964  *	and should normally be the same as the module name.
965  * @probe: Called to see if the driver is willing to manage a particular
966  *	interface on a device.  If it is, probe returns zero and uses
967  *	usb_set_intfdata() to associate driver-specific data with the
968  *	interface.  It may also use usb_set_interface() to specify the
969  *	appropriate altsetting.  If unwilling to manage the interface,
970  *	return -ENODEV, if genuine IO errors occurred, an appropriate
971  *	negative errno value.
972  * @disconnect: Called when the interface is no longer accessible, usually
973  *	because its device has been (or is being) disconnected or the
974  *	driver module is being unloaded.
975  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
976  *	the "usbfs" filesystem.  This lets devices provide ways to
977  *	expose information to user space regardless of where they
978  *	do (or don't) show up otherwise in the filesystem.
979  * @suspend: Called when the device is going to be suspended by the
980  *	system either from system sleep or runtime suspend context. The
981  *	return value will be ignored in system sleep context, so do NOT
982  *	try to continue using the device if suspend fails in this case.
983  *	Instead, let the resume or reset-resume routine recover from
984  *	the failure.
985  * @resume: Called when the device is being resumed by the system.
986  * @reset_resume: Called when the suspended device has been reset instead
987  *	of being resumed.
988  * @pre_reset: Called by usb_reset_device() when the device is about to be
989  *	reset.  This routine must not return until the driver has no active
990  *	URBs for the device, and no more URBs may be submitted until the
991  *	post_reset method is called.
992  * @post_reset: Called by usb_reset_device() after the device
993  *	has been reset
994  * @id_table: USB drivers use ID table to support hotplugging.
995  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
996  *	or your driver's probe function will never get called.
997  * @dynids: used internally to hold the list of dynamically added device
998  *	ids for this driver.
999  * @drvwrap: Driver-model core structure wrapper.
1000  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1001  *	added to this driver by preventing the sysfs file from being created.
1002  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1003  *	for interfaces bound to this driver.
1004  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1005  *	endpoints before calling the driver's disconnect method.
1006  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1007  *	to initiate lower power link state transitions when an idle timeout
1008  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1009  *
1010  * USB interface drivers must provide a name, probe() and disconnect()
1011  * methods, and an id_table.  Other driver fields are optional.
1012  *
1013  * The id_table is used in hotplugging.  It holds a set of descriptors,
1014  * and specialized data may be associated with each entry.  That table
1015  * is used by both user and kernel mode hotplugging support.
1016  *
1017  * The probe() and disconnect() methods are called in a context where
1018  * they can sleep, but they should avoid abusing the privilege.  Most
1019  * work to connect to a device should be done when the device is opened,
1020  * and undone at the last close.  The disconnect code needs to address
1021  * concurrency issues with respect to open() and close() methods, as
1022  * well as forcing all pending I/O requests to complete (by unlinking
1023  * them as necessary, and blocking until the unlinks complete).
1024  */
1025 struct usb_driver {
1026 	const char *name;
1027 
1028 	int (*probe) (struct usb_interface *intf,
1029 		      const struct usb_device_id *id);
1030 
1031 	void (*disconnect) (struct usb_interface *intf);
1032 
1033 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1034 			void *buf);
1035 
1036 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1037 	int (*resume) (struct usb_interface *intf);
1038 	int (*reset_resume)(struct usb_interface *intf);
1039 
1040 	int (*pre_reset)(struct usb_interface *intf);
1041 	int (*post_reset)(struct usb_interface *intf);
1042 
1043 	const struct usb_device_id *id_table;
1044 
1045 	struct usb_dynids dynids;
1046 	struct usbdrv_wrap drvwrap;
1047 	unsigned int no_dynamic_id:1;
1048 	unsigned int supports_autosuspend:1;
1049 	unsigned int disable_hub_initiated_lpm:1;
1050 	unsigned int soft_unbind:1;
1051 };
1052 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1053 
1054 /**
1055  * struct usb_device_driver - identifies USB device driver to usbcore
1056  * @name: The driver name should be unique among USB drivers,
1057  *	and should normally be the same as the module name.
1058  * @probe: Called to see if the driver is willing to manage a particular
1059  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1060  *	to associate driver-specific data with the device.  If unwilling
1061  *	to manage the device, return a negative errno value.
1062  * @disconnect: Called when the device is no longer accessible, usually
1063  *	because it has been (or is being) disconnected or the driver's
1064  *	module is being unloaded.
1065  * @suspend: Called when the device is going to be suspended by the system.
1066  * @resume: Called when the device is being resumed by the system.
1067  * @drvwrap: Driver-model core structure wrapper.
1068  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1069  *	for devices bound to this driver.
1070  *
1071  * USB drivers must provide all the fields listed above except drvwrap.
1072  */
1073 struct usb_device_driver {
1074 	const char *name;
1075 
1076 	int (*probe) (struct usb_device *udev);
1077 	void (*disconnect) (struct usb_device *udev);
1078 
1079 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1080 	int (*resume) (struct usb_device *udev, pm_message_t message);
1081 	struct usbdrv_wrap drvwrap;
1082 	unsigned int supports_autosuspend:1;
1083 };
1084 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1085 		drvwrap.driver)
1086 
1087 extern struct bus_type usb_bus_type;
1088 
1089 /**
1090  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1091  * @name: the usb class device name for this driver.  Will show up in sysfs.
1092  * @devnode: Callback to provide a naming hint for a possible
1093  *	device node to create.
1094  * @fops: pointer to the struct file_operations of this driver.
1095  * @minor_base: the start of the minor range for this driver.
1096  *
1097  * This structure is used for the usb_register_dev() and
1098  * usb_unregister_dev() functions, to consolidate a number of the
1099  * parameters used for them.
1100  */
1101 struct usb_class_driver {
1102 	char *name;
1103 	char *(*devnode)(struct device *dev, umode_t *mode);
1104 	const struct file_operations *fops;
1105 	int minor_base;
1106 };
1107 
1108 /*
1109  * use these in module_init()/module_exit()
1110  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1111  */
1112 extern int usb_register_driver(struct usb_driver *, struct module *,
1113 			       const char *);
1114 
1115 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1116 #define usb_register(driver) \
1117 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1118 
1119 extern void usb_deregister(struct usb_driver *);
1120 
1121 /**
1122  * module_usb_driver() - Helper macro for registering a USB driver
1123  * @__usb_driver: usb_driver struct
1124  *
1125  * Helper macro for USB drivers which do not do anything special in module
1126  * init/exit. This eliminates a lot of boilerplate. Each module may only
1127  * use this macro once, and calling it replaces module_init() and module_exit()
1128  */
1129 #define module_usb_driver(__usb_driver) \
1130 	module_driver(__usb_driver, usb_register, \
1131 		       usb_deregister)
1132 
1133 extern int usb_register_device_driver(struct usb_device_driver *,
1134 			struct module *);
1135 extern void usb_deregister_device_driver(struct usb_device_driver *);
1136 
1137 extern int usb_register_dev(struct usb_interface *intf,
1138 			    struct usb_class_driver *class_driver);
1139 extern void usb_deregister_dev(struct usb_interface *intf,
1140 			       struct usb_class_driver *class_driver);
1141 
1142 extern int usb_disabled(void);
1143 
1144 /* ----------------------------------------------------------------------- */
1145 
1146 /*
1147  * URB support, for asynchronous request completions
1148  */
1149 
1150 /*
1151  * urb->transfer_flags:
1152  *
1153  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1154  */
1155 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1156 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1157 					 * slot in the schedule */
1158 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1159 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1160 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1161 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1162 					 * needed */
1163 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1164 
1165 /* The following flags are used internally by usbcore and HCDs */
1166 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1167 #define URB_DIR_OUT		0
1168 #define URB_DIR_MASK		URB_DIR_IN
1169 
1170 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1171 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1172 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1173 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1174 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1175 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1176 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1177 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1178 
1179 struct usb_iso_packet_descriptor {
1180 	unsigned int offset;
1181 	unsigned int length;		/* expected length */
1182 	unsigned int actual_length;
1183 	int status;
1184 };
1185 
1186 struct urb;
1187 
1188 struct usb_anchor {
1189 	struct list_head urb_list;
1190 	wait_queue_head_t wait;
1191 	spinlock_t lock;
1192 	unsigned int poisoned:1;
1193 };
1194 
1195 static inline void init_usb_anchor(struct usb_anchor *anchor)
1196 {
1197 	INIT_LIST_HEAD(&anchor->urb_list);
1198 	init_waitqueue_head(&anchor->wait);
1199 	spin_lock_init(&anchor->lock);
1200 }
1201 
1202 typedef void (*usb_complete_t)(struct urb *);
1203 
1204 /**
1205  * struct urb - USB Request Block
1206  * @urb_list: For use by current owner of the URB.
1207  * @anchor_list: membership in the list of an anchor
1208  * @anchor: to anchor URBs to a common mooring
1209  * @ep: Points to the endpoint's data structure.  Will eventually
1210  *	replace @pipe.
1211  * @pipe: Holds endpoint number, direction, type, and more.
1212  *	Create these values with the eight macros available;
1213  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1214  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1215  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1216  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1217  *	is a different endpoint (and pipe) from "out" endpoint two.
1218  *	The current configuration controls the existence, type, and
1219  *	maximum packet size of any given endpoint.
1220  * @stream_id: the endpoint's stream ID for bulk streams
1221  * @dev: Identifies the USB device to perform the request.
1222  * @status: This is read in non-iso completion functions to get the
1223  *	status of the particular request.  ISO requests only use it
1224  *	to tell whether the URB was unlinked; detailed status for
1225  *	each frame is in the fields of the iso_frame-desc.
1226  * @transfer_flags: A variety of flags may be used to affect how URB
1227  *	submission, unlinking, or operation are handled.  Different
1228  *	kinds of URB can use different flags.
1229  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1230  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1231  *	(however, do not leave garbage in transfer_buffer even then).
1232  *	This buffer must be suitable for DMA; allocate it with
1233  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1234  *	of this buffer will be modified.  This buffer is used for the data
1235  *	stage of control transfers.
1236  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1237  *	the device driver is saying that it provided this DMA address,
1238  *	which the host controller driver should use in preference to the
1239  *	transfer_buffer.
1240  * @sg: scatter gather buffer list
1241  * @num_mapped_sgs: (internal) number of mapped sg entries
1242  * @num_sgs: number of entries in the sg list
1243  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1244  *	be broken up into chunks according to the current maximum packet
1245  *	size for the endpoint, which is a function of the configuration
1246  *	and is encoded in the pipe.  When the length is zero, neither
1247  *	transfer_buffer nor transfer_dma is used.
1248  * @actual_length: This is read in non-iso completion functions, and
1249  *	it tells how many bytes (out of transfer_buffer_length) were
1250  *	transferred.  It will normally be the same as requested, unless
1251  *	either an error was reported or a short read was performed.
1252  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1253  *	short reads be reported as errors.
1254  * @setup_packet: Only used for control transfers, this points to eight bytes
1255  *	of setup data.  Control transfers always start by sending this data
1256  *	to the device.  Then transfer_buffer is read or written, if needed.
1257  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1258  *	this field; setup_packet must point to a valid buffer.
1259  * @start_frame: Returns the initial frame for isochronous transfers.
1260  * @number_of_packets: Lists the number of ISO transfer buffers.
1261  * @interval: Specifies the polling interval for interrupt or isochronous
1262  *	transfers.  The units are frames (milliseconds) for full and low
1263  *	speed devices, and microframes (1/8 millisecond) for highspeed
1264  *	and SuperSpeed devices.
1265  * @error_count: Returns the number of ISO transfers that reported errors.
1266  * @context: For use in completion functions.  This normally points to
1267  *	request-specific driver context.
1268  * @complete: Completion handler. This URB is passed as the parameter to the
1269  *	completion function.  The completion function may then do what
1270  *	it likes with the URB, including resubmitting or freeing it.
1271  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1272  *	collect the transfer status for each buffer.
1273  *
1274  * This structure identifies USB transfer requests.  URBs must be allocated by
1275  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1276  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1277  * are submitted using usb_submit_urb(), and pending requests may be canceled
1278  * using usb_unlink_urb() or usb_kill_urb().
1279  *
1280  * Data Transfer Buffers:
1281  *
1282  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1283  * taken from the general page pool.  That is provided by transfer_buffer
1284  * (control requests also use setup_packet), and host controller drivers
1285  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1286  * mapping operations can be expensive on some platforms (perhaps using a dma
1287  * bounce buffer or talking to an IOMMU),
1288  * although they're cheap on commodity x86 and ppc hardware.
1289  *
1290  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1291  * which tells the host controller driver that no such mapping is needed for
1292  * the transfer_buffer since
1293  * the device driver is DMA-aware.  For example, a device driver might
1294  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1295  * When this transfer flag is provided, host controller drivers will
1296  * attempt to use the dma address found in the transfer_dma
1297  * field rather than determining a dma address themselves.
1298  *
1299  * Note that transfer_buffer must still be set if the controller
1300  * does not support DMA (as indicated by bus.uses_dma) and when talking
1301  * to root hub. If you have to trasfer between highmem zone and the device
1302  * on such controller, create a bounce buffer or bail out with an error.
1303  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1304  * capable, assign NULL to it, so that usbmon knows not to use the value.
1305  * The setup_packet must always be set, so it cannot be located in highmem.
1306  *
1307  * Initialization:
1308  *
1309  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1310  * zero), and complete fields.  All URBs must also initialize
1311  * transfer_buffer and transfer_buffer_length.  They may provide the
1312  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1313  * to be treated as errors; that flag is invalid for write requests.
1314  *
1315  * Bulk URBs may
1316  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1317  * should always terminate with a short packet, even if it means adding an
1318  * extra zero length packet.
1319  *
1320  * Control URBs must provide a valid pointer in the setup_packet field.
1321  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1322  * beforehand.
1323  *
1324  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1325  * or, for highspeed devices, 125 microsecond units)
1326  * to poll for transfers.  After the URB has been submitted, the interval
1327  * field reflects how the transfer was actually scheduled.
1328  * The polling interval may be more frequent than requested.
1329  * For example, some controllers have a maximum interval of 32 milliseconds,
1330  * while others support intervals of up to 1024 milliseconds.
1331  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1332  * endpoints, as well as high speed interrupt endpoints, the encoding of
1333  * the transfer interval in the endpoint descriptor is logarithmic.
1334  * Device drivers must convert that value to linear units themselves.)
1335  *
1336  * If an isochronous endpoint queue isn't already running, the host
1337  * controller will schedule a new URB to start as soon as bandwidth
1338  * utilization allows.  If the queue is running then a new URB will be
1339  * scheduled to start in the first transfer slot following the end of the
1340  * preceding URB, if that slot has not already expired.  If the slot has
1341  * expired (which can happen when IRQ delivery is delayed for a long time),
1342  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1343  * is clear then the URB will be scheduled to start in the expired slot,
1344  * implying that some of its packets will not be transferred; if the flag
1345  * is set then the URB will be scheduled in the first unexpired slot,
1346  * breaking the queue's synchronization.  Upon URB completion, the
1347  * start_frame field will be set to the (micro)frame number in which the
1348  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1349  * and can go from as low as 256 to as high as 65536 frames.
1350  *
1351  * Isochronous URBs have a different data transfer model, in part because
1352  * the quality of service is only "best effort".  Callers provide specially
1353  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1354  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1355  * URBs are normally queued, submitted by drivers to arrange that
1356  * transfers are at least double buffered, and then explicitly resubmitted
1357  * in completion handlers, so
1358  * that data (such as audio or video) streams at as constant a rate as the
1359  * host controller scheduler can support.
1360  *
1361  * Completion Callbacks:
1362  *
1363  * The completion callback is made in_interrupt(), and one of the first
1364  * things that a completion handler should do is check the status field.
1365  * The status field is provided for all URBs.  It is used to report
1366  * unlinked URBs, and status for all non-ISO transfers.  It should not
1367  * be examined before the URB is returned to the completion handler.
1368  *
1369  * The context field is normally used to link URBs back to the relevant
1370  * driver or request state.
1371  *
1372  * When the completion callback is invoked for non-isochronous URBs, the
1373  * actual_length field tells how many bytes were transferred.  This field
1374  * is updated even when the URB terminated with an error or was unlinked.
1375  *
1376  * ISO transfer status is reported in the status and actual_length fields
1377  * of the iso_frame_desc array, and the number of errors is reported in
1378  * error_count.  Completion callbacks for ISO transfers will normally
1379  * (re)submit URBs to ensure a constant transfer rate.
1380  *
1381  * Note that even fields marked "public" should not be touched by the driver
1382  * when the urb is owned by the hcd, that is, since the call to
1383  * usb_submit_urb() till the entry into the completion routine.
1384  */
1385 struct urb {
1386 	/* private: usb core and host controller only fields in the urb */
1387 	struct kref kref;		/* reference count of the URB */
1388 	void *hcpriv;			/* private data for host controller */
1389 	atomic_t use_count;		/* concurrent submissions counter */
1390 	atomic_t reject;		/* submissions will fail */
1391 	int unlinked;			/* unlink error code */
1392 
1393 	/* public: documented fields in the urb that can be used by drivers */
1394 	struct list_head urb_list;	/* list head for use by the urb's
1395 					 * current owner */
1396 	struct list_head anchor_list;	/* the URB may be anchored */
1397 	struct usb_anchor *anchor;
1398 	struct usb_device *dev;		/* (in) pointer to associated device */
1399 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1400 	unsigned int pipe;		/* (in) pipe information */
1401 	unsigned int stream_id;		/* (in) stream ID */
1402 	int status;			/* (return) non-ISO status */
1403 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1404 	void *transfer_buffer;		/* (in) associated data buffer */
1405 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1406 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1407 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1408 	int num_sgs;			/* (in) number of entries in the sg list */
1409 	u32 transfer_buffer_length;	/* (in) data buffer length */
1410 	u32 actual_length;		/* (return) actual transfer length */
1411 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1412 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1413 	int start_frame;		/* (modify) start frame (ISO) */
1414 	int number_of_packets;		/* (in) number of ISO packets */
1415 	int interval;			/* (modify) transfer interval
1416 					 * (INT/ISO) */
1417 	int error_count;		/* (return) number of ISO errors */
1418 	void *context;			/* (in) context for completion */
1419 	usb_complete_t complete;	/* (in) completion routine */
1420 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1421 					/* (in) ISO ONLY */
1422 };
1423 
1424 /* ----------------------------------------------------------------------- */
1425 
1426 /**
1427  * usb_fill_control_urb - initializes a control urb
1428  * @urb: pointer to the urb to initialize.
1429  * @dev: pointer to the struct usb_device for this urb.
1430  * @pipe: the endpoint pipe
1431  * @setup_packet: pointer to the setup_packet buffer
1432  * @transfer_buffer: pointer to the transfer buffer
1433  * @buffer_length: length of the transfer buffer
1434  * @complete_fn: pointer to the usb_complete_t function
1435  * @context: what to set the urb context to.
1436  *
1437  * Initializes a control urb with the proper information needed to submit
1438  * it to a device.
1439  */
1440 static inline void usb_fill_control_urb(struct urb *urb,
1441 					struct usb_device *dev,
1442 					unsigned int pipe,
1443 					unsigned char *setup_packet,
1444 					void *transfer_buffer,
1445 					int buffer_length,
1446 					usb_complete_t complete_fn,
1447 					void *context)
1448 {
1449 	urb->dev = dev;
1450 	urb->pipe = pipe;
1451 	urb->setup_packet = setup_packet;
1452 	urb->transfer_buffer = transfer_buffer;
1453 	urb->transfer_buffer_length = buffer_length;
1454 	urb->complete = complete_fn;
1455 	urb->context = context;
1456 }
1457 
1458 /**
1459  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1460  * @urb: pointer to the urb to initialize.
1461  * @dev: pointer to the struct usb_device for this urb.
1462  * @pipe: the endpoint pipe
1463  * @transfer_buffer: pointer to the transfer buffer
1464  * @buffer_length: length of the transfer buffer
1465  * @complete_fn: pointer to the usb_complete_t function
1466  * @context: what to set the urb context to.
1467  *
1468  * Initializes a bulk urb with the proper information needed to submit it
1469  * to a device.
1470  */
1471 static inline void usb_fill_bulk_urb(struct urb *urb,
1472 				     struct usb_device *dev,
1473 				     unsigned int pipe,
1474 				     void *transfer_buffer,
1475 				     int buffer_length,
1476 				     usb_complete_t complete_fn,
1477 				     void *context)
1478 {
1479 	urb->dev = dev;
1480 	urb->pipe = pipe;
1481 	urb->transfer_buffer = transfer_buffer;
1482 	urb->transfer_buffer_length = buffer_length;
1483 	urb->complete = complete_fn;
1484 	urb->context = context;
1485 }
1486 
1487 /**
1488  * usb_fill_int_urb - macro to help initialize a interrupt urb
1489  * @urb: pointer to the urb to initialize.
1490  * @dev: pointer to the struct usb_device for this urb.
1491  * @pipe: the endpoint pipe
1492  * @transfer_buffer: pointer to the transfer buffer
1493  * @buffer_length: length of the transfer buffer
1494  * @complete_fn: pointer to the usb_complete_t function
1495  * @context: what to set the urb context to.
1496  * @interval: what to set the urb interval to, encoded like
1497  *	the endpoint descriptor's bInterval value.
1498  *
1499  * Initializes a interrupt urb with the proper information needed to submit
1500  * it to a device.
1501  *
1502  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1503  * encoding of the endpoint interval, and express polling intervals in
1504  * microframes (eight per millisecond) rather than in frames (one per
1505  * millisecond).
1506  *
1507  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1508  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1509  * through to the host controller, rather than being translated into microframe
1510  * units.
1511  */
1512 static inline void usb_fill_int_urb(struct urb *urb,
1513 				    struct usb_device *dev,
1514 				    unsigned int pipe,
1515 				    void *transfer_buffer,
1516 				    int buffer_length,
1517 				    usb_complete_t complete_fn,
1518 				    void *context,
1519 				    int interval)
1520 {
1521 	urb->dev = dev;
1522 	urb->pipe = pipe;
1523 	urb->transfer_buffer = transfer_buffer;
1524 	urb->transfer_buffer_length = buffer_length;
1525 	urb->complete = complete_fn;
1526 	urb->context = context;
1527 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1528 		urb->interval = 1 << (interval - 1);
1529 	else
1530 		urb->interval = interval;
1531 	urb->start_frame = -1;
1532 }
1533 
1534 extern void usb_init_urb(struct urb *urb);
1535 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1536 extern void usb_free_urb(struct urb *urb);
1537 #define usb_put_urb usb_free_urb
1538 extern struct urb *usb_get_urb(struct urb *urb);
1539 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1540 extern int usb_unlink_urb(struct urb *urb);
1541 extern void usb_kill_urb(struct urb *urb);
1542 extern void usb_poison_urb(struct urb *urb);
1543 extern void usb_unpoison_urb(struct urb *urb);
1544 extern void usb_block_urb(struct urb *urb);
1545 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1546 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1547 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1548 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1549 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1550 extern void usb_unanchor_urb(struct urb *urb);
1551 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1552 					 unsigned int timeout);
1553 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1554 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1555 extern int usb_anchor_empty(struct usb_anchor *anchor);
1556 
1557 #define usb_unblock_urb	usb_unpoison_urb
1558 
1559 /**
1560  * usb_urb_dir_in - check if an URB describes an IN transfer
1561  * @urb: URB to be checked
1562  *
1563  * Returns 1 if @urb describes an IN transfer (device-to-host),
1564  * otherwise 0.
1565  */
1566 static inline int usb_urb_dir_in(struct urb *urb)
1567 {
1568 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1569 }
1570 
1571 /**
1572  * usb_urb_dir_out - check if an URB describes an OUT transfer
1573  * @urb: URB to be checked
1574  *
1575  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1576  * otherwise 0.
1577  */
1578 static inline int usb_urb_dir_out(struct urb *urb)
1579 {
1580 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1581 }
1582 
1583 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1584 	gfp_t mem_flags, dma_addr_t *dma);
1585 void usb_free_coherent(struct usb_device *dev, size_t size,
1586 	void *addr, dma_addr_t dma);
1587 
1588 #if 0
1589 struct urb *usb_buffer_map(struct urb *urb);
1590 void usb_buffer_dmasync(struct urb *urb);
1591 void usb_buffer_unmap(struct urb *urb);
1592 #endif
1593 
1594 struct scatterlist;
1595 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1596 		      struct scatterlist *sg, int nents);
1597 #if 0
1598 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1599 			   struct scatterlist *sg, int n_hw_ents);
1600 #endif
1601 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1602 			 struct scatterlist *sg, int n_hw_ents);
1603 
1604 /*-------------------------------------------------------------------*
1605  *                         SYNCHRONOUS CALL SUPPORT                  *
1606  *-------------------------------------------------------------------*/
1607 
1608 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1609 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1610 	void *data, __u16 size, int timeout);
1611 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1612 	void *data, int len, int *actual_length, int timeout);
1613 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1614 	void *data, int len, int *actual_length,
1615 	int timeout);
1616 
1617 /* wrappers around usb_control_msg() for the most common standard requests */
1618 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1619 	unsigned char descindex, void *buf, int size);
1620 extern int usb_get_status(struct usb_device *dev,
1621 	int type, int target, void *data);
1622 extern int usb_string(struct usb_device *dev, int index,
1623 	char *buf, size_t size);
1624 
1625 /* wrappers that also update important state inside usbcore */
1626 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1627 extern int usb_reset_configuration(struct usb_device *dev);
1628 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1629 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1630 
1631 /* this request isn't really synchronous, but it belongs with the others */
1632 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1633 
1634 /*
1635  * timeouts, in milliseconds, used for sending/receiving control messages
1636  * they typically complete within a few frames (msec) after they're issued
1637  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1638  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1639  */
1640 #define USB_CTRL_GET_TIMEOUT	5000
1641 #define USB_CTRL_SET_TIMEOUT	5000
1642 
1643 
1644 /**
1645  * struct usb_sg_request - support for scatter/gather I/O
1646  * @status: zero indicates success, else negative errno
1647  * @bytes: counts bytes transferred.
1648  *
1649  * These requests are initialized using usb_sg_init(), and then are used
1650  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1651  * members of the request object aren't for driver access.
1652  *
1653  * The status and bytecount values are valid only after usb_sg_wait()
1654  * returns.  If the status is zero, then the bytecount matches the total
1655  * from the request.
1656  *
1657  * After an error completion, drivers may need to clear a halt condition
1658  * on the endpoint.
1659  */
1660 struct usb_sg_request {
1661 	int			status;
1662 	size_t			bytes;
1663 
1664 	/* private:
1665 	 * members below are private to usbcore,
1666 	 * and are not provided for driver access!
1667 	 */
1668 	spinlock_t		lock;
1669 
1670 	struct usb_device	*dev;
1671 	int			pipe;
1672 
1673 	int			entries;
1674 	struct urb		**urbs;
1675 
1676 	int			count;
1677 	struct completion	complete;
1678 };
1679 
1680 int usb_sg_init(
1681 	struct usb_sg_request	*io,
1682 	struct usb_device	*dev,
1683 	unsigned		pipe,
1684 	unsigned		period,
1685 	struct scatterlist	*sg,
1686 	int			nents,
1687 	size_t			length,
1688 	gfp_t			mem_flags
1689 );
1690 void usb_sg_cancel(struct usb_sg_request *io);
1691 void usb_sg_wait(struct usb_sg_request *io);
1692 
1693 
1694 /* ----------------------------------------------------------------------- */
1695 
1696 /*
1697  * For various legacy reasons, Linux has a small cookie that's paired with
1698  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1699  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1700  * an unsigned int encoded as:
1701  *
1702  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1703  *					 1 = Device-to-Host [In] ...
1704  *					like endpoint bEndpointAddress)
1705  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1706  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1707  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1708  *					 10 = control, 11 = bulk)
1709  *
1710  * Given the device address and endpoint descriptor, pipes are redundant.
1711  */
1712 
1713 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1714 /* (yet ... they're the values used by usbfs) */
1715 #define PIPE_ISOCHRONOUS		0
1716 #define PIPE_INTERRUPT			1
1717 #define PIPE_CONTROL			2
1718 #define PIPE_BULK			3
1719 
1720 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1721 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1722 
1723 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1724 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1725 
1726 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1727 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1728 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1729 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1730 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1731 
1732 static inline unsigned int __create_pipe(struct usb_device *dev,
1733 		unsigned int endpoint)
1734 {
1735 	return (dev->devnum << 8) | (endpoint << 15);
1736 }
1737 
1738 /* Create various pipes... */
1739 #define usb_sndctrlpipe(dev, endpoint)	\
1740 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1741 #define usb_rcvctrlpipe(dev, endpoint)	\
1742 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1743 #define usb_sndisocpipe(dev, endpoint)	\
1744 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1745 #define usb_rcvisocpipe(dev, endpoint)	\
1746 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1747 #define usb_sndbulkpipe(dev, endpoint)	\
1748 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1749 #define usb_rcvbulkpipe(dev, endpoint)	\
1750 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1751 #define usb_sndintpipe(dev, endpoint)	\
1752 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1753 #define usb_rcvintpipe(dev, endpoint)	\
1754 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1755 
1756 static inline struct usb_host_endpoint *
1757 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1758 {
1759 	struct usb_host_endpoint **eps;
1760 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1761 	return eps[usb_pipeendpoint(pipe)];
1762 }
1763 
1764 /*-------------------------------------------------------------------------*/
1765 
1766 static inline __u16
1767 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1768 {
1769 	struct usb_host_endpoint	*ep;
1770 	unsigned			epnum = usb_pipeendpoint(pipe);
1771 
1772 	if (is_out) {
1773 		WARN_ON(usb_pipein(pipe));
1774 		ep = udev->ep_out[epnum];
1775 	} else {
1776 		WARN_ON(usb_pipeout(pipe));
1777 		ep = udev->ep_in[epnum];
1778 	}
1779 	if (!ep)
1780 		return 0;
1781 
1782 	/* NOTE:  only 0x07ff bits are for packet size... */
1783 	return usb_endpoint_maxp(&ep->desc);
1784 }
1785 
1786 /* ----------------------------------------------------------------------- */
1787 
1788 /* translate USB error codes to codes user space understands */
1789 static inline int usb_translate_errors(int error_code)
1790 {
1791 	switch (error_code) {
1792 	case 0:
1793 	case -ENOMEM:
1794 	case -ENODEV:
1795 	case -EOPNOTSUPP:
1796 		return error_code;
1797 	default:
1798 		return -EIO;
1799 	}
1800 }
1801 
1802 /* Events from the usb core */
1803 #define USB_DEVICE_ADD		0x0001
1804 #define USB_DEVICE_REMOVE	0x0002
1805 #define USB_BUS_ADD		0x0003
1806 #define USB_BUS_REMOVE		0x0004
1807 extern void usb_register_notify(struct notifier_block *nb);
1808 extern void usb_unregister_notify(struct notifier_block *nb);
1809 
1810 /* debugfs stuff */
1811 extern struct dentry *usb_debug_root;
1812 
1813 #endif  /* __KERNEL__ */
1814 
1815 #endif
1816