xref: /linux-6.15/include/linux/usb.h (revision 6faeeea4)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *	with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  * @streams: number of USB-3 streams allocated on the endpoint
61  *
62  * USB requests are always queued to a given endpoint, identified by a
63  * descriptor within an active interface in a given USB configuration.
64  */
65 struct usb_host_endpoint {
66 	struct usb_endpoint_descriptor		desc;
67 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
68 	struct list_head		urb_list;
69 	void				*hcpriv;
70 	struct ep_device		*ep_dev;	/* For sysfs info */
71 
72 	unsigned char *extra;   /* Extra descriptors */
73 	int extralen;
74 	int enabled;
75 	int streams;
76 };
77 
78 /* host-side wrapper for one interface setting's parsed descriptors */
79 struct usb_host_interface {
80 	struct usb_interface_descriptor	desc;
81 
82 	int extralen;
83 	unsigned char *extra;   /* Extra descriptors */
84 
85 	/* array of desc.bNumEndpoints endpoints associated with this
86 	 * interface setting.  these will be in no particular order.
87 	 */
88 	struct usb_host_endpoint *endpoint;
89 
90 	char *string;		/* iInterface string, if present */
91 };
92 
93 enum usb_interface_condition {
94 	USB_INTERFACE_UNBOUND = 0,
95 	USB_INTERFACE_BINDING,
96 	USB_INTERFACE_BOUND,
97 	USB_INTERFACE_UNBINDING,
98 };
99 
100 /**
101  * struct usb_interface - what usb device drivers talk to
102  * @altsetting: array of interface structures, one for each alternate
103  *	setting that may be selected.  Each one includes a set of
104  *	endpoint configurations.  They will be in no particular order.
105  * @cur_altsetting: the current altsetting.
106  * @num_altsetting: number of altsettings defined.
107  * @intf_assoc: interface association descriptor
108  * @minor: the minor number assigned to this interface, if this
109  *	interface is bound to a driver that uses the USB major number.
110  *	If this interface does not use the USB major, this field should
111  *	be unused.  The driver should set this value in the probe()
112  *	function of the driver, after it has been assigned a minor
113  *	number from the USB core by calling usb_register_dev().
114  * @condition: binding state of the interface: not bound, binding
115  *	(in probe()), bound to a driver, or unbinding (in disconnect())
116  * @sysfs_files_created: sysfs attributes exist
117  * @ep_devs_created: endpoint child pseudo-devices exist
118  * @unregistering: flag set when the interface is being unregistered
119  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120  *	capability during autosuspend.
121  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122  *	has been deferred.
123  * @needs_binding: flag set when the driver should be re-probed or unbound
124  *	following a reset or suspend operation it doesn't support.
125  * @dev: driver model's view of this device
126  * @usb_dev: if an interface is bound to the USB major, this will point
127  *	to the sysfs representation for that device.
128  * @pm_usage_cnt: PM usage counter for this interface
129  * @reset_ws: Used for scheduling resets from atomic context.
130  * @resetting_device: USB core reset the device, so use alt setting 0 as
131  *	current; needs bandwidth alloc after reset.
132  *
133  * USB device drivers attach to interfaces on a physical device.  Each
134  * interface encapsulates a single high level function, such as feeding
135  * an audio stream to a speaker or reporting a change in a volume control.
136  * Many USB devices only have one interface.  The protocol used to talk to
137  * an interface's endpoints can be defined in a usb "class" specification,
138  * or by a product's vendor.  The (default) control endpoint is part of
139  * every interface, but is never listed among the interface's descriptors.
140  *
141  * The driver that is bound to the interface can use standard driver model
142  * calls such as dev_get_drvdata() on the dev member of this structure.
143  *
144  * Each interface may have alternate settings.  The initial configuration
145  * of a device sets altsetting 0, but the device driver can change
146  * that setting using usb_set_interface().  Alternate settings are often
147  * used to control the use of periodic endpoints, such as by having
148  * different endpoints use different amounts of reserved USB bandwidth.
149  * All standards-conformant USB devices that use isochronous endpoints
150  * will use them in non-default settings.
151  *
152  * The USB specification says that alternate setting numbers must run from
153  * 0 to one less than the total number of alternate settings.  But some
154  * devices manage to mess this up, and the structures aren't necessarily
155  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
156  * look up an alternate setting in the altsetting array based on its number.
157  */
158 struct usb_interface {
159 	/* array of alternate settings for this interface,
160 	 * stored in no particular order */
161 	struct usb_host_interface *altsetting;
162 
163 	struct usb_host_interface *cur_altsetting;	/* the currently
164 					 * active alternate setting */
165 	unsigned num_altsetting;	/* number of alternate settings */
166 
167 	/* If there is an interface association descriptor then it will list
168 	 * the associated interfaces */
169 	struct usb_interface_assoc_descriptor *intf_assoc;
170 
171 	int minor;			/* minor number this interface is
172 					 * bound to */
173 	enum usb_interface_condition condition;		/* state of binding */
174 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
175 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
176 	unsigned unregistering:1;	/* unregistration is in progress */
177 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
178 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
179 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
180 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
181 
182 	struct device dev;		/* interface specific device info */
183 	struct device *usb_dev;
184 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
185 	struct work_struct reset_ws;	/* for resets in atomic context */
186 };
187 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
188 
189 static inline void *usb_get_intfdata(struct usb_interface *intf)
190 {
191 	return dev_get_drvdata(&intf->dev);
192 }
193 
194 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
195 {
196 	dev_set_drvdata(&intf->dev, data);
197 }
198 
199 struct usb_interface *usb_get_intf(struct usb_interface *intf);
200 void usb_put_intf(struct usb_interface *intf);
201 
202 /* Hard limit */
203 #define USB_MAXENDPOINTS	30
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES	32
206 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
207 
208 /**
209  * struct usb_interface_cache - long-term representation of a device interface
210  * @num_altsetting: number of altsettings defined.
211  * @ref: reference counter.
212  * @altsetting: variable-length array of interface structures, one for
213  *	each alternate setting that may be selected.  Each one includes a
214  *	set of endpoint configurations.  They will be in no particular order.
215  *
216  * These structures persist for the lifetime of a usb_device, unlike
217  * struct usb_interface (which persists only as long as its configuration
218  * is installed).  The altsetting arrays can be accessed through these
219  * structures at any time, permitting comparison of configurations and
220  * providing support for the /proc/bus/usb/devices pseudo-file.
221  */
222 struct usb_interface_cache {
223 	unsigned num_altsetting;	/* number of alternate settings */
224 	struct kref ref;		/* reference counter */
225 
226 	/* variable-length array of alternate settings for this interface,
227 	 * stored in no particular order */
228 	struct usb_host_interface altsetting[0];
229 };
230 #define	ref_to_usb_interface_cache(r) \
231 		container_of(r, struct usb_interface_cache, ref)
232 #define	altsetting_to_usb_interface_cache(a) \
233 		container_of(a, struct usb_interface_cache, altsetting[0])
234 
235 /**
236  * struct usb_host_config - representation of a device's configuration
237  * @desc: the device's configuration descriptor.
238  * @string: pointer to the cached version of the iConfiguration string, if
239  *	present for this configuration.
240  * @intf_assoc: list of any interface association descriptors in this config
241  * @interface: array of pointers to usb_interface structures, one for each
242  *	interface in the configuration.  The number of interfaces is stored
243  *	in desc.bNumInterfaces.  These pointers are valid only while the
244  *	the configuration is active.
245  * @intf_cache: array of pointers to usb_interface_cache structures, one
246  *	for each interface in the configuration.  These structures exist
247  *	for the entire life of the device.
248  * @extra: pointer to buffer containing all extra descriptors associated
249  *	with this configuration (those preceding the first interface
250  *	descriptor).
251  * @extralen: length of the extra descriptors buffer.
252  *
253  * USB devices may have multiple configurations, but only one can be active
254  * at any time.  Each encapsulates a different operational environment;
255  * for example, a dual-speed device would have separate configurations for
256  * full-speed and high-speed operation.  The number of configurations
257  * available is stored in the device descriptor as bNumConfigurations.
258  *
259  * A configuration can contain multiple interfaces.  Each corresponds to
260  * a different function of the USB device, and all are available whenever
261  * the configuration is active.  The USB standard says that interfaces
262  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
263  * of devices get this wrong.  In addition, the interface array is not
264  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
265  * look up an interface entry based on its number.
266  *
267  * Device drivers should not attempt to activate configurations.  The choice
268  * of which configuration to install is a policy decision based on such
269  * considerations as available power, functionality provided, and the user's
270  * desires (expressed through userspace tools).  However, drivers can call
271  * usb_reset_configuration() to reinitialize the current configuration and
272  * all its interfaces.
273  */
274 struct usb_host_config {
275 	struct usb_config_descriptor	desc;
276 
277 	char *string;		/* iConfiguration string, if present */
278 
279 	/* List of any Interface Association Descriptors in this
280 	 * configuration. */
281 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
282 
283 	/* the interfaces associated with this configuration,
284 	 * stored in no particular order */
285 	struct usb_interface *interface[USB_MAXINTERFACES];
286 
287 	/* Interface information available even when this is not the
288 	 * active configuration */
289 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
290 
291 	unsigned char *extra;   /* Extra descriptors */
292 	int extralen;
293 };
294 
295 /* USB2.0 and USB3.0 device BOS descriptor set */
296 struct usb_host_bos {
297 	struct usb_bos_descriptor	*desc;
298 
299 	/* wireless cap descriptor is handled by wusb */
300 	struct usb_ext_cap_descriptor	*ext_cap;
301 	struct usb_ss_cap_descriptor	*ss_cap;
302 	struct usb_ss_container_id_descriptor	*ss_id;
303 };
304 
305 int __usb_get_extra_descriptor(char *buffer, unsigned size,
306 	unsigned char type, void **ptr);
307 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
308 				__usb_get_extra_descriptor((ifpoint)->extra, \
309 				(ifpoint)->extralen, \
310 				type, (void **)ptr)
311 
312 /* ----------------------------------------------------------------------- */
313 
314 /* USB device number allocation bitmap */
315 struct usb_devmap {
316 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
317 };
318 
319 /*
320  * Allocated per bus (tree of devices) we have:
321  */
322 struct usb_bus {
323 	struct device *controller;	/* host/master side hardware */
324 	int busnum;			/* Bus number (in order of reg) */
325 	const char *bus_name;		/* stable id (PCI slot_name etc) */
326 	u8 uses_dma;			/* Does the host controller use DMA? */
327 	u8 uses_pio_for_control;	/*
328 					 * Does the host controller use PIO
329 					 * for control transfers?
330 					 */
331 	u8 otg_port;			/* 0, or number of OTG/HNP port */
332 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
333 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
334 	unsigned no_stop_on_short:1;    /*
335 					 * Quirk: some controllers don't stop
336 					 * the ep queue on a short transfer
337 					 * with the URB_SHORT_NOT_OK flag set.
338 					 */
339 	unsigned no_sg_constraint:1;	/* no sg constraint */
340 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
341 
342 	int devnum_next;		/* Next open device number in
343 					 * round-robin allocation */
344 
345 	struct usb_devmap devmap;	/* device address allocation map */
346 	struct usb_device *root_hub;	/* Root hub */
347 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
348 	struct list_head bus_list;	/* list of busses */
349 
350 	struct mutex usb_address0_mutex; /* unaddressed device mutex */
351 
352 	int bandwidth_allocated;	/* on this bus: how much of the time
353 					 * reserved for periodic (intr/iso)
354 					 * requests is used, on average?
355 					 * Units: microseconds/frame.
356 					 * Limits: Full/low speed reserve 90%,
357 					 * while high speed reserves 80%.
358 					 */
359 	int bandwidth_int_reqs;		/* number of Interrupt requests */
360 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
361 
362 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
363 
364 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
365 	struct mon_bus *mon_bus;	/* non-null when associated */
366 	int monitored;			/* non-zero when monitored */
367 #endif
368 };
369 
370 struct usb_dev_state;
371 
372 /* ----------------------------------------------------------------------- */
373 
374 struct usb_tt;
375 
376 enum usb_device_removable {
377 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
378 	USB_DEVICE_REMOVABLE,
379 	USB_DEVICE_FIXED,
380 };
381 
382 enum usb_port_connect_type {
383 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
384 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
385 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
386 	USB_PORT_NOT_USED,
387 };
388 
389 /*
390  * USB 2.0 Link Power Management (LPM) parameters.
391  */
392 struct usb2_lpm_parameters {
393 	/* Best effort service latency indicate how long the host will drive
394 	 * resume on an exit from L1.
395 	 */
396 	unsigned int besl;
397 
398 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
399 	 * When the timer counts to zero, the parent hub will initiate a LPM
400 	 * transition to L1.
401 	 */
402 	int timeout;
403 };
404 
405 /*
406  * USB 3.0 Link Power Management (LPM) parameters.
407  *
408  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
409  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
410  * All three are stored in nanoseconds.
411  */
412 struct usb3_lpm_parameters {
413 	/*
414 	 * Maximum exit latency (MEL) for the host to send a packet to the
415 	 * device (either a Ping for isoc endpoints, or a data packet for
416 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
417 	 * in the path to transition the links to U0.
418 	 */
419 	unsigned int mel;
420 	/*
421 	 * Maximum exit latency for a device-initiated LPM transition to bring
422 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
423 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
424 	 */
425 	unsigned int pel;
426 
427 	/*
428 	 * The System Exit Latency (SEL) includes PEL, and three other
429 	 * latencies.  After a device initiates a U0 transition, it will take
430 	 * some time from when the device sends the ERDY to when it will finally
431 	 * receive the data packet.  Basically, SEL should be the worse-case
432 	 * latency from when a device starts initiating a U0 transition to when
433 	 * it will get data.
434 	 */
435 	unsigned int sel;
436 	/*
437 	 * The idle timeout value that is currently programmed into the parent
438 	 * hub for this device.  When the timer counts to zero, the parent hub
439 	 * will initiate an LPM transition to either U1 or U2.
440 	 */
441 	int timeout;
442 };
443 
444 /**
445  * struct usb_device - kernel's representation of a USB device
446  * @devnum: device number; address on a USB bus
447  * @devpath: device ID string for use in messages (e.g., /port/...)
448  * @route: tree topology hex string for use with xHCI
449  * @state: device state: configured, not attached, etc.
450  * @speed: device speed: high/full/low (or error)
451  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
452  * @ttport: device port on that tt hub
453  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
454  * @parent: our hub, unless we're the root
455  * @bus: bus we're part of
456  * @ep0: endpoint 0 data (default control pipe)
457  * @dev: generic device interface
458  * @descriptor: USB device descriptor
459  * @bos: USB device BOS descriptor set
460  * @config: all of the device's configs
461  * @actconfig: the active configuration
462  * @ep_in: array of IN endpoints
463  * @ep_out: array of OUT endpoints
464  * @rawdescriptors: raw descriptors for each config
465  * @bus_mA: Current available from the bus
466  * @portnum: parent port number (origin 1)
467  * @level: number of USB hub ancestors
468  * @can_submit: URBs may be submitted
469  * @persist_enabled:  USB_PERSIST enabled for this device
470  * @have_langid: whether string_langid is valid
471  * @authorized: policy has said we can use it;
472  *	(user space) policy determines if we authorize this device to be
473  *	used or not. By default, wired USB devices are authorized.
474  *	WUSB devices are not, until we authorize them from user space.
475  *	FIXME -- complete doc
476  * @authenticated: Crypto authentication passed
477  * @wusb: device is Wireless USB
478  * @lpm_capable: device supports LPM
479  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
480  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
481  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
482  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
483  * @usb3_lpm_enabled: USB3 hardware LPM enabled
484  * @string_langid: language ID for strings
485  * @product: iProduct string, if present (static)
486  * @manufacturer: iManufacturer string, if present (static)
487  * @serial: iSerialNumber string, if present (static)
488  * @filelist: usbfs files that are open to this device
489  * @maxchild: number of ports if hub
490  * @quirks: quirks of the whole device
491  * @urbnum: number of URBs submitted for the whole device
492  * @active_duration: total time device is not suspended
493  * @connect_time: time device was first connected
494  * @do_remote_wakeup:  remote wakeup should be enabled
495  * @reset_resume: needs reset instead of resume
496  * @port_is_suspended: the upstream port is suspended (L2 or U3)
497  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
498  *	specific data for the device.
499  * @slot_id: Slot ID assigned by xHCI
500  * @removable: Device can be physically removed from this port
501  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
502  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
503  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
504  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
505  *	to keep track of the number of functions that require USB 3.0 Link Power
506  *	Management to be disabled for this usb_device.  This count should only
507  *	be manipulated by those functions, with the bandwidth_mutex is held.
508  *
509  * Notes:
510  * Usbcore drivers should not set usbdev->state directly.  Instead use
511  * usb_set_device_state().
512  */
513 struct usb_device {
514 	int		devnum;
515 	char		devpath[16];
516 	u32		route;
517 	enum usb_device_state	state;
518 	enum usb_device_speed	speed;
519 
520 	struct usb_tt	*tt;
521 	int		ttport;
522 
523 	unsigned int toggle[2];
524 
525 	struct usb_device *parent;
526 	struct usb_bus *bus;
527 	struct usb_host_endpoint ep0;
528 
529 	struct device dev;
530 
531 	struct usb_device_descriptor descriptor;
532 	struct usb_host_bos *bos;
533 	struct usb_host_config *config;
534 
535 	struct usb_host_config *actconfig;
536 	struct usb_host_endpoint *ep_in[16];
537 	struct usb_host_endpoint *ep_out[16];
538 
539 	char **rawdescriptors;
540 
541 	unsigned short bus_mA;
542 	u8 portnum;
543 	u8 level;
544 
545 	unsigned can_submit:1;
546 	unsigned persist_enabled:1;
547 	unsigned have_langid:1;
548 	unsigned authorized:1;
549 	unsigned authenticated:1;
550 	unsigned wusb:1;
551 	unsigned lpm_capable:1;
552 	unsigned usb2_hw_lpm_capable:1;
553 	unsigned usb2_hw_lpm_besl_capable:1;
554 	unsigned usb2_hw_lpm_enabled:1;
555 	unsigned usb2_hw_lpm_allowed:1;
556 	unsigned usb3_lpm_enabled:1;
557 	int string_langid;
558 
559 	/* static strings from the device */
560 	char *product;
561 	char *manufacturer;
562 	char *serial;
563 
564 	struct list_head filelist;
565 
566 	int maxchild;
567 
568 	u32 quirks;
569 	atomic_t urbnum;
570 
571 	unsigned long active_duration;
572 
573 #ifdef CONFIG_PM
574 	unsigned long connect_time;
575 
576 	unsigned do_remote_wakeup:1;
577 	unsigned reset_resume:1;
578 	unsigned port_is_suspended:1;
579 #endif
580 	struct wusb_dev *wusb_dev;
581 	int slot_id;
582 	enum usb_device_removable removable;
583 	struct usb2_lpm_parameters l1_params;
584 	struct usb3_lpm_parameters u1_params;
585 	struct usb3_lpm_parameters u2_params;
586 	unsigned lpm_disable_count;
587 };
588 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
589 
590 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
591 {
592 	return to_usb_device(intf->dev.parent);
593 }
594 
595 extern struct usb_device *usb_get_dev(struct usb_device *dev);
596 extern void usb_put_dev(struct usb_device *dev);
597 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
598 	int port1);
599 
600 /**
601  * usb_hub_for_each_child - iterate over all child devices on the hub
602  * @hdev:  USB device belonging to the usb hub
603  * @port1: portnum associated with child device
604  * @child: child device pointer
605  */
606 #define usb_hub_for_each_child(hdev, port1, child) \
607 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
608 			port1 <= hdev->maxchild; \
609 			child = usb_hub_find_child(hdev, ++port1)) \
610 		if (!child) continue; else
611 
612 /* USB device locking */
613 #define usb_lock_device(udev)		device_lock(&(udev)->dev)
614 #define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
615 #define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
616 extern int usb_lock_device_for_reset(struct usb_device *udev,
617 				     const struct usb_interface *iface);
618 
619 /* USB port reset for device reinitialization */
620 extern int usb_reset_device(struct usb_device *dev);
621 extern void usb_queue_reset_device(struct usb_interface *dev);
622 
623 #ifdef CONFIG_ACPI
624 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
625 	bool enable);
626 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
627 #else
628 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
629 	bool enable) { return 0; }
630 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
631 	{ return true; }
632 #endif
633 
634 /* USB autosuspend and autoresume */
635 #ifdef CONFIG_PM
636 extern void usb_enable_autosuspend(struct usb_device *udev);
637 extern void usb_disable_autosuspend(struct usb_device *udev);
638 
639 extern int usb_autopm_get_interface(struct usb_interface *intf);
640 extern void usb_autopm_put_interface(struct usb_interface *intf);
641 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
642 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
643 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
644 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
645 
646 static inline void usb_mark_last_busy(struct usb_device *udev)
647 {
648 	pm_runtime_mark_last_busy(&udev->dev);
649 }
650 
651 #else
652 
653 static inline int usb_enable_autosuspend(struct usb_device *udev)
654 { return 0; }
655 static inline int usb_disable_autosuspend(struct usb_device *udev)
656 { return 0; }
657 
658 static inline int usb_autopm_get_interface(struct usb_interface *intf)
659 { return 0; }
660 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
661 { return 0; }
662 
663 static inline void usb_autopm_put_interface(struct usb_interface *intf)
664 { }
665 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
666 { }
667 static inline void usb_autopm_get_interface_no_resume(
668 		struct usb_interface *intf)
669 { }
670 static inline void usb_autopm_put_interface_no_suspend(
671 		struct usb_interface *intf)
672 { }
673 static inline void usb_mark_last_busy(struct usb_device *udev)
674 { }
675 #endif
676 
677 extern int usb_disable_lpm(struct usb_device *udev);
678 extern void usb_enable_lpm(struct usb_device *udev);
679 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
680 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
681 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
682 
683 extern int usb_disable_ltm(struct usb_device *udev);
684 extern void usb_enable_ltm(struct usb_device *udev);
685 
686 static inline bool usb_device_supports_ltm(struct usb_device *udev)
687 {
688 	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
689 		return false;
690 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
691 }
692 
693 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
694 {
695 	return udev && udev->bus && udev->bus->no_sg_constraint;
696 }
697 
698 
699 /*-------------------------------------------------------------------------*/
700 
701 /* for drivers using iso endpoints */
702 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
703 
704 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
705 extern int usb_alloc_streams(struct usb_interface *interface,
706 		struct usb_host_endpoint **eps, unsigned int num_eps,
707 		unsigned int num_streams, gfp_t mem_flags);
708 
709 /* Reverts a group of bulk endpoints back to not using stream IDs. */
710 extern int usb_free_streams(struct usb_interface *interface,
711 		struct usb_host_endpoint **eps, unsigned int num_eps,
712 		gfp_t mem_flags);
713 
714 /* used these for multi-interface device registration */
715 extern int usb_driver_claim_interface(struct usb_driver *driver,
716 			struct usb_interface *iface, void *priv);
717 
718 /**
719  * usb_interface_claimed - returns true iff an interface is claimed
720  * @iface: the interface being checked
721  *
722  * Return: %true (nonzero) iff the interface is claimed, else %false
723  * (zero).
724  *
725  * Note:
726  * Callers must own the driver model's usb bus readlock.  So driver
727  * probe() entries don't need extra locking, but other call contexts
728  * may need to explicitly claim that lock.
729  *
730  */
731 static inline int usb_interface_claimed(struct usb_interface *iface)
732 {
733 	return (iface->dev.driver != NULL);
734 }
735 
736 extern void usb_driver_release_interface(struct usb_driver *driver,
737 			struct usb_interface *iface);
738 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
739 					 const struct usb_device_id *id);
740 extern int usb_match_one_id(struct usb_interface *interface,
741 			    const struct usb_device_id *id);
742 
743 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
744 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
745 		int minor);
746 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
747 		unsigned ifnum);
748 extern struct usb_host_interface *usb_altnum_to_altsetting(
749 		const struct usb_interface *intf, unsigned int altnum);
750 extern struct usb_host_interface *usb_find_alt_setting(
751 		struct usb_host_config *config,
752 		unsigned int iface_num,
753 		unsigned int alt_num);
754 
755 /* port claiming functions */
756 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
757 		struct usb_dev_state *owner);
758 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
759 		struct usb_dev_state *owner);
760 
761 /**
762  * usb_make_path - returns stable device path in the usb tree
763  * @dev: the device whose path is being constructed
764  * @buf: where to put the string
765  * @size: how big is "buf"?
766  *
767  * Return: Length of the string (> 0) or negative if size was too small.
768  *
769  * Note:
770  * This identifier is intended to be "stable", reflecting physical paths in
771  * hardware such as physical bus addresses for host controllers or ports on
772  * USB hubs.  That makes it stay the same until systems are physically
773  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
774  * controllers.  Adding and removing devices, including virtual root hubs
775  * in host controller driver modules, does not change these path identifiers;
776  * neither does rebooting or re-enumerating.  These are more useful identifiers
777  * than changeable ("unstable") ones like bus numbers or device addresses.
778  *
779  * With a partial exception for devices connected to USB 2.0 root hubs, these
780  * identifiers are also predictable.  So long as the device tree isn't changed,
781  * plugging any USB device into a given hub port always gives it the same path.
782  * Because of the use of "companion" controllers, devices connected to ports on
783  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
784  * high speed, and a different one if they are full or low speed.
785  */
786 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
787 {
788 	int actual;
789 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
790 			  dev->devpath);
791 	return (actual >= (int)size) ? -1 : actual;
792 }
793 
794 /*-------------------------------------------------------------------------*/
795 
796 #define USB_DEVICE_ID_MATCH_DEVICE \
797 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
798 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
799 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
800 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
801 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
802 #define USB_DEVICE_ID_MATCH_DEV_INFO \
803 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
804 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
805 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
806 #define USB_DEVICE_ID_MATCH_INT_INFO \
807 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
808 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
809 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
810 
811 /**
812  * USB_DEVICE - macro used to describe a specific usb device
813  * @vend: the 16 bit USB Vendor ID
814  * @prod: the 16 bit USB Product ID
815  *
816  * This macro is used to create a struct usb_device_id that matches a
817  * specific device.
818  */
819 #define USB_DEVICE(vend, prod) \
820 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
821 	.idVendor = (vend), \
822 	.idProduct = (prod)
823 /**
824  * USB_DEVICE_VER - describe a specific usb device with a version range
825  * @vend: the 16 bit USB Vendor ID
826  * @prod: the 16 bit USB Product ID
827  * @lo: the bcdDevice_lo value
828  * @hi: the bcdDevice_hi value
829  *
830  * This macro is used to create a struct usb_device_id that matches a
831  * specific device, with a version range.
832  */
833 #define USB_DEVICE_VER(vend, prod, lo, hi) \
834 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
835 	.idVendor = (vend), \
836 	.idProduct = (prod), \
837 	.bcdDevice_lo = (lo), \
838 	.bcdDevice_hi = (hi)
839 
840 /**
841  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
842  * @vend: the 16 bit USB Vendor ID
843  * @prod: the 16 bit USB Product ID
844  * @cl: bInterfaceClass value
845  *
846  * This macro is used to create a struct usb_device_id that matches a
847  * specific interface class of devices.
848  */
849 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
850 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
851 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
852 	.idVendor = (vend), \
853 	.idProduct = (prod), \
854 	.bInterfaceClass = (cl)
855 
856 /**
857  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
858  * @vend: the 16 bit USB Vendor ID
859  * @prod: the 16 bit USB Product ID
860  * @pr: bInterfaceProtocol value
861  *
862  * This macro is used to create a struct usb_device_id that matches a
863  * specific interface protocol of devices.
864  */
865 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
866 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
867 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
868 	.idVendor = (vend), \
869 	.idProduct = (prod), \
870 	.bInterfaceProtocol = (pr)
871 
872 /**
873  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
874  * @vend: the 16 bit USB Vendor ID
875  * @prod: the 16 bit USB Product ID
876  * @num: bInterfaceNumber value
877  *
878  * This macro is used to create a struct usb_device_id that matches a
879  * specific interface number of devices.
880  */
881 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
882 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
883 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
884 	.idVendor = (vend), \
885 	.idProduct = (prod), \
886 	.bInterfaceNumber = (num)
887 
888 /**
889  * USB_DEVICE_INFO - macro used to describe a class of usb devices
890  * @cl: bDeviceClass value
891  * @sc: bDeviceSubClass value
892  * @pr: bDeviceProtocol value
893  *
894  * This macro is used to create a struct usb_device_id that matches a
895  * specific class of devices.
896  */
897 #define USB_DEVICE_INFO(cl, sc, pr) \
898 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
899 	.bDeviceClass = (cl), \
900 	.bDeviceSubClass = (sc), \
901 	.bDeviceProtocol = (pr)
902 
903 /**
904  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
905  * @cl: bInterfaceClass value
906  * @sc: bInterfaceSubClass value
907  * @pr: bInterfaceProtocol value
908  *
909  * This macro is used to create a struct usb_device_id that matches a
910  * specific class of interfaces.
911  */
912 #define USB_INTERFACE_INFO(cl, sc, pr) \
913 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
914 	.bInterfaceClass = (cl), \
915 	.bInterfaceSubClass = (sc), \
916 	.bInterfaceProtocol = (pr)
917 
918 /**
919  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
920  * @vend: the 16 bit USB Vendor ID
921  * @prod: the 16 bit USB Product ID
922  * @cl: bInterfaceClass value
923  * @sc: bInterfaceSubClass value
924  * @pr: bInterfaceProtocol value
925  *
926  * This macro is used to create a struct usb_device_id that matches a
927  * specific device with a specific class of interfaces.
928  *
929  * This is especially useful when explicitly matching devices that have
930  * vendor specific bDeviceClass values, but standards-compliant interfaces.
931  */
932 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
933 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
934 		| USB_DEVICE_ID_MATCH_DEVICE, \
935 	.idVendor = (vend), \
936 	.idProduct = (prod), \
937 	.bInterfaceClass = (cl), \
938 	.bInterfaceSubClass = (sc), \
939 	.bInterfaceProtocol = (pr)
940 
941 /**
942  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
943  * @vend: the 16 bit USB Vendor ID
944  * @cl: bInterfaceClass value
945  * @sc: bInterfaceSubClass value
946  * @pr: bInterfaceProtocol value
947  *
948  * This macro is used to create a struct usb_device_id that matches a
949  * specific vendor with a specific class of interfaces.
950  *
951  * This is especially useful when explicitly matching devices that have
952  * vendor specific bDeviceClass values, but standards-compliant interfaces.
953  */
954 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
955 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
956 		| USB_DEVICE_ID_MATCH_VENDOR, \
957 	.idVendor = (vend), \
958 	.bInterfaceClass = (cl), \
959 	.bInterfaceSubClass = (sc), \
960 	.bInterfaceProtocol = (pr)
961 
962 /* ----------------------------------------------------------------------- */
963 
964 /* Stuff for dynamic usb ids */
965 struct usb_dynids {
966 	spinlock_t lock;
967 	struct list_head list;
968 };
969 
970 struct usb_dynid {
971 	struct list_head node;
972 	struct usb_device_id id;
973 };
974 
975 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
976 				const struct usb_device_id *id_table,
977 				struct device_driver *driver,
978 				const char *buf, size_t count);
979 
980 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
981 
982 /**
983  * struct usbdrv_wrap - wrapper for driver-model structure
984  * @driver: The driver-model core driver structure.
985  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
986  */
987 struct usbdrv_wrap {
988 	struct device_driver driver;
989 	int for_devices;
990 };
991 
992 /**
993  * struct usb_driver - identifies USB interface driver to usbcore
994  * @name: The driver name should be unique among USB drivers,
995  *	and should normally be the same as the module name.
996  * @probe: Called to see if the driver is willing to manage a particular
997  *	interface on a device.  If it is, probe returns zero and uses
998  *	usb_set_intfdata() to associate driver-specific data with the
999  *	interface.  It may also use usb_set_interface() to specify the
1000  *	appropriate altsetting.  If unwilling to manage the interface,
1001  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1002  *	negative errno value.
1003  * @disconnect: Called when the interface is no longer accessible, usually
1004  *	because its device has been (or is being) disconnected or the
1005  *	driver module is being unloaded.
1006  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1007  *	the "usbfs" filesystem.  This lets devices provide ways to
1008  *	expose information to user space regardless of where they
1009  *	do (or don't) show up otherwise in the filesystem.
1010  * @suspend: Called when the device is going to be suspended by the
1011  *	system either from system sleep or runtime suspend context. The
1012  *	return value will be ignored in system sleep context, so do NOT
1013  *	try to continue using the device if suspend fails in this case.
1014  *	Instead, let the resume or reset-resume routine recover from
1015  *	the failure.
1016  * @resume: Called when the device is being resumed by the system.
1017  * @reset_resume: Called when the suspended device has been reset instead
1018  *	of being resumed.
1019  * @pre_reset: Called by usb_reset_device() when the device is about to be
1020  *	reset.  This routine must not return until the driver has no active
1021  *	URBs for the device, and no more URBs may be submitted until the
1022  *	post_reset method is called.
1023  * @post_reset: Called by usb_reset_device() after the device
1024  *	has been reset
1025  * @id_table: USB drivers use ID table to support hotplugging.
1026  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1027  *	or your driver's probe function will never get called.
1028  * @dynids: used internally to hold the list of dynamically added device
1029  *	ids for this driver.
1030  * @drvwrap: Driver-model core structure wrapper.
1031  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1032  *	added to this driver by preventing the sysfs file from being created.
1033  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1034  *	for interfaces bound to this driver.
1035  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1036  *	endpoints before calling the driver's disconnect method.
1037  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1038  *	to initiate lower power link state transitions when an idle timeout
1039  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1040  *
1041  * USB interface drivers must provide a name, probe() and disconnect()
1042  * methods, and an id_table.  Other driver fields are optional.
1043  *
1044  * The id_table is used in hotplugging.  It holds a set of descriptors,
1045  * and specialized data may be associated with each entry.  That table
1046  * is used by both user and kernel mode hotplugging support.
1047  *
1048  * The probe() and disconnect() methods are called in a context where
1049  * they can sleep, but they should avoid abusing the privilege.  Most
1050  * work to connect to a device should be done when the device is opened,
1051  * and undone at the last close.  The disconnect code needs to address
1052  * concurrency issues with respect to open() and close() methods, as
1053  * well as forcing all pending I/O requests to complete (by unlinking
1054  * them as necessary, and blocking until the unlinks complete).
1055  */
1056 struct usb_driver {
1057 	const char *name;
1058 
1059 	int (*probe) (struct usb_interface *intf,
1060 		      const struct usb_device_id *id);
1061 
1062 	void (*disconnect) (struct usb_interface *intf);
1063 
1064 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1065 			void *buf);
1066 
1067 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1068 	int (*resume) (struct usb_interface *intf);
1069 	int (*reset_resume)(struct usb_interface *intf);
1070 
1071 	int (*pre_reset)(struct usb_interface *intf);
1072 	int (*post_reset)(struct usb_interface *intf);
1073 
1074 	const struct usb_device_id *id_table;
1075 
1076 	struct usb_dynids dynids;
1077 	struct usbdrv_wrap drvwrap;
1078 	unsigned int no_dynamic_id:1;
1079 	unsigned int supports_autosuspend:1;
1080 	unsigned int disable_hub_initiated_lpm:1;
1081 	unsigned int soft_unbind:1;
1082 };
1083 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1084 
1085 /**
1086  * struct usb_device_driver - identifies USB device driver to usbcore
1087  * @name: The driver name should be unique among USB drivers,
1088  *	and should normally be the same as the module name.
1089  * @probe: Called to see if the driver is willing to manage a particular
1090  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1091  *	to associate driver-specific data with the device.  If unwilling
1092  *	to manage the device, return a negative errno value.
1093  * @disconnect: Called when the device is no longer accessible, usually
1094  *	because it has been (or is being) disconnected or the driver's
1095  *	module is being unloaded.
1096  * @suspend: Called when the device is going to be suspended by the system.
1097  * @resume: Called when the device is being resumed by the system.
1098  * @drvwrap: Driver-model core structure wrapper.
1099  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1100  *	for devices bound to this driver.
1101  *
1102  * USB drivers must provide all the fields listed above except drvwrap.
1103  */
1104 struct usb_device_driver {
1105 	const char *name;
1106 
1107 	int (*probe) (struct usb_device *udev);
1108 	void (*disconnect) (struct usb_device *udev);
1109 
1110 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1111 	int (*resume) (struct usb_device *udev, pm_message_t message);
1112 	struct usbdrv_wrap drvwrap;
1113 	unsigned int supports_autosuspend:1;
1114 };
1115 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1116 		drvwrap.driver)
1117 
1118 extern struct bus_type usb_bus_type;
1119 
1120 /**
1121  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1122  * @name: the usb class device name for this driver.  Will show up in sysfs.
1123  * @devnode: Callback to provide a naming hint for a possible
1124  *	device node to create.
1125  * @fops: pointer to the struct file_operations of this driver.
1126  * @minor_base: the start of the minor range for this driver.
1127  *
1128  * This structure is used for the usb_register_dev() and
1129  * usb_unregister_dev() functions, to consolidate a number of the
1130  * parameters used for them.
1131  */
1132 struct usb_class_driver {
1133 	char *name;
1134 	char *(*devnode)(struct device *dev, umode_t *mode);
1135 	const struct file_operations *fops;
1136 	int minor_base;
1137 };
1138 
1139 /*
1140  * use these in module_init()/module_exit()
1141  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1142  */
1143 extern int usb_register_driver(struct usb_driver *, struct module *,
1144 			       const char *);
1145 
1146 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1147 #define usb_register(driver) \
1148 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1149 
1150 extern void usb_deregister(struct usb_driver *);
1151 
1152 /**
1153  * module_usb_driver() - Helper macro for registering a USB driver
1154  * @__usb_driver: usb_driver struct
1155  *
1156  * Helper macro for USB drivers which do not do anything special in module
1157  * init/exit. This eliminates a lot of boilerplate. Each module may only
1158  * use this macro once, and calling it replaces module_init() and module_exit()
1159  */
1160 #define module_usb_driver(__usb_driver) \
1161 	module_driver(__usb_driver, usb_register, \
1162 		       usb_deregister)
1163 
1164 extern int usb_register_device_driver(struct usb_device_driver *,
1165 			struct module *);
1166 extern void usb_deregister_device_driver(struct usb_device_driver *);
1167 
1168 extern int usb_register_dev(struct usb_interface *intf,
1169 			    struct usb_class_driver *class_driver);
1170 extern void usb_deregister_dev(struct usb_interface *intf,
1171 			       struct usb_class_driver *class_driver);
1172 
1173 extern int usb_disabled(void);
1174 
1175 /* ----------------------------------------------------------------------- */
1176 
1177 /*
1178  * URB support, for asynchronous request completions
1179  */
1180 
1181 /*
1182  * urb->transfer_flags:
1183  *
1184  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1185  */
1186 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1187 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1188 					 * slot in the schedule */
1189 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1190 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1191 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1192 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1193 					 * needed */
1194 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1195 
1196 /* The following flags are used internally by usbcore and HCDs */
1197 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1198 #define URB_DIR_OUT		0
1199 #define URB_DIR_MASK		URB_DIR_IN
1200 
1201 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1202 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1203 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1204 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1205 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1206 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1207 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1208 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1209 
1210 struct usb_iso_packet_descriptor {
1211 	unsigned int offset;
1212 	unsigned int length;		/* expected length */
1213 	unsigned int actual_length;
1214 	int status;
1215 };
1216 
1217 struct urb;
1218 
1219 struct usb_anchor {
1220 	struct list_head urb_list;
1221 	wait_queue_head_t wait;
1222 	spinlock_t lock;
1223 	atomic_t suspend_wakeups;
1224 	unsigned int poisoned:1;
1225 };
1226 
1227 static inline void init_usb_anchor(struct usb_anchor *anchor)
1228 {
1229 	memset(anchor, 0, sizeof(*anchor));
1230 	INIT_LIST_HEAD(&anchor->urb_list);
1231 	init_waitqueue_head(&anchor->wait);
1232 	spin_lock_init(&anchor->lock);
1233 }
1234 
1235 typedef void (*usb_complete_t)(struct urb *);
1236 
1237 /**
1238  * struct urb - USB Request Block
1239  * @urb_list: For use by current owner of the URB.
1240  * @anchor_list: membership in the list of an anchor
1241  * @anchor: to anchor URBs to a common mooring
1242  * @ep: Points to the endpoint's data structure.  Will eventually
1243  *	replace @pipe.
1244  * @pipe: Holds endpoint number, direction, type, and more.
1245  *	Create these values with the eight macros available;
1246  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1247  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1248  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1249  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1250  *	is a different endpoint (and pipe) from "out" endpoint two.
1251  *	The current configuration controls the existence, type, and
1252  *	maximum packet size of any given endpoint.
1253  * @stream_id: the endpoint's stream ID for bulk streams
1254  * @dev: Identifies the USB device to perform the request.
1255  * @status: This is read in non-iso completion functions to get the
1256  *	status of the particular request.  ISO requests only use it
1257  *	to tell whether the URB was unlinked; detailed status for
1258  *	each frame is in the fields of the iso_frame-desc.
1259  * @transfer_flags: A variety of flags may be used to affect how URB
1260  *	submission, unlinking, or operation are handled.  Different
1261  *	kinds of URB can use different flags.
1262  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1263  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1264  *	(however, do not leave garbage in transfer_buffer even then).
1265  *	This buffer must be suitable for DMA; allocate it with
1266  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1267  *	of this buffer will be modified.  This buffer is used for the data
1268  *	stage of control transfers.
1269  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1270  *	the device driver is saying that it provided this DMA address,
1271  *	which the host controller driver should use in preference to the
1272  *	transfer_buffer.
1273  * @sg: scatter gather buffer list, the buffer size of each element in
1274  * 	the list (except the last) must be divisible by the endpoint's
1275  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1276  * @num_mapped_sgs: (internal) number of mapped sg entries
1277  * @num_sgs: number of entries in the sg list
1278  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1279  *	be broken up into chunks according to the current maximum packet
1280  *	size for the endpoint, which is a function of the configuration
1281  *	and is encoded in the pipe.  When the length is zero, neither
1282  *	transfer_buffer nor transfer_dma is used.
1283  * @actual_length: This is read in non-iso completion functions, and
1284  *	it tells how many bytes (out of transfer_buffer_length) were
1285  *	transferred.  It will normally be the same as requested, unless
1286  *	either an error was reported or a short read was performed.
1287  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1288  *	short reads be reported as errors.
1289  * @setup_packet: Only used for control transfers, this points to eight bytes
1290  *	of setup data.  Control transfers always start by sending this data
1291  *	to the device.  Then transfer_buffer is read or written, if needed.
1292  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1293  *	this field; setup_packet must point to a valid buffer.
1294  * @start_frame: Returns the initial frame for isochronous transfers.
1295  * @number_of_packets: Lists the number of ISO transfer buffers.
1296  * @interval: Specifies the polling interval for interrupt or isochronous
1297  *	transfers.  The units are frames (milliseconds) for full and low
1298  *	speed devices, and microframes (1/8 millisecond) for highspeed
1299  *	and SuperSpeed devices.
1300  * @error_count: Returns the number of ISO transfers that reported errors.
1301  * @context: For use in completion functions.  This normally points to
1302  *	request-specific driver context.
1303  * @complete: Completion handler. This URB is passed as the parameter to the
1304  *	completion function.  The completion function may then do what
1305  *	it likes with the URB, including resubmitting or freeing it.
1306  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1307  *	collect the transfer status for each buffer.
1308  *
1309  * This structure identifies USB transfer requests.  URBs must be allocated by
1310  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1311  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1312  * are submitted using usb_submit_urb(), and pending requests may be canceled
1313  * using usb_unlink_urb() or usb_kill_urb().
1314  *
1315  * Data Transfer Buffers:
1316  *
1317  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1318  * taken from the general page pool.  That is provided by transfer_buffer
1319  * (control requests also use setup_packet), and host controller drivers
1320  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1321  * mapping operations can be expensive on some platforms (perhaps using a dma
1322  * bounce buffer or talking to an IOMMU),
1323  * although they're cheap on commodity x86 and ppc hardware.
1324  *
1325  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1326  * which tells the host controller driver that no such mapping is needed for
1327  * the transfer_buffer since
1328  * the device driver is DMA-aware.  For example, a device driver might
1329  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1330  * When this transfer flag is provided, host controller drivers will
1331  * attempt to use the dma address found in the transfer_dma
1332  * field rather than determining a dma address themselves.
1333  *
1334  * Note that transfer_buffer must still be set if the controller
1335  * does not support DMA (as indicated by bus.uses_dma) and when talking
1336  * to root hub. If you have to trasfer between highmem zone and the device
1337  * on such controller, create a bounce buffer or bail out with an error.
1338  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1339  * capable, assign NULL to it, so that usbmon knows not to use the value.
1340  * The setup_packet must always be set, so it cannot be located in highmem.
1341  *
1342  * Initialization:
1343  *
1344  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1345  * zero), and complete fields.  All URBs must also initialize
1346  * transfer_buffer and transfer_buffer_length.  They may provide the
1347  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1348  * to be treated as errors; that flag is invalid for write requests.
1349  *
1350  * Bulk URBs may
1351  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1352  * should always terminate with a short packet, even if it means adding an
1353  * extra zero length packet.
1354  *
1355  * Control URBs must provide a valid pointer in the setup_packet field.
1356  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1357  * beforehand.
1358  *
1359  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1360  * or, for highspeed devices, 125 microsecond units)
1361  * to poll for transfers.  After the URB has been submitted, the interval
1362  * field reflects how the transfer was actually scheduled.
1363  * The polling interval may be more frequent than requested.
1364  * For example, some controllers have a maximum interval of 32 milliseconds,
1365  * while others support intervals of up to 1024 milliseconds.
1366  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1367  * endpoints, as well as high speed interrupt endpoints, the encoding of
1368  * the transfer interval in the endpoint descriptor is logarithmic.
1369  * Device drivers must convert that value to linear units themselves.)
1370  *
1371  * If an isochronous endpoint queue isn't already running, the host
1372  * controller will schedule a new URB to start as soon as bandwidth
1373  * utilization allows.  If the queue is running then a new URB will be
1374  * scheduled to start in the first transfer slot following the end of the
1375  * preceding URB, if that slot has not already expired.  If the slot has
1376  * expired (which can happen when IRQ delivery is delayed for a long time),
1377  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1378  * is clear then the URB will be scheduled to start in the expired slot,
1379  * implying that some of its packets will not be transferred; if the flag
1380  * is set then the URB will be scheduled in the first unexpired slot,
1381  * breaking the queue's synchronization.  Upon URB completion, the
1382  * start_frame field will be set to the (micro)frame number in which the
1383  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1384  * and can go from as low as 256 to as high as 65536 frames.
1385  *
1386  * Isochronous URBs have a different data transfer model, in part because
1387  * the quality of service is only "best effort".  Callers provide specially
1388  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1389  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1390  * URBs are normally queued, submitted by drivers to arrange that
1391  * transfers are at least double buffered, and then explicitly resubmitted
1392  * in completion handlers, so
1393  * that data (such as audio or video) streams at as constant a rate as the
1394  * host controller scheduler can support.
1395  *
1396  * Completion Callbacks:
1397  *
1398  * The completion callback is made in_interrupt(), and one of the first
1399  * things that a completion handler should do is check the status field.
1400  * The status field is provided for all URBs.  It is used to report
1401  * unlinked URBs, and status for all non-ISO transfers.  It should not
1402  * be examined before the URB is returned to the completion handler.
1403  *
1404  * The context field is normally used to link URBs back to the relevant
1405  * driver or request state.
1406  *
1407  * When the completion callback is invoked for non-isochronous URBs, the
1408  * actual_length field tells how many bytes were transferred.  This field
1409  * is updated even when the URB terminated with an error or was unlinked.
1410  *
1411  * ISO transfer status is reported in the status and actual_length fields
1412  * of the iso_frame_desc array, and the number of errors is reported in
1413  * error_count.  Completion callbacks for ISO transfers will normally
1414  * (re)submit URBs to ensure a constant transfer rate.
1415  *
1416  * Note that even fields marked "public" should not be touched by the driver
1417  * when the urb is owned by the hcd, that is, since the call to
1418  * usb_submit_urb() till the entry into the completion routine.
1419  */
1420 struct urb {
1421 	/* private: usb core and host controller only fields in the urb */
1422 	struct kref kref;		/* reference count of the URB */
1423 	void *hcpriv;			/* private data for host controller */
1424 	atomic_t use_count;		/* concurrent submissions counter */
1425 	atomic_t reject;		/* submissions will fail */
1426 	int unlinked;			/* unlink error code */
1427 
1428 	/* public: documented fields in the urb that can be used by drivers */
1429 	struct list_head urb_list;	/* list head for use by the urb's
1430 					 * current owner */
1431 	struct list_head anchor_list;	/* the URB may be anchored */
1432 	struct usb_anchor *anchor;
1433 	struct usb_device *dev;		/* (in) pointer to associated device */
1434 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1435 	unsigned int pipe;		/* (in) pipe information */
1436 	unsigned int stream_id;		/* (in) stream ID */
1437 	int status;			/* (return) non-ISO status */
1438 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1439 	void *transfer_buffer;		/* (in) associated data buffer */
1440 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1441 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1442 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1443 	int num_sgs;			/* (in) number of entries in the sg list */
1444 	u32 transfer_buffer_length;	/* (in) data buffer length */
1445 	u32 actual_length;		/* (return) actual transfer length */
1446 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1447 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1448 	int start_frame;		/* (modify) start frame (ISO) */
1449 	int number_of_packets;		/* (in) number of ISO packets */
1450 	int interval;			/* (modify) transfer interval
1451 					 * (INT/ISO) */
1452 	int error_count;		/* (return) number of ISO errors */
1453 	void *context;			/* (in) context for completion */
1454 	usb_complete_t complete;	/* (in) completion routine */
1455 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1456 					/* (in) ISO ONLY */
1457 };
1458 
1459 /* ----------------------------------------------------------------------- */
1460 
1461 /**
1462  * usb_fill_control_urb - initializes a control urb
1463  * @urb: pointer to the urb to initialize.
1464  * @dev: pointer to the struct usb_device for this urb.
1465  * @pipe: the endpoint pipe
1466  * @setup_packet: pointer to the setup_packet buffer
1467  * @transfer_buffer: pointer to the transfer buffer
1468  * @buffer_length: length of the transfer buffer
1469  * @complete_fn: pointer to the usb_complete_t function
1470  * @context: what to set the urb context to.
1471  *
1472  * Initializes a control urb with the proper information needed to submit
1473  * it to a device.
1474  */
1475 static inline void usb_fill_control_urb(struct urb *urb,
1476 					struct usb_device *dev,
1477 					unsigned int pipe,
1478 					unsigned char *setup_packet,
1479 					void *transfer_buffer,
1480 					int buffer_length,
1481 					usb_complete_t complete_fn,
1482 					void *context)
1483 {
1484 	urb->dev = dev;
1485 	urb->pipe = pipe;
1486 	urb->setup_packet = setup_packet;
1487 	urb->transfer_buffer = transfer_buffer;
1488 	urb->transfer_buffer_length = buffer_length;
1489 	urb->complete = complete_fn;
1490 	urb->context = context;
1491 }
1492 
1493 /**
1494  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1495  * @urb: pointer to the urb to initialize.
1496  * @dev: pointer to the struct usb_device for this urb.
1497  * @pipe: the endpoint pipe
1498  * @transfer_buffer: pointer to the transfer buffer
1499  * @buffer_length: length of the transfer buffer
1500  * @complete_fn: pointer to the usb_complete_t function
1501  * @context: what to set the urb context to.
1502  *
1503  * Initializes a bulk urb with the proper information needed to submit it
1504  * to a device.
1505  */
1506 static inline void usb_fill_bulk_urb(struct urb *urb,
1507 				     struct usb_device *dev,
1508 				     unsigned int pipe,
1509 				     void *transfer_buffer,
1510 				     int buffer_length,
1511 				     usb_complete_t complete_fn,
1512 				     void *context)
1513 {
1514 	urb->dev = dev;
1515 	urb->pipe = pipe;
1516 	urb->transfer_buffer = transfer_buffer;
1517 	urb->transfer_buffer_length = buffer_length;
1518 	urb->complete = complete_fn;
1519 	urb->context = context;
1520 }
1521 
1522 /**
1523  * usb_fill_int_urb - macro to help initialize a interrupt urb
1524  * @urb: pointer to the urb to initialize.
1525  * @dev: pointer to the struct usb_device for this urb.
1526  * @pipe: the endpoint pipe
1527  * @transfer_buffer: pointer to the transfer buffer
1528  * @buffer_length: length of the transfer buffer
1529  * @complete_fn: pointer to the usb_complete_t function
1530  * @context: what to set the urb context to.
1531  * @interval: what to set the urb interval to, encoded like
1532  *	the endpoint descriptor's bInterval value.
1533  *
1534  * Initializes a interrupt urb with the proper information needed to submit
1535  * it to a device.
1536  *
1537  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1538  * encoding of the endpoint interval, and express polling intervals in
1539  * microframes (eight per millisecond) rather than in frames (one per
1540  * millisecond).
1541  *
1542  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1543  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1544  * through to the host controller, rather than being translated into microframe
1545  * units.
1546  */
1547 static inline void usb_fill_int_urb(struct urb *urb,
1548 				    struct usb_device *dev,
1549 				    unsigned int pipe,
1550 				    void *transfer_buffer,
1551 				    int buffer_length,
1552 				    usb_complete_t complete_fn,
1553 				    void *context,
1554 				    int interval)
1555 {
1556 	urb->dev = dev;
1557 	urb->pipe = pipe;
1558 	urb->transfer_buffer = transfer_buffer;
1559 	urb->transfer_buffer_length = buffer_length;
1560 	urb->complete = complete_fn;
1561 	urb->context = context;
1562 
1563 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1564 		/* make sure interval is within allowed range */
1565 		interval = clamp(interval, 1, 16);
1566 
1567 		urb->interval = 1 << (interval - 1);
1568 	} else {
1569 		urb->interval = interval;
1570 	}
1571 
1572 	urb->start_frame = -1;
1573 }
1574 
1575 extern void usb_init_urb(struct urb *urb);
1576 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1577 extern void usb_free_urb(struct urb *urb);
1578 #define usb_put_urb usb_free_urb
1579 extern struct urb *usb_get_urb(struct urb *urb);
1580 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1581 extern int usb_unlink_urb(struct urb *urb);
1582 extern void usb_kill_urb(struct urb *urb);
1583 extern void usb_poison_urb(struct urb *urb);
1584 extern void usb_unpoison_urb(struct urb *urb);
1585 extern void usb_block_urb(struct urb *urb);
1586 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1587 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1588 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1589 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1590 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1591 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1592 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1593 extern void usb_unanchor_urb(struct urb *urb);
1594 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1595 					 unsigned int timeout);
1596 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1597 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1598 extern int usb_anchor_empty(struct usb_anchor *anchor);
1599 
1600 #define usb_unblock_urb	usb_unpoison_urb
1601 
1602 /**
1603  * usb_urb_dir_in - check if an URB describes an IN transfer
1604  * @urb: URB to be checked
1605  *
1606  * Return: 1 if @urb describes an IN transfer (device-to-host),
1607  * otherwise 0.
1608  */
1609 static inline int usb_urb_dir_in(struct urb *urb)
1610 {
1611 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1612 }
1613 
1614 /**
1615  * usb_urb_dir_out - check if an URB describes an OUT transfer
1616  * @urb: URB to be checked
1617  *
1618  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1619  * otherwise 0.
1620  */
1621 static inline int usb_urb_dir_out(struct urb *urb)
1622 {
1623 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1624 }
1625 
1626 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1627 	gfp_t mem_flags, dma_addr_t *dma);
1628 void usb_free_coherent(struct usb_device *dev, size_t size,
1629 	void *addr, dma_addr_t dma);
1630 
1631 #if 0
1632 struct urb *usb_buffer_map(struct urb *urb);
1633 void usb_buffer_dmasync(struct urb *urb);
1634 void usb_buffer_unmap(struct urb *urb);
1635 #endif
1636 
1637 struct scatterlist;
1638 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1639 		      struct scatterlist *sg, int nents);
1640 #if 0
1641 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1642 			   struct scatterlist *sg, int n_hw_ents);
1643 #endif
1644 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1645 			 struct scatterlist *sg, int n_hw_ents);
1646 
1647 /*-------------------------------------------------------------------*
1648  *                         SYNCHRONOUS CALL SUPPORT                  *
1649  *-------------------------------------------------------------------*/
1650 
1651 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1652 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1653 	void *data, __u16 size, int timeout);
1654 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1655 	void *data, int len, int *actual_length, int timeout);
1656 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1657 	void *data, int len, int *actual_length,
1658 	int timeout);
1659 
1660 /* wrappers around usb_control_msg() for the most common standard requests */
1661 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1662 	unsigned char descindex, void *buf, int size);
1663 extern int usb_get_status(struct usb_device *dev,
1664 	int type, int target, void *data);
1665 extern int usb_string(struct usb_device *dev, int index,
1666 	char *buf, size_t size);
1667 
1668 /* wrappers that also update important state inside usbcore */
1669 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1670 extern int usb_reset_configuration(struct usb_device *dev);
1671 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1672 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1673 
1674 /* this request isn't really synchronous, but it belongs with the others */
1675 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1676 
1677 /* choose and set configuration for device */
1678 extern int usb_choose_configuration(struct usb_device *udev);
1679 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1680 
1681 /*
1682  * timeouts, in milliseconds, used for sending/receiving control messages
1683  * they typically complete within a few frames (msec) after they're issued
1684  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1685  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1686  */
1687 #define USB_CTRL_GET_TIMEOUT	5000
1688 #define USB_CTRL_SET_TIMEOUT	5000
1689 
1690 
1691 /**
1692  * struct usb_sg_request - support for scatter/gather I/O
1693  * @status: zero indicates success, else negative errno
1694  * @bytes: counts bytes transferred.
1695  *
1696  * These requests are initialized using usb_sg_init(), and then are used
1697  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1698  * members of the request object aren't for driver access.
1699  *
1700  * The status and bytecount values are valid only after usb_sg_wait()
1701  * returns.  If the status is zero, then the bytecount matches the total
1702  * from the request.
1703  *
1704  * After an error completion, drivers may need to clear a halt condition
1705  * on the endpoint.
1706  */
1707 struct usb_sg_request {
1708 	int			status;
1709 	size_t			bytes;
1710 
1711 	/* private:
1712 	 * members below are private to usbcore,
1713 	 * and are not provided for driver access!
1714 	 */
1715 	spinlock_t		lock;
1716 
1717 	struct usb_device	*dev;
1718 	int			pipe;
1719 
1720 	int			entries;
1721 	struct urb		**urbs;
1722 
1723 	int			count;
1724 	struct completion	complete;
1725 };
1726 
1727 int usb_sg_init(
1728 	struct usb_sg_request	*io,
1729 	struct usb_device	*dev,
1730 	unsigned		pipe,
1731 	unsigned		period,
1732 	struct scatterlist	*sg,
1733 	int			nents,
1734 	size_t			length,
1735 	gfp_t			mem_flags
1736 );
1737 void usb_sg_cancel(struct usb_sg_request *io);
1738 void usb_sg_wait(struct usb_sg_request *io);
1739 
1740 
1741 /* ----------------------------------------------------------------------- */
1742 
1743 /*
1744  * For various legacy reasons, Linux has a small cookie that's paired with
1745  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1746  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1747  * an unsigned int encoded as:
1748  *
1749  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1750  *					 1 = Device-to-Host [In] ...
1751  *					like endpoint bEndpointAddress)
1752  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1753  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1754  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1755  *					 10 = control, 11 = bulk)
1756  *
1757  * Given the device address and endpoint descriptor, pipes are redundant.
1758  */
1759 
1760 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1761 /* (yet ... they're the values used by usbfs) */
1762 #define PIPE_ISOCHRONOUS		0
1763 #define PIPE_INTERRUPT			1
1764 #define PIPE_CONTROL			2
1765 #define PIPE_BULK			3
1766 
1767 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1768 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1769 
1770 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1771 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1772 
1773 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1774 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1775 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1776 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1777 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1778 
1779 static inline unsigned int __create_pipe(struct usb_device *dev,
1780 		unsigned int endpoint)
1781 {
1782 	return (dev->devnum << 8) | (endpoint << 15);
1783 }
1784 
1785 /* Create various pipes... */
1786 #define usb_sndctrlpipe(dev, endpoint)	\
1787 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1788 #define usb_rcvctrlpipe(dev, endpoint)	\
1789 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1790 #define usb_sndisocpipe(dev, endpoint)	\
1791 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1792 #define usb_rcvisocpipe(dev, endpoint)	\
1793 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1794 #define usb_sndbulkpipe(dev, endpoint)	\
1795 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1796 #define usb_rcvbulkpipe(dev, endpoint)	\
1797 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1798 #define usb_sndintpipe(dev, endpoint)	\
1799 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1800 #define usb_rcvintpipe(dev, endpoint)	\
1801 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1802 
1803 static inline struct usb_host_endpoint *
1804 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1805 {
1806 	struct usb_host_endpoint **eps;
1807 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1808 	return eps[usb_pipeendpoint(pipe)];
1809 }
1810 
1811 /*-------------------------------------------------------------------------*/
1812 
1813 static inline __u16
1814 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1815 {
1816 	struct usb_host_endpoint	*ep;
1817 	unsigned			epnum = usb_pipeendpoint(pipe);
1818 
1819 	if (is_out) {
1820 		WARN_ON(usb_pipein(pipe));
1821 		ep = udev->ep_out[epnum];
1822 	} else {
1823 		WARN_ON(usb_pipeout(pipe));
1824 		ep = udev->ep_in[epnum];
1825 	}
1826 	if (!ep)
1827 		return 0;
1828 
1829 	/* NOTE:  only 0x07ff bits are for packet size... */
1830 	return usb_endpoint_maxp(&ep->desc);
1831 }
1832 
1833 /* ----------------------------------------------------------------------- */
1834 
1835 /* translate USB error codes to codes user space understands */
1836 static inline int usb_translate_errors(int error_code)
1837 {
1838 	switch (error_code) {
1839 	case 0:
1840 	case -ENOMEM:
1841 	case -ENODEV:
1842 	case -EOPNOTSUPP:
1843 		return error_code;
1844 	default:
1845 		return -EIO;
1846 	}
1847 }
1848 
1849 /* Events from the usb core */
1850 #define USB_DEVICE_ADD		0x0001
1851 #define USB_DEVICE_REMOVE	0x0002
1852 #define USB_BUS_ADD		0x0003
1853 #define USB_BUS_REMOVE		0x0004
1854 extern void usb_register_notify(struct notifier_block *nb);
1855 extern void usb_unregister_notify(struct notifier_block *nb);
1856 
1857 /* debugfs stuff */
1858 extern struct dentry *usb_debug_root;
1859 
1860 /* LED triggers */
1861 enum usb_led_event {
1862 	USB_LED_EVENT_HOST = 0,
1863 	USB_LED_EVENT_GADGET = 1,
1864 };
1865 
1866 #ifdef CONFIG_USB_LED_TRIG
1867 extern void usb_led_activity(enum usb_led_event ev);
1868 #else
1869 static inline void usb_led_activity(enum usb_led_event ev) {}
1870 #endif
1871 
1872 #endif  /* __KERNEL__ */
1873 
1874 #endif
1875