1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb/ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/errno.h> /* for -ENODEV */ 14 #include <linux/delay.h> /* for mdelay() */ 15 #include <linux/interrupt.h> /* for in_interrupt() */ 16 #include <linux/list.h> /* for struct list_head */ 17 #include <linux/kref.h> /* for struct kref */ 18 #include <linux/device.h> /* for struct device */ 19 #include <linux/fs.h> /* for struct file_operations */ 20 #include <linux/completion.h> /* for struct completion */ 21 #include <linux/sched.h> /* for current && schedule_timeout */ 22 #include <linux/mutex.h> /* for struct mutex */ 23 24 struct usb_device; 25 struct usb_driver; 26 struct wusb_dev; 27 28 /*-------------------------------------------------------------------------*/ 29 30 /* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * 40 * And there might be other descriptors mixed in with those. 41 * 42 * Devices may also have class-specific or vendor-specific descriptors. 43 */ 44 45 struct ep_device; 46 47 /** 48 * struct usb_host_endpoint - host-side endpoint descriptor and queue 49 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 50 * @urb_list: urbs queued to this endpoint; maintained by usbcore 51 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 52 * with one or more transfer descriptors (TDs) per urb 53 * @ep_dev: ep_device for sysfs info 54 * @extra: descriptors following this endpoint in the configuration 55 * @extralen: how many bytes of "extra" are valid 56 * @enabled: URBs may be submitted to this endpoint 57 * 58 * USB requests are always queued to a given endpoint, identified by a 59 * descriptor within an active interface in a given USB configuration. 60 */ 61 struct usb_host_endpoint { 62 struct usb_endpoint_descriptor desc; 63 struct list_head urb_list; 64 void *hcpriv; 65 struct ep_device *ep_dev; /* For sysfs info */ 66 67 unsigned char *extra; /* Extra descriptors */ 68 int extralen; 69 int enabled; 70 }; 71 72 /* host-side wrapper for one interface setting's parsed descriptors */ 73 struct usb_host_interface { 74 struct usb_interface_descriptor desc; 75 76 /* array of desc.bNumEndpoint endpoints associated with this 77 * interface setting. these will be in no particular order. 78 */ 79 struct usb_host_endpoint *endpoint; 80 81 char *string; /* iInterface string, if present */ 82 unsigned char *extra; /* Extra descriptors */ 83 int extralen; 84 }; 85 86 enum usb_interface_condition { 87 USB_INTERFACE_UNBOUND = 0, 88 USB_INTERFACE_BINDING, 89 USB_INTERFACE_BOUND, 90 USB_INTERFACE_UNBINDING, 91 }; 92 93 /** 94 * struct usb_interface - what usb device drivers talk to 95 * @altsetting: array of interface structures, one for each alternate 96 * setting that may be selected. Each one includes a set of 97 * endpoint configurations. They will be in no particular order. 98 * @cur_altsetting: the current altsetting. 99 * @num_altsetting: number of altsettings defined. 100 * @intf_assoc: interface association descriptor 101 * @minor: the minor number assigned to this interface, if this 102 * interface is bound to a driver that uses the USB major number. 103 * If this interface does not use the USB major, this field should 104 * be unused. The driver should set this value in the probe() 105 * function of the driver, after it has been assigned a minor 106 * number from the USB core by calling usb_register_dev(). 107 * @condition: binding state of the interface: not bound, binding 108 * (in probe()), bound to a driver, or unbinding (in disconnect()) 109 * @is_active: flag set when the interface is bound and not suspended. 110 * @sysfs_files_created: sysfs attributes exist 111 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 112 * capability during autosuspend. 113 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 114 * has been deferred. 115 * @needs_binding: flag set when the driver should be re-probed or unbound 116 * following a reset or suspend operation it doesn't support. 117 * @dev: driver model's view of this device 118 * @usb_dev: if an interface is bound to the USB major, this will point 119 * to the sysfs representation for that device. 120 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 121 * allowed unless the counter is 0. 122 * 123 * USB device drivers attach to interfaces on a physical device. Each 124 * interface encapsulates a single high level function, such as feeding 125 * an audio stream to a speaker or reporting a change in a volume control. 126 * Many USB devices only have one interface. The protocol used to talk to 127 * an interface's endpoints can be defined in a usb "class" specification, 128 * or by a product's vendor. The (default) control endpoint is part of 129 * every interface, but is never listed among the interface's descriptors. 130 * 131 * The driver that is bound to the interface can use standard driver model 132 * calls such as dev_get_drvdata() on the dev member of this structure. 133 * 134 * Each interface may have alternate settings. The initial configuration 135 * of a device sets altsetting 0, but the device driver can change 136 * that setting using usb_set_interface(). Alternate settings are often 137 * used to control the use of periodic endpoints, such as by having 138 * different endpoints use different amounts of reserved USB bandwidth. 139 * All standards-conformant USB devices that use isochronous endpoints 140 * will use them in non-default settings. 141 * 142 * The USB specification says that alternate setting numbers must run from 143 * 0 to one less than the total number of alternate settings. But some 144 * devices manage to mess this up, and the structures aren't necessarily 145 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 146 * look up an alternate setting in the altsetting array based on its number. 147 */ 148 struct usb_interface { 149 /* array of alternate settings for this interface, 150 * stored in no particular order */ 151 struct usb_host_interface *altsetting; 152 153 struct usb_host_interface *cur_altsetting; /* the currently 154 * active alternate setting */ 155 unsigned num_altsetting; /* number of alternate settings */ 156 157 /* If there is an interface association descriptor then it will list 158 * the associated interfaces */ 159 struct usb_interface_assoc_descriptor *intf_assoc; 160 161 int minor; /* minor number this interface is 162 * bound to */ 163 enum usb_interface_condition condition; /* state of binding */ 164 unsigned is_active:1; /* the interface is not suspended */ 165 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 166 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 167 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 168 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 169 170 struct device dev; /* interface specific device info */ 171 struct device *usb_dev; 172 int pm_usage_cnt; /* usage counter for autosuspend */ 173 }; 174 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 175 #define interface_to_usbdev(intf) \ 176 container_of(intf->dev.parent, struct usb_device, dev) 177 178 static inline void *usb_get_intfdata(struct usb_interface *intf) 179 { 180 return dev_get_drvdata(&intf->dev); 181 } 182 183 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 184 { 185 dev_set_drvdata(&intf->dev, data); 186 } 187 188 struct usb_interface *usb_get_intf(struct usb_interface *intf); 189 void usb_put_intf(struct usb_interface *intf); 190 191 /* this maximum is arbitrary */ 192 #define USB_MAXINTERFACES 32 193 #define USB_MAXIADS USB_MAXINTERFACES/2 194 195 /** 196 * struct usb_interface_cache - long-term representation of a device interface 197 * @num_altsetting: number of altsettings defined. 198 * @ref: reference counter. 199 * @altsetting: variable-length array of interface structures, one for 200 * each alternate setting that may be selected. Each one includes a 201 * set of endpoint configurations. They will be in no particular order. 202 * 203 * These structures persist for the lifetime of a usb_device, unlike 204 * struct usb_interface (which persists only as long as its configuration 205 * is installed). The altsetting arrays can be accessed through these 206 * structures at any time, permitting comparison of configurations and 207 * providing support for the /proc/bus/usb/devices pseudo-file. 208 */ 209 struct usb_interface_cache { 210 unsigned num_altsetting; /* number of alternate settings */ 211 struct kref ref; /* reference counter */ 212 213 /* variable-length array of alternate settings for this interface, 214 * stored in no particular order */ 215 struct usb_host_interface altsetting[0]; 216 }; 217 #define ref_to_usb_interface_cache(r) \ 218 container_of(r, struct usb_interface_cache, ref) 219 #define altsetting_to_usb_interface_cache(a) \ 220 container_of(a, struct usb_interface_cache, altsetting[0]) 221 222 /** 223 * struct usb_host_config - representation of a device's configuration 224 * @desc: the device's configuration descriptor. 225 * @string: pointer to the cached version of the iConfiguration string, if 226 * present for this configuration. 227 * @intf_assoc: list of any interface association descriptors in this config 228 * @interface: array of pointers to usb_interface structures, one for each 229 * interface in the configuration. The number of interfaces is stored 230 * in desc.bNumInterfaces. These pointers are valid only while the 231 * the configuration is active. 232 * @intf_cache: array of pointers to usb_interface_cache structures, one 233 * for each interface in the configuration. These structures exist 234 * for the entire life of the device. 235 * @extra: pointer to buffer containing all extra descriptors associated 236 * with this configuration (those preceding the first interface 237 * descriptor). 238 * @extralen: length of the extra descriptors buffer. 239 * 240 * USB devices may have multiple configurations, but only one can be active 241 * at any time. Each encapsulates a different operational environment; 242 * for example, a dual-speed device would have separate configurations for 243 * full-speed and high-speed operation. The number of configurations 244 * available is stored in the device descriptor as bNumConfigurations. 245 * 246 * A configuration can contain multiple interfaces. Each corresponds to 247 * a different function of the USB device, and all are available whenever 248 * the configuration is active. The USB standard says that interfaces 249 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 250 * of devices get this wrong. In addition, the interface array is not 251 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 252 * look up an interface entry based on its number. 253 * 254 * Device drivers should not attempt to activate configurations. The choice 255 * of which configuration to install is a policy decision based on such 256 * considerations as available power, functionality provided, and the user's 257 * desires (expressed through userspace tools). However, drivers can call 258 * usb_reset_configuration() to reinitialize the current configuration and 259 * all its interfaces. 260 */ 261 struct usb_host_config { 262 struct usb_config_descriptor desc; 263 264 char *string; /* iConfiguration string, if present */ 265 266 /* List of any Interface Association Descriptors in this 267 * configuration. */ 268 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 269 270 /* the interfaces associated with this configuration, 271 * stored in no particular order */ 272 struct usb_interface *interface[USB_MAXINTERFACES]; 273 274 /* Interface information available even when this is not the 275 * active configuration */ 276 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 277 278 unsigned char *extra; /* Extra descriptors */ 279 int extralen; 280 }; 281 282 int __usb_get_extra_descriptor(char *buffer, unsigned size, 283 unsigned char type, void **ptr); 284 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 285 __usb_get_extra_descriptor((ifpoint)->extra, \ 286 (ifpoint)->extralen, \ 287 type, (void **)ptr) 288 289 /* ----------------------------------------------------------------------- */ 290 291 /* USB device number allocation bitmap */ 292 struct usb_devmap { 293 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 294 }; 295 296 /* 297 * Allocated per bus (tree of devices) we have: 298 */ 299 struct usb_bus { 300 struct device *controller; /* host/master side hardware */ 301 int busnum; /* Bus number (in order of reg) */ 302 const char *bus_name; /* stable id (PCI slot_name etc) */ 303 u8 uses_dma; /* Does the host controller use DMA? */ 304 u8 otg_port; /* 0, or number of OTG/HNP port */ 305 unsigned is_b_host:1; /* true during some HNP roleswitches */ 306 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 307 308 int devnum_next; /* Next open device number in 309 * round-robin allocation */ 310 311 struct usb_devmap devmap; /* device address allocation map */ 312 struct usb_device *root_hub; /* Root hub */ 313 struct list_head bus_list; /* list of busses */ 314 315 int bandwidth_allocated; /* on this bus: how much of the time 316 * reserved for periodic (intr/iso) 317 * requests is used, on average? 318 * Units: microseconds/frame. 319 * Limits: Full/low speed reserve 90%, 320 * while high speed reserves 80%. 321 */ 322 int bandwidth_int_reqs; /* number of Interrupt requests */ 323 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 324 325 #ifdef CONFIG_USB_DEVICEFS 326 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 327 #endif 328 struct device *dev; /* device for this bus */ 329 330 #if defined(CONFIG_USB_MON) 331 struct mon_bus *mon_bus; /* non-null when associated */ 332 int monitored; /* non-zero when monitored */ 333 #endif 334 }; 335 336 /* ----------------------------------------------------------------------- */ 337 338 /* This is arbitrary. 339 * From USB 2.0 spec Table 11-13, offset 7, a hub can 340 * have up to 255 ports. The most yet reported is 10. 341 * 342 * Current Wireless USB host hardware (Intel i1480 for example) allows 343 * up to 22 devices to connect. Upcoming hardware might raise that 344 * limit. Because the arrays need to add a bit for hub status data, we 345 * do 31, so plus one evens out to four bytes. 346 */ 347 #define USB_MAXCHILDREN (31) 348 349 struct usb_tt; 350 351 /** 352 * struct usb_device - kernel's representation of a USB device 353 * @devnum: device number; address on a USB bus 354 * @devpath: device ID string for use in messages (e.g., /port/...) 355 * @state: device state: configured, not attached, etc. 356 * @speed: device speed: high/full/low (or error) 357 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 358 * @ttport: device port on that tt hub 359 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 360 * @parent: our hub, unless we're the root 361 * @bus: bus we're part of 362 * @ep0: endpoint 0 data (default control pipe) 363 * @dev: generic device interface 364 * @descriptor: USB device descriptor 365 * @config: all of the device's configs 366 * @actconfig: the active configuration 367 * @ep_in: array of IN endpoints 368 * @ep_out: array of OUT endpoints 369 * @rawdescriptors: raw descriptors for each config 370 * @bus_mA: Current available from the bus 371 * @portnum: parent port number (origin 1) 372 * @level: number of USB hub ancestors 373 * @can_submit: URBs may be submitted 374 * @discon_suspended: disconnected while suspended 375 * @persist_enabled: USB_PERSIST enabled for this device 376 * @have_langid: whether string_langid is valid 377 * @authorized: policy has said we can use it; 378 * (user space) policy determines if we authorize this device to be 379 * used or not. By default, wired USB devices are authorized. 380 * WUSB devices are not, until we authorize them from user space. 381 * FIXME -- complete doc 382 * @authenticated: Crypto authentication passed 383 * @wusb: device is Wireless USB 384 * @string_langid: language ID for strings 385 * @product: iProduct string, if present (static) 386 * @manufacturer: iManufacturer string, if present (static) 387 * @serial: iSerialNumber string, if present (static) 388 * @filelist: usbfs files that are open to this device 389 * @usb_classdev: USB class device that was created for usbfs device 390 * access from userspace 391 * @usbfs_dentry: usbfs dentry entry for the device 392 * @maxchild: number of ports if hub 393 * @children: child devices - USB devices that are attached to this hub 394 * @pm_usage_cnt: usage counter for autosuspend 395 * @quirks: quirks of the whole device 396 * @urbnum: number of URBs submitted for the whole device 397 * @active_duration: total time device is not suspended 398 * @autosuspend: for delayed autosuspends 399 * @pm_mutex: protects PM operations 400 * @last_busy: time of last use 401 * @autosuspend_delay: in jiffies 402 * @connect_time: time device was first connected 403 * @auto_pm: autosuspend/resume in progress 404 * @do_remote_wakeup: remote wakeup should be enabled 405 * @reset_resume: needs reset instead of resume 406 * @autosuspend_disabled: autosuspend disabled by the user 407 * @autoresume_disabled: autoresume disabled by the user 408 * @skip_sys_resume: skip the next system resume 409 * 410 * Notes: 411 * Usbcore drivers should not set usbdev->state directly. Instead use 412 * usb_set_device_state(). 413 */ 414 struct usb_device { 415 int devnum; 416 char devpath [16]; 417 enum usb_device_state state; 418 enum usb_device_speed speed; 419 420 struct usb_tt *tt; 421 int ttport; 422 423 unsigned int toggle[2]; 424 425 struct usb_device *parent; 426 struct usb_bus *bus; 427 struct usb_host_endpoint ep0; 428 429 struct device dev; 430 431 struct usb_device_descriptor descriptor; 432 struct usb_host_config *config; 433 434 struct usb_host_config *actconfig; 435 struct usb_host_endpoint *ep_in[16]; 436 struct usb_host_endpoint *ep_out[16]; 437 438 char **rawdescriptors; 439 440 unsigned short bus_mA; 441 u8 portnum; 442 u8 level; 443 444 unsigned can_submit:1; 445 unsigned discon_suspended:1; 446 unsigned persist_enabled:1; 447 unsigned have_langid:1; 448 unsigned authorized:1; 449 unsigned authenticated:1; 450 unsigned wusb:1; 451 int string_langid; 452 453 /* static strings from the device */ 454 char *product; 455 char *manufacturer; 456 char *serial; 457 458 struct list_head filelist; 459 #ifdef CONFIG_USB_DEVICE_CLASS 460 struct device *usb_classdev; 461 #endif 462 #ifdef CONFIG_USB_DEVICEFS 463 struct dentry *usbfs_dentry; 464 #endif 465 466 int maxchild; 467 struct usb_device *children[USB_MAXCHILDREN]; 468 469 int pm_usage_cnt; 470 u32 quirks; 471 atomic_t urbnum; 472 473 unsigned long active_duration; 474 475 #ifdef CONFIG_PM 476 struct delayed_work autosuspend; 477 struct mutex pm_mutex; 478 479 unsigned long last_busy; 480 int autosuspend_delay; 481 unsigned long connect_time; 482 483 unsigned auto_pm:1; 484 unsigned do_remote_wakeup:1; 485 unsigned reset_resume:1; 486 unsigned autosuspend_disabled:1; 487 unsigned autoresume_disabled:1; 488 unsigned skip_sys_resume:1; 489 #endif 490 struct wusb_dev *wusb_dev; 491 }; 492 #define to_usb_device(d) container_of(d, struct usb_device, dev) 493 494 extern struct usb_device *usb_get_dev(struct usb_device *dev); 495 extern void usb_put_dev(struct usb_device *dev); 496 497 /* USB device locking */ 498 #define usb_lock_device(udev) down(&(udev)->dev.sem) 499 #define usb_unlock_device(udev) up(&(udev)->dev.sem) 500 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 501 extern int usb_lock_device_for_reset(struct usb_device *udev, 502 const struct usb_interface *iface); 503 504 /* USB port reset for device reinitialization */ 505 extern int usb_reset_device(struct usb_device *dev); 506 507 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 508 509 /* USB autosuspend and autoresume */ 510 #ifdef CONFIG_USB_SUSPEND 511 extern int usb_autopm_set_interface(struct usb_interface *intf); 512 extern int usb_autopm_get_interface(struct usb_interface *intf); 513 extern void usb_autopm_put_interface(struct usb_interface *intf); 514 515 static inline void usb_autopm_enable(struct usb_interface *intf) 516 { 517 intf->pm_usage_cnt = 0; 518 usb_autopm_set_interface(intf); 519 } 520 521 static inline void usb_autopm_disable(struct usb_interface *intf) 522 { 523 intf->pm_usage_cnt = 1; 524 usb_autopm_set_interface(intf); 525 } 526 527 static inline void usb_mark_last_busy(struct usb_device *udev) 528 { 529 udev->last_busy = jiffies; 530 } 531 532 #else 533 534 static inline int usb_autopm_set_interface(struct usb_interface *intf) 535 { return 0; } 536 537 static inline int usb_autopm_get_interface(struct usb_interface *intf) 538 { return 0; } 539 540 static inline void usb_autopm_put_interface(struct usb_interface *intf) 541 { } 542 static inline void usb_autopm_enable(struct usb_interface *intf) 543 { } 544 static inline void usb_autopm_disable(struct usb_interface *intf) 545 { } 546 static inline void usb_mark_last_busy(struct usb_device *udev) 547 { } 548 #endif 549 550 /*-------------------------------------------------------------------------*/ 551 552 /* for drivers using iso endpoints */ 553 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 554 555 /* used these for multi-interface device registration */ 556 extern int usb_driver_claim_interface(struct usb_driver *driver, 557 struct usb_interface *iface, void *priv); 558 559 /** 560 * usb_interface_claimed - returns true iff an interface is claimed 561 * @iface: the interface being checked 562 * 563 * Returns true (nonzero) iff the interface is claimed, else false (zero). 564 * Callers must own the driver model's usb bus readlock. So driver 565 * probe() entries don't need extra locking, but other call contexts 566 * may need to explicitly claim that lock. 567 * 568 */ 569 static inline int usb_interface_claimed(struct usb_interface *iface) 570 { 571 return (iface->dev.driver != NULL); 572 } 573 574 extern void usb_driver_release_interface(struct usb_driver *driver, 575 struct usb_interface *iface); 576 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 577 const struct usb_device_id *id); 578 extern int usb_match_one_id(struct usb_interface *interface, 579 const struct usb_device_id *id); 580 581 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 582 int minor); 583 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 584 unsigned ifnum); 585 extern struct usb_host_interface *usb_altnum_to_altsetting( 586 const struct usb_interface *intf, unsigned int altnum); 587 588 589 /** 590 * usb_make_path - returns stable device path in the usb tree 591 * @dev: the device whose path is being constructed 592 * @buf: where to put the string 593 * @size: how big is "buf"? 594 * 595 * Returns length of the string (> 0) or negative if size was too small. 596 * 597 * This identifier is intended to be "stable", reflecting physical paths in 598 * hardware such as physical bus addresses for host controllers or ports on 599 * USB hubs. That makes it stay the same until systems are physically 600 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 601 * controllers. Adding and removing devices, including virtual root hubs 602 * in host controller driver modules, does not change these path identifers; 603 * neither does rebooting or re-enumerating. These are more useful identifiers 604 * than changeable ("unstable") ones like bus numbers or device addresses. 605 * 606 * With a partial exception for devices connected to USB 2.0 root hubs, these 607 * identifiers are also predictable. So long as the device tree isn't changed, 608 * plugging any USB device into a given hub port always gives it the same path. 609 * Because of the use of "companion" controllers, devices connected to ports on 610 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 611 * high speed, and a different one if they are full or low speed. 612 */ 613 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 614 { 615 int actual; 616 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 617 dev->devpath); 618 return (actual >= (int)size) ? -1 : actual; 619 } 620 621 /*-------------------------------------------------------------------------*/ 622 623 /** 624 * usb_endpoint_num - get the endpoint's number 625 * @epd: endpoint to be checked 626 * 627 * Returns @epd's number: 0 to 15. 628 */ 629 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) 630 { 631 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 632 } 633 634 /** 635 * usb_endpoint_type - get the endpoint's transfer type 636 * @epd: endpoint to be checked 637 * 638 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according 639 * to @epd's transfer type. 640 */ 641 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) 642 { 643 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 644 } 645 646 /** 647 * usb_endpoint_dir_in - check if the endpoint has IN direction 648 * @epd: endpoint to be checked 649 * 650 * Returns true if the endpoint is of type IN, otherwise it returns false. 651 */ 652 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 653 { 654 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 655 } 656 657 /** 658 * usb_endpoint_dir_out - check if the endpoint has OUT direction 659 * @epd: endpoint to be checked 660 * 661 * Returns true if the endpoint is of type OUT, otherwise it returns false. 662 */ 663 static inline int usb_endpoint_dir_out( 664 const struct usb_endpoint_descriptor *epd) 665 { 666 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 667 } 668 669 /** 670 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 671 * @epd: endpoint to be checked 672 * 673 * Returns true if the endpoint is of type bulk, otherwise it returns false. 674 */ 675 static inline int usb_endpoint_xfer_bulk( 676 const struct usb_endpoint_descriptor *epd) 677 { 678 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 679 USB_ENDPOINT_XFER_BULK); 680 } 681 682 /** 683 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 684 * @epd: endpoint to be checked 685 * 686 * Returns true if the endpoint is of type control, otherwise it returns false. 687 */ 688 static inline int usb_endpoint_xfer_control( 689 const struct usb_endpoint_descriptor *epd) 690 { 691 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 692 USB_ENDPOINT_XFER_CONTROL); 693 } 694 695 /** 696 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 697 * @epd: endpoint to be checked 698 * 699 * Returns true if the endpoint is of type interrupt, otherwise it returns 700 * false. 701 */ 702 static inline int usb_endpoint_xfer_int( 703 const struct usb_endpoint_descriptor *epd) 704 { 705 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 706 USB_ENDPOINT_XFER_INT); 707 } 708 709 /** 710 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 711 * @epd: endpoint to be checked 712 * 713 * Returns true if the endpoint is of type isochronous, otherwise it returns 714 * false. 715 */ 716 static inline int usb_endpoint_xfer_isoc( 717 const struct usb_endpoint_descriptor *epd) 718 { 719 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 720 USB_ENDPOINT_XFER_ISOC); 721 } 722 723 /** 724 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 725 * @epd: endpoint to be checked 726 * 727 * Returns true if the endpoint has bulk transfer type and IN direction, 728 * otherwise it returns false. 729 */ 730 static inline int usb_endpoint_is_bulk_in( 731 const struct usb_endpoint_descriptor *epd) 732 { 733 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 734 } 735 736 /** 737 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 738 * @epd: endpoint to be checked 739 * 740 * Returns true if the endpoint has bulk transfer type and OUT direction, 741 * otherwise it returns false. 742 */ 743 static inline int usb_endpoint_is_bulk_out( 744 const struct usb_endpoint_descriptor *epd) 745 { 746 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 747 } 748 749 /** 750 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 751 * @epd: endpoint to be checked 752 * 753 * Returns true if the endpoint has interrupt transfer type and IN direction, 754 * otherwise it returns false. 755 */ 756 static inline int usb_endpoint_is_int_in( 757 const struct usb_endpoint_descriptor *epd) 758 { 759 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 760 } 761 762 /** 763 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 764 * @epd: endpoint to be checked 765 * 766 * Returns true if the endpoint has interrupt transfer type and OUT direction, 767 * otherwise it returns false. 768 */ 769 static inline int usb_endpoint_is_int_out( 770 const struct usb_endpoint_descriptor *epd) 771 { 772 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 773 } 774 775 /** 776 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 777 * @epd: endpoint to be checked 778 * 779 * Returns true if the endpoint has isochronous transfer type and IN direction, 780 * otherwise it returns false. 781 */ 782 static inline int usb_endpoint_is_isoc_in( 783 const struct usb_endpoint_descriptor *epd) 784 { 785 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 786 } 787 788 /** 789 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 790 * @epd: endpoint to be checked 791 * 792 * Returns true if the endpoint has isochronous transfer type and OUT direction, 793 * otherwise it returns false. 794 */ 795 static inline int usb_endpoint_is_isoc_out( 796 const struct usb_endpoint_descriptor *epd) 797 { 798 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 799 } 800 801 /*-------------------------------------------------------------------------*/ 802 803 #define USB_DEVICE_ID_MATCH_DEVICE \ 804 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 805 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 806 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 807 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 808 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 809 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 810 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 811 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 812 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 813 #define USB_DEVICE_ID_MATCH_INT_INFO \ 814 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 815 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 816 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 817 818 /** 819 * USB_DEVICE - macro used to describe a specific usb device 820 * @vend: the 16 bit USB Vendor ID 821 * @prod: the 16 bit USB Product ID 822 * 823 * This macro is used to create a struct usb_device_id that matches a 824 * specific device. 825 */ 826 #define USB_DEVICE(vend,prod) \ 827 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 828 .idVendor = (vend), \ 829 .idProduct = (prod) 830 /** 831 * USB_DEVICE_VER - describe a specific usb device with a version range 832 * @vend: the 16 bit USB Vendor ID 833 * @prod: the 16 bit USB Product ID 834 * @lo: the bcdDevice_lo value 835 * @hi: the bcdDevice_hi value 836 * 837 * This macro is used to create a struct usb_device_id that matches a 838 * specific device, with a version range. 839 */ 840 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 841 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 842 .idVendor = (vend), \ 843 .idProduct = (prod), \ 844 .bcdDevice_lo = (lo), \ 845 .bcdDevice_hi = (hi) 846 847 /** 848 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 849 * @vend: the 16 bit USB Vendor ID 850 * @prod: the 16 bit USB Product ID 851 * @pr: bInterfaceProtocol value 852 * 853 * This macro is used to create a struct usb_device_id that matches a 854 * specific interface protocol of devices. 855 */ 856 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 857 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 858 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 859 .idVendor = (vend), \ 860 .idProduct = (prod), \ 861 .bInterfaceProtocol = (pr) 862 863 /** 864 * USB_DEVICE_INFO - macro used to describe a class of usb devices 865 * @cl: bDeviceClass value 866 * @sc: bDeviceSubClass value 867 * @pr: bDeviceProtocol value 868 * 869 * This macro is used to create a struct usb_device_id that matches a 870 * specific class of devices. 871 */ 872 #define USB_DEVICE_INFO(cl, sc, pr) \ 873 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 874 .bDeviceClass = (cl), \ 875 .bDeviceSubClass = (sc), \ 876 .bDeviceProtocol = (pr) 877 878 /** 879 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 880 * @cl: bInterfaceClass value 881 * @sc: bInterfaceSubClass value 882 * @pr: bInterfaceProtocol value 883 * 884 * This macro is used to create a struct usb_device_id that matches a 885 * specific class of interfaces. 886 */ 887 #define USB_INTERFACE_INFO(cl, sc, pr) \ 888 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 889 .bInterfaceClass = (cl), \ 890 .bInterfaceSubClass = (sc), \ 891 .bInterfaceProtocol = (pr) 892 893 /** 894 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 895 * @vend: the 16 bit USB Vendor ID 896 * @prod: the 16 bit USB Product ID 897 * @cl: bInterfaceClass value 898 * @sc: bInterfaceSubClass value 899 * @pr: bInterfaceProtocol value 900 * 901 * This macro is used to create a struct usb_device_id that matches a 902 * specific device with a specific class of interfaces. 903 * 904 * This is especially useful when explicitly matching devices that have 905 * vendor specific bDeviceClass values, but standards-compliant interfaces. 906 */ 907 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 908 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 909 | USB_DEVICE_ID_MATCH_DEVICE, \ 910 .idVendor = (vend), \ 911 .idProduct = (prod), \ 912 .bInterfaceClass = (cl), \ 913 .bInterfaceSubClass = (sc), \ 914 .bInterfaceProtocol = (pr) 915 916 /* ----------------------------------------------------------------------- */ 917 918 /* Stuff for dynamic usb ids */ 919 struct usb_dynids { 920 spinlock_t lock; 921 struct list_head list; 922 }; 923 924 struct usb_dynid { 925 struct list_head node; 926 struct usb_device_id id; 927 }; 928 929 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 930 struct device_driver *driver, 931 const char *buf, size_t count); 932 933 /** 934 * struct usbdrv_wrap - wrapper for driver-model structure 935 * @driver: The driver-model core driver structure. 936 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 937 */ 938 struct usbdrv_wrap { 939 struct device_driver driver; 940 int for_devices; 941 }; 942 943 /** 944 * struct usb_driver - identifies USB interface driver to usbcore 945 * @name: The driver name should be unique among USB drivers, 946 * and should normally be the same as the module name. 947 * @probe: Called to see if the driver is willing to manage a particular 948 * interface on a device. If it is, probe returns zero and uses 949 * usb_set_intfdata() to associate driver-specific data with the 950 * interface. It may also use usb_set_interface() to specify the 951 * appropriate altsetting. If unwilling to manage the interface, 952 * return -ENODEV, if genuine IO errors occured, an appropriate 953 * negative errno value. 954 * @disconnect: Called when the interface is no longer accessible, usually 955 * because its device has been (or is being) disconnected or the 956 * driver module is being unloaded. 957 * @ioctl: Used for drivers that want to talk to userspace through 958 * the "usbfs" filesystem. This lets devices provide ways to 959 * expose information to user space regardless of where they 960 * do (or don't) show up otherwise in the filesystem. 961 * @suspend: Called when the device is going to be suspended by the system. 962 * @resume: Called when the device is being resumed by the system. 963 * @reset_resume: Called when the suspended device has been reset instead 964 * of being resumed. 965 * @pre_reset: Called by usb_reset_device() when the device 966 * is about to be reset. 967 * @post_reset: Called by usb_reset_device() after the device 968 * has been reset 969 * @id_table: USB drivers use ID table to support hotplugging. 970 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 971 * or your driver's probe function will never get called. 972 * @dynids: used internally to hold the list of dynamically added device 973 * ids for this driver. 974 * @drvwrap: Driver-model core structure wrapper. 975 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 976 * added to this driver by preventing the sysfs file from being created. 977 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 978 * for interfaces bound to this driver. 979 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 980 * endpoints before calling the driver's disconnect method. 981 * 982 * USB interface drivers must provide a name, probe() and disconnect() 983 * methods, and an id_table. Other driver fields are optional. 984 * 985 * The id_table is used in hotplugging. It holds a set of descriptors, 986 * and specialized data may be associated with each entry. That table 987 * is used by both user and kernel mode hotplugging support. 988 * 989 * The probe() and disconnect() methods are called in a context where 990 * they can sleep, but they should avoid abusing the privilege. Most 991 * work to connect to a device should be done when the device is opened, 992 * and undone at the last close. The disconnect code needs to address 993 * concurrency issues with respect to open() and close() methods, as 994 * well as forcing all pending I/O requests to complete (by unlinking 995 * them as necessary, and blocking until the unlinks complete). 996 */ 997 struct usb_driver { 998 const char *name; 999 1000 int (*probe) (struct usb_interface *intf, 1001 const struct usb_device_id *id); 1002 1003 void (*disconnect) (struct usb_interface *intf); 1004 1005 int (*ioctl) (struct usb_interface *intf, unsigned int code, 1006 void *buf); 1007 1008 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1009 int (*resume) (struct usb_interface *intf); 1010 int (*reset_resume)(struct usb_interface *intf); 1011 1012 int (*pre_reset)(struct usb_interface *intf); 1013 int (*post_reset)(struct usb_interface *intf); 1014 1015 const struct usb_device_id *id_table; 1016 1017 struct usb_dynids dynids; 1018 struct usbdrv_wrap drvwrap; 1019 unsigned int no_dynamic_id:1; 1020 unsigned int supports_autosuspend:1; 1021 unsigned int soft_unbind:1; 1022 }; 1023 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1024 1025 /** 1026 * struct usb_device_driver - identifies USB device driver to usbcore 1027 * @name: The driver name should be unique among USB drivers, 1028 * and should normally be the same as the module name. 1029 * @probe: Called to see if the driver is willing to manage a particular 1030 * device. If it is, probe returns zero and uses dev_set_drvdata() 1031 * to associate driver-specific data with the device. If unwilling 1032 * to manage the device, return a negative errno value. 1033 * @disconnect: Called when the device is no longer accessible, usually 1034 * because it has been (or is being) disconnected or the driver's 1035 * module is being unloaded. 1036 * @suspend: Called when the device is going to be suspended by the system. 1037 * @resume: Called when the device is being resumed by the system. 1038 * @drvwrap: Driver-model core structure wrapper. 1039 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1040 * for devices bound to this driver. 1041 * 1042 * USB drivers must provide all the fields listed above except drvwrap. 1043 */ 1044 struct usb_device_driver { 1045 const char *name; 1046 1047 int (*probe) (struct usb_device *udev); 1048 void (*disconnect) (struct usb_device *udev); 1049 1050 int (*suspend) (struct usb_device *udev, pm_message_t message); 1051 int (*resume) (struct usb_device *udev); 1052 struct usbdrv_wrap drvwrap; 1053 unsigned int supports_autosuspend:1; 1054 }; 1055 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1056 drvwrap.driver) 1057 1058 extern struct bus_type usb_bus_type; 1059 1060 /** 1061 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1062 * @name: the usb class device name for this driver. Will show up in sysfs. 1063 * @fops: pointer to the struct file_operations of this driver. 1064 * @minor_base: the start of the minor range for this driver. 1065 * 1066 * This structure is used for the usb_register_dev() and 1067 * usb_unregister_dev() functions, to consolidate a number of the 1068 * parameters used for them. 1069 */ 1070 struct usb_class_driver { 1071 char *name; 1072 const struct file_operations *fops; 1073 int minor_base; 1074 }; 1075 1076 /* 1077 * use these in module_init()/module_exit() 1078 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1079 */ 1080 extern int usb_register_driver(struct usb_driver *, struct module *, 1081 const char *); 1082 static inline int usb_register(struct usb_driver *driver) 1083 { 1084 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 1085 } 1086 extern void usb_deregister(struct usb_driver *); 1087 1088 extern int usb_register_device_driver(struct usb_device_driver *, 1089 struct module *); 1090 extern void usb_deregister_device_driver(struct usb_device_driver *); 1091 1092 extern int usb_register_dev(struct usb_interface *intf, 1093 struct usb_class_driver *class_driver); 1094 extern void usb_deregister_dev(struct usb_interface *intf, 1095 struct usb_class_driver *class_driver); 1096 1097 extern int usb_disabled(void); 1098 1099 /* ----------------------------------------------------------------------- */ 1100 1101 /* 1102 * URB support, for asynchronous request completions 1103 */ 1104 1105 /* 1106 * urb->transfer_flags: 1107 * 1108 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1109 */ 1110 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1111 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1112 * ignored */ 1113 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1114 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1115 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1116 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1117 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1118 * needed */ 1119 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1120 1121 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1122 #define URB_DIR_OUT 0 1123 #define URB_DIR_MASK URB_DIR_IN 1124 1125 struct usb_iso_packet_descriptor { 1126 unsigned int offset; 1127 unsigned int length; /* expected length */ 1128 unsigned int actual_length; 1129 int status; 1130 }; 1131 1132 struct urb; 1133 1134 struct usb_anchor { 1135 struct list_head urb_list; 1136 wait_queue_head_t wait; 1137 spinlock_t lock; 1138 unsigned int poisoned:1; 1139 }; 1140 1141 static inline void init_usb_anchor(struct usb_anchor *anchor) 1142 { 1143 INIT_LIST_HEAD(&anchor->urb_list); 1144 init_waitqueue_head(&anchor->wait); 1145 spin_lock_init(&anchor->lock); 1146 } 1147 1148 typedef void (*usb_complete_t)(struct urb *); 1149 1150 /** 1151 * struct urb - USB Request Block 1152 * @urb_list: For use by current owner of the URB. 1153 * @anchor_list: membership in the list of an anchor 1154 * @anchor: to anchor URBs to a common mooring 1155 * @ep: Points to the endpoint's data structure. Will eventually 1156 * replace @pipe. 1157 * @pipe: Holds endpoint number, direction, type, and more. 1158 * Create these values with the eight macros available; 1159 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1160 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1161 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1162 * numbers range from zero to fifteen. Note that "in" endpoint two 1163 * is a different endpoint (and pipe) from "out" endpoint two. 1164 * The current configuration controls the existence, type, and 1165 * maximum packet size of any given endpoint. 1166 * @dev: Identifies the USB device to perform the request. 1167 * @status: This is read in non-iso completion functions to get the 1168 * status of the particular request. ISO requests only use it 1169 * to tell whether the URB was unlinked; detailed status for 1170 * each frame is in the fields of the iso_frame-desc. 1171 * @transfer_flags: A variety of flags may be used to affect how URB 1172 * submission, unlinking, or operation are handled. Different 1173 * kinds of URB can use different flags. 1174 * @transfer_buffer: This identifies the buffer to (or from) which 1175 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1176 * is set). This buffer must be suitable for DMA; allocate it with 1177 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1178 * of this buffer will be modified. This buffer is used for the data 1179 * stage of control transfers. 1180 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1181 * the device driver is saying that it provided this DMA address, 1182 * which the host controller driver should use in preference to the 1183 * transfer_buffer. 1184 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1185 * be broken up into chunks according to the current maximum packet 1186 * size for the endpoint, which is a function of the configuration 1187 * and is encoded in the pipe. When the length is zero, neither 1188 * transfer_buffer nor transfer_dma is used. 1189 * @actual_length: This is read in non-iso completion functions, and 1190 * it tells how many bytes (out of transfer_buffer_length) were 1191 * transferred. It will normally be the same as requested, unless 1192 * either an error was reported or a short read was performed. 1193 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1194 * short reads be reported as errors. 1195 * @setup_packet: Only used for control transfers, this points to eight bytes 1196 * of setup data. Control transfers always start by sending this data 1197 * to the device. Then transfer_buffer is read or written, if needed. 1198 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1199 * device driver has provided this DMA address for the setup packet. 1200 * The host controller driver should use this in preference to 1201 * setup_packet. 1202 * @start_frame: Returns the initial frame for isochronous transfers. 1203 * @number_of_packets: Lists the number of ISO transfer buffers. 1204 * @interval: Specifies the polling interval for interrupt or isochronous 1205 * transfers. The units are frames (milliseconds) for for full and low 1206 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1207 * @error_count: Returns the number of ISO transfers that reported errors. 1208 * @context: For use in completion functions. This normally points to 1209 * request-specific driver context. 1210 * @complete: Completion handler. This URB is passed as the parameter to the 1211 * completion function. The completion function may then do what 1212 * it likes with the URB, including resubmitting or freeing it. 1213 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1214 * collect the transfer status for each buffer. 1215 * 1216 * This structure identifies USB transfer requests. URBs must be allocated by 1217 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1218 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1219 * are submitted using usb_submit_urb(), and pending requests may be canceled 1220 * using usb_unlink_urb() or usb_kill_urb(). 1221 * 1222 * Data Transfer Buffers: 1223 * 1224 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1225 * taken from the general page pool. That is provided by transfer_buffer 1226 * (control requests also use setup_packet), and host controller drivers 1227 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1228 * mapping operations can be expensive on some platforms (perhaps using a dma 1229 * bounce buffer or talking to an IOMMU), 1230 * although they're cheap on commodity x86 and ppc hardware. 1231 * 1232 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1233 * which tell the host controller driver that no such mapping is needed since 1234 * the device driver is DMA-aware. For example, a device driver might 1235 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1236 * When these transfer flags are provided, host controller drivers will 1237 * attempt to use the dma addresses found in the transfer_dma and/or 1238 * setup_dma fields rather than determining a dma address themselves. (Note 1239 * that transfer_buffer and setup_packet must still be set because not all 1240 * host controllers use DMA, nor do virtual root hubs). 1241 * 1242 * Initialization: 1243 * 1244 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1245 * zero), and complete fields. All URBs must also initialize 1246 * transfer_buffer and transfer_buffer_length. They may provide the 1247 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1248 * to be treated as errors; that flag is invalid for write requests. 1249 * 1250 * Bulk URBs may 1251 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1252 * should always terminate with a short packet, even if it means adding an 1253 * extra zero length packet. 1254 * 1255 * Control URBs must provide a setup_packet. The setup_packet and 1256 * transfer_buffer may each be mapped for DMA or not, independently of 1257 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1258 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1259 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1260 * 1261 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1262 * or, for highspeed devices, 125 microsecond units) 1263 * to poll for transfers. After the URB has been submitted, the interval 1264 * field reflects how the transfer was actually scheduled. 1265 * The polling interval may be more frequent than requested. 1266 * For example, some controllers have a maximum interval of 32 milliseconds, 1267 * while others support intervals of up to 1024 milliseconds. 1268 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1269 * endpoints, as well as high speed interrupt endpoints, the encoding of 1270 * the transfer interval in the endpoint descriptor is logarithmic. 1271 * Device drivers must convert that value to linear units themselves.) 1272 * 1273 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1274 * the host controller to schedule the transfer as soon as bandwidth 1275 * utilization allows, and then set start_frame to reflect the actual frame 1276 * selected during submission. Otherwise drivers must specify the start_frame 1277 * and handle the case where the transfer can't begin then. However, drivers 1278 * won't know how bandwidth is currently allocated, and while they can 1279 * find the current frame using usb_get_current_frame_number () they can't 1280 * know the range for that frame number. (Ranges for frame counter values 1281 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1282 * 1283 * Isochronous URBs have a different data transfer model, in part because 1284 * the quality of service is only "best effort". Callers provide specially 1285 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1286 * at the end. Each such packet is an individual ISO transfer. Isochronous 1287 * URBs are normally queued, submitted by drivers to arrange that 1288 * transfers are at least double buffered, and then explicitly resubmitted 1289 * in completion handlers, so 1290 * that data (such as audio or video) streams at as constant a rate as the 1291 * host controller scheduler can support. 1292 * 1293 * Completion Callbacks: 1294 * 1295 * The completion callback is made in_interrupt(), and one of the first 1296 * things that a completion handler should do is check the status field. 1297 * The status field is provided for all URBs. It is used to report 1298 * unlinked URBs, and status for all non-ISO transfers. It should not 1299 * be examined before the URB is returned to the completion handler. 1300 * 1301 * The context field is normally used to link URBs back to the relevant 1302 * driver or request state. 1303 * 1304 * When the completion callback is invoked for non-isochronous URBs, the 1305 * actual_length field tells how many bytes were transferred. This field 1306 * is updated even when the URB terminated with an error or was unlinked. 1307 * 1308 * ISO transfer status is reported in the status and actual_length fields 1309 * of the iso_frame_desc array, and the number of errors is reported in 1310 * error_count. Completion callbacks for ISO transfers will normally 1311 * (re)submit URBs to ensure a constant transfer rate. 1312 * 1313 * Note that even fields marked "public" should not be touched by the driver 1314 * when the urb is owned by the hcd, that is, since the call to 1315 * usb_submit_urb() till the entry into the completion routine. 1316 */ 1317 struct urb { 1318 /* private: usb core and host controller only fields in the urb */ 1319 struct kref kref; /* reference count of the URB */ 1320 void *hcpriv; /* private data for host controller */ 1321 atomic_t use_count; /* concurrent submissions counter */ 1322 u8 reject; /* submissions will fail */ 1323 int unlinked; /* unlink error code */ 1324 1325 /* public: documented fields in the urb that can be used by drivers */ 1326 struct list_head urb_list; /* list head for use by the urb's 1327 * current owner */ 1328 struct list_head anchor_list; /* the URB may be anchored */ 1329 struct usb_anchor *anchor; 1330 struct usb_device *dev; /* (in) pointer to associated device */ 1331 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1332 unsigned int pipe; /* (in) pipe information */ 1333 int status; /* (return) non-ISO status */ 1334 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1335 void *transfer_buffer; /* (in) associated data buffer */ 1336 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1337 int transfer_buffer_length; /* (in) data buffer length */ 1338 int actual_length; /* (return) actual transfer length */ 1339 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1340 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1341 int start_frame; /* (modify) start frame (ISO) */ 1342 int number_of_packets; /* (in) number of ISO packets */ 1343 int interval; /* (modify) transfer interval 1344 * (INT/ISO) */ 1345 int error_count; /* (return) number of ISO errors */ 1346 void *context; /* (in) context for completion */ 1347 usb_complete_t complete; /* (in) completion routine */ 1348 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1349 /* (in) ISO ONLY */ 1350 }; 1351 1352 /* ----------------------------------------------------------------------- */ 1353 1354 /** 1355 * usb_fill_control_urb - initializes a control urb 1356 * @urb: pointer to the urb to initialize. 1357 * @dev: pointer to the struct usb_device for this urb. 1358 * @pipe: the endpoint pipe 1359 * @setup_packet: pointer to the setup_packet buffer 1360 * @transfer_buffer: pointer to the transfer buffer 1361 * @buffer_length: length of the transfer buffer 1362 * @complete_fn: pointer to the usb_complete_t function 1363 * @context: what to set the urb context to. 1364 * 1365 * Initializes a control urb with the proper information needed to submit 1366 * it to a device. 1367 */ 1368 static inline void usb_fill_control_urb(struct urb *urb, 1369 struct usb_device *dev, 1370 unsigned int pipe, 1371 unsigned char *setup_packet, 1372 void *transfer_buffer, 1373 int buffer_length, 1374 usb_complete_t complete_fn, 1375 void *context) 1376 { 1377 urb->dev = dev; 1378 urb->pipe = pipe; 1379 urb->setup_packet = setup_packet; 1380 urb->transfer_buffer = transfer_buffer; 1381 urb->transfer_buffer_length = buffer_length; 1382 urb->complete = complete_fn; 1383 urb->context = context; 1384 } 1385 1386 /** 1387 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1388 * @urb: pointer to the urb to initialize. 1389 * @dev: pointer to the struct usb_device for this urb. 1390 * @pipe: the endpoint pipe 1391 * @transfer_buffer: pointer to the transfer buffer 1392 * @buffer_length: length of the transfer buffer 1393 * @complete_fn: pointer to the usb_complete_t function 1394 * @context: what to set the urb context to. 1395 * 1396 * Initializes a bulk urb with the proper information needed to submit it 1397 * to a device. 1398 */ 1399 static inline void usb_fill_bulk_urb(struct urb *urb, 1400 struct usb_device *dev, 1401 unsigned int pipe, 1402 void *transfer_buffer, 1403 int buffer_length, 1404 usb_complete_t complete_fn, 1405 void *context) 1406 { 1407 urb->dev = dev; 1408 urb->pipe = pipe; 1409 urb->transfer_buffer = transfer_buffer; 1410 urb->transfer_buffer_length = buffer_length; 1411 urb->complete = complete_fn; 1412 urb->context = context; 1413 } 1414 1415 /** 1416 * usb_fill_int_urb - macro to help initialize a interrupt urb 1417 * @urb: pointer to the urb to initialize. 1418 * @dev: pointer to the struct usb_device for this urb. 1419 * @pipe: the endpoint pipe 1420 * @transfer_buffer: pointer to the transfer buffer 1421 * @buffer_length: length of the transfer buffer 1422 * @complete_fn: pointer to the usb_complete_t function 1423 * @context: what to set the urb context to. 1424 * @interval: what to set the urb interval to, encoded like 1425 * the endpoint descriptor's bInterval value. 1426 * 1427 * Initializes a interrupt urb with the proper information needed to submit 1428 * it to a device. 1429 * Note that high speed interrupt endpoints use a logarithmic encoding of 1430 * the endpoint interval, and express polling intervals in microframes 1431 * (eight per millisecond) rather than in frames (one per millisecond). 1432 */ 1433 static inline void usb_fill_int_urb(struct urb *urb, 1434 struct usb_device *dev, 1435 unsigned int pipe, 1436 void *transfer_buffer, 1437 int buffer_length, 1438 usb_complete_t complete_fn, 1439 void *context, 1440 int interval) 1441 { 1442 urb->dev = dev; 1443 urb->pipe = pipe; 1444 urb->transfer_buffer = transfer_buffer; 1445 urb->transfer_buffer_length = buffer_length; 1446 urb->complete = complete_fn; 1447 urb->context = context; 1448 if (dev->speed == USB_SPEED_HIGH) 1449 urb->interval = 1 << (interval - 1); 1450 else 1451 urb->interval = interval; 1452 urb->start_frame = -1; 1453 } 1454 1455 extern void usb_init_urb(struct urb *urb); 1456 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1457 extern void usb_free_urb(struct urb *urb); 1458 #define usb_put_urb usb_free_urb 1459 extern struct urb *usb_get_urb(struct urb *urb); 1460 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1461 extern int usb_unlink_urb(struct urb *urb); 1462 extern void usb_kill_urb(struct urb *urb); 1463 extern void usb_poison_urb(struct urb *urb); 1464 extern void usb_unpoison_urb(struct urb *urb); 1465 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1466 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1467 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1468 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1469 extern void usb_unanchor_urb(struct urb *urb); 1470 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1471 unsigned int timeout); 1472 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1473 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1474 extern int usb_anchor_empty(struct usb_anchor *anchor); 1475 1476 /** 1477 * usb_urb_dir_in - check if an URB describes an IN transfer 1478 * @urb: URB to be checked 1479 * 1480 * Returns 1 if @urb describes an IN transfer (device-to-host), 1481 * otherwise 0. 1482 */ 1483 static inline int usb_urb_dir_in(struct urb *urb) 1484 { 1485 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1486 } 1487 1488 /** 1489 * usb_urb_dir_out - check if an URB describes an OUT transfer 1490 * @urb: URB to be checked 1491 * 1492 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1493 * otherwise 0. 1494 */ 1495 static inline int usb_urb_dir_out(struct urb *urb) 1496 { 1497 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1498 } 1499 1500 void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1501 gfp_t mem_flags, dma_addr_t *dma); 1502 void usb_buffer_free(struct usb_device *dev, size_t size, 1503 void *addr, dma_addr_t dma); 1504 1505 #if 0 1506 struct urb *usb_buffer_map(struct urb *urb); 1507 void usb_buffer_dmasync(struct urb *urb); 1508 void usb_buffer_unmap(struct urb *urb); 1509 #endif 1510 1511 struct scatterlist; 1512 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1513 struct scatterlist *sg, int nents); 1514 #if 0 1515 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1516 struct scatterlist *sg, int n_hw_ents); 1517 #endif 1518 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1519 struct scatterlist *sg, int n_hw_ents); 1520 1521 /*-------------------------------------------------------------------* 1522 * SYNCHRONOUS CALL SUPPORT * 1523 *-------------------------------------------------------------------*/ 1524 1525 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1526 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1527 void *data, __u16 size, int timeout); 1528 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1529 void *data, int len, int *actual_length, int timeout); 1530 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1531 void *data, int len, int *actual_length, 1532 int timeout); 1533 1534 /* wrappers around usb_control_msg() for the most common standard requests */ 1535 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1536 unsigned char descindex, void *buf, int size); 1537 extern int usb_get_status(struct usb_device *dev, 1538 int type, int target, void *data); 1539 extern int usb_string(struct usb_device *dev, int index, 1540 char *buf, size_t size); 1541 1542 /* wrappers that also update important state inside usbcore */ 1543 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1544 extern int usb_reset_configuration(struct usb_device *dev); 1545 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1546 1547 /* this request isn't really synchronous, but it belongs with the others */ 1548 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1549 1550 /* 1551 * timeouts, in milliseconds, used for sending/receiving control messages 1552 * they typically complete within a few frames (msec) after they're issued 1553 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1554 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1555 */ 1556 #define USB_CTRL_GET_TIMEOUT 5000 1557 #define USB_CTRL_SET_TIMEOUT 5000 1558 1559 1560 /** 1561 * struct usb_sg_request - support for scatter/gather I/O 1562 * @status: zero indicates success, else negative errno 1563 * @bytes: counts bytes transferred. 1564 * 1565 * These requests are initialized using usb_sg_init(), and then are used 1566 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1567 * members of the request object aren't for driver access. 1568 * 1569 * The status and bytecount values are valid only after usb_sg_wait() 1570 * returns. If the status is zero, then the bytecount matches the total 1571 * from the request. 1572 * 1573 * After an error completion, drivers may need to clear a halt condition 1574 * on the endpoint. 1575 */ 1576 struct usb_sg_request { 1577 int status; 1578 size_t bytes; 1579 1580 /* 1581 * members below are private: to usbcore, 1582 * and are not provided for driver access! 1583 */ 1584 spinlock_t lock; 1585 1586 struct usb_device *dev; 1587 int pipe; 1588 struct scatterlist *sg; 1589 int nents; 1590 1591 int entries; 1592 struct urb **urbs; 1593 1594 int count; 1595 struct completion complete; 1596 }; 1597 1598 int usb_sg_init( 1599 struct usb_sg_request *io, 1600 struct usb_device *dev, 1601 unsigned pipe, 1602 unsigned period, 1603 struct scatterlist *sg, 1604 int nents, 1605 size_t length, 1606 gfp_t mem_flags 1607 ); 1608 void usb_sg_cancel(struct usb_sg_request *io); 1609 void usb_sg_wait(struct usb_sg_request *io); 1610 1611 1612 /* ----------------------------------------------------------------------- */ 1613 1614 /* 1615 * For various legacy reasons, Linux has a small cookie that's paired with 1616 * a struct usb_device to identify an endpoint queue. Queue characteristics 1617 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1618 * an unsigned int encoded as: 1619 * 1620 * - direction: bit 7 (0 = Host-to-Device [Out], 1621 * 1 = Device-to-Host [In] ... 1622 * like endpoint bEndpointAddress) 1623 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1624 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1625 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1626 * 10 = control, 11 = bulk) 1627 * 1628 * Given the device address and endpoint descriptor, pipes are redundant. 1629 */ 1630 1631 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1632 /* (yet ... they're the values used by usbfs) */ 1633 #define PIPE_ISOCHRONOUS 0 1634 #define PIPE_INTERRUPT 1 1635 #define PIPE_CONTROL 2 1636 #define PIPE_BULK 3 1637 1638 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1639 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1640 1641 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1642 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1643 1644 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1645 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1646 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1647 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1648 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1649 1650 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1651 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1652 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1653 #define usb_settoggle(dev, ep, out, bit) \ 1654 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1655 ((bit) << (ep))) 1656 1657 1658 static inline unsigned int __create_pipe(struct usb_device *dev, 1659 unsigned int endpoint) 1660 { 1661 return (dev->devnum << 8) | (endpoint << 15); 1662 } 1663 1664 /* Create various pipes... */ 1665 #define usb_sndctrlpipe(dev,endpoint) \ 1666 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1667 #define usb_rcvctrlpipe(dev,endpoint) \ 1668 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1669 #define usb_sndisocpipe(dev,endpoint) \ 1670 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1671 #define usb_rcvisocpipe(dev,endpoint) \ 1672 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1673 #define usb_sndbulkpipe(dev,endpoint) \ 1674 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1675 #define usb_rcvbulkpipe(dev,endpoint) \ 1676 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1677 #define usb_sndintpipe(dev,endpoint) \ 1678 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1679 #define usb_rcvintpipe(dev,endpoint) \ 1680 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1681 1682 /*-------------------------------------------------------------------------*/ 1683 1684 static inline __u16 1685 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1686 { 1687 struct usb_host_endpoint *ep; 1688 unsigned epnum = usb_pipeendpoint(pipe); 1689 1690 if (is_out) { 1691 WARN_ON(usb_pipein(pipe)); 1692 ep = udev->ep_out[epnum]; 1693 } else { 1694 WARN_ON(usb_pipeout(pipe)); 1695 ep = udev->ep_in[epnum]; 1696 } 1697 if (!ep) 1698 return 0; 1699 1700 /* NOTE: only 0x07ff bits are for packet size... */ 1701 return le16_to_cpu(ep->desc.wMaxPacketSize); 1702 } 1703 1704 /* ----------------------------------------------------------------------- */ 1705 1706 /* Events from the usb core */ 1707 #define USB_DEVICE_ADD 0x0001 1708 #define USB_DEVICE_REMOVE 0x0002 1709 #define USB_BUS_ADD 0x0003 1710 #define USB_BUS_REMOVE 0x0004 1711 extern void usb_register_notify(struct notifier_block *nb); 1712 extern void usb_unregister_notify(struct notifier_block *nb); 1713 1714 #ifdef DEBUG 1715 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1716 __FILE__ , ## arg) 1717 #else 1718 #define dbg(format, arg...) do {} while (0) 1719 #endif 1720 1721 #define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \ 1722 format "\n" , ## arg) 1723 #define info(format, arg...) printk(KERN_INFO KBUILD_MODNAME ": " \ 1724 format "\n" , ## arg) 1725 #define warn(format, arg...) printk(KERN_WARNING KBUILD_MODNAME ": " \ 1726 format "\n" , ## arg) 1727 1728 #endif /* __KERNEL__ */ 1729 1730 #endif 1731