xref: /linux-6.15/include/linux/usb.h (revision 593efa40)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29 
30 /*-------------------------------------------------------------------------*/
31 
32 /*
33  * Host-side wrappers for standard USB descriptors ... these are parsed
34  * from the data provided by devices.  Parsing turns them from a flat
35  * sequence of descriptors into a hierarchy:
36  *
37  *  - devices have one (usually) or more configs;
38  *  - configs have one (often) or more interfaces;
39  *  - interfaces have one (usually) or more settings;
40  *  - each interface setting has zero or (usually) more endpoints.
41  *  - a SuperSpeed endpoint has a companion descriptor
42  *
43  * And there might be other descriptors mixed in with those.
44  *
45  * Devices may also have class-specific or vendor-specific descriptors.
46  */
47 
48 struct ep_device;
49 
50 /**
51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor		desc;
69 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
71 	struct list_head		urb_list;
72 	void				*hcpriv;
73 	struct ep_device		*ep_dev;	/* For sysfs info */
74 
75 	unsigned char *extra;   /* Extra descriptors */
76 	int extralen;
77 	int enabled;
78 	int streams;
79 };
80 
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 	struct usb_interface_descriptor	desc;
84 
85 	int extralen;
86 	unsigned char *extra;   /* Extra descriptors */
87 
88 	/* array of desc.bNumEndpoints endpoints associated with this
89 	 * interface setting.  these will be in no particular order.
90 	 */
91 	struct usb_host_endpoint *endpoint;
92 
93 	char *string;		/* iInterface string, if present */
94 };
95 
96 enum usb_interface_condition {
97 	USB_INTERFACE_UNBOUND = 0,
98 	USB_INTERFACE_BINDING,
99 	USB_INTERFACE_BOUND,
100 	USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 		struct usb_endpoint_descriptor **bulk_in,
106 		struct usb_endpoint_descriptor **bulk_out,
107 		struct usb_endpoint_descriptor **int_in,
108 		struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 		struct usb_endpoint_descriptor **bulk_in,
113 		struct usb_endpoint_descriptor **bulk_out,
114 		struct usb_endpoint_descriptor **int_in,
115 		struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 		struct usb_endpoint_descriptor **bulk_in)
120 {
121 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 		struct usb_endpoint_descriptor **bulk_out)
127 {
128 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 		struct usb_endpoint_descriptor **int_in)
134 {
135 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 		struct usb_endpoint_descriptor **bulk_in)
148 {
149 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 		struct usb_endpoint_descriptor **bulk_out)
155 {
156 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 		struct usb_endpoint_descriptor **int_in)
162 {
163 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 		struct usb_endpoint_descriptor **int_out)
169 {
170 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 /**
174  * struct usb_interface - what usb device drivers talk to
175  * @altsetting: array of interface structures, one for each alternate
176  *	setting that may be selected.  Each one includes a set of
177  *	endpoint configurations.  They will be in no particular order.
178  * @cur_altsetting: the current altsetting.
179  * @num_altsetting: number of altsettings defined.
180  * @intf_assoc: interface association descriptor
181  * @minor: the minor number assigned to this interface, if this
182  *	interface is bound to a driver that uses the USB major number.
183  *	If this interface does not use the USB major, this field should
184  *	be unused.  The driver should set this value in the probe()
185  *	function of the driver, after it has been assigned a minor
186  *	number from the USB core by calling usb_register_dev().
187  * @condition: binding state of the interface: not bound, binding
188  *	(in probe()), bound to a driver, or unbinding (in disconnect())
189  * @sysfs_files_created: sysfs attributes exist
190  * @ep_devs_created: endpoint child pseudo-devices exist
191  * @unregistering: flag set when the interface is being unregistered
192  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193  *	capability during autosuspend.
194  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195  *	has been deferred.
196  * @needs_binding: flag set when the driver should be re-probed or unbound
197  *	following a reset or suspend operation it doesn't support.
198  * @authorized: This allows to (de)authorize individual interfaces instead
199  *	a whole device in contrast to the device authorization.
200  * @dev: driver model's view of this device
201  * @usb_dev: if an interface is bound to the USB major, this will point
202  *	to the sysfs representation for that device.
203  * @reset_ws: Used for scheduling resets from atomic context.
204  * @resetting_device: USB core reset the device, so use alt setting 0 as
205  *	current; needs bandwidth alloc after reset.
206  *
207  * USB device drivers attach to interfaces on a physical device.  Each
208  * interface encapsulates a single high level function, such as feeding
209  * an audio stream to a speaker or reporting a change in a volume control.
210  * Many USB devices only have one interface.  The protocol used to talk to
211  * an interface's endpoints can be defined in a usb "class" specification,
212  * or by a product's vendor.  The (default) control endpoint is part of
213  * every interface, but is never listed among the interface's descriptors.
214  *
215  * The driver that is bound to the interface can use standard driver model
216  * calls such as dev_get_drvdata() on the dev member of this structure.
217  *
218  * Each interface may have alternate settings.  The initial configuration
219  * of a device sets altsetting 0, but the device driver can change
220  * that setting using usb_set_interface().  Alternate settings are often
221  * used to control the use of periodic endpoints, such as by having
222  * different endpoints use different amounts of reserved USB bandwidth.
223  * All standards-conformant USB devices that use isochronous endpoints
224  * will use them in non-default settings.
225  *
226  * The USB specification says that alternate setting numbers must run from
227  * 0 to one less than the total number of alternate settings.  But some
228  * devices manage to mess this up, and the structures aren't necessarily
229  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
230  * look up an alternate setting in the altsetting array based on its number.
231  */
232 struct usb_interface {
233 	/* array of alternate settings for this interface,
234 	 * stored in no particular order */
235 	struct usb_host_interface *altsetting;
236 
237 	struct usb_host_interface *cur_altsetting;	/* the currently
238 					 * active alternate setting */
239 	unsigned num_altsetting;	/* number of alternate settings */
240 
241 	/* If there is an interface association descriptor then it will list
242 	 * the associated interfaces */
243 	struct usb_interface_assoc_descriptor *intf_assoc;
244 
245 	int minor;			/* minor number this interface is
246 					 * bound to */
247 	enum usb_interface_condition condition;		/* state of binding */
248 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
249 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
250 	unsigned unregistering:1;	/* unregistration is in progress */
251 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
252 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
253 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
254 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
255 	unsigned authorized:1;		/* used for interface authorization */
256 
257 	struct device dev;		/* interface specific device info */
258 	struct device *usb_dev;
259 	struct work_struct reset_ws;	/* for resets in atomic context */
260 };
261 
262 static inline struct usb_interface *__to_usb_interface(struct device *d)
263 {
264 	return container_of(d, struct usb_interface, dev);
265 }
266 
267 static inline const struct usb_interface *__to_usb_interface_const(const struct device *d)
268 {
269 	return container_of(d, struct usb_interface, dev);
270 }
271 
272 /*
273  * container_of() will happily take a const * and spit back a non-const * as it
274  * is just doing pointer math.  But we want to be a bit more careful in the USB
275  * driver code, so manually force any const * of a device to also be a const *
276  * to a usb_device.
277  */
278 #define to_usb_interface(dev)						\
279 	_Generic((dev),							\
280 		 const struct device *: __to_usb_interface_const,	\
281 		 struct device *: __to_usb_interface)(dev)
282 
283 static inline void *usb_get_intfdata(struct usb_interface *intf)
284 {
285 	return dev_get_drvdata(&intf->dev);
286 }
287 
288 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
289 {
290 	dev_set_drvdata(&intf->dev, data);
291 }
292 
293 struct usb_interface *usb_get_intf(struct usb_interface *intf);
294 void usb_put_intf(struct usb_interface *intf);
295 
296 /* Hard limit */
297 #define USB_MAXENDPOINTS	30
298 /* this maximum is arbitrary */
299 #define USB_MAXINTERFACES	32
300 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
301 
302 /*
303  * USB Resume Timer: Every Host controller driver should drive the resume
304  * signalling on the bus for the amount of time defined by this macro.
305  *
306  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
307  *
308  * Note that the USB Specification states we should drive resume for *at least*
309  * 20 ms, but it doesn't give an upper bound. This creates two possible
310  * situations which we want to avoid:
311  *
312  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
313  * us to fail USB Electrical Tests, thus failing Certification
314  *
315  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
316  * and while we can argue that's against the USB Specification, we don't have
317  * control over which devices a certification laboratory will be using for
318  * certification. If CertLab uses a device which was tested against Windows and
319  * that happens to have relaxed resume signalling rules, we might fall into
320  * situations where we fail interoperability and electrical tests.
321  *
322  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
323  * should cope with both LPJ calibration errors and devices not following every
324  * detail of the USB Specification.
325  */
326 #define USB_RESUME_TIMEOUT	40 /* ms */
327 
328 /**
329  * struct usb_interface_cache - long-term representation of a device interface
330  * @num_altsetting: number of altsettings defined.
331  * @ref: reference counter.
332  * @altsetting: variable-length array of interface structures, one for
333  *	each alternate setting that may be selected.  Each one includes a
334  *	set of endpoint configurations.  They will be in no particular order.
335  *
336  * These structures persist for the lifetime of a usb_device, unlike
337  * struct usb_interface (which persists only as long as its configuration
338  * is installed).  The altsetting arrays can be accessed through these
339  * structures at any time, permitting comparison of configurations and
340  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
341  */
342 struct usb_interface_cache {
343 	unsigned num_altsetting;	/* number of alternate settings */
344 	struct kref ref;		/* reference counter */
345 
346 	/* variable-length array of alternate settings for this interface,
347 	 * stored in no particular order */
348 	struct usb_host_interface altsetting[];
349 };
350 #define	ref_to_usb_interface_cache(r) \
351 		container_of(r, struct usb_interface_cache, ref)
352 #define	altsetting_to_usb_interface_cache(a) \
353 		container_of(a, struct usb_interface_cache, altsetting[0])
354 
355 /**
356  * struct usb_host_config - representation of a device's configuration
357  * @desc: the device's configuration descriptor.
358  * @string: pointer to the cached version of the iConfiguration string, if
359  *	present for this configuration.
360  * @intf_assoc: list of any interface association descriptors in this config
361  * @interface: array of pointers to usb_interface structures, one for each
362  *	interface in the configuration.  The number of interfaces is stored
363  *	in desc.bNumInterfaces.  These pointers are valid only while the
364  *	configuration is active.
365  * @intf_cache: array of pointers to usb_interface_cache structures, one
366  *	for each interface in the configuration.  These structures exist
367  *	for the entire life of the device.
368  * @extra: pointer to buffer containing all extra descriptors associated
369  *	with this configuration (those preceding the first interface
370  *	descriptor).
371  * @extralen: length of the extra descriptors buffer.
372  *
373  * USB devices may have multiple configurations, but only one can be active
374  * at any time.  Each encapsulates a different operational environment;
375  * for example, a dual-speed device would have separate configurations for
376  * full-speed and high-speed operation.  The number of configurations
377  * available is stored in the device descriptor as bNumConfigurations.
378  *
379  * A configuration can contain multiple interfaces.  Each corresponds to
380  * a different function of the USB device, and all are available whenever
381  * the configuration is active.  The USB standard says that interfaces
382  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
383  * of devices get this wrong.  In addition, the interface array is not
384  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
385  * look up an interface entry based on its number.
386  *
387  * Device drivers should not attempt to activate configurations.  The choice
388  * of which configuration to install is a policy decision based on such
389  * considerations as available power, functionality provided, and the user's
390  * desires (expressed through userspace tools).  However, drivers can call
391  * usb_reset_configuration() to reinitialize the current configuration and
392  * all its interfaces.
393  */
394 struct usb_host_config {
395 	struct usb_config_descriptor	desc;
396 
397 	char *string;		/* iConfiguration string, if present */
398 
399 	/* List of any Interface Association Descriptors in this
400 	 * configuration. */
401 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
402 
403 	/* the interfaces associated with this configuration,
404 	 * stored in no particular order */
405 	struct usb_interface *interface[USB_MAXINTERFACES];
406 
407 	/* Interface information available even when this is not the
408 	 * active configuration */
409 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
410 
411 	unsigned char *extra;   /* Extra descriptors */
412 	int extralen;
413 };
414 
415 /* USB2.0 and USB3.0 device BOS descriptor set */
416 struct usb_host_bos {
417 	struct usb_bos_descriptor	*desc;
418 
419 	/* wireless cap descriptor is handled by wusb */
420 	struct usb_ext_cap_descriptor	*ext_cap;
421 	struct usb_ss_cap_descriptor	*ss_cap;
422 	struct usb_ssp_cap_descriptor	*ssp_cap;
423 	struct usb_ss_container_id_descriptor	*ss_id;
424 	struct usb_ptm_cap_descriptor	*ptm_cap;
425 };
426 
427 int __usb_get_extra_descriptor(char *buffer, unsigned size,
428 	unsigned char type, void **ptr, size_t min);
429 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
430 				__usb_get_extra_descriptor((ifpoint)->extra, \
431 				(ifpoint)->extralen, \
432 				type, (void **)ptr, sizeof(**(ptr)))
433 
434 /* ----------------------------------------------------------------------- */
435 
436 /* USB device number allocation bitmap */
437 struct usb_devmap {
438 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
439 };
440 
441 /*
442  * Allocated per bus (tree of devices) we have:
443  */
444 struct usb_bus {
445 	struct device *controller;	/* host side hardware */
446 	struct device *sysdev;		/* as seen from firmware or bus */
447 	int busnum;			/* Bus number (in order of reg) */
448 	const char *bus_name;		/* stable id (PCI slot_name etc) */
449 	u8 uses_pio_for_control;	/*
450 					 * Does the host controller use PIO
451 					 * for control transfers?
452 					 */
453 	u8 otg_port;			/* 0, or number of OTG/HNP port */
454 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
455 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
456 	unsigned no_stop_on_short:1;    /*
457 					 * Quirk: some controllers don't stop
458 					 * the ep queue on a short transfer
459 					 * with the URB_SHORT_NOT_OK flag set.
460 					 */
461 	unsigned no_sg_constraint:1;	/* no sg constraint */
462 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
463 
464 	int devnum_next;		/* Next open device number in
465 					 * round-robin allocation */
466 	struct mutex devnum_next_mutex; /* devnum_next mutex */
467 
468 	struct usb_devmap devmap;	/* device address allocation map */
469 	struct usb_device *root_hub;	/* Root hub */
470 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
471 
472 	int bandwidth_allocated;	/* on this bus: how much of the time
473 					 * reserved for periodic (intr/iso)
474 					 * requests is used, on average?
475 					 * Units: microseconds/frame.
476 					 * Limits: Full/low speed reserve 90%,
477 					 * while high speed reserves 80%.
478 					 */
479 	int bandwidth_int_reqs;		/* number of Interrupt requests */
480 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
481 
482 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
483 
484 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
485 	struct mon_bus *mon_bus;	/* non-null when associated */
486 	int monitored;			/* non-zero when monitored */
487 #endif
488 };
489 
490 struct usb_dev_state;
491 
492 /* ----------------------------------------------------------------------- */
493 
494 struct usb_tt;
495 
496 enum usb_port_connect_type {
497 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
498 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
499 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
500 	USB_PORT_NOT_USED,
501 };
502 
503 /*
504  * USB port quirks.
505  */
506 
507 /* For the given port, prefer the old (faster) enumeration scheme. */
508 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
509 
510 /* Decrease TRSTRCY to 10ms during device enumeration. */
511 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
512 
513 /*
514  * USB 2.0 Link Power Management (LPM) parameters.
515  */
516 struct usb2_lpm_parameters {
517 	/* Best effort service latency indicate how long the host will drive
518 	 * resume on an exit from L1.
519 	 */
520 	unsigned int besl;
521 
522 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
523 	 * When the timer counts to zero, the parent hub will initiate a LPM
524 	 * transition to L1.
525 	 */
526 	int timeout;
527 };
528 
529 /*
530  * USB 3.0 Link Power Management (LPM) parameters.
531  *
532  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
533  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
534  * All three are stored in nanoseconds.
535  */
536 struct usb3_lpm_parameters {
537 	/*
538 	 * Maximum exit latency (MEL) for the host to send a packet to the
539 	 * device (either a Ping for isoc endpoints, or a data packet for
540 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
541 	 * in the path to transition the links to U0.
542 	 */
543 	unsigned int mel;
544 	/*
545 	 * Maximum exit latency for a device-initiated LPM transition to bring
546 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
547 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
548 	 */
549 	unsigned int pel;
550 
551 	/*
552 	 * The System Exit Latency (SEL) includes PEL, and three other
553 	 * latencies.  After a device initiates a U0 transition, it will take
554 	 * some time from when the device sends the ERDY to when it will finally
555 	 * receive the data packet.  Basically, SEL should be the worse-case
556 	 * latency from when a device starts initiating a U0 transition to when
557 	 * it will get data.
558 	 */
559 	unsigned int sel;
560 	/*
561 	 * The idle timeout value that is currently programmed into the parent
562 	 * hub for this device.  When the timer counts to zero, the parent hub
563 	 * will initiate an LPM transition to either U1 or U2.
564 	 */
565 	int timeout;
566 };
567 
568 /**
569  * struct usb_device - kernel's representation of a USB device
570  * @devnum: device number; address on a USB bus
571  * @devpath: device ID string for use in messages (e.g., /port/...)
572  * @route: tree topology hex string for use with xHCI
573  * @state: device state: configured, not attached, etc.
574  * @speed: device speed: high/full/low (or error)
575  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
576  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
577  * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
578  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
579  * @ttport: device port on that tt hub
580  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
581  * @parent: our hub, unless we're the root
582  * @bus: bus we're part of
583  * @ep0: endpoint 0 data (default control pipe)
584  * @dev: generic device interface
585  * @descriptor: USB device descriptor
586  * @bos: USB device BOS descriptor set
587  * @config: all of the device's configs
588  * @actconfig: the active configuration
589  * @ep_in: array of IN endpoints
590  * @ep_out: array of OUT endpoints
591  * @rawdescriptors: raw descriptors for each config
592  * @bus_mA: Current available from the bus
593  * @portnum: parent port number (origin 1)
594  * @level: number of USB hub ancestors
595  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
596  * @can_submit: URBs may be submitted
597  * @persist_enabled:  USB_PERSIST enabled for this device
598  * @reset_in_progress: the device is being reset
599  * @have_langid: whether string_langid is valid
600  * @authorized: policy has said we can use it;
601  *	(user space) policy determines if we authorize this device to be
602  *	used or not. By default, wired USB devices are authorized.
603  *	WUSB devices are not, until we authorize them from user space.
604  *	FIXME -- complete doc
605  * @authenticated: Crypto authentication passed
606  * @wusb: device is Wireless USB
607  * @lpm_capable: device supports LPM
608  * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
609  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
610  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
611  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
612  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
613  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
614  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
615  * @string_langid: language ID for strings
616  * @product: iProduct string, if present (static)
617  * @manufacturer: iManufacturer string, if present (static)
618  * @serial: iSerialNumber string, if present (static)
619  * @filelist: usbfs files that are open to this device
620  * @maxchild: number of ports if hub
621  * @quirks: quirks of the whole device
622  * @urbnum: number of URBs submitted for the whole device
623  * @active_duration: total time device is not suspended
624  * @connect_time: time device was first connected
625  * @do_remote_wakeup:  remote wakeup should be enabled
626  * @reset_resume: needs reset instead of resume
627  * @port_is_suspended: the upstream port is suspended (L2 or U3)
628  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
629  *	specific data for the device.
630  * @slot_id: Slot ID assigned by xHCI
631  * @removable: Device can be physically removed from this port
632  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
633  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
634  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
635  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
636  *	to keep track of the number of functions that require USB 3.0 Link Power
637  *	Management to be disabled for this usb_device.  This count should only
638  *	be manipulated by those functions, with the bandwidth_mutex is held.
639  * @hub_delay: cached value consisting of:
640  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
641  *	Will be used as wValue for SetIsochDelay requests.
642  * @use_generic_driver: ask driver core to reprobe using the generic driver.
643  *
644  * Notes:
645  * Usbcore drivers should not set usbdev->state directly.  Instead use
646  * usb_set_device_state().
647  */
648 struct usb_device {
649 	int		devnum;
650 	char		devpath[16];
651 	u32		route;
652 	enum usb_device_state	state;
653 	enum usb_device_speed	speed;
654 	unsigned int		rx_lanes;
655 	unsigned int		tx_lanes;
656 	enum usb_ssp_rate	ssp_rate;
657 
658 	struct usb_tt	*tt;
659 	int		ttport;
660 
661 	unsigned int toggle[2];
662 
663 	struct usb_device *parent;
664 	struct usb_bus *bus;
665 	struct usb_host_endpoint ep0;
666 
667 	struct device dev;
668 
669 	struct usb_device_descriptor descriptor;
670 	struct usb_host_bos *bos;
671 	struct usb_host_config *config;
672 
673 	struct usb_host_config *actconfig;
674 	struct usb_host_endpoint *ep_in[16];
675 	struct usb_host_endpoint *ep_out[16];
676 
677 	char **rawdescriptors;
678 
679 	unsigned short bus_mA;
680 	u8 portnum;
681 	u8 level;
682 	u8 devaddr;
683 
684 	unsigned can_submit:1;
685 	unsigned persist_enabled:1;
686 	unsigned reset_in_progress:1;
687 	unsigned have_langid:1;
688 	unsigned authorized:1;
689 	unsigned authenticated:1;
690 	unsigned wusb:1;
691 	unsigned lpm_capable:1;
692 	unsigned lpm_devinit_allow:1;
693 	unsigned usb2_hw_lpm_capable:1;
694 	unsigned usb2_hw_lpm_besl_capable:1;
695 	unsigned usb2_hw_lpm_enabled:1;
696 	unsigned usb2_hw_lpm_allowed:1;
697 	unsigned usb3_lpm_u1_enabled:1;
698 	unsigned usb3_lpm_u2_enabled:1;
699 	int string_langid;
700 
701 	/* static strings from the device */
702 	char *product;
703 	char *manufacturer;
704 	char *serial;
705 
706 	struct list_head filelist;
707 
708 	int maxchild;
709 
710 	u32 quirks;
711 	atomic_t urbnum;
712 
713 	unsigned long active_duration;
714 
715 #ifdef CONFIG_PM
716 	unsigned long connect_time;
717 
718 	unsigned do_remote_wakeup:1;
719 	unsigned reset_resume:1;
720 	unsigned port_is_suspended:1;
721 #endif
722 	struct wusb_dev *wusb_dev;
723 	int slot_id;
724 	struct usb2_lpm_parameters l1_params;
725 	struct usb3_lpm_parameters u1_params;
726 	struct usb3_lpm_parameters u2_params;
727 	unsigned lpm_disable_count;
728 
729 	u16 hub_delay;
730 	unsigned use_generic_driver:1;
731 };
732 
733 static inline struct usb_device *__to_usb_device(struct device *d)
734 {
735 	return container_of(d, struct usb_device, dev);
736 }
737 
738 static inline const struct usb_device *__to_usb_device_const(const struct device *d)
739 {
740 	return container_of(d, struct usb_device, dev);
741 }
742 
743 /*
744  * container_of() will happily take a const * and spit back a non-const * as it
745  * is just doing pointer math.  But we want to be a bit more careful in the USB
746  * driver code, so manually force any const * of a device to also be a const *
747  * to a usb_device.
748  */
749 #define to_usb_device(dev)					\
750 	_Generic((dev),						\
751 		 const struct device *: __to_usb_device_const,	\
752 		 struct device *: __to_usb_device)(dev)
753 
754 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
755 {
756 	return to_usb_device(intf->dev.parent);
757 }
758 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
759 {
760 	return to_usb_device((const struct device *)intf->dev.parent);
761 }
762 
763 #define interface_to_usbdev(intf)					\
764 	_Generic((intf),						\
765 		 const struct usb_interface *: __intf_to_usbdev_const,	\
766 		 struct usb_interface *: __intf_to_usbdev)(intf)
767 
768 extern struct usb_device *usb_get_dev(struct usb_device *dev);
769 extern void usb_put_dev(struct usb_device *dev);
770 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
771 	int port1);
772 
773 /**
774  * usb_hub_for_each_child - iterate over all child devices on the hub
775  * @hdev:  USB device belonging to the usb hub
776  * @port1: portnum associated with child device
777  * @child: child device pointer
778  */
779 #define usb_hub_for_each_child(hdev, port1, child) \
780 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
781 			port1 <= hdev->maxchild; \
782 			child = usb_hub_find_child(hdev, ++port1)) \
783 		if (!child) continue; else
784 
785 /* USB device locking */
786 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
787 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
788 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
789 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
790 extern int usb_lock_device_for_reset(struct usb_device *udev,
791 				     const struct usb_interface *iface);
792 
793 /* USB port reset for device reinitialization */
794 extern int usb_reset_device(struct usb_device *dev);
795 extern void usb_queue_reset_device(struct usb_interface *dev);
796 
797 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
798 
799 #ifdef CONFIG_ACPI
800 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
801 	bool enable);
802 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
803 #else
804 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
805 	bool enable) { return 0; }
806 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
807 	{ return true; }
808 #endif
809 
810 /* USB autosuspend and autoresume */
811 #ifdef CONFIG_PM
812 extern void usb_enable_autosuspend(struct usb_device *udev);
813 extern void usb_disable_autosuspend(struct usb_device *udev);
814 
815 extern int usb_autopm_get_interface(struct usb_interface *intf);
816 extern void usb_autopm_put_interface(struct usb_interface *intf);
817 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
818 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
819 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
820 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
821 
822 static inline void usb_mark_last_busy(struct usb_device *udev)
823 {
824 	pm_runtime_mark_last_busy(&udev->dev);
825 }
826 
827 #else
828 
829 static inline int usb_enable_autosuspend(struct usb_device *udev)
830 { return 0; }
831 static inline int usb_disable_autosuspend(struct usb_device *udev)
832 { return 0; }
833 
834 static inline int usb_autopm_get_interface(struct usb_interface *intf)
835 { return 0; }
836 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
837 { return 0; }
838 
839 static inline void usb_autopm_put_interface(struct usb_interface *intf)
840 { }
841 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
842 { }
843 static inline void usb_autopm_get_interface_no_resume(
844 		struct usb_interface *intf)
845 { }
846 static inline void usb_autopm_put_interface_no_suspend(
847 		struct usb_interface *intf)
848 { }
849 static inline void usb_mark_last_busy(struct usb_device *udev)
850 { }
851 #endif
852 
853 extern int usb_disable_lpm(struct usb_device *udev);
854 extern void usb_enable_lpm(struct usb_device *udev);
855 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
856 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
857 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
858 
859 extern int usb_disable_ltm(struct usb_device *udev);
860 extern void usb_enable_ltm(struct usb_device *udev);
861 
862 static inline bool usb_device_supports_ltm(struct usb_device *udev)
863 {
864 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
865 		return false;
866 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
867 }
868 
869 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
870 {
871 	return udev && udev->bus && udev->bus->no_sg_constraint;
872 }
873 
874 
875 /*-------------------------------------------------------------------------*/
876 
877 /* for drivers using iso endpoints */
878 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
879 
880 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
881 extern int usb_alloc_streams(struct usb_interface *interface,
882 		struct usb_host_endpoint **eps, unsigned int num_eps,
883 		unsigned int num_streams, gfp_t mem_flags);
884 
885 /* Reverts a group of bulk endpoints back to not using stream IDs. */
886 extern int usb_free_streams(struct usb_interface *interface,
887 		struct usb_host_endpoint **eps, unsigned int num_eps,
888 		gfp_t mem_flags);
889 
890 /* used these for multi-interface device registration */
891 extern int usb_driver_claim_interface(struct usb_driver *driver,
892 			struct usb_interface *iface, void *data);
893 
894 /**
895  * usb_interface_claimed - returns true iff an interface is claimed
896  * @iface: the interface being checked
897  *
898  * Return: %true (nonzero) iff the interface is claimed, else %false
899  * (zero).
900  *
901  * Note:
902  * Callers must own the driver model's usb bus readlock.  So driver
903  * probe() entries don't need extra locking, but other call contexts
904  * may need to explicitly claim that lock.
905  *
906  */
907 static inline int usb_interface_claimed(struct usb_interface *iface)
908 {
909 	return (iface->dev.driver != NULL);
910 }
911 
912 extern void usb_driver_release_interface(struct usb_driver *driver,
913 			struct usb_interface *iface);
914 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
915 					 const struct usb_device_id *id);
916 extern int usb_match_one_id(struct usb_interface *interface,
917 			    const struct usb_device_id *id);
918 
919 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
920 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
921 		int minor);
922 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
923 		unsigned ifnum);
924 extern struct usb_host_interface *usb_altnum_to_altsetting(
925 		const struct usb_interface *intf, unsigned int altnum);
926 extern struct usb_host_interface *usb_find_alt_setting(
927 		struct usb_host_config *config,
928 		unsigned int iface_num,
929 		unsigned int alt_num);
930 
931 /* port claiming functions */
932 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
933 		struct usb_dev_state *owner);
934 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
935 		struct usb_dev_state *owner);
936 
937 /**
938  * usb_make_path - returns stable device path in the usb tree
939  * @dev: the device whose path is being constructed
940  * @buf: where to put the string
941  * @size: how big is "buf"?
942  *
943  * Return: Length of the string (> 0) or negative if size was too small.
944  *
945  * Note:
946  * This identifier is intended to be "stable", reflecting physical paths in
947  * hardware such as physical bus addresses for host controllers or ports on
948  * USB hubs.  That makes it stay the same until systems are physically
949  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
950  * controllers.  Adding and removing devices, including virtual root hubs
951  * in host controller driver modules, does not change these path identifiers;
952  * neither does rebooting or re-enumerating.  These are more useful identifiers
953  * than changeable ("unstable") ones like bus numbers or device addresses.
954  *
955  * With a partial exception for devices connected to USB 2.0 root hubs, these
956  * identifiers are also predictable.  So long as the device tree isn't changed,
957  * plugging any USB device into a given hub port always gives it the same path.
958  * Because of the use of "companion" controllers, devices connected to ports on
959  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
960  * high speed, and a different one if they are full or low speed.
961  */
962 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
963 {
964 	int actual;
965 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
966 			  dev->devpath);
967 	return (actual >= (int)size) ? -1 : actual;
968 }
969 
970 /*-------------------------------------------------------------------------*/
971 
972 #define USB_DEVICE_ID_MATCH_DEVICE \
973 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
974 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
975 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
976 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
977 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
978 #define USB_DEVICE_ID_MATCH_DEV_INFO \
979 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
980 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
981 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
982 #define USB_DEVICE_ID_MATCH_INT_INFO \
983 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
984 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
985 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
986 
987 /**
988  * USB_DEVICE - macro used to describe a specific usb device
989  * @vend: the 16 bit USB Vendor ID
990  * @prod: the 16 bit USB Product ID
991  *
992  * This macro is used to create a struct usb_device_id that matches a
993  * specific device.
994  */
995 #define USB_DEVICE(vend, prod) \
996 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
997 	.idVendor = (vend), \
998 	.idProduct = (prod)
999 /**
1000  * USB_DEVICE_VER - describe a specific usb device with a version range
1001  * @vend: the 16 bit USB Vendor ID
1002  * @prod: the 16 bit USB Product ID
1003  * @lo: the bcdDevice_lo value
1004  * @hi: the bcdDevice_hi value
1005  *
1006  * This macro is used to create a struct usb_device_id that matches a
1007  * specific device, with a version range.
1008  */
1009 #define USB_DEVICE_VER(vend, prod, lo, hi) \
1010 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
1011 	.idVendor = (vend), \
1012 	.idProduct = (prod), \
1013 	.bcdDevice_lo = (lo), \
1014 	.bcdDevice_hi = (hi)
1015 
1016 /**
1017  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1018  * @vend: the 16 bit USB Vendor ID
1019  * @prod: the 16 bit USB Product ID
1020  * @cl: bInterfaceClass value
1021  *
1022  * This macro is used to create a struct usb_device_id that matches a
1023  * specific interface class of devices.
1024  */
1025 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1026 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1027 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1028 	.idVendor = (vend), \
1029 	.idProduct = (prod), \
1030 	.bInterfaceClass = (cl)
1031 
1032 /**
1033  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1034  * @vend: the 16 bit USB Vendor ID
1035  * @prod: the 16 bit USB Product ID
1036  * @pr: bInterfaceProtocol value
1037  *
1038  * This macro is used to create a struct usb_device_id that matches a
1039  * specific interface protocol of devices.
1040  */
1041 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1042 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1043 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1044 	.idVendor = (vend), \
1045 	.idProduct = (prod), \
1046 	.bInterfaceProtocol = (pr)
1047 
1048 /**
1049  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1050  * @vend: the 16 bit USB Vendor ID
1051  * @prod: the 16 bit USB Product ID
1052  * @num: bInterfaceNumber value
1053  *
1054  * This macro is used to create a struct usb_device_id that matches a
1055  * specific interface number of devices.
1056  */
1057 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1058 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1059 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1060 	.idVendor = (vend), \
1061 	.idProduct = (prod), \
1062 	.bInterfaceNumber = (num)
1063 
1064 /**
1065  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1066  * @cl: bDeviceClass value
1067  * @sc: bDeviceSubClass value
1068  * @pr: bDeviceProtocol value
1069  *
1070  * This macro is used to create a struct usb_device_id that matches a
1071  * specific class of devices.
1072  */
1073 #define USB_DEVICE_INFO(cl, sc, pr) \
1074 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1075 	.bDeviceClass = (cl), \
1076 	.bDeviceSubClass = (sc), \
1077 	.bDeviceProtocol = (pr)
1078 
1079 /**
1080  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1081  * @cl: bInterfaceClass value
1082  * @sc: bInterfaceSubClass value
1083  * @pr: bInterfaceProtocol value
1084  *
1085  * This macro is used to create a struct usb_device_id that matches a
1086  * specific class of interfaces.
1087  */
1088 #define USB_INTERFACE_INFO(cl, sc, pr) \
1089 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1090 	.bInterfaceClass = (cl), \
1091 	.bInterfaceSubClass = (sc), \
1092 	.bInterfaceProtocol = (pr)
1093 
1094 /**
1095  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1096  * @vend: the 16 bit USB Vendor ID
1097  * @prod: the 16 bit USB Product ID
1098  * @cl: bInterfaceClass value
1099  * @sc: bInterfaceSubClass value
1100  * @pr: bInterfaceProtocol value
1101  *
1102  * This macro is used to create a struct usb_device_id that matches a
1103  * specific device with a specific class of interfaces.
1104  *
1105  * This is especially useful when explicitly matching devices that have
1106  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1107  */
1108 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1109 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1110 		| USB_DEVICE_ID_MATCH_DEVICE, \
1111 	.idVendor = (vend), \
1112 	.idProduct = (prod), \
1113 	.bInterfaceClass = (cl), \
1114 	.bInterfaceSubClass = (sc), \
1115 	.bInterfaceProtocol = (pr)
1116 
1117 /**
1118  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1119  * @vend: the 16 bit USB Vendor ID
1120  * @cl: bInterfaceClass value
1121  * @sc: bInterfaceSubClass value
1122  * @pr: bInterfaceProtocol value
1123  *
1124  * This macro is used to create a struct usb_device_id that matches a
1125  * specific vendor with a specific class of interfaces.
1126  *
1127  * This is especially useful when explicitly matching devices that have
1128  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1129  */
1130 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1131 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1132 		| USB_DEVICE_ID_MATCH_VENDOR, \
1133 	.idVendor = (vend), \
1134 	.bInterfaceClass = (cl), \
1135 	.bInterfaceSubClass = (sc), \
1136 	.bInterfaceProtocol = (pr)
1137 
1138 /* ----------------------------------------------------------------------- */
1139 
1140 /* Stuff for dynamic usb ids */
1141 struct usb_dynids {
1142 	spinlock_t lock;
1143 	struct list_head list;
1144 };
1145 
1146 struct usb_dynid {
1147 	struct list_head node;
1148 	struct usb_device_id id;
1149 };
1150 
1151 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1152 				const struct usb_device_id *id_table,
1153 				struct device_driver *driver,
1154 				const char *buf, size_t count);
1155 
1156 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1157 
1158 /**
1159  * struct usbdrv_wrap - wrapper for driver-model structure
1160  * @driver: The driver-model core driver structure.
1161  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1162  */
1163 struct usbdrv_wrap {
1164 	struct device_driver driver;
1165 	int for_devices;
1166 };
1167 
1168 /**
1169  * struct usb_driver - identifies USB interface driver to usbcore
1170  * @name: The driver name should be unique among USB drivers,
1171  *	and should normally be the same as the module name.
1172  * @probe: Called to see if the driver is willing to manage a particular
1173  *	interface on a device.  If it is, probe returns zero and uses
1174  *	usb_set_intfdata() to associate driver-specific data with the
1175  *	interface.  It may also use usb_set_interface() to specify the
1176  *	appropriate altsetting.  If unwilling to manage the interface,
1177  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1178  *	negative errno value.
1179  * @disconnect: Called when the interface is no longer accessible, usually
1180  *	because its device has been (or is being) disconnected or the
1181  *	driver module is being unloaded.
1182  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1183  *	the "usbfs" filesystem.  This lets devices provide ways to
1184  *	expose information to user space regardless of where they
1185  *	do (or don't) show up otherwise in the filesystem.
1186  * @suspend: Called when the device is going to be suspended by the
1187  *	system either from system sleep or runtime suspend context. The
1188  *	return value will be ignored in system sleep context, so do NOT
1189  *	try to continue using the device if suspend fails in this case.
1190  *	Instead, let the resume or reset-resume routine recover from
1191  *	the failure.
1192  * @resume: Called when the device is being resumed by the system.
1193  * @reset_resume: Called when the suspended device has been reset instead
1194  *	of being resumed.
1195  * @pre_reset: Called by usb_reset_device() when the device is about to be
1196  *	reset.  This routine must not return until the driver has no active
1197  *	URBs for the device, and no more URBs may be submitted until the
1198  *	post_reset method is called.
1199  * @post_reset: Called by usb_reset_device() after the device
1200  *	has been reset
1201  * @id_table: USB drivers use ID table to support hotplugging.
1202  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1203  *	or your driver's probe function will never get called.
1204  * @dev_groups: Attributes attached to the device that will be created once it
1205  *	is bound to the driver.
1206  * @dynids: used internally to hold the list of dynamically added device
1207  *	ids for this driver.
1208  * @drvwrap: Driver-model core structure wrapper.
1209  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1210  *	added to this driver by preventing the sysfs file from being created.
1211  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1212  *	for interfaces bound to this driver.
1213  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1214  *	endpoints before calling the driver's disconnect method.
1215  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1216  *	to initiate lower power link state transitions when an idle timeout
1217  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1218  *
1219  * USB interface drivers must provide a name, probe() and disconnect()
1220  * methods, and an id_table.  Other driver fields are optional.
1221  *
1222  * The id_table is used in hotplugging.  It holds a set of descriptors,
1223  * and specialized data may be associated with each entry.  That table
1224  * is used by both user and kernel mode hotplugging support.
1225  *
1226  * The probe() and disconnect() methods are called in a context where
1227  * they can sleep, but they should avoid abusing the privilege.  Most
1228  * work to connect to a device should be done when the device is opened,
1229  * and undone at the last close.  The disconnect code needs to address
1230  * concurrency issues with respect to open() and close() methods, as
1231  * well as forcing all pending I/O requests to complete (by unlinking
1232  * them as necessary, and blocking until the unlinks complete).
1233  */
1234 struct usb_driver {
1235 	const char *name;
1236 
1237 	int (*probe) (struct usb_interface *intf,
1238 		      const struct usb_device_id *id);
1239 
1240 	void (*disconnect) (struct usb_interface *intf);
1241 
1242 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1243 			void *buf);
1244 
1245 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1246 	int (*resume) (struct usb_interface *intf);
1247 	int (*reset_resume)(struct usb_interface *intf);
1248 
1249 	int (*pre_reset)(struct usb_interface *intf);
1250 	int (*post_reset)(struct usb_interface *intf);
1251 
1252 	const struct usb_device_id *id_table;
1253 	const struct attribute_group **dev_groups;
1254 
1255 	struct usb_dynids dynids;
1256 	struct usbdrv_wrap drvwrap;
1257 	unsigned int no_dynamic_id:1;
1258 	unsigned int supports_autosuspend:1;
1259 	unsigned int disable_hub_initiated_lpm:1;
1260 	unsigned int soft_unbind:1;
1261 };
1262 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1263 
1264 /**
1265  * struct usb_device_driver - identifies USB device driver to usbcore
1266  * @name: The driver name should be unique among USB drivers,
1267  *	and should normally be the same as the module name.
1268  * @match: If set, used for better device/driver matching.
1269  * @probe: Called to see if the driver is willing to manage a particular
1270  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1271  *	to associate driver-specific data with the device.  If unwilling
1272  *	to manage the device, return a negative errno value.
1273  * @disconnect: Called when the device is no longer accessible, usually
1274  *	because it has been (or is being) disconnected or the driver's
1275  *	module is being unloaded.
1276  * @suspend: Called when the device is going to be suspended by the system.
1277  * @resume: Called when the device is being resumed by the system.
1278  * @dev_groups: Attributes attached to the device that will be created once it
1279  *	is bound to the driver.
1280  * @drvwrap: Driver-model core structure wrapper.
1281  * @id_table: used with @match() to select better matching driver at
1282  * 	probe() time.
1283  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1284  *	for devices bound to this driver.
1285  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1286  *	resume and suspend functions will be called in addition to the driver's
1287  *	own, so this part of the setup does not need to be replicated.
1288  *
1289  * USB drivers must provide all the fields listed above except drvwrap,
1290  * match, and id_table.
1291  */
1292 struct usb_device_driver {
1293 	const char *name;
1294 
1295 	bool (*match) (struct usb_device *udev);
1296 	int (*probe) (struct usb_device *udev);
1297 	void (*disconnect) (struct usb_device *udev);
1298 
1299 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1300 	int (*resume) (struct usb_device *udev, pm_message_t message);
1301 	const struct attribute_group **dev_groups;
1302 	struct usbdrv_wrap drvwrap;
1303 	const struct usb_device_id *id_table;
1304 	unsigned int supports_autosuspend:1;
1305 	unsigned int generic_subclass:1;
1306 };
1307 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1308 		drvwrap.driver)
1309 
1310 /**
1311  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1312  * @name: the usb class device name for this driver.  Will show up in sysfs.
1313  * @devnode: Callback to provide a naming hint for a possible
1314  *	device node to create.
1315  * @fops: pointer to the struct file_operations of this driver.
1316  * @minor_base: the start of the minor range for this driver.
1317  *
1318  * This structure is used for the usb_register_dev() and
1319  * usb_deregister_dev() functions, to consolidate a number of the
1320  * parameters used for them.
1321  */
1322 struct usb_class_driver {
1323 	char *name;
1324 	char *(*devnode)(struct device *dev, umode_t *mode);
1325 	const struct file_operations *fops;
1326 	int minor_base;
1327 };
1328 
1329 /*
1330  * use these in module_init()/module_exit()
1331  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1332  */
1333 extern int usb_register_driver(struct usb_driver *, struct module *,
1334 			       const char *);
1335 
1336 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1337 #define usb_register(driver) \
1338 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1339 
1340 extern void usb_deregister(struct usb_driver *);
1341 
1342 /**
1343  * module_usb_driver() - Helper macro for registering a USB driver
1344  * @__usb_driver: usb_driver struct
1345  *
1346  * Helper macro for USB drivers which do not do anything special in module
1347  * init/exit. This eliminates a lot of boilerplate. Each module may only
1348  * use this macro once, and calling it replaces module_init() and module_exit()
1349  */
1350 #define module_usb_driver(__usb_driver) \
1351 	module_driver(__usb_driver, usb_register, \
1352 		       usb_deregister)
1353 
1354 extern int usb_register_device_driver(struct usb_device_driver *,
1355 			struct module *);
1356 extern void usb_deregister_device_driver(struct usb_device_driver *);
1357 
1358 extern int usb_register_dev(struct usb_interface *intf,
1359 			    struct usb_class_driver *class_driver);
1360 extern void usb_deregister_dev(struct usb_interface *intf,
1361 			       struct usb_class_driver *class_driver);
1362 
1363 extern int usb_disabled(void);
1364 
1365 /* ----------------------------------------------------------------------- */
1366 
1367 /*
1368  * URB support, for asynchronous request completions
1369  */
1370 
1371 /*
1372  * urb->transfer_flags:
1373  *
1374  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1375  */
1376 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1377 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1378 					 * slot in the schedule */
1379 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1380 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1381 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1382 					 * needed */
1383 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1384 
1385 /* The following flags are used internally by usbcore and HCDs */
1386 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1387 #define URB_DIR_OUT		0
1388 #define URB_DIR_MASK		URB_DIR_IN
1389 
1390 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1391 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1392 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1393 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1394 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1395 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1396 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1397 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1398 
1399 struct usb_iso_packet_descriptor {
1400 	unsigned int offset;
1401 	unsigned int length;		/* expected length */
1402 	unsigned int actual_length;
1403 	int status;
1404 };
1405 
1406 struct urb;
1407 
1408 struct usb_anchor {
1409 	struct list_head urb_list;
1410 	wait_queue_head_t wait;
1411 	spinlock_t lock;
1412 	atomic_t suspend_wakeups;
1413 	unsigned int poisoned:1;
1414 };
1415 
1416 static inline void init_usb_anchor(struct usb_anchor *anchor)
1417 {
1418 	memset(anchor, 0, sizeof(*anchor));
1419 	INIT_LIST_HEAD(&anchor->urb_list);
1420 	init_waitqueue_head(&anchor->wait);
1421 	spin_lock_init(&anchor->lock);
1422 }
1423 
1424 typedef void (*usb_complete_t)(struct urb *);
1425 
1426 /**
1427  * struct urb - USB Request Block
1428  * @urb_list: For use by current owner of the URB.
1429  * @anchor_list: membership in the list of an anchor
1430  * @anchor: to anchor URBs to a common mooring
1431  * @ep: Points to the endpoint's data structure.  Will eventually
1432  *	replace @pipe.
1433  * @pipe: Holds endpoint number, direction, type, and more.
1434  *	Create these values with the eight macros available;
1435  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1436  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1437  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1438  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1439  *	is a different endpoint (and pipe) from "out" endpoint two.
1440  *	The current configuration controls the existence, type, and
1441  *	maximum packet size of any given endpoint.
1442  * @stream_id: the endpoint's stream ID for bulk streams
1443  * @dev: Identifies the USB device to perform the request.
1444  * @status: This is read in non-iso completion functions to get the
1445  *	status of the particular request.  ISO requests only use it
1446  *	to tell whether the URB was unlinked; detailed status for
1447  *	each frame is in the fields of the iso_frame-desc.
1448  * @transfer_flags: A variety of flags may be used to affect how URB
1449  *	submission, unlinking, or operation are handled.  Different
1450  *	kinds of URB can use different flags.
1451  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1452  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1453  *	(however, do not leave garbage in transfer_buffer even then).
1454  *	This buffer must be suitable for DMA; allocate it with
1455  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1456  *	of this buffer will be modified.  This buffer is used for the data
1457  *	stage of control transfers.
1458  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1459  *	the device driver is saying that it provided this DMA address,
1460  *	which the host controller driver should use in preference to the
1461  *	transfer_buffer.
1462  * @sg: scatter gather buffer list, the buffer size of each element in
1463  * 	the list (except the last) must be divisible by the endpoint's
1464  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1465  * @num_mapped_sgs: (internal) number of mapped sg entries
1466  * @num_sgs: number of entries in the sg list
1467  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1468  *	be broken up into chunks according to the current maximum packet
1469  *	size for the endpoint, which is a function of the configuration
1470  *	and is encoded in the pipe.  When the length is zero, neither
1471  *	transfer_buffer nor transfer_dma is used.
1472  * @actual_length: This is read in non-iso completion functions, and
1473  *	it tells how many bytes (out of transfer_buffer_length) were
1474  *	transferred.  It will normally be the same as requested, unless
1475  *	either an error was reported or a short read was performed.
1476  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1477  *	short reads be reported as errors.
1478  * @setup_packet: Only used for control transfers, this points to eight bytes
1479  *	of setup data.  Control transfers always start by sending this data
1480  *	to the device.  Then transfer_buffer is read or written, if needed.
1481  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1482  *	this field; setup_packet must point to a valid buffer.
1483  * @start_frame: Returns the initial frame for isochronous transfers.
1484  * @number_of_packets: Lists the number of ISO transfer buffers.
1485  * @interval: Specifies the polling interval for interrupt or isochronous
1486  *	transfers.  The units are frames (milliseconds) for full and low
1487  *	speed devices, and microframes (1/8 millisecond) for highspeed
1488  *	and SuperSpeed devices.
1489  * @error_count: Returns the number of ISO transfers that reported errors.
1490  * @context: For use in completion functions.  This normally points to
1491  *	request-specific driver context.
1492  * @complete: Completion handler. This URB is passed as the parameter to the
1493  *	completion function.  The completion function may then do what
1494  *	it likes with the URB, including resubmitting or freeing it.
1495  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1496  *	collect the transfer status for each buffer.
1497  *
1498  * This structure identifies USB transfer requests.  URBs must be allocated by
1499  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1500  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1501  * are submitted using usb_submit_urb(), and pending requests may be canceled
1502  * using usb_unlink_urb() or usb_kill_urb().
1503  *
1504  * Data Transfer Buffers:
1505  *
1506  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1507  * taken from the general page pool.  That is provided by transfer_buffer
1508  * (control requests also use setup_packet), and host controller drivers
1509  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1510  * mapping operations can be expensive on some platforms (perhaps using a dma
1511  * bounce buffer or talking to an IOMMU),
1512  * although they're cheap on commodity x86 and ppc hardware.
1513  *
1514  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1515  * which tells the host controller driver that no such mapping is needed for
1516  * the transfer_buffer since
1517  * the device driver is DMA-aware.  For example, a device driver might
1518  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1519  * When this transfer flag is provided, host controller drivers will
1520  * attempt to use the dma address found in the transfer_dma
1521  * field rather than determining a dma address themselves.
1522  *
1523  * Note that transfer_buffer must still be set if the controller
1524  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1525  * to root hub. If you have to transfer between highmem zone and the device
1526  * on such controller, create a bounce buffer or bail out with an error.
1527  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1528  * capable, assign NULL to it, so that usbmon knows not to use the value.
1529  * The setup_packet must always be set, so it cannot be located in highmem.
1530  *
1531  * Initialization:
1532  *
1533  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1534  * zero), and complete fields.  All URBs must also initialize
1535  * transfer_buffer and transfer_buffer_length.  They may provide the
1536  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1537  * to be treated as errors; that flag is invalid for write requests.
1538  *
1539  * Bulk URBs may
1540  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1541  * should always terminate with a short packet, even if it means adding an
1542  * extra zero length packet.
1543  *
1544  * Control URBs must provide a valid pointer in the setup_packet field.
1545  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1546  * beforehand.
1547  *
1548  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1549  * or, for highspeed devices, 125 microsecond units)
1550  * to poll for transfers.  After the URB has been submitted, the interval
1551  * field reflects how the transfer was actually scheduled.
1552  * The polling interval may be more frequent than requested.
1553  * For example, some controllers have a maximum interval of 32 milliseconds,
1554  * while others support intervals of up to 1024 milliseconds.
1555  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1556  * endpoints, as well as high speed interrupt endpoints, the encoding of
1557  * the transfer interval in the endpoint descriptor is logarithmic.
1558  * Device drivers must convert that value to linear units themselves.)
1559  *
1560  * If an isochronous endpoint queue isn't already running, the host
1561  * controller will schedule a new URB to start as soon as bandwidth
1562  * utilization allows.  If the queue is running then a new URB will be
1563  * scheduled to start in the first transfer slot following the end of the
1564  * preceding URB, if that slot has not already expired.  If the slot has
1565  * expired (which can happen when IRQ delivery is delayed for a long time),
1566  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1567  * is clear then the URB will be scheduled to start in the expired slot,
1568  * implying that some of its packets will not be transferred; if the flag
1569  * is set then the URB will be scheduled in the first unexpired slot,
1570  * breaking the queue's synchronization.  Upon URB completion, the
1571  * start_frame field will be set to the (micro)frame number in which the
1572  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1573  * and can go from as low as 256 to as high as 65536 frames.
1574  *
1575  * Isochronous URBs have a different data transfer model, in part because
1576  * the quality of service is only "best effort".  Callers provide specially
1577  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1578  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1579  * URBs are normally queued, submitted by drivers to arrange that
1580  * transfers are at least double buffered, and then explicitly resubmitted
1581  * in completion handlers, so
1582  * that data (such as audio or video) streams at as constant a rate as the
1583  * host controller scheduler can support.
1584  *
1585  * Completion Callbacks:
1586  *
1587  * The completion callback is made in_interrupt(), and one of the first
1588  * things that a completion handler should do is check the status field.
1589  * The status field is provided for all URBs.  It is used to report
1590  * unlinked URBs, and status for all non-ISO transfers.  It should not
1591  * be examined before the URB is returned to the completion handler.
1592  *
1593  * The context field is normally used to link URBs back to the relevant
1594  * driver or request state.
1595  *
1596  * When the completion callback is invoked for non-isochronous URBs, the
1597  * actual_length field tells how many bytes were transferred.  This field
1598  * is updated even when the URB terminated with an error or was unlinked.
1599  *
1600  * ISO transfer status is reported in the status and actual_length fields
1601  * of the iso_frame_desc array, and the number of errors is reported in
1602  * error_count.  Completion callbacks for ISO transfers will normally
1603  * (re)submit URBs to ensure a constant transfer rate.
1604  *
1605  * Note that even fields marked "public" should not be touched by the driver
1606  * when the urb is owned by the hcd, that is, since the call to
1607  * usb_submit_urb() till the entry into the completion routine.
1608  */
1609 struct urb {
1610 	/* private: usb core and host controller only fields in the urb */
1611 	struct kref kref;		/* reference count of the URB */
1612 	int unlinked;			/* unlink error code */
1613 	void *hcpriv;			/* private data for host controller */
1614 	atomic_t use_count;		/* concurrent submissions counter */
1615 	atomic_t reject;		/* submissions will fail */
1616 
1617 	/* public: documented fields in the urb that can be used by drivers */
1618 	struct list_head urb_list;	/* list head for use by the urb's
1619 					 * current owner */
1620 	struct list_head anchor_list;	/* the URB may be anchored */
1621 	struct usb_anchor *anchor;
1622 	struct usb_device *dev;		/* (in) pointer to associated device */
1623 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1624 	unsigned int pipe;		/* (in) pipe information */
1625 	unsigned int stream_id;		/* (in) stream ID */
1626 	int status;			/* (return) non-ISO status */
1627 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1628 	void *transfer_buffer;		/* (in) associated data buffer */
1629 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1630 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1631 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1632 	int num_sgs;			/* (in) number of entries in the sg list */
1633 	u32 transfer_buffer_length;	/* (in) data buffer length */
1634 	u32 actual_length;		/* (return) actual transfer length */
1635 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1636 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1637 	int start_frame;		/* (modify) start frame (ISO) */
1638 	int number_of_packets;		/* (in) number of ISO packets */
1639 	int interval;			/* (modify) transfer interval
1640 					 * (INT/ISO) */
1641 	int error_count;		/* (return) number of ISO errors */
1642 	void *context;			/* (in) context for completion */
1643 	usb_complete_t complete;	/* (in) completion routine */
1644 	struct usb_iso_packet_descriptor iso_frame_desc[];
1645 					/* (in) ISO ONLY */
1646 };
1647 
1648 /* ----------------------------------------------------------------------- */
1649 
1650 /**
1651  * usb_fill_control_urb - initializes a control urb
1652  * @urb: pointer to the urb to initialize.
1653  * @dev: pointer to the struct usb_device for this urb.
1654  * @pipe: the endpoint pipe
1655  * @setup_packet: pointer to the setup_packet buffer
1656  * @transfer_buffer: pointer to the transfer buffer
1657  * @buffer_length: length of the transfer buffer
1658  * @complete_fn: pointer to the usb_complete_t function
1659  * @context: what to set the urb context to.
1660  *
1661  * Initializes a control urb with the proper information needed to submit
1662  * it to a device.
1663  */
1664 static inline void usb_fill_control_urb(struct urb *urb,
1665 					struct usb_device *dev,
1666 					unsigned int pipe,
1667 					unsigned char *setup_packet,
1668 					void *transfer_buffer,
1669 					int buffer_length,
1670 					usb_complete_t complete_fn,
1671 					void *context)
1672 {
1673 	urb->dev = dev;
1674 	urb->pipe = pipe;
1675 	urb->setup_packet = setup_packet;
1676 	urb->transfer_buffer = transfer_buffer;
1677 	urb->transfer_buffer_length = buffer_length;
1678 	urb->complete = complete_fn;
1679 	urb->context = context;
1680 }
1681 
1682 /**
1683  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1684  * @urb: pointer to the urb to initialize.
1685  * @dev: pointer to the struct usb_device for this urb.
1686  * @pipe: the endpoint pipe
1687  * @transfer_buffer: pointer to the transfer buffer
1688  * @buffer_length: length of the transfer buffer
1689  * @complete_fn: pointer to the usb_complete_t function
1690  * @context: what to set the urb context to.
1691  *
1692  * Initializes a bulk urb with the proper information needed to submit it
1693  * to a device.
1694  */
1695 static inline void usb_fill_bulk_urb(struct urb *urb,
1696 				     struct usb_device *dev,
1697 				     unsigned int pipe,
1698 				     void *transfer_buffer,
1699 				     int buffer_length,
1700 				     usb_complete_t complete_fn,
1701 				     void *context)
1702 {
1703 	urb->dev = dev;
1704 	urb->pipe = pipe;
1705 	urb->transfer_buffer = transfer_buffer;
1706 	urb->transfer_buffer_length = buffer_length;
1707 	urb->complete = complete_fn;
1708 	urb->context = context;
1709 }
1710 
1711 /**
1712  * usb_fill_int_urb - macro to help initialize a interrupt urb
1713  * @urb: pointer to the urb to initialize.
1714  * @dev: pointer to the struct usb_device for this urb.
1715  * @pipe: the endpoint pipe
1716  * @transfer_buffer: pointer to the transfer buffer
1717  * @buffer_length: length of the transfer buffer
1718  * @complete_fn: pointer to the usb_complete_t function
1719  * @context: what to set the urb context to.
1720  * @interval: what to set the urb interval to, encoded like
1721  *	the endpoint descriptor's bInterval value.
1722  *
1723  * Initializes a interrupt urb with the proper information needed to submit
1724  * it to a device.
1725  *
1726  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1727  * encoding of the endpoint interval, and express polling intervals in
1728  * microframes (eight per millisecond) rather than in frames (one per
1729  * millisecond).
1730  *
1731  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1732  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1733  * through to the host controller, rather than being translated into microframe
1734  * units.
1735  */
1736 static inline void usb_fill_int_urb(struct urb *urb,
1737 				    struct usb_device *dev,
1738 				    unsigned int pipe,
1739 				    void *transfer_buffer,
1740 				    int buffer_length,
1741 				    usb_complete_t complete_fn,
1742 				    void *context,
1743 				    int interval)
1744 {
1745 	urb->dev = dev;
1746 	urb->pipe = pipe;
1747 	urb->transfer_buffer = transfer_buffer;
1748 	urb->transfer_buffer_length = buffer_length;
1749 	urb->complete = complete_fn;
1750 	urb->context = context;
1751 
1752 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1753 		/* make sure interval is within allowed range */
1754 		interval = clamp(interval, 1, 16);
1755 
1756 		urb->interval = 1 << (interval - 1);
1757 	} else {
1758 		urb->interval = interval;
1759 	}
1760 
1761 	urb->start_frame = -1;
1762 }
1763 
1764 extern void usb_init_urb(struct urb *urb);
1765 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1766 extern void usb_free_urb(struct urb *urb);
1767 #define usb_put_urb usb_free_urb
1768 extern struct urb *usb_get_urb(struct urb *urb);
1769 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1770 extern int usb_unlink_urb(struct urb *urb);
1771 extern void usb_kill_urb(struct urb *urb);
1772 extern void usb_poison_urb(struct urb *urb);
1773 extern void usb_unpoison_urb(struct urb *urb);
1774 extern void usb_block_urb(struct urb *urb);
1775 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1776 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1777 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1778 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1779 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1780 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1781 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1782 extern void usb_unanchor_urb(struct urb *urb);
1783 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1784 					 unsigned int timeout);
1785 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1786 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1787 extern int usb_anchor_empty(struct usb_anchor *anchor);
1788 
1789 #define usb_unblock_urb	usb_unpoison_urb
1790 
1791 /**
1792  * usb_urb_dir_in - check if an URB describes an IN transfer
1793  * @urb: URB to be checked
1794  *
1795  * Return: 1 if @urb describes an IN transfer (device-to-host),
1796  * otherwise 0.
1797  */
1798 static inline int usb_urb_dir_in(struct urb *urb)
1799 {
1800 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1801 }
1802 
1803 /**
1804  * usb_urb_dir_out - check if an URB describes an OUT transfer
1805  * @urb: URB to be checked
1806  *
1807  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1808  * otherwise 0.
1809  */
1810 static inline int usb_urb_dir_out(struct urb *urb)
1811 {
1812 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1813 }
1814 
1815 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1816 int usb_urb_ep_type_check(const struct urb *urb);
1817 
1818 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1819 	gfp_t mem_flags, dma_addr_t *dma);
1820 void usb_free_coherent(struct usb_device *dev, size_t size,
1821 	void *addr, dma_addr_t dma);
1822 
1823 #if 0
1824 struct urb *usb_buffer_map(struct urb *urb);
1825 void usb_buffer_dmasync(struct urb *urb);
1826 void usb_buffer_unmap(struct urb *urb);
1827 #endif
1828 
1829 struct scatterlist;
1830 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1831 		      struct scatterlist *sg, int nents);
1832 #if 0
1833 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1834 			   struct scatterlist *sg, int n_hw_ents);
1835 #endif
1836 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1837 			 struct scatterlist *sg, int n_hw_ents);
1838 
1839 /*-------------------------------------------------------------------*
1840  *                         SYNCHRONOUS CALL SUPPORT                  *
1841  *-------------------------------------------------------------------*/
1842 
1843 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1844 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1845 	void *data, __u16 size, int timeout);
1846 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1847 	void *data, int len, int *actual_length, int timeout);
1848 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1849 	void *data, int len, int *actual_length,
1850 	int timeout);
1851 
1852 /* wrappers around usb_control_msg() for the most common standard requests */
1853 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1854 			 __u8 requesttype, __u16 value, __u16 index,
1855 			 const void *data, __u16 size, int timeout,
1856 			 gfp_t memflags);
1857 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1858 			 __u8 requesttype, __u16 value, __u16 index,
1859 			 void *data, __u16 size, int timeout,
1860 			 gfp_t memflags);
1861 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1862 	unsigned char descindex, void *buf, int size);
1863 extern int usb_get_status(struct usb_device *dev,
1864 	int recip, int type, int target, void *data);
1865 
1866 static inline int usb_get_std_status(struct usb_device *dev,
1867 	int recip, int target, void *data)
1868 {
1869 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1870 		data);
1871 }
1872 
1873 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1874 {
1875 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1876 		0, data);
1877 }
1878 
1879 extern int usb_string(struct usb_device *dev, int index,
1880 	char *buf, size_t size);
1881 
1882 /* wrappers that also update important state inside usbcore */
1883 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1884 extern int usb_reset_configuration(struct usb_device *dev);
1885 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1886 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1887 
1888 /* this request isn't really synchronous, but it belongs with the others */
1889 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1890 
1891 /* choose and set configuration for device */
1892 extern int usb_choose_configuration(struct usb_device *udev);
1893 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1894 
1895 /*
1896  * timeouts, in milliseconds, used for sending/receiving control messages
1897  * they typically complete within a few frames (msec) after they're issued
1898  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1899  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1900  */
1901 #define USB_CTRL_GET_TIMEOUT	5000
1902 #define USB_CTRL_SET_TIMEOUT	5000
1903 
1904 
1905 /**
1906  * struct usb_sg_request - support for scatter/gather I/O
1907  * @status: zero indicates success, else negative errno
1908  * @bytes: counts bytes transferred.
1909  *
1910  * These requests are initialized using usb_sg_init(), and then are used
1911  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1912  * members of the request object aren't for driver access.
1913  *
1914  * The status and bytecount values are valid only after usb_sg_wait()
1915  * returns.  If the status is zero, then the bytecount matches the total
1916  * from the request.
1917  *
1918  * After an error completion, drivers may need to clear a halt condition
1919  * on the endpoint.
1920  */
1921 struct usb_sg_request {
1922 	int			status;
1923 	size_t			bytes;
1924 
1925 	/* private:
1926 	 * members below are private to usbcore,
1927 	 * and are not provided for driver access!
1928 	 */
1929 	spinlock_t		lock;
1930 
1931 	struct usb_device	*dev;
1932 	int			pipe;
1933 
1934 	int			entries;
1935 	struct urb		**urbs;
1936 
1937 	int			count;
1938 	struct completion	complete;
1939 };
1940 
1941 int usb_sg_init(
1942 	struct usb_sg_request	*io,
1943 	struct usb_device	*dev,
1944 	unsigned		pipe,
1945 	unsigned		period,
1946 	struct scatterlist	*sg,
1947 	int			nents,
1948 	size_t			length,
1949 	gfp_t			mem_flags
1950 );
1951 void usb_sg_cancel(struct usb_sg_request *io);
1952 void usb_sg_wait(struct usb_sg_request *io);
1953 
1954 
1955 /* ----------------------------------------------------------------------- */
1956 
1957 /*
1958  * For various legacy reasons, Linux has a small cookie that's paired with
1959  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1960  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1961  * an unsigned int encoded as:
1962  *
1963  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1964  *					 1 = Device-to-Host [In] ...
1965  *					like endpoint bEndpointAddress)
1966  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1967  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1968  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1969  *					 10 = control, 11 = bulk)
1970  *
1971  * Given the device address and endpoint descriptor, pipes are redundant.
1972  */
1973 
1974 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1975 /* (yet ... they're the values used by usbfs) */
1976 #define PIPE_ISOCHRONOUS		0
1977 #define PIPE_INTERRUPT			1
1978 #define PIPE_CONTROL			2
1979 #define PIPE_BULK			3
1980 
1981 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1982 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1983 
1984 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1985 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1986 
1987 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1988 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1989 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1990 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1991 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1992 
1993 static inline unsigned int __create_pipe(struct usb_device *dev,
1994 		unsigned int endpoint)
1995 {
1996 	return (dev->devnum << 8) | (endpoint << 15);
1997 }
1998 
1999 /* Create various pipes... */
2000 #define usb_sndctrlpipe(dev, endpoint)	\
2001 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
2002 #define usb_rcvctrlpipe(dev, endpoint)	\
2003 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2004 #define usb_sndisocpipe(dev, endpoint)	\
2005 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2006 #define usb_rcvisocpipe(dev, endpoint)	\
2007 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2008 #define usb_sndbulkpipe(dev, endpoint)	\
2009 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2010 #define usb_rcvbulkpipe(dev, endpoint)	\
2011 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2012 #define usb_sndintpipe(dev, endpoint)	\
2013 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2014 #define usb_rcvintpipe(dev, endpoint)	\
2015 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2016 
2017 static inline struct usb_host_endpoint *
2018 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2019 {
2020 	struct usb_host_endpoint **eps;
2021 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2022 	return eps[usb_pipeendpoint(pipe)];
2023 }
2024 
2025 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2026 {
2027 	struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2028 
2029 	if (!ep)
2030 		return 0;
2031 
2032 	/* NOTE:  only 0x07ff bits are for packet size... */
2033 	return usb_endpoint_maxp(&ep->desc);
2034 }
2035 
2036 /* translate USB error codes to codes user space understands */
2037 static inline int usb_translate_errors(int error_code)
2038 {
2039 	switch (error_code) {
2040 	case 0:
2041 	case -ENOMEM:
2042 	case -ENODEV:
2043 	case -EOPNOTSUPP:
2044 		return error_code;
2045 	default:
2046 		return -EIO;
2047 	}
2048 }
2049 
2050 /* Events from the usb core */
2051 #define USB_DEVICE_ADD		0x0001
2052 #define USB_DEVICE_REMOVE	0x0002
2053 #define USB_BUS_ADD		0x0003
2054 #define USB_BUS_REMOVE		0x0004
2055 extern void usb_register_notify(struct notifier_block *nb);
2056 extern void usb_unregister_notify(struct notifier_block *nb);
2057 
2058 /* debugfs stuff */
2059 extern struct dentry *usb_debug_root;
2060 
2061 /* LED triggers */
2062 enum usb_led_event {
2063 	USB_LED_EVENT_HOST = 0,
2064 	USB_LED_EVENT_GADGET = 1,
2065 };
2066 
2067 #ifdef CONFIG_USB_LED_TRIG
2068 extern void usb_led_activity(enum usb_led_event ev);
2069 #else
2070 static inline void usb_led_activity(enum usb_led_event ev) {}
2071 #endif
2072 
2073 #endif  /* __KERNEL__ */
2074 
2075 #endif
2076