1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_USB_H 3 #define __LINUX_USB_H 4 5 #include <linux/mod_devicetable.h> 6 #include <linux/usb/ch9.h> 7 8 #define USB_MAJOR 180 9 #define USB_DEVICE_MAJOR 189 10 11 12 #ifdef __KERNEL__ 13 14 #include <linux/errno.h> /* for -ENODEV */ 15 #include <linux/delay.h> /* for mdelay() */ 16 #include <linux/interrupt.h> /* for in_interrupt() */ 17 #include <linux/list.h> /* for struct list_head */ 18 #include <linux/kref.h> /* for struct kref */ 19 #include <linux/device.h> /* for struct device */ 20 #include <linux/fs.h> /* for struct file_operations */ 21 #include <linux/completion.h> /* for struct completion */ 22 #include <linux/sched.h> /* for current && schedule_timeout */ 23 #include <linux/mutex.h> /* for struct mutex */ 24 #include <linux/pm_runtime.h> /* for runtime PM */ 25 26 struct usb_device; 27 struct usb_driver; 28 struct wusb_dev; 29 30 /*-------------------------------------------------------------------------*/ 31 32 /* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48 struct ep_device; 49 50 /** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67 struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79 }; 80 81 /* host-side wrapper for one interface setting's parsed descriptors */ 82 struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94 }; 95 96 enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101 }; 102 103 int __must_check 104 usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110 int __must_check 111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117 static inline int __must_check 118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120 { 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122 } 123 124 static inline int __must_check 125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127 { 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129 } 130 131 static inline int __must_check 132 usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134 { 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136 } 137 138 static inline int __must_check 139 usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141 { 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143 } 144 145 static inline int __must_check 146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148 { 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150 } 151 152 static inline int __must_check 153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155 { 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157 } 158 159 static inline int __must_check 160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162 { 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164 } 165 166 static inline int __must_check 167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169 { 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171 } 172 173 /** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232 struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 struct work_struct reset_ws; /* for resets in atomic context */ 260 }; 261 262 static inline struct usb_interface *__to_usb_interface(struct device *d) 263 { 264 return container_of(d, struct usb_interface, dev); 265 } 266 267 static inline const struct usb_interface *__to_usb_interface_const(const struct device *d) 268 { 269 return container_of(d, struct usb_interface, dev); 270 } 271 272 /* 273 * container_of() will happily take a const * and spit back a non-const * as it 274 * is just doing pointer math. But we want to be a bit more careful in the USB 275 * driver code, so manually force any const * of a device to also be a const * 276 * to a usb_device. 277 */ 278 #define to_usb_interface(dev) \ 279 _Generic((dev), \ 280 const struct device *: __to_usb_interface_const, \ 281 struct device *: __to_usb_interface)(dev) 282 283 static inline void *usb_get_intfdata(struct usb_interface *intf) 284 { 285 return dev_get_drvdata(&intf->dev); 286 } 287 288 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 289 { 290 dev_set_drvdata(&intf->dev, data); 291 } 292 293 struct usb_interface *usb_get_intf(struct usb_interface *intf); 294 void usb_put_intf(struct usb_interface *intf); 295 296 /* Hard limit */ 297 #define USB_MAXENDPOINTS 30 298 /* this maximum is arbitrary */ 299 #define USB_MAXINTERFACES 32 300 #define USB_MAXIADS (USB_MAXINTERFACES/2) 301 302 /* 303 * USB Resume Timer: Every Host controller driver should drive the resume 304 * signalling on the bus for the amount of time defined by this macro. 305 * 306 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 307 * 308 * Note that the USB Specification states we should drive resume for *at least* 309 * 20 ms, but it doesn't give an upper bound. This creates two possible 310 * situations which we want to avoid: 311 * 312 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 313 * us to fail USB Electrical Tests, thus failing Certification 314 * 315 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 316 * and while we can argue that's against the USB Specification, we don't have 317 * control over which devices a certification laboratory will be using for 318 * certification. If CertLab uses a device which was tested against Windows and 319 * that happens to have relaxed resume signalling rules, we might fall into 320 * situations where we fail interoperability and electrical tests. 321 * 322 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 323 * should cope with both LPJ calibration errors and devices not following every 324 * detail of the USB Specification. 325 */ 326 #define USB_RESUME_TIMEOUT 40 /* ms */ 327 328 /** 329 * struct usb_interface_cache - long-term representation of a device interface 330 * @num_altsetting: number of altsettings defined. 331 * @ref: reference counter. 332 * @altsetting: variable-length array of interface structures, one for 333 * each alternate setting that may be selected. Each one includes a 334 * set of endpoint configurations. They will be in no particular order. 335 * 336 * These structures persist for the lifetime of a usb_device, unlike 337 * struct usb_interface (which persists only as long as its configuration 338 * is installed). The altsetting arrays can be accessed through these 339 * structures at any time, permitting comparison of configurations and 340 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 341 */ 342 struct usb_interface_cache { 343 unsigned num_altsetting; /* number of alternate settings */ 344 struct kref ref; /* reference counter */ 345 346 /* variable-length array of alternate settings for this interface, 347 * stored in no particular order */ 348 struct usb_host_interface altsetting[]; 349 }; 350 #define ref_to_usb_interface_cache(r) \ 351 container_of(r, struct usb_interface_cache, ref) 352 #define altsetting_to_usb_interface_cache(a) \ 353 container_of(a, struct usb_interface_cache, altsetting[0]) 354 355 /** 356 * struct usb_host_config - representation of a device's configuration 357 * @desc: the device's configuration descriptor. 358 * @string: pointer to the cached version of the iConfiguration string, if 359 * present for this configuration. 360 * @intf_assoc: list of any interface association descriptors in this config 361 * @interface: array of pointers to usb_interface structures, one for each 362 * interface in the configuration. The number of interfaces is stored 363 * in desc.bNumInterfaces. These pointers are valid only while the 364 * configuration is active. 365 * @intf_cache: array of pointers to usb_interface_cache structures, one 366 * for each interface in the configuration. These structures exist 367 * for the entire life of the device. 368 * @extra: pointer to buffer containing all extra descriptors associated 369 * with this configuration (those preceding the first interface 370 * descriptor). 371 * @extralen: length of the extra descriptors buffer. 372 * 373 * USB devices may have multiple configurations, but only one can be active 374 * at any time. Each encapsulates a different operational environment; 375 * for example, a dual-speed device would have separate configurations for 376 * full-speed and high-speed operation. The number of configurations 377 * available is stored in the device descriptor as bNumConfigurations. 378 * 379 * A configuration can contain multiple interfaces. Each corresponds to 380 * a different function of the USB device, and all are available whenever 381 * the configuration is active. The USB standard says that interfaces 382 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 383 * of devices get this wrong. In addition, the interface array is not 384 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 385 * look up an interface entry based on its number. 386 * 387 * Device drivers should not attempt to activate configurations. The choice 388 * of which configuration to install is a policy decision based on such 389 * considerations as available power, functionality provided, and the user's 390 * desires (expressed through userspace tools). However, drivers can call 391 * usb_reset_configuration() to reinitialize the current configuration and 392 * all its interfaces. 393 */ 394 struct usb_host_config { 395 struct usb_config_descriptor desc; 396 397 char *string; /* iConfiguration string, if present */ 398 399 /* List of any Interface Association Descriptors in this 400 * configuration. */ 401 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 402 403 /* the interfaces associated with this configuration, 404 * stored in no particular order */ 405 struct usb_interface *interface[USB_MAXINTERFACES]; 406 407 /* Interface information available even when this is not the 408 * active configuration */ 409 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 410 411 unsigned char *extra; /* Extra descriptors */ 412 int extralen; 413 }; 414 415 /* USB2.0 and USB3.0 device BOS descriptor set */ 416 struct usb_host_bos { 417 struct usb_bos_descriptor *desc; 418 419 /* wireless cap descriptor is handled by wusb */ 420 struct usb_ext_cap_descriptor *ext_cap; 421 struct usb_ss_cap_descriptor *ss_cap; 422 struct usb_ssp_cap_descriptor *ssp_cap; 423 struct usb_ss_container_id_descriptor *ss_id; 424 struct usb_ptm_cap_descriptor *ptm_cap; 425 }; 426 427 int __usb_get_extra_descriptor(char *buffer, unsigned size, 428 unsigned char type, void **ptr, size_t min); 429 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 430 __usb_get_extra_descriptor((ifpoint)->extra, \ 431 (ifpoint)->extralen, \ 432 type, (void **)ptr, sizeof(**(ptr))) 433 434 /* ----------------------------------------------------------------------- */ 435 436 /* USB device number allocation bitmap */ 437 struct usb_devmap { 438 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 439 }; 440 441 /* 442 * Allocated per bus (tree of devices) we have: 443 */ 444 struct usb_bus { 445 struct device *controller; /* host side hardware */ 446 struct device *sysdev; /* as seen from firmware or bus */ 447 int busnum; /* Bus number (in order of reg) */ 448 const char *bus_name; /* stable id (PCI slot_name etc) */ 449 u8 uses_pio_for_control; /* 450 * Does the host controller use PIO 451 * for control transfers? 452 */ 453 u8 otg_port; /* 0, or number of OTG/HNP port */ 454 unsigned is_b_host:1; /* true during some HNP roleswitches */ 455 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 456 unsigned no_stop_on_short:1; /* 457 * Quirk: some controllers don't stop 458 * the ep queue on a short transfer 459 * with the URB_SHORT_NOT_OK flag set. 460 */ 461 unsigned no_sg_constraint:1; /* no sg constraint */ 462 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 463 464 int devnum_next; /* Next open device number in 465 * round-robin allocation */ 466 struct mutex devnum_next_mutex; /* devnum_next mutex */ 467 468 struct usb_devmap devmap; /* device address allocation map */ 469 struct usb_device *root_hub; /* Root hub */ 470 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 471 472 int bandwidth_allocated; /* on this bus: how much of the time 473 * reserved for periodic (intr/iso) 474 * requests is used, on average? 475 * Units: microseconds/frame. 476 * Limits: Full/low speed reserve 90%, 477 * while high speed reserves 80%. 478 */ 479 int bandwidth_int_reqs; /* number of Interrupt requests */ 480 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 481 482 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 483 484 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 485 struct mon_bus *mon_bus; /* non-null when associated */ 486 int monitored; /* non-zero when monitored */ 487 #endif 488 }; 489 490 struct usb_dev_state; 491 492 /* ----------------------------------------------------------------------- */ 493 494 struct usb_tt; 495 496 enum usb_port_connect_type { 497 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 498 USB_PORT_CONNECT_TYPE_HOT_PLUG, 499 USB_PORT_CONNECT_TYPE_HARD_WIRED, 500 USB_PORT_NOT_USED, 501 }; 502 503 /* 504 * USB port quirks. 505 */ 506 507 /* For the given port, prefer the old (faster) enumeration scheme. */ 508 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 509 510 /* Decrease TRSTRCY to 10ms during device enumeration. */ 511 #define USB_PORT_QUIRK_FAST_ENUM BIT(1) 512 513 /* 514 * USB 2.0 Link Power Management (LPM) parameters. 515 */ 516 struct usb2_lpm_parameters { 517 /* Best effort service latency indicate how long the host will drive 518 * resume on an exit from L1. 519 */ 520 unsigned int besl; 521 522 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 523 * When the timer counts to zero, the parent hub will initiate a LPM 524 * transition to L1. 525 */ 526 int timeout; 527 }; 528 529 /* 530 * USB 3.0 Link Power Management (LPM) parameters. 531 * 532 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 533 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 534 * All three are stored in nanoseconds. 535 */ 536 struct usb3_lpm_parameters { 537 /* 538 * Maximum exit latency (MEL) for the host to send a packet to the 539 * device (either a Ping for isoc endpoints, or a data packet for 540 * interrupt endpoints), the hubs to decode the packet, and for all hubs 541 * in the path to transition the links to U0. 542 */ 543 unsigned int mel; 544 /* 545 * Maximum exit latency for a device-initiated LPM transition to bring 546 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 547 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 548 */ 549 unsigned int pel; 550 551 /* 552 * The System Exit Latency (SEL) includes PEL, and three other 553 * latencies. After a device initiates a U0 transition, it will take 554 * some time from when the device sends the ERDY to when it will finally 555 * receive the data packet. Basically, SEL should be the worse-case 556 * latency from when a device starts initiating a U0 transition to when 557 * it will get data. 558 */ 559 unsigned int sel; 560 /* 561 * The idle timeout value that is currently programmed into the parent 562 * hub for this device. When the timer counts to zero, the parent hub 563 * will initiate an LPM transition to either U1 or U2. 564 */ 565 int timeout; 566 }; 567 568 /** 569 * struct usb_device - kernel's representation of a USB device 570 * @devnum: device number; address on a USB bus 571 * @devpath: device ID string for use in messages (e.g., /port/...) 572 * @route: tree topology hex string for use with xHCI 573 * @state: device state: configured, not attached, etc. 574 * @speed: device speed: high/full/low (or error) 575 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 576 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 577 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 578 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 579 * @ttport: device port on that tt hub 580 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 581 * @parent: our hub, unless we're the root 582 * @bus: bus we're part of 583 * @ep0: endpoint 0 data (default control pipe) 584 * @dev: generic device interface 585 * @descriptor: USB device descriptor 586 * @bos: USB device BOS descriptor set 587 * @config: all of the device's configs 588 * @actconfig: the active configuration 589 * @ep_in: array of IN endpoints 590 * @ep_out: array of OUT endpoints 591 * @rawdescriptors: raw descriptors for each config 592 * @bus_mA: Current available from the bus 593 * @portnum: parent port number (origin 1) 594 * @level: number of USB hub ancestors 595 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 596 * @can_submit: URBs may be submitted 597 * @persist_enabled: USB_PERSIST enabled for this device 598 * @reset_in_progress: the device is being reset 599 * @have_langid: whether string_langid is valid 600 * @authorized: policy has said we can use it; 601 * (user space) policy determines if we authorize this device to be 602 * used or not. By default, wired USB devices are authorized. 603 * WUSB devices are not, until we authorize them from user space. 604 * FIXME -- complete doc 605 * @authenticated: Crypto authentication passed 606 * @wusb: device is Wireless USB 607 * @lpm_capable: device supports LPM 608 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 609 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 610 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 611 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 612 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 613 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 614 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 615 * @string_langid: language ID for strings 616 * @product: iProduct string, if present (static) 617 * @manufacturer: iManufacturer string, if present (static) 618 * @serial: iSerialNumber string, if present (static) 619 * @filelist: usbfs files that are open to this device 620 * @maxchild: number of ports if hub 621 * @quirks: quirks of the whole device 622 * @urbnum: number of URBs submitted for the whole device 623 * @active_duration: total time device is not suspended 624 * @connect_time: time device was first connected 625 * @do_remote_wakeup: remote wakeup should be enabled 626 * @reset_resume: needs reset instead of resume 627 * @port_is_suspended: the upstream port is suspended (L2 or U3) 628 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 629 * specific data for the device. 630 * @slot_id: Slot ID assigned by xHCI 631 * @removable: Device can be physically removed from this port 632 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 633 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 634 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 635 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 636 * to keep track of the number of functions that require USB 3.0 Link Power 637 * Management to be disabled for this usb_device. This count should only 638 * be manipulated by those functions, with the bandwidth_mutex is held. 639 * @hub_delay: cached value consisting of: 640 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 641 * Will be used as wValue for SetIsochDelay requests. 642 * @use_generic_driver: ask driver core to reprobe using the generic driver. 643 * 644 * Notes: 645 * Usbcore drivers should not set usbdev->state directly. Instead use 646 * usb_set_device_state(). 647 */ 648 struct usb_device { 649 int devnum; 650 char devpath[16]; 651 u32 route; 652 enum usb_device_state state; 653 enum usb_device_speed speed; 654 unsigned int rx_lanes; 655 unsigned int tx_lanes; 656 enum usb_ssp_rate ssp_rate; 657 658 struct usb_tt *tt; 659 int ttport; 660 661 unsigned int toggle[2]; 662 663 struct usb_device *parent; 664 struct usb_bus *bus; 665 struct usb_host_endpoint ep0; 666 667 struct device dev; 668 669 struct usb_device_descriptor descriptor; 670 struct usb_host_bos *bos; 671 struct usb_host_config *config; 672 673 struct usb_host_config *actconfig; 674 struct usb_host_endpoint *ep_in[16]; 675 struct usb_host_endpoint *ep_out[16]; 676 677 char **rawdescriptors; 678 679 unsigned short bus_mA; 680 u8 portnum; 681 u8 level; 682 u8 devaddr; 683 684 unsigned can_submit:1; 685 unsigned persist_enabled:1; 686 unsigned reset_in_progress:1; 687 unsigned have_langid:1; 688 unsigned authorized:1; 689 unsigned authenticated:1; 690 unsigned wusb:1; 691 unsigned lpm_capable:1; 692 unsigned lpm_devinit_allow:1; 693 unsigned usb2_hw_lpm_capable:1; 694 unsigned usb2_hw_lpm_besl_capable:1; 695 unsigned usb2_hw_lpm_enabled:1; 696 unsigned usb2_hw_lpm_allowed:1; 697 unsigned usb3_lpm_u1_enabled:1; 698 unsigned usb3_lpm_u2_enabled:1; 699 int string_langid; 700 701 /* static strings from the device */ 702 char *product; 703 char *manufacturer; 704 char *serial; 705 706 struct list_head filelist; 707 708 int maxchild; 709 710 u32 quirks; 711 atomic_t urbnum; 712 713 unsigned long active_duration; 714 715 #ifdef CONFIG_PM 716 unsigned long connect_time; 717 718 unsigned do_remote_wakeup:1; 719 unsigned reset_resume:1; 720 unsigned port_is_suspended:1; 721 #endif 722 struct wusb_dev *wusb_dev; 723 int slot_id; 724 struct usb2_lpm_parameters l1_params; 725 struct usb3_lpm_parameters u1_params; 726 struct usb3_lpm_parameters u2_params; 727 unsigned lpm_disable_count; 728 729 u16 hub_delay; 730 unsigned use_generic_driver:1; 731 }; 732 733 static inline struct usb_device *__to_usb_device(struct device *d) 734 { 735 return container_of(d, struct usb_device, dev); 736 } 737 738 static inline const struct usb_device *__to_usb_device_const(const struct device *d) 739 { 740 return container_of(d, struct usb_device, dev); 741 } 742 743 /* 744 * container_of() will happily take a const * and spit back a non-const * as it 745 * is just doing pointer math. But we want to be a bit more careful in the USB 746 * driver code, so manually force any const * of a device to also be a const * 747 * to a usb_device. 748 */ 749 #define to_usb_device(dev) \ 750 _Generic((dev), \ 751 const struct device *: __to_usb_device_const, \ 752 struct device *: __to_usb_device)(dev) 753 754 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 755 { 756 return to_usb_device(intf->dev.parent); 757 } 758 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 759 { 760 return to_usb_device((const struct device *)intf->dev.parent); 761 } 762 763 #define interface_to_usbdev(intf) \ 764 _Generic((intf), \ 765 const struct usb_interface *: __intf_to_usbdev_const, \ 766 struct usb_interface *: __intf_to_usbdev)(intf) 767 768 extern struct usb_device *usb_get_dev(struct usb_device *dev); 769 extern void usb_put_dev(struct usb_device *dev); 770 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 771 int port1); 772 773 /** 774 * usb_hub_for_each_child - iterate over all child devices on the hub 775 * @hdev: USB device belonging to the usb hub 776 * @port1: portnum associated with child device 777 * @child: child device pointer 778 */ 779 #define usb_hub_for_each_child(hdev, port1, child) \ 780 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 781 port1 <= hdev->maxchild; \ 782 child = usb_hub_find_child(hdev, ++port1)) \ 783 if (!child) continue; else 784 785 /* USB device locking */ 786 #define usb_lock_device(udev) device_lock(&(udev)->dev) 787 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 788 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 789 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 790 extern int usb_lock_device_for_reset(struct usb_device *udev, 791 const struct usb_interface *iface); 792 793 /* USB port reset for device reinitialization */ 794 extern int usb_reset_device(struct usb_device *dev); 795 extern void usb_queue_reset_device(struct usb_interface *dev); 796 797 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 798 799 #ifdef CONFIG_ACPI 800 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 801 bool enable); 802 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 803 #else 804 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 805 bool enable) { return 0; } 806 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 807 { return true; } 808 #endif 809 810 /* USB autosuspend and autoresume */ 811 #ifdef CONFIG_PM 812 extern void usb_enable_autosuspend(struct usb_device *udev); 813 extern void usb_disable_autosuspend(struct usb_device *udev); 814 815 extern int usb_autopm_get_interface(struct usb_interface *intf); 816 extern void usb_autopm_put_interface(struct usb_interface *intf); 817 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 818 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 819 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 820 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 821 822 static inline void usb_mark_last_busy(struct usb_device *udev) 823 { 824 pm_runtime_mark_last_busy(&udev->dev); 825 } 826 827 #else 828 829 static inline int usb_enable_autosuspend(struct usb_device *udev) 830 { return 0; } 831 static inline int usb_disable_autosuspend(struct usb_device *udev) 832 { return 0; } 833 834 static inline int usb_autopm_get_interface(struct usb_interface *intf) 835 { return 0; } 836 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 837 { return 0; } 838 839 static inline void usb_autopm_put_interface(struct usb_interface *intf) 840 { } 841 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 842 { } 843 static inline void usb_autopm_get_interface_no_resume( 844 struct usb_interface *intf) 845 { } 846 static inline void usb_autopm_put_interface_no_suspend( 847 struct usb_interface *intf) 848 { } 849 static inline void usb_mark_last_busy(struct usb_device *udev) 850 { } 851 #endif 852 853 extern int usb_disable_lpm(struct usb_device *udev); 854 extern void usb_enable_lpm(struct usb_device *udev); 855 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 856 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 857 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 858 859 extern int usb_disable_ltm(struct usb_device *udev); 860 extern void usb_enable_ltm(struct usb_device *udev); 861 862 static inline bool usb_device_supports_ltm(struct usb_device *udev) 863 { 864 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 865 return false; 866 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 867 } 868 869 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 870 { 871 return udev && udev->bus && udev->bus->no_sg_constraint; 872 } 873 874 875 /*-------------------------------------------------------------------------*/ 876 877 /* for drivers using iso endpoints */ 878 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 879 880 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 881 extern int usb_alloc_streams(struct usb_interface *interface, 882 struct usb_host_endpoint **eps, unsigned int num_eps, 883 unsigned int num_streams, gfp_t mem_flags); 884 885 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 886 extern int usb_free_streams(struct usb_interface *interface, 887 struct usb_host_endpoint **eps, unsigned int num_eps, 888 gfp_t mem_flags); 889 890 /* used these for multi-interface device registration */ 891 extern int usb_driver_claim_interface(struct usb_driver *driver, 892 struct usb_interface *iface, void *data); 893 894 /** 895 * usb_interface_claimed - returns true iff an interface is claimed 896 * @iface: the interface being checked 897 * 898 * Return: %true (nonzero) iff the interface is claimed, else %false 899 * (zero). 900 * 901 * Note: 902 * Callers must own the driver model's usb bus readlock. So driver 903 * probe() entries don't need extra locking, but other call contexts 904 * may need to explicitly claim that lock. 905 * 906 */ 907 static inline int usb_interface_claimed(struct usb_interface *iface) 908 { 909 return (iface->dev.driver != NULL); 910 } 911 912 extern void usb_driver_release_interface(struct usb_driver *driver, 913 struct usb_interface *iface); 914 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 915 const struct usb_device_id *id); 916 extern int usb_match_one_id(struct usb_interface *interface, 917 const struct usb_device_id *id); 918 919 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 920 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 921 int minor); 922 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 923 unsigned ifnum); 924 extern struct usb_host_interface *usb_altnum_to_altsetting( 925 const struct usb_interface *intf, unsigned int altnum); 926 extern struct usb_host_interface *usb_find_alt_setting( 927 struct usb_host_config *config, 928 unsigned int iface_num, 929 unsigned int alt_num); 930 931 /* port claiming functions */ 932 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 933 struct usb_dev_state *owner); 934 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 935 struct usb_dev_state *owner); 936 937 /** 938 * usb_make_path - returns stable device path in the usb tree 939 * @dev: the device whose path is being constructed 940 * @buf: where to put the string 941 * @size: how big is "buf"? 942 * 943 * Return: Length of the string (> 0) or negative if size was too small. 944 * 945 * Note: 946 * This identifier is intended to be "stable", reflecting physical paths in 947 * hardware such as physical bus addresses for host controllers or ports on 948 * USB hubs. That makes it stay the same until systems are physically 949 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 950 * controllers. Adding and removing devices, including virtual root hubs 951 * in host controller driver modules, does not change these path identifiers; 952 * neither does rebooting or re-enumerating. These are more useful identifiers 953 * than changeable ("unstable") ones like bus numbers or device addresses. 954 * 955 * With a partial exception for devices connected to USB 2.0 root hubs, these 956 * identifiers are also predictable. So long as the device tree isn't changed, 957 * plugging any USB device into a given hub port always gives it the same path. 958 * Because of the use of "companion" controllers, devices connected to ports on 959 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 960 * high speed, and a different one if they are full or low speed. 961 */ 962 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 963 { 964 int actual; 965 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 966 dev->devpath); 967 return (actual >= (int)size) ? -1 : actual; 968 } 969 970 /*-------------------------------------------------------------------------*/ 971 972 #define USB_DEVICE_ID_MATCH_DEVICE \ 973 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 974 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 975 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 976 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 977 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 978 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 979 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 980 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 981 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 982 #define USB_DEVICE_ID_MATCH_INT_INFO \ 983 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 984 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 985 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 986 987 /** 988 * USB_DEVICE - macro used to describe a specific usb device 989 * @vend: the 16 bit USB Vendor ID 990 * @prod: the 16 bit USB Product ID 991 * 992 * This macro is used to create a struct usb_device_id that matches a 993 * specific device. 994 */ 995 #define USB_DEVICE(vend, prod) \ 996 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 997 .idVendor = (vend), \ 998 .idProduct = (prod) 999 /** 1000 * USB_DEVICE_VER - describe a specific usb device with a version range 1001 * @vend: the 16 bit USB Vendor ID 1002 * @prod: the 16 bit USB Product ID 1003 * @lo: the bcdDevice_lo value 1004 * @hi: the bcdDevice_hi value 1005 * 1006 * This macro is used to create a struct usb_device_id that matches a 1007 * specific device, with a version range. 1008 */ 1009 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 1010 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 1011 .idVendor = (vend), \ 1012 .idProduct = (prod), \ 1013 .bcdDevice_lo = (lo), \ 1014 .bcdDevice_hi = (hi) 1015 1016 /** 1017 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 1018 * @vend: the 16 bit USB Vendor ID 1019 * @prod: the 16 bit USB Product ID 1020 * @cl: bInterfaceClass value 1021 * 1022 * This macro is used to create a struct usb_device_id that matches a 1023 * specific interface class of devices. 1024 */ 1025 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 1026 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1027 USB_DEVICE_ID_MATCH_INT_CLASS, \ 1028 .idVendor = (vend), \ 1029 .idProduct = (prod), \ 1030 .bInterfaceClass = (cl) 1031 1032 /** 1033 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 1034 * @vend: the 16 bit USB Vendor ID 1035 * @prod: the 16 bit USB Product ID 1036 * @pr: bInterfaceProtocol value 1037 * 1038 * This macro is used to create a struct usb_device_id that matches a 1039 * specific interface protocol of devices. 1040 */ 1041 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1042 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1043 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1044 .idVendor = (vend), \ 1045 .idProduct = (prod), \ 1046 .bInterfaceProtocol = (pr) 1047 1048 /** 1049 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1050 * @vend: the 16 bit USB Vendor ID 1051 * @prod: the 16 bit USB Product ID 1052 * @num: bInterfaceNumber value 1053 * 1054 * This macro is used to create a struct usb_device_id that matches a 1055 * specific interface number of devices. 1056 */ 1057 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1058 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1059 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1060 .idVendor = (vend), \ 1061 .idProduct = (prod), \ 1062 .bInterfaceNumber = (num) 1063 1064 /** 1065 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1066 * @cl: bDeviceClass value 1067 * @sc: bDeviceSubClass value 1068 * @pr: bDeviceProtocol value 1069 * 1070 * This macro is used to create a struct usb_device_id that matches a 1071 * specific class of devices. 1072 */ 1073 #define USB_DEVICE_INFO(cl, sc, pr) \ 1074 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1075 .bDeviceClass = (cl), \ 1076 .bDeviceSubClass = (sc), \ 1077 .bDeviceProtocol = (pr) 1078 1079 /** 1080 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1081 * @cl: bInterfaceClass value 1082 * @sc: bInterfaceSubClass value 1083 * @pr: bInterfaceProtocol value 1084 * 1085 * This macro is used to create a struct usb_device_id that matches a 1086 * specific class of interfaces. 1087 */ 1088 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1089 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1090 .bInterfaceClass = (cl), \ 1091 .bInterfaceSubClass = (sc), \ 1092 .bInterfaceProtocol = (pr) 1093 1094 /** 1095 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1096 * @vend: the 16 bit USB Vendor ID 1097 * @prod: the 16 bit USB Product ID 1098 * @cl: bInterfaceClass value 1099 * @sc: bInterfaceSubClass value 1100 * @pr: bInterfaceProtocol value 1101 * 1102 * This macro is used to create a struct usb_device_id that matches a 1103 * specific device with a specific class of interfaces. 1104 * 1105 * This is especially useful when explicitly matching devices that have 1106 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1107 */ 1108 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1109 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1110 | USB_DEVICE_ID_MATCH_DEVICE, \ 1111 .idVendor = (vend), \ 1112 .idProduct = (prod), \ 1113 .bInterfaceClass = (cl), \ 1114 .bInterfaceSubClass = (sc), \ 1115 .bInterfaceProtocol = (pr) 1116 1117 /** 1118 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1119 * @vend: the 16 bit USB Vendor ID 1120 * @cl: bInterfaceClass value 1121 * @sc: bInterfaceSubClass value 1122 * @pr: bInterfaceProtocol value 1123 * 1124 * This macro is used to create a struct usb_device_id that matches a 1125 * specific vendor with a specific class of interfaces. 1126 * 1127 * This is especially useful when explicitly matching devices that have 1128 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1129 */ 1130 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1131 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1132 | USB_DEVICE_ID_MATCH_VENDOR, \ 1133 .idVendor = (vend), \ 1134 .bInterfaceClass = (cl), \ 1135 .bInterfaceSubClass = (sc), \ 1136 .bInterfaceProtocol = (pr) 1137 1138 /* ----------------------------------------------------------------------- */ 1139 1140 /* Stuff for dynamic usb ids */ 1141 struct usb_dynids { 1142 spinlock_t lock; 1143 struct list_head list; 1144 }; 1145 1146 struct usb_dynid { 1147 struct list_head node; 1148 struct usb_device_id id; 1149 }; 1150 1151 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1152 const struct usb_device_id *id_table, 1153 struct device_driver *driver, 1154 const char *buf, size_t count); 1155 1156 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1157 1158 /** 1159 * struct usbdrv_wrap - wrapper for driver-model structure 1160 * @driver: The driver-model core driver structure. 1161 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1162 */ 1163 struct usbdrv_wrap { 1164 struct device_driver driver; 1165 int for_devices; 1166 }; 1167 1168 /** 1169 * struct usb_driver - identifies USB interface driver to usbcore 1170 * @name: The driver name should be unique among USB drivers, 1171 * and should normally be the same as the module name. 1172 * @probe: Called to see if the driver is willing to manage a particular 1173 * interface on a device. If it is, probe returns zero and uses 1174 * usb_set_intfdata() to associate driver-specific data with the 1175 * interface. It may also use usb_set_interface() to specify the 1176 * appropriate altsetting. If unwilling to manage the interface, 1177 * return -ENODEV, if genuine IO errors occurred, an appropriate 1178 * negative errno value. 1179 * @disconnect: Called when the interface is no longer accessible, usually 1180 * because its device has been (or is being) disconnected or the 1181 * driver module is being unloaded. 1182 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1183 * the "usbfs" filesystem. This lets devices provide ways to 1184 * expose information to user space regardless of where they 1185 * do (or don't) show up otherwise in the filesystem. 1186 * @suspend: Called when the device is going to be suspended by the 1187 * system either from system sleep or runtime suspend context. The 1188 * return value will be ignored in system sleep context, so do NOT 1189 * try to continue using the device if suspend fails in this case. 1190 * Instead, let the resume or reset-resume routine recover from 1191 * the failure. 1192 * @resume: Called when the device is being resumed by the system. 1193 * @reset_resume: Called when the suspended device has been reset instead 1194 * of being resumed. 1195 * @pre_reset: Called by usb_reset_device() when the device is about to be 1196 * reset. This routine must not return until the driver has no active 1197 * URBs for the device, and no more URBs may be submitted until the 1198 * post_reset method is called. 1199 * @post_reset: Called by usb_reset_device() after the device 1200 * has been reset 1201 * @id_table: USB drivers use ID table to support hotplugging. 1202 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1203 * or your driver's probe function will never get called. 1204 * @dev_groups: Attributes attached to the device that will be created once it 1205 * is bound to the driver. 1206 * @dynids: used internally to hold the list of dynamically added device 1207 * ids for this driver. 1208 * @drvwrap: Driver-model core structure wrapper. 1209 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1210 * added to this driver by preventing the sysfs file from being created. 1211 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1212 * for interfaces bound to this driver. 1213 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1214 * endpoints before calling the driver's disconnect method. 1215 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1216 * to initiate lower power link state transitions when an idle timeout 1217 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1218 * 1219 * USB interface drivers must provide a name, probe() and disconnect() 1220 * methods, and an id_table. Other driver fields are optional. 1221 * 1222 * The id_table is used in hotplugging. It holds a set of descriptors, 1223 * and specialized data may be associated with each entry. That table 1224 * is used by both user and kernel mode hotplugging support. 1225 * 1226 * The probe() and disconnect() methods are called in a context where 1227 * they can sleep, but they should avoid abusing the privilege. Most 1228 * work to connect to a device should be done when the device is opened, 1229 * and undone at the last close. The disconnect code needs to address 1230 * concurrency issues with respect to open() and close() methods, as 1231 * well as forcing all pending I/O requests to complete (by unlinking 1232 * them as necessary, and blocking until the unlinks complete). 1233 */ 1234 struct usb_driver { 1235 const char *name; 1236 1237 int (*probe) (struct usb_interface *intf, 1238 const struct usb_device_id *id); 1239 1240 void (*disconnect) (struct usb_interface *intf); 1241 1242 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1243 void *buf); 1244 1245 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1246 int (*resume) (struct usb_interface *intf); 1247 int (*reset_resume)(struct usb_interface *intf); 1248 1249 int (*pre_reset)(struct usb_interface *intf); 1250 int (*post_reset)(struct usb_interface *intf); 1251 1252 const struct usb_device_id *id_table; 1253 const struct attribute_group **dev_groups; 1254 1255 struct usb_dynids dynids; 1256 struct usbdrv_wrap drvwrap; 1257 unsigned int no_dynamic_id:1; 1258 unsigned int supports_autosuspend:1; 1259 unsigned int disable_hub_initiated_lpm:1; 1260 unsigned int soft_unbind:1; 1261 }; 1262 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1263 1264 /** 1265 * struct usb_device_driver - identifies USB device driver to usbcore 1266 * @name: The driver name should be unique among USB drivers, 1267 * and should normally be the same as the module name. 1268 * @match: If set, used for better device/driver matching. 1269 * @probe: Called to see if the driver is willing to manage a particular 1270 * device. If it is, probe returns zero and uses dev_set_drvdata() 1271 * to associate driver-specific data with the device. If unwilling 1272 * to manage the device, return a negative errno value. 1273 * @disconnect: Called when the device is no longer accessible, usually 1274 * because it has been (or is being) disconnected or the driver's 1275 * module is being unloaded. 1276 * @suspend: Called when the device is going to be suspended by the system. 1277 * @resume: Called when the device is being resumed by the system. 1278 * @dev_groups: Attributes attached to the device that will be created once it 1279 * is bound to the driver. 1280 * @drvwrap: Driver-model core structure wrapper. 1281 * @id_table: used with @match() to select better matching driver at 1282 * probe() time. 1283 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1284 * for devices bound to this driver. 1285 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1286 * resume and suspend functions will be called in addition to the driver's 1287 * own, so this part of the setup does not need to be replicated. 1288 * 1289 * USB drivers must provide all the fields listed above except drvwrap, 1290 * match, and id_table. 1291 */ 1292 struct usb_device_driver { 1293 const char *name; 1294 1295 bool (*match) (struct usb_device *udev); 1296 int (*probe) (struct usb_device *udev); 1297 void (*disconnect) (struct usb_device *udev); 1298 1299 int (*suspend) (struct usb_device *udev, pm_message_t message); 1300 int (*resume) (struct usb_device *udev, pm_message_t message); 1301 const struct attribute_group **dev_groups; 1302 struct usbdrv_wrap drvwrap; 1303 const struct usb_device_id *id_table; 1304 unsigned int supports_autosuspend:1; 1305 unsigned int generic_subclass:1; 1306 }; 1307 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1308 drvwrap.driver) 1309 1310 /** 1311 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1312 * @name: the usb class device name for this driver. Will show up in sysfs. 1313 * @devnode: Callback to provide a naming hint for a possible 1314 * device node to create. 1315 * @fops: pointer to the struct file_operations of this driver. 1316 * @minor_base: the start of the minor range for this driver. 1317 * 1318 * This structure is used for the usb_register_dev() and 1319 * usb_deregister_dev() functions, to consolidate a number of the 1320 * parameters used for them. 1321 */ 1322 struct usb_class_driver { 1323 char *name; 1324 char *(*devnode)(struct device *dev, umode_t *mode); 1325 const struct file_operations *fops; 1326 int minor_base; 1327 }; 1328 1329 /* 1330 * use these in module_init()/module_exit() 1331 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1332 */ 1333 extern int usb_register_driver(struct usb_driver *, struct module *, 1334 const char *); 1335 1336 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1337 #define usb_register(driver) \ 1338 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1339 1340 extern void usb_deregister(struct usb_driver *); 1341 1342 /** 1343 * module_usb_driver() - Helper macro for registering a USB driver 1344 * @__usb_driver: usb_driver struct 1345 * 1346 * Helper macro for USB drivers which do not do anything special in module 1347 * init/exit. This eliminates a lot of boilerplate. Each module may only 1348 * use this macro once, and calling it replaces module_init() and module_exit() 1349 */ 1350 #define module_usb_driver(__usb_driver) \ 1351 module_driver(__usb_driver, usb_register, \ 1352 usb_deregister) 1353 1354 extern int usb_register_device_driver(struct usb_device_driver *, 1355 struct module *); 1356 extern void usb_deregister_device_driver(struct usb_device_driver *); 1357 1358 extern int usb_register_dev(struct usb_interface *intf, 1359 struct usb_class_driver *class_driver); 1360 extern void usb_deregister_dev(struct usb_interface *intf, 1361 struct usb_class_driver *class_driver); 1362 1363 extern int usb_disabled(void); 1364 1365 /* ----------------------------------------------------------------------- */ 1366 1367 /* 1368 * URB support, for asynchronous request completions 1369 */ 1370 1371 /* 1372 * urb->transfer_flags: 1373 * 1374 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1375 */ 1376 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1377 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1378 * slot in the schedule */ 1379 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1380 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1381 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1382 * needed */ 1383 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1384 1385 /* The following flags are used internally by usbcore and HCDs */ 1386 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1387 #define URB_DIR_OUT 0 1388 #define URB_DIR_MASK URB_DIR_IN 1389 1390 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1391 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1392 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1393 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1394 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1395 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1396 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1397 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1398 1399 struct usb_iso_packet_descriptor { 1400 unsigned int offset; 1401 unsigned int length; /* expected length */ 1402 unsigned int actual_length; 1403 int status; 1404 }; 1405 1406 struct urb; 1407 1408 struct usb_anchor { 1409 struct list_head urb_list; 1410 wait_queue_head_t wait; 1411 spinlock_t lock; 1412 atomic_t suspend_wakeups; 1413 unsigned int poisoned:1; 1414 }; 1415 1416 static inline void init_usb_anchor(struct usb_anchor *anchor) 1417 { 1418 memset(anchor, 0, sizeof(*anchor)); 1419 INIT_LIST_HEAD(&anchor->urb_list); 1420 init_waitqueue_head(&anchor->wait); 1421 spin_lock_init(&anchor->lock); 1422 } 1423 1424 typedef void (*usb_complete_t)(struct urb *); 1425 1426 /** 1427 * struct urb - USB Request Block 1428 * @urb_list: For use by current owner of the URB. 1429 * @anchor_list: membership in the list of an anchor 1430 * @anchor: to anchor URBs to a common mooring 1431 * @ep: Points to the endpoint's data structure. Will eventually 1432 * replace @pipe. 1433 * @pipe: Holds endpoint number, direction, type, and more. 1434 * Create these values with the eight macros available; 1435 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1436 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1437 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1438 * numbers range from zero to fifteen. Note that "in" endpoint two 1439 * is a different endpoint (and pipe) from "out" endpoint two. 1440 * The current configuration controls the existence, type, and 1441 * maximum packet size of any given endpoint. 1442 * @stream_id: the endpoint's stream ID for bulk streams 1443 * @dev: Identifies the USB device to perform the request. 1444 * @status: This is read in non-iso completion functions to get the 1445 * status of the particular request. ISO requests only use it 1446 * to tell whether the URB was unlinked; detailed status for 1447 * each frame is in the fields of the iso_frame-desc. 1448 * @transfer_flags: A variety of flags may be used to affect how URB 1449 * submission, unlinking, or operation are handled. Different 1450 * kinds of URB can use different flags. 1451 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1452 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1453 * (however, do not leave garbage in transfer_buffer even then). 1454 * This buffer must be suitable for DMA; allocate it with 1455 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1456 * of this buffer will be modified. This buffer is used for the data 1457 * stage of control transfers. 1458 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1459 * the device driver is saying that it provided this DMA address, 1460 * which the host controller driver should use in preference to the 1461 * transfer_buffer. 1462 * @sg: scatter gather buffer list, the buffer size of each element in 1463 * the list (except the last) must be divisible by the endpoint's 1464 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1465 * @num_mapped_sgs: (internal) number of mapped sg entries 1466 * @num_sgs: number of entries in the sg list 1467 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1468 * be broken up into chunks according to the current maximum packet 1469 * size for the endpoint, which is a function of the configuration 1470 * and is encoded in the pipe. When the length is zero, neither 1471 * transfer_buffer nor transfer_dma is used. 1472 * @actual_length: This is read in non-iso completion functions, and 1473 * it tells how many bytes (out of transfer_buffer_length) were 1474 * transferred. It will normally be the same as requested, unless 1475 * either an error was reported or a short read was performed. 1476 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1477 * short reads be reported as errors. 1478 * @setup_packet: Only used for control transfers, this points to eight bytes 1479 * of setup data. Control transfers always start by sending this data 1480 * to the device. Then transfer_buffer is read or written, if needed. 1481 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1482 * this field; setup_packet must point to a valid buffer. 1483 * @start_frame: Returns the initial frame for isochronous transfers. 1484 * @number_of_packets: Lists the number of ISO transfer buffers. 1485 * @interval: Specifies the polling interval for interrupt or isochronous 1486 * transfers. The units are frames (milliseconds) for full and low 1487 * speed devices, and microframes (1/8 millisecond) for highspeed 1488 * and SuperSpeed devices. 1489 * @error_count: Returns the number of ISO transfers that reported errors. 1490 * @context: For use in completion functions. This normally points to 1491 * request-specific driver context. 1492 * @complete: Completion handler. This URB is passed as the parameter to the 1493 * completion function. The completion function may then do what 1494 * it likes with the URB, including resubmitting or freeing it. 1495 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1496 * collect the transfer status for each buffer. 1497 * 1498 * This structure identifies USB transfer requests. URBs must be allocated by 1499 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1500 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1501 * are submitted using usb_submit_urb(), and pending requests may be canceled 1502 * using usb_unlink_urb() or usb_kill_urb(). 1503 * 1504 * Data Transfer Buffers: 1505 * 1506 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1507 * taken from the general page pool. That is provided by transfer_buffer 1508 * (control requests also use setup_packet), and host controller drivers 1509 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1510 * mapping operations can be expensive on some platforms (perhaps using a dma 1511 * bounce buffer or talking to an IOMMU), 1512 * although they're cheap on commodity x86 and ppc hardware. 1513 * 1514 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1515 * which tells the host controller driver that no such mapping is needed for 1516 * the transfer_buffer since 1517 * the device driver is DMA-aware. For example, a device driver might 1518 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1519 * When this transfer flag is provided, host controller drivers will 1520 * attempt to use the dma address found in the transfer_dma 1521 * field rather than determining a dma address themselves. 1522 * 1523 * Note that transfer_buffer must still be set if the controller 1524 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1525 * to root hub. If you have to transfer between highmem zone and the device 1526 * on such controller, create a bounce buffer or bail out with an error. 1527 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1528 * capable, assign NULL to it, so that usbmon knows not to use the value. 1529 * The setup_packet must always be set, so it cannot be located in highmem. 1530 * 1531 * Initialization: 1532 * 1533 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1534 * zero), and complete fields. All URBs must also initialize 1535 * transfer_buffer and transfer_buffer_length. They may provide the 1536 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1537 * to be treated as errors; that flag is invalid for write requests. 1538 * 1539 * Bulk URBs may 1540 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1541 * should always terminate with a short packet, even if it means adding an 1542 * extra zero length packet. 1543 * 1544 * Control URBs must provide a valid pointer in the setup_packet field. 1545 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1546 * beforehand. 1547 * 1548 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1549 * or, for highspeed devices, 125 microsecond units) 1550 * to poll for transfers. After the URB has been submitted, the interval 1551 * field reflects how the transfer was actually scheduled. 1552 * The polling interval may be more frequent than requested. 1553 * For example, some controllers have a maximum interval of 32 milliseconds, 1554 * while others support intervals of up to 1024 milliseconds. 1555 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1556 * endpoints, as well as high speed interrupt endpoints, the encoding of 1557 * the transfer interval in the endpoint descriptor is logarithmic. 1558 * Device drivers must convert that value to linear units themselves.) 1559 * 1560 * If an isochronous endpoint queue isn't already running, the host 1561 * controller will schedule a new URB to start as soon as bandwidth 1562 * utilization allows. If the queue is running then a new URB will be 1563 * scheduled to start in the first transfer slot following the end of the 1564 * preceding URB, if that slot has not already expired. If the slot has 1565 * expired (which can happen when IRQ delivery is delayed for a long time), 1566 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1567 * is clear then the URB will be scheduled to start in the expired slot, 1568 * implying that some of its packets will not be transferred; if the flag 1569 * is set then the URB will be scheduled in the first unexpired slot, 1570 * breaking the queue's synchronization. Upon URB completion, the 1571 * start_frame field will be set to the (micro)frame number in which the 1572 * transfer was scheduled. Ranges for frame counter values are HC-specific 1573 * and can go from as low as 256 to as high as 65536 frames. 1574 * 1575 * Isochronous URBs have a different data transfer model, in part because 1576 * the quality of service is only "best effort". Callers provide specially 1577 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1578 * at the end. Each such packet is an individual ISO transfer. Isochronous 1579 * URBs are normally queued, submitted by drivers to arrange that 1580 * transfers are at least double buffered, and then explicitly resubmitted 1581 * in completion handlers, so 1582 * that data (such as audio or video) streams at as constant a rate as the 1583 * host controller scheduler can support. 1584 * 1585 * Completion Callbacks: 1586 * 1587 * The completion callback is made in_interrupt(), and one of the first 1588 * things that a completion handler should do is check the status field. 1589 * The status field is provided for all URBs. It is used to report 1590 * unlinked URBs, and status for all non-ISO transfers. It should not 1591 * be examined before the URB is returned to the completion handler. 1592 * 1593 * The context field is normally used to link URBs back to the relevant 1594 * driver or request state. 1595 * 1596 * When the completion callback is invoked for non-isochronous URBs, the 1597 * actual_length field tells how many bytes were transferred. This field 1598 * is updated even when the URB terminated with an error or was unlinked. 1599 * 1600 * ISO transfer status is reported in the status and actual_length fields 1601 * of the iso_frame_desc array, and the number of errors is reported in 1602 * error_count. Completion callbacks for ISO transfers will normally 1603 * (re)submit URBs to ensure a constant transfer rate. 1604 * 1605 * Note that even fields marked "public" should not be touched by the driver 1606 * when the urb is owned by the hcd, that is, since the call to 1607 * usb_submit_urb() till the entry into the completion routine. 1608 */ 1609 struct urb { 1610 /* private: usb core and host controller only fields in the urb */ 1611 struct kref kref; /* reference count of the URB */ 1612 int unlinked; /* unlink error code */ 1613 void *hcpriv; /* private data for host controller */ 1614 atomic_t use_count; /* concurrent submissions counter */ 1615 atomic_t reject; /* submissions will fail */ 1616 1617 /* public: documented fields in the urb that can be used by drivers */ 1618 struct list_head urb_list; /* list head for use by the urb's 1619 * current owner */ 1620 struct list_head anchor_list; /* the URB may be anchored */ 1621 struct usb_anchor *anchor; 1622 struct usb_device *dev; /* (in) pointer to associated device */ 1623 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1624 unsigned int pipe; /* (in) pipe information */ 1625 unsigned int stream_id; /* (in) stream ID */ 1626 int status; /* (return) non-ISO status */ 1627 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1628 void *transfer_buffer; /* (in) associated data buffer */ 1629 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1630 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1631 int num_mapped_sgs; /* (internal) mapped sg entries */ 1632 int num_sgs; /* (in) number of entries in the sg list */ 1633 u32 transfer_buffer_length; /* (in) data buffer length */ 1634 u32 actual_length; /* (return) actual transfer length */ 1635 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1636 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1637 int start_frame; /* (modify) start frame (ISO) */ 1638 int number_of_packets; /* (in) number of ISO packets */ 1639 int interval; /* (modify) transfer interval 1640 * (INT/ISO) */ 1641 int error_count; /* (return) number of ISO errors */ 1642 void *context; /* (in) context for completion */ 1643 usb_complete_t complete; /* (in) completion routine */ 1644 struct usb_iso_packet_descriptor iso_frame_desc[]; 1645 /* (in) ISO ONLY */ 1646 }; 1647 1648 /* ----------------------------------------------------------------------- */ 1649 1650 /** 1651 * usb_fill_control_urb - initializes a control urb 1652 * @urb: pointer to the urb to initialize. 1653 * @dev: pointer to the struct usb_device for this urb. 1654 * @pipe: the endpoint pipe 1655 * @setup_packet: pointer to the setup_packet buffer 1656 * @transfer_buffer: pointer to the transfer buffer 1657 * @buffer_length: length of the transfer buffer 1658 * @complete_fn: pointer to the usb_complete_t function 1659 * @context: what to set the urb context to. 1660 * 1661 * Initializes a control urb with the proper information needed to submit 1662 * it to a device. 1663 */ 1664 static inline void usb_fill_control_urb(struct urb *urb, 1665 struct usb_device *dev, 1666 unsigned int pipe, 1667 unsigned char *setup_packet, 1668 void *transfer_buffer, 1669 int buffer_length, 1670 usb_complete_t complete_fn, 1671 void *context) 1672 { 1673 urb->dev = dev; 1674 urb->pipe = pipe; 1675 urb->setup_packet = setup_packet; 1676 urb->transfer_buffer = transfer_buffer; 1677 urb->transfer_buffer_length = buffer_length; 1678 urb->complete = complete_fn; 1679 urb->context = context; 1680 } 1681 1682 /** 1683 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1684 * @urb: pointer to the urb to initialize. 1685 * @dev: pointer to the struct usb_device for this urb. 1686 * @pipe: the endpoint pipe 1687 * @transfer_buffer: pointer to the transfer buffer 1688 * @buffer_length: length of the transfer buffer 1689 * @complete_fn: pointer to the usb_complete_t function 1690 * @context: what to set the urb context to. 1691 * 1692 * Initializes a bulk urb with the proper information needed to submit it 1693 * to a device. 1694 */ 1695 static inline void usb_fill_bulk_urb(struct urb *urb, 1696 struct usb_device *dev, 1697 unsigned int pipe, 1698 void *transfer_buffer, 1699 int buffer_length, 1700 usb_complete_t complete_fn, 1701 void *context) 1702 { 1703 urb->dev = dev; 1704 urb->pipe = pipe; 1705 urb->transfer_buffer = transfer_buffer; 1706 urb->transfer_buffer_length = buffer_length; 1707 urb->complete = complete_fn; 1708 urb->context = context; 1709 } 1710 1711 /** 1712 * usb_fill_int_urb - macro to help initialize a interrupt urb 1713 * @urb: pointer to the urb to initialize. 1714 * @dev: pointer to the struct usb_device for this urb. 1715 * @pipe: the endpoint pipe 1716 * @transfer_buffer: pointer to the transfer buffer 1717 * @buffer_length: length of the transfer buffer 1718 * @complete_fn: pointer to the usb_complete_t function 1719 * @context: what to set the urb context to. 1720 * @interval: what to set the urb interval to, encoded like 1721 * the endpoint descriptor's bInterval value. 1722 * 1723 * Initializes a interrupt urb with the proper information needed to submit 1724 * it to a device. 1725 * 1726 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1727 * encoding of the endpoint interval, and express polling intervals in 1728 * microframes (eight per millisecond) rather than in frames (one per 1729 * millisecond). 1730 * 1731 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1732 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1733 * through to the host controller, rather than being translated into microframe 1734 * units. 1735 */ 1736 static inline void usb_fill_int_urb(struct urb *urb, 1737 struct usb_device *dev, 1738 unsigned int pipe, 1739 void *transfer_buffer, 1740 int buffer_length, 1741 usb_complete_t complete_fn, 1742 void *context, 1743 int interval) 1744 { 1745 urb->dev = dev; 1746 urb->pipe = pipe; 1747 urb->transfer_buffer = transfer_buffer; 1748 urb->transfer_buffer_length = buffer_length; 1749 urb->complete = complete_fn; 1750 urb->context = context; 1751 1752 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1753 /* make sure interval is within allowed range */ 1754 interval = clamp(interval, 1, 16); 1755 1756 urb->interval = 1 << (interval - 1); 1757 } else { 1758 urb->interval = interval; 1759 } 1760 1761 urb->start_frame = -1; 1762 } 1763 1764 extern void usb_init_urb(struct urb *urb); 1765 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1766 extern void usb_free_urb(struct urb *urb); 1767 #define usb_put_urb usb_free_urb 1768 extern struct urb *usb_get_urb(struct urb *urb); 1769 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1770 extern int usb_unlink_urb(struct urb *urb); 1771 extern void usb_kill_urb(struct urb *urb); 1772 extern void usb_poison_urb(struct urb *urb); 1773 extern void usb_unpoison_urb(struct urb *urb); 1774 extern void usb_block_urb(struct urb *urb); 1775 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1776 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1777 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1778 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1779 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1780 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1781 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1782 extern void usb_unanchor_urb(struct urb *urb); 1783 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1784 unsigned int timeout); 1785 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1786 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1787 extern int usb_anchor_empty(struct usb_anchor *anchor); 1788 1789 #define usb_unblock_urb usb_unpoison_urb 1790 1791 /** 1792 * usb_urb_dir_in - check if an URB describes an IN transfer 1793 * @urb: URB to be checked 1794 * 1795 * Return: 1 if @urb describes an IN transfer (device-to-host), 1796 * otherwise 0. 1797 */ 1798 static inline int usb_urb_dir_in(struct urb *urb) 1799 { 1800 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1801 } 1802 1803 /** 1804 * usb_urb_dir_out - check if an URB describes an OUT transfer 1805 * @urb: URB to be checked 1806 * 1807 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1808 * otherwise 0. 1809 */ 1810 static inline int usb_urb_dir_out(struct urb *urb) 1811 { 1812 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1813 } 1814 1815 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1816 int usb_urb_ep_type_check(const struct urb *urb); 1817 1818 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1819 gfp_t mem_flags, dma_addr_t *dma); 1820 void usb_free_coherent(struct usb_device *dev, size_t size, 1821 void *addr, dma_addr_t dma); 1822 1823 #if 0 1824 struct urb *usb_buffer_map(struct urb *urb); 1825 void usb_buffer_dmasync(struct urb *urb); 1826 void usb_buffer_unmap(struct urb *urb); 1827 #endif 1828 1829 struct scatterlist; 1830 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1831 struct scatterlist *sg, int nents); 1832 #if 0 1833 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1834 struct scatterlist *sg, int n_hw_ents); 1835 #endif 1836 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1837 struct scatterlist *sg, int n_hw_ents); 1838 1839 /*-------------------------------------------------------------------* 1840 * SYNCHRONOUS CALL SUPPORT * 1841 *-------------------------------------------------------------------*/ 1842 1843 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1844 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1845 void *data, __u16 size, int timeout); 1846 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1847 void *data, int len, int *actual_length, int timeout); 1848 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1849 void *data, int len, int *actual_length, 1850 int timeout); 1851 1852 /* wrappers around usb_control_msg() for the most common standard requests */ 1853 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1854 __u8 requesttype, __u16 value, __u16 index, 1855 const void *data, __u16 size, int timeout, 1856 gfp_t memflags); 1857 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1858 __u8 requesttype, __u16 value, __u16 index, 1859 void *data, __u16 size, int timeout, 1860 gfp_t memflags); 1861 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1862 unsigned char descindex, void *buf, int size); 1863 extern int usb_get_status(struct usb_device *dev, 1864 int recip, int type, int target, void *data); 1865 1866 static inline int usb_get_std_status(struct usb_device *dev, 1867 int recip, int target, void *data) 1868 { 1869 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1870 data); 1871 } 1872 1873 static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1874 { 1875 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1876 0, data); 1877 } 1878 1879 extern int usb_string(struct usb_device *dev, int index, 1880 char *buf, size_t size); 1881 1882 /* wrappers that also update important state inside usbcore */ 1883 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1884 extern int usb_reset_configuration(struct usb_device *dev); 1885 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1886 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1887 1888 /* this request isn't really synchronous, but it belongs with the others */ 1889 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1890 1891 /* choose and set configuration for device */ 1892 extern int usb_choose_configuration(struct usb_device *udev); 1893 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1894 1895 /* 1896 * timeouts, in milliseconds, used for sending/receiving control messages 1897 * they typically complete within a few frames (msec) after they're issued 1898 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1899 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1900 */ 1901 #define USB_CTRL_GET_TIMEOUT 5000 1902 #define USB_CTRL_SET_TIMEOUT 5000 1903 1904 1905 /** 1906 * struct usb_sg_request - support for scatter/gather I/O 1907 * @status: zero indicates success, else negative errno 1908 * @bytes: counts bytes transferred. 1909 * 1910 * These requests are initialized using usb_sg_init(), and then are used 1911 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1912 * members of the request object aren't for driver access. 1913 * 1914 * The status and bytecount values are valid only after usb_sg_wait() 1915 * returns. If the status is zero, then the bytecount matches the total 1916 * from the request. 1917 * 1918 * After an error completion, drivers may need to clear a halt condition 1919 * on the endpoint. 1920 */ 1921 struct usb_sg_request { 1922 int status; 1923 size_t bytes; 1924 1925 /* private: 1926 * members below are private to usbcore, 1927 * and are not provided for driver access! 1928 */ 1929 spinlock_t lock; 1930 1931 struct usb_device *dev; 1932 int pipe; 1933 1934 int entries; 1935 struct urb **urbs; 1936 1937 int count; 1938 struct completion complete; 1939 }; 1940 1941 int usb_sg_init( 1942 struct usb_sg_request *io, 1943 struct usb_device *dev, 1944 unsigned pipe, 1945 unsigned period, 1946 struct scatterlist *sg, 1947 int nents, 1948 size_t length, 1949 gfp_t mem_flags 1950 ); 1951 void usb_sg_cancel(struct usb_sg_request *io); 1952 void usb_sg_wait(struct usb_sg_request *io); 1953 1954 1955 /* ----------------------------------------------------------------------- */ 1956 1957 /* 1958 * For various legacy reasons, Linux has a small cookie that's paired with 1959 * a struct usb_device to identify an endpoint queue. Queue characteristics 1960 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1961 * an unsigned int encoded as: 1962 * 1963 * - direction: bit 7 (0 = Host-to-Device [Out], 1964 * 1 = Device-to-Host [In] ... 1965 * like endpoint bEndpointAddress) 1966 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1967 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1968 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1969 * 10 = control, 11 = bulk) 1970 * 1971 * Given the device address and endpoint descriptor, pipes are redundant. 1972 */ 1973 1974 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1975 /* (yet ... they're the values used by usbfs) */ 1976 #define PIPE_ISOCHRONOUS 0 1977 #define PIPE_INTERRUPT 1 1978 #define PIPE_CONTROL 2 1979 #define PIPE_BULK 3 1980 1981 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1982 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1983 1984 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1985 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1986 1987 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1988 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1989 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1990 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1991 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1992 1993 static inline unsigned int __create_pipe(struct usb_device *dev, 1994 unsigned int endpoint) 1995 { 1996 return (dev->devnum << 8) | (endpoint << 15); 1997 } 1998 1999 /* Create various pipes... */ 2000 #define usb_sndctrlpipe(dev, endpoint) \ 2001 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 2002 #define usb_rcvctrlpipe(dev, endpoint) \ 2003 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2004 #define usb_sndisocpipe(dev, endpoint) \ 2005 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 2006 #define usb_rcvisocpipe(dev, endpoint) \ 2007 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2008 #define usb_sndbulkpipe(dev, endpoint) \ 2009 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 2010 #define usb_rcvbulkpipe(dev, endpoint) \ 2011 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2012 #define usb_sndintpipe(dev, endpoint) \ 2013 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 2014 #define usb_rcvintpipe(dev, endpoint) \ 2015 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2016 2017 static inline struct usb_host_endpoint * 2018 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 2019 { 2020 struct usb_host_endpoint **eps; 2021 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 2022 return eps[usb_pipeendpoint(pipe)]; 2023 } 2024 2025 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 2026 { 2027 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 2028 2029 if (!ep) 2030 return 0; 2031 2032 /* NOTE: only 0x07ff bits are for packet size... */ 2033 return usb_endpoint_maxp(&ep->desc); 2034 } 2035 2036 /* translate USB error codes to codes user space understands */ 2037 static inline int usb_translate_errors(int error_code) 2038 { 2039 switch (error_code) { 2040 case 0: 2041 case -ENOMEM: 2042 case -ENODEV: 2043 case -EOPNOTSUPP: 2044 return error_code; 2045 default: 2046 return -EIO; 2047 } 2048 } 2049 2050 /* Events from the usb core */ 2051 #define USB_DEVICE_ADD 0x0001 2052 #define USB_DEVICE_REMOVE 0x0002 2053 #define USB_BUS_ADD 0x0003 2054 #define USB_BUS_REMOVE 0x0004 2055 extern void usb_register_notify(struct notifier_block *nb); 2056 extern void usb_unregister_notify(struct notifier_block *nb); 2057 2058 /* debugfs stuff */ 2059 extern struct dentry *usb_debug_root; 2060 2061 /* LED triggers */ 2062 enum usb_led_event { 2063 USB_LED_EVENT_HOST = 0, 2064 USB_LED_EVENT_GADGET = 1, 2065 }; 2066 2067 #ifdef CONFIG_USB_LED_TRIG 2068 extern void usb_led_activity(enum usb_led_event ev); 2069 #else 2070 static inline void usb_led_activity(enum usb_led_event ev) {} 2071 #endif 2072 2073 #endif /* __KERNEL__ */ 2074 2075 #endif 2076