1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb_ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/errno.h> /* for -ENODEV */ 14 #include <linux/delay.h> /* for mdelay() */ 15 #include <linux/interrupt.h> /* for in_interrupt() */ 16 #include <linux/list.h> /* for struct list_head */ 17 #include <linux/kref.h> /* for struct kref */ 18 #include <linux/device.h> /* for struct device */ 19 #include <linux/fs.h> /* for struct file_operations */ 20 #include <linux/completion.h> /* for struct completion */ 21 #include <linux/sched.h> /* for current && schedule_timeout */ 22 23 struct usb_device; 24 struct usb_driver; 25 26 /*-------------------------------------------------------------------------*/ 27 28 /* 29 * Host-side wrappers for standard USB descriptors ... these are parsed 30 * from the data provided by devices. Parsing turns them from a flat 31 * sequence of descriptors into a hierarchy: 32 * 33 * - devices have one (usually) or more configs; 34 * - configs have one (often) or more interfaces; 35 * - interfaces have one (usually) or more settings; 36 * - each interface setting has zero or (usually) more endpoints. 37 * 38 * And there might be other descriptors mixed in with those. 39 * 40 * Devices may also have class-specific or vendor-specific descriptors. 41 */ 42 43 struct ep_device; 44 45 /** 46 * struct usb_host_endpoint - host-side endpoint descriptor and queue 47 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 48 * @urb_list: urbs queued to this endpoint; maintained by usbcore 49 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 50 * with one or more transfer descriptors (TDs) per urb 51 * @kobj: kobject for sysfs info 52 * @extra: descriptors following this endpoint in the configuration 53 * @extralen: how many bytes of "extra" are valid 54 * 55 * USB requests are always queued to a given endpoint, identified by a 56 * descriptor within an active interface in a given USB configuration. 57 */ 58 struct usb_host_endpoint { 59 struct usb_endpoint_descriptor desc; 60 struct list_head urb_list; 61 void *hcpriv; 62 struct ep_device *ep_dev; /* For sysfs info */ 63 64 unsigned char *extra; /* Extra descriptors */ 65 int extralen; 66 }; 67 68 /* host-side wrapper for one interface setting's parsed descriptors */ 69 struct usb_host_interface { 70 struct usb_interface_descriptor desc; 71 72 /* array of desc.bNumEndpoint endpoints associated with this 73 * interface setting. these will be in no particular order. 74 */ 75 struct usb_host_endpoint *endpoint; 76 77 char *string; /* iInterface string, if present */ 78 unsigned char *extra; /* Extra descriptors */ 79 int extralen; 80 }; 81 82 enum usb_interface_condition { 83 USB_INTERFACE_UNBOUND = 0, 84 USB_INTERFACE_BINDING, 85 USB_INTERFACE_BOUND, 86 USB_INTERFACE_UNBINDING, 87 }; 88 89 /** 90 * struct usb_interface - what usb device drivers talk to 91 * @altsetting: array of interface structures, one for each alternate 92 * setting that may be selected. Each one includes a set of 93 * endpoint configurations. They will be in no particular order. 94 * @num_altsetting: number of altsettings defined. 95 * @cur_altsetting: the current altsetting. 96 * @driver: the USB driver that is bound to this interface. 97 * @minor: the minor number assigned to this interface, if this 98 * interface is bound to a driver that uses the USB major number. 99 * If this interface does not use the USB major, this field should 100 * be unused. The driver should set this value in the probe() 101 * function of the driver, after it has been assigned a minor 102 * number from the USB core by calling usb_register_dev(). 103 * @condition: binding state of the interface: not bound, binding 104 * (in probe()), bound to a driver, or unbinding (in disconnect()) 105 * @dev: driver model's view of this device 106 * @usb_dev: if an interface is bound to the USB major, this will point 107 * to the sysfs representation for that device. 108 * 109 * USB device drivers attach to interfaces on a physical device. Each 110 * interface encapsulates a single high level function, such as feeding 111 * an audio stream to a speaker or reporting a change in a volume control. 112 * Many USB devices only have one interface. The protocol used to talk to 113 * an interface's endpoints can be defined in a usb "class" specification, 114 * or by a product's vendor. The (default) control endpoint is part of 115 * every interface, but is never listed among the interface's descriptors. 116 * 117 * The driver that is bound to the interface can use standard driver model 118 * calls such as dev_get_drvdata() on the dev member of this structure. 119 * 120 * Each interface may have alternate settings. The initial configuration 121 * of a device sets altsetting 0, but the device driver can change 122 * that setting using usb_set_interface(). Alternate settings are often 123 * used to control the the use of periodic endpoints, such as by having 124 * different endpoints use different amounts of reserved USB bandwidth. 125 * All standards-conformant USB devices that use isochronous endpoints 126 * will use them in non-default settings. 127 * 128 * The USB specification says that alternate setting numbers must run from 129 * 0 to one less than the total number of alternate settings. But some 130 * devices manage to mess this up, and the structures aren't necessarily 131 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 132 * look up an alternate setting in the altsetting array based on its number. 133 */ 134 struct usb_interface { 135 /* array of alternate settings for this interface, 136 * stored in no particular order */ 137 struct usb_host_interface *altsetting; 138 139 struct usb_host_interface *cur_altsetting; /* the currently 140 * active alternate setting */ 141 unsigned num_altsetting; /* number of alternate settings */ 142 143 int minor; /* minor number this interface is 144 * bound to */ 145 enum usb_interface_condition condition; /* state of binding */ 146 struct device dev; /* interface specific device info */ 147 struct device *usb_dev; /* pointer to the usb class's device, if any */ 148 }; 149 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 150 #define interface_to_usbdev(intf) \ 151 container_of(intf->dev.parent, struct usb_device, dev) 152 153 static inline void *usb_get_intfdata (struct usb_interface *intf) 154 { 155 return dev_get_drvdata (&intf->dev); 156 } 157 158 static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 159 { 160 dev_set_drvdata(&intf->dev, data); 161 } 162 163 struct usb_interface *usb_get_intf(struct usb_interface *intf); 164 void usb_put_intf(struct usb_interface *intf); 165 166 /* this maximum is arbitrary */ 167 #define USB_MAXINTERFACES 32 168 169 /** 170 * struct usb_interface_cache - long-term representation of a device interface 171 * @num_altsetting: number of altsettings defined. 172 * @ref: reference counter. 173 * @altsetting: variable-length array of interface structures, one for 174 * each alternate setting that may be selected. Each one includes a 175 * set of endpoint configurations. They will be in no particular order. 176 * 177 * These structures persist for the lifetime of a usb_device, unlike 178 * struct usb_interface (which persists only as long as its configuration 179 * is installed). The altsetting arrays can be accessed through these 180 * structures at any time, permitting comparison of configurations and 181 * providing support for the /proc/bus/usb/devices pseudo-file. 182 */ 183 struct usb_interface_cache { 184 unsigned num_altsetting; /* number of alternate settings */ 185 struct kref ref; /* reference counter */ 186 187 /* variable-length array of alternate settings for this interface, 188 * stored in no particular order */ 189 struct usb_host_interface altsetting[0]; 190 }; 191 #define ref_to_usb_interface_cache(r) \ 192 container_of(r, struct usb_interface_cache, ref) 193 #define altsetting_to_usb_interface_cache(a) \ 194 container_of(a, struct usb_interface_cache, altsetting[0]) 195 196 /** 197 * struct usb_host_config - representation of a device's configuration 198 * @desc: the device's configuration descriptor. 199 * @string: pointer to the cached version of the iConfiguration string, if 200 * present for this configuration. 201 * @interface: array of pointers to usb_interface structures, one for each 202 * interface in the configuration. The number of interfaces is stored 203 * in desc.bNumInterfaces. These pointers are valid only while the 204 * the configuration is active. 205 * @intf_cache: array of pointers to usb_interface_cache structures, one 206 * for each interface in the configuration. These structures exist 207 * for the entire life of the device. 208 * @extra: pointer to buffer containing all extra descriptors associated 209 * with this configuration (those preceding the first interface 210 * descriptor). 211 * @extralen: length of the extra descriptors buffer. 212 * 213 * USB devices may have multiple configurations, but only one can be active 214 * at any time. Each encapsulates a different operational environment; 215 * for example, a dual-speed device would have separate configurations for 216 * full-speed and high-speed operation. The number of configurations 217 * available is stored in the device descriptor as bNumConfigurations. 218 * 219 * A configuration can contain multiple interfaces. Each corresponds to 220 * a different function of the USB device, and all are available whenever 221 * the configuration is active. The USB standard says that interfaces 222 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 223 * of devices get this wrong. In addition, the interface array is not 224 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 225 * look up an interface entry based on its number. 226 * 227 * Device drivers should not attempt to activate configurations. The choice 228 * of which configuration to install is a policy decision based on such 229 * considerations as available power, functionality provided, and the user's 230 * desires (expressed through userspace tools). However, drivers can call 231 * usb_reset_configuration() to reinitialize the current configuration and 232 * all its interfaces. 233 */ 234 struct usb_host_config { 235 struct usb_config_descriptor desc; 236 237 char *string; /* iConfiguration string, if present */ 238 /* the interfaces associated with this configuration, 239 * stored in no particular order */ 240 struct usb_interface *interface[USB_MAXINTERFACES]; 241 242 /* Interface information available even when this is not the 243 * active configuration */ 244 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 245 246 unsigned char *extra; /* Extra descriptors */ 247 int extralen; 248 }; 249 250 int __usb_get_extra_descriptor(char *buffer, unsigned size, 251 unsigned char type, void **ptr); 252 #define usb_get_extra_descriptor(ifpoint,type,ptr)\ 253 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 254 type,(void**)ptr) 255 256 /* ----------------------------------------------------------------------- */ 257 258 struct usb_operations; 259 260 /* USB device number allocation bitmap */ 261 struct usb_devmap { 262 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 263 }; 264 265 /* 266 * Allocated per bus (tree of devices) we have: 267 */ 268 struct usb_bus { 269 struct device *controller; /* host/master side hardware */ 270 int busnum; /* Bus number (in order of reg) */ 271 char *bus_name; /* stable id (PCI slot_name etc) */ 272 u8 otg_port; /* 0, or number of OTG/HNP port */ 273 unsigned is_b_host:1; /* true during some HNP roleswitches */ 274 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 275 276 int devnum_next; /* Next open device number in 277 * round-robin allocation */ 278 279 struct usb_devmap devmap; /* device address allocation map */ 280 struct usb_operations *op; /* Operations (specific to the HC) */ 281 struct usb_device *root_hub; /* Root hub */ 282 struct list_head bus_list; /* list of busses */ 283 void *hcpriv; /* Host Controller private data */ 284 285 int bandwidth_allocated; /* on this bus: how much of the time 286 * reserved for periodic (intr/iso) 287 * requests is used, on average? 288 * Units: microseconds/frame. 289 * Limits: Full/low speed reserve 90%, 290 * while high speed reserves 80%. 291 */ 292 int bandwidth_int_reqs; /* number of Interrupt requests */ 293 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 294 295 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 296 297 struct class_device *class_dev; /* class device for this bus */ 298 struct kref kref; /* reference counting for this bus */ 299 void (*release)(struct usb_bus *bus); 300 301 #if defined(CONFIG_USB_MON) 302 struct mon_bus *mon_bus; /* non-null when associated */ 303 int monitored; /* non-zero when monitored */ 304 #endif 305 }; 306 307 /* ----------------------------------------------------------------------- */ 308 309 /* This is arbitrary. 310 * From USB 2.0 spec Table 11-13, offset 7, a hub can 311 * have up to 255 ports. The most yet reported is 10. 312 */ 313 #define USB_MAXCHILDREN (16) 314 315 struct usb_tt; 316 317 /* 318 * struct usb_device - kernel's representation of a USB device 319 * 320 * FIXME: Write the kerneldoc! 321 * 322 * Usbcore drivers should not set usbdev->state directly. Instead use 323 * usb_set_device_state(). 324 */ 325 struct usb_device { 326 int devnum; /* Address on USB bus */ 327 char devpath [16]; /* Use in messages: /port/port/... */ 328 enum usb_device_state state; /* configured, not attached, etc */ 329 enum usb_device_speed speed; /* high/full/low (or error) */ 330 331 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 332 int ttport; /* device port on that tt hub */ 333 334 unsigned int toggle[2]; /* one bit for each endpoint 335 * ([0] = IN, [1] = OUT) */ 336 337 struct usb_device *parent; /* our hub, unless we're the root */ 338 struct usb_bus *bus; /* Bus we're part of */ 339 struct usb_host_endpoint ep0; 340 341 struct device dev; /* Generic device interface */ 342 343 struct usb_device_descriptor descriptor;/* Descriptor */ 344 struct usb_host_config *config; /* All of the configs */ 345 346 struct usb_host_config *actconfig;/* the active configuration */ 347 struct usb_host_endpoint *ep_in[16]; 348 struct usb_host_endpoint *ep_out[16]; 349 350 char **rawdescriptors; /* Raw descriptors for each config */ 351 352 unsigned short bus_mA; /* Current available from the bus */ 353 u8 portnum; /* Parent port number (origin 1) */ 354 355 int have_langid; /* whether string_langid is valid */ 356 int string_langid; /* language ID for strings */ 357 358 /* static strings from the device */ 359 char *product; /* iProduct string, if present */ 360 char *manufacturer; /* iManufacturer string, if present */ 361 char *serial; /* iSerialNumber string, if present */ 362 363 struct list_head filelist; 364 struct device *usbfs_dev; 365 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 366 367 /* 368 * Child devices - these can be either new devices 369 * (if this is a hub device), or different instances 370 * of this same device. 371 * 372 * Each instance needs its own set of data structures. 373 */ 374 375 int maxchild; /* Number of ports if hub */ 376 struct usb_device *children[USB_MAXCHILDREN]; 377 }; 378 #define to_usb_device(d) container_of(d, struct usb_device, dev) 379 380 extern struct usb_device *usb_get_dev(struct usb_device *dev); 381 extern void usb_put_dev(struct usb_device *dev); 382 383 /* USB device locking */ 384 #define usb_lock_device(udev) down(&(udev)->dev.sem) 385 #define usb_unlock_device(udev) up(&(udev)->dev.sem) 386 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 387 extern int usb_lock_device_for_reset(struct usb_device *udev, 388 struct usb_interface *iface); 389 390 /* USB port reset for device reinitialization */ 391 extern int usb_reset_device(struct usb_device *dev); 392 extern int usb_reset_composite_device(struct usb_device *dev, 393 struct usb_interface *iface); 394 395 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 396 397 /*-------------------------------------------------------------------------*/ 398 399 /* for drivers using iso endpoints */ 400 extern int usb_get_current_frame_number (struct usb_device *usb_dev); 401 402 /* used these for multi-interface device registration */ 403 extern int usb_driver_claim_interface(struct usb_driver *driver, 404 struct usb_interface *iface, void* priv); 405 406 /** 407 * usb_interface_claimed - returns true iff an interface is claimed 408 * @iface: the interface being checked 409 * 410 * Returns true (nonzero) iff the interface is claimed, else false (zero). 411 * Callers must own the driver model's usb bus readlock. So driver 412 * probe() entries don't need extra locking, but other call contexts 413 * may need to explicitly claim that lock. 414 * 415 */ 416 static inline int usb_interface_claimed(struct usb_interface *iface) { 417 return (iface->dev.driver != NULL); 418 } 419 420 extern void usb_driver_release_interface(struct usb_driver *driver, 421 struct usb_interface *iface); 422 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 423 const struct usb_device_id *id); 424 425 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 426 int minor); 427 extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, 428 unsigned ifnum); 429 extern struct usb_host_interface *usb_altnum_to_altsetting( 430 struct usb_interface *intf, unsigned int altnum); 431 432 433 /** 434 * usb_make_path - returns stable device path in the usb tree 435 * @dev: the device whose path is being constructed 436 * @buf: where to put the string 437 * @size: how big is "buf"? 438 * 439 * Returns length of the string (> 0) or negative if size was too small. 440 * 441 * This identifier is intended to be "stable", reflecting physical paths in 442 * hardware such as physical bus addresses for host controllers or ports on 443 * USB hubs. That makes it stay the same until systems are physically 444 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 445 * controllers. Adding and removing devices, including virtual root hubs 446 * in host controller driver modules, does not change these path identifers; 447 * neither does rebooting or re-enumerating. These are more useful identifiers 448 * than changeable ("unstable") ones like bus numbers or device addresses. 449 * 450 * With a partial exception for devices connected to USB 2.0 root hubs, these 451 * identifiers are also predictable. So long as the device tree isn't changed, 452 * plugging any USB device into a given hub port always gives it the same path. 453 * Because of the use of "companion" controllers, devices connected to ports on 454 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 455 * high speed, and a different one if they are full or low speed. 456 */ 457 static inline int usb_make_path (struct usb_device *dev, char *buf, 458 size_t size) 459 { 460 int actual; 461 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 462 dev->devpath); 463 return (actual >= (int)size) ? -1 : actual; 464 } 465 466 /*-------------------------------------------------------------------------*/ 467 468 #define USB_DEVICE_ID_MATCH_DEVICE \ 469 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 470 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 471 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 472 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 473 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 474 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 475 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 476 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 477 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 478 #define USB_DEVICE_ID_MATCH_INT_INFO \ 479 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 480 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 481 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 482 483 /** 484 * USB_DEVICE - macro used to describe a specific usb device 485 * @vend: the 16 bit USB Vendor ID 486 * @prod: the 16 bit USB Product ID 487 * 488 * This macro is used to create a struct usb_device_id that matches a 489 * specific device. 490 */ 491 #define USB_DEVICE(vend,prod) \ 492 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 493 .idProduct = (prod) 494 /** 495 * USB_DEVICE_VER - macro used to describe a specific usb device with a 496 * version range 497 * @vend: the 16 bit USB Vendor ID 498 * @prod: the 16 bit USB Product ID 499 * @lo: the bcdDevice_lo value 500 * @hi: the bcdDevice_hi value 501 * 502 * This macro is used to create a struct usb_device_id that matches a 503 * specific device, with a version range. 504 */ 505 #define USB_DEVICE_VER(vend,prod,lo,hi) \ 506 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 507 .idVendor = (vend), .idProduct = (prod), \ 508 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 509 510 /** 511 * USB_DEVICE_INFO - macro used to describe a class of usb devices 512 * @cl: bDeviceClass value 513 * @sc: bDeviceSubClass value 514 * @pr: bDeviceProtocol value 515 * 516 * This macro is used to create a struct usb_device_id that matches a 517 * specific class of devices. 518 */ 519 #define USB_DEVICE_INFO(cl,sc,pr) \ 520 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 521 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 522 523 /** 524 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 525 * @cl: bInterfaceClass value 526 * @sc: bInterfaceSubClass value 527 * @pr: bInterfaceProtocol value 528 * 529 * This macro is used to create a struct usb_device_id that matches a 530 * specific class of interfaces. 531 */ 532 #define USB_INTERFACE_INFO(cl,sc,pr) \ 533 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 534 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 535 536 /* ----------------------------------------------------------------------- */ 537 538 struct usb_dynids { 539 spinlock_t lock; 540 struct list_head list; 541 }; 542 543 /** 544 * struct usb_driver - identifies USB driver to usbcore 545 * @name: The driver name should be unique among USB drivers, 546 * and should normally be the same as the module name. 547 * @probe: Called to see if the driver is willing to manage a particular 548 * interface on a device. If it is, probe returns zero and uses 549 * dev_set_drvdata() to associate driver-specific data with the 550 * interface. It may also use usb_set_interface() to specify the 551 * appropriate altsetting. If unwilling to manage the interface, 552 * return a negative errno value. 553 * @disconnect: Called when the interface is no longer accessible, usually 554 * because its device has been (or is being) disconnected or the 555 * driver module is being unloaded. 556 * @ioctl: Used for drivers that want to talk to userspace through 557 * the "usbfs" filesystem. This lets devices provide ways to 558 * expose information to user space regardless of where they 559 * do (or don't) show up otherwise in the filesystem. 560 * @suspend: Called when the device is going to be suspended by the system. 561 * @resume: Called when the device is being resumed by the system. 562 * @pre_reset: Called by usb_reset_composite_device() when the device 563 * is about to be reset. 564 * @post_reset: Called by usb_reset_composite_device() after the device 565 * has been reset. 566 * @id_table: USB drivers use ID table to support hotplugging. 567 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 568 * or your driver's probe function will never get called. 569 * @dynids: used internally to hold the list of dynamically added device 570 * ids for this driver. 571 * @driver: the driver model core driver structure. 572 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 573 * added to this driver by preventing the sysfs file from being created. 574 * 575 * USB drivers must provide a name, probe() and disconnect() methods, 576 * and an id_table. Other driver fields are optional. 577 * 578 * The id_table is used in hotplugging. It holds a set of descriptors, 579 * and specialized data may be associated with each entry. That table 580 * is used by both user and kernel mode hotplugging support. 581 * 582 * The probe() and disconnect() methods are called in a context where 583 * they can sleep, but they should avoid abusing the privilege. Most 584 * work to connect to a device should be done when the device is opened, 585 * and undone at the last close. The disconnect code needs to address 586 * concurrency issues with respect to open() and close() methods, as 587 * well as forcing all pending I/O requests to complete (by unlinking 588 * them as necessary, and blocking until the unlinks complete). 589 */ 590 struct usb_driver { 591 const char *name; 592 593 int (*probe) (struct usb_interface *intf, 594 const struct usb_device_id *id); 595 596 void (*disconnect) (struct usb_interface *intf); 597 598 int (*ioctl) (struct usb_interface *intf, unsigned int code, 599 void *buf); 600 601 int (*suspend) (struct usb_interface *intf, pm_message_t message); 602 int (*resume) (struct usb_interface *intf); 603 604 void (*pre_reset) (struct usb_interface *intf); 605 void (*post_reset) (struct usb_interface *intf); 606 607 const struct usb_device_id *id_table; 608 609 struct usb_dynids dynids; 610 struct device_driver driver; 611 unsigned int no_dynamic_id:1; 612 }; 613 #define to_usb_driver(d) container_of(d, struct usb_driver, driver) 614 615 extern struct bus_type usb_bus_type; 616 617 /** 618 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 619 * @name: the usb class device name for this driver. Will show up in sysfs. 620 * @fops: pointer to the struct file_operations of this driver. 621 * @minor_base: the start of the minor range for this driver. 622 * 623 * This structure is used for the usb_register_dev() and 624 * usb_unregister_dev() functions, to consolidate a number of the 625 * parameters used for them. 626 */ 627 struct usb_class_driver { 628 char *name; 629 const struct file_operations *fops; 630 int minor_base; 631 }; 632 633 /* 634 * use these in module_init()/module_exit() 635 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 636 */ 637 int usb_register_driver(struct usb_driver *, struct module *); 638 static inline int usb_register(struct usb_driver *driver) 639 { 640 return usb_register_driver(driver, THIS_MODULE); 641 } 642 extern void usb_deregister(struct usb_driver *); 643 644 extern int usb_register_dev(struct usb_interface *intf, 645 struct usb_class_driver *class_driver); 646 extern void usb_deregister_dev(struct usb_interface *intf, 647 struct usb_class_driver *class_driver); 648 649 extern int usb_disabled(void); 650 651 /* ----------------------------------------------------------------------- */ 652 653 /* 654 * URB support, for asynchronous request completions 655 */ 656 657 /* 658 * urb->transfer_flags: 659 */ 660 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 661 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 662 * ignored */ 663 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 664 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 665 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 666 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 667 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 668 * needed */ 669 670 struct usb_iso_packet_descriptor { 671 unsigned int offset; 672 unsigned int length; /* expected length */ 673 unsigned int actual_length; 674 unsigned int status; 675 }; 676 677 struct urb; 678 struct pt_regs; 679 680 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *); 681 682 /** 683 * struct urb - USB Request Block 684 * @urb_list: For use by current owner of the URB. 685 * @pipe: Holds endpoint number, direction, type, and more. 686 * Create these values with the eight macros available; 687 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 688 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 689 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 690 * numbers range from zero to fifteen. Note that "in" endpoint two 691 * is a different endpoint (and pipe) from "out" endpoint two. 692 * The current configuration controls the existence, type, and 693 * maximum packet size of any given endpoint. 694 * @dev: Identifies the USB device to perform the request. 695 * @status: This is read in non-iso completion functions to get the 696 * status of the particular request. ISO requests only use it 697 * to tell whether the URB was unlinked; detailed status for 698 * each frame is in the fields of the iso_frame-desc. 699 * @transfer_flags: A variety of flags may be used to affect how URB 700 * submission, unlinking, or operation are handled. Different 701 * kinds of URB can use different flags. 702 * @transfer_buffer: This identifies the buffer to (or from) which 703 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 704 * is set). This buffer must be suitable for DMA; allocate it with 705 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 706 * of this buffer will be modified. This buffer is used for the data 707 * stage of control transfers. 708 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 709 * the device driver is saying that it provided this DMA address, 710 * which the host controller driver should use in preference to the 711 * transfer_buffer. 712 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 713 * be broken up into chunks according to the current maximum packet 714 * size for the endpoint, which is a function of the configuration 715 * and is encoded in the pipe. When the length is zero, neither 716 * transfer_buffer nor transfer_dma is used. 717 * @actual_length: This is read in non-iso completion functions, and 718 * it tells how many bytes (out of transfer_buffer_length) were 719 * transferred. It will normally be the same as requested, unless 720 * either an error was reported or a short read was performed. 721 * The URB_SHORT_NOT_OK transfer flag may be used to make such 722 * short reads be reported as errors. 723 * @setup_packet: Only used for control transfers, this points to eight bytes 724 * of setup data. Control transfers always start by sending this data 725 * to the device. Then transfer_buffer is read or written, if needed. 726 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 727 * device driver has provided this DMA address for the setup packet. 728 * The host controller driver should use this in preference to 729 * setup_packet. 730 * @start_frame: Returns the initial frame for isochronous transfers. 731 * @number_of_packets: Lists the number of ISO transfer buffers. 732 * @interval: Specifies the polling interval for interrupt or isochronous 733 * transfers. The units are frames (milliseconds) for for full and low 734 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 735 * @error_count: Returns the number of ISO transfers that reported errors. 736 * @context: For use in completion functions. This normally points to 737 * request-specific driver context. 738 * @complete: Completion handler. This URB is passed as the parameter to the 739 * completion function. The completion function may then do what 740 * it likes with the URB, including resubmitting or freeing it. 741 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 742 * collect the transfer status for each buffer. 743 * 744 * This structure identifies USB transfer requests. URBs must be allocated by 745 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 746 * Initialization may be done using various usb_fill_*_urb() functions. URBs 747 * are submitted using usb_submit_urb(), and pending requests may be canceled 748 * using usb_unlink_urb() or usb_kill_urb(). 749 * 750 * Data Transfer Buffers: 751 * 752 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 753 * taken from the general page pool. That is provided by transfer_buffer 754 * (control requests also use setup_packet), and host controller drivers 755 * perform a dma mapping (and unmapping) for each buffer transferred. Those 756 * mapping operations can be expensive on some platforms (perhaps using a dma 757 * bounce buffer or talking to an IOMMU), 758 * although they're cheap on commodity x86 and ppc hardware. 759 * 760 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 761 * which tell the host controller driver that no such mapping is needed since 762 * the device driver is DMA-aware. For example, a device driver might 763 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 764 * When these transfer flags are provided, host controller drivers will 765 * attempt to use the dma addresses found in the transfer_dma and/or 766 * setup_dma fields rather than determining a dma address themselves. (Note 767 * that transfer_buffer and setup_packet must still be set because not all 768 * host controllers use DMA, nor do virtual root hubs). 769 * 770 * Initialization: 771 * 772 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 773 * zero), and complete fields. All URBs must also initialize 774 * transfer_buffer and transfer_buffer_length. They may provide the 775 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 776 * to be treated as errors; that flag is invalid for write requests. 777 * 778 * Bulk URBs may 779 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 780 * should always terminate with a short packet, even if it means adding an 781 * extra zero length packet. 782 * 783 * Control URBs must provide a setup_packet. The setup_packet and 784 * transfer_buffer may each be mapped for DMA or not, independently of 785 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 786 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 787 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 788 * 789 * Interrupt URBs must provide an interval, saying how often (in milliseconds 790 * or, for highspeed devices, 125 microsecond units) 791 * to poll for transfers. After the URB has been submitted, the interval 792 * field reflects how the transfer was actually scheduled. 793 * The polling interval may be more frequent than requested. 794 * For example, some controllers have a maximum interval of 32 milliseconds, 795 * while others support intervals of up to 1024 milliseconds. 796 * Isochronous URBs also have transfer intervals. (Note that for isochronous 797 * endpoints, as well as high speed interrupt endpoints, the encoding of 798 * the transfer interval in the endpoint descriptor is logarithmic. 799 * Device drivers must convert that value to linear units themselves.) 800 * 801 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 802 * the host controller to schedule the transfer as soon as bandwidth 803 * utilization allows, and then set start_frame to reflect the actual frame 804 * selected during submission. Otherwise drivers must specify the start_frame 805 * and handle the case where the transfer can't begin then. However, drivers 806 * won't know how bandwidth is currently allocated, and while they can 807 * find the current frame using usb_get_current_frame_number () they can't 808 * know the range for that frame number. (Ranges for frame counter values 809 * are HC-specific, and can go from 256 to 65536 frames from "now".) 810 * 811 * Isochronous URBs have a different data transfer model, in part because 812 * the quality of service is only "best effort". Callers provide specially 813 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 814 * at the end. Each such packet is an individual ISO transfer. Isochronous 815 * URBs are normally queued, submitted by drivers to arrange that 816 * transfers are at least double buffered, and then explicitly resubmitted 817 * in completion handlers, so 818 * that data (such as audio or video) streams at as constant a rate as the 819 * host controller scheduler can support. 820 * 821 * Completion Callbacks: 822 * 823 * The completion callback is made in_interrupt(), and one of the first 824 * things that a completion handler should do is check the status field. 825 * The status field is provided for all URBs. It is used to report 826 * unlinked URBs, and status for all non-ISO transfers. It should not 827 * be examined before the URB is returned to the completion handler. 828 * 829 * The context field is normally used to link URBs back to the relevant 830 * driver or request state. 831 * 832 * When the completion callback is invoked for non-isochronous URBs, the 833 * actual_length field tells how many bytes were transferred. This field 834 * is updated even when the URB terminated with an error or was unlinked. 835 * 836 * ISO transfer status is reported in the status and actual_length fields 837 * of the iso_frame_desc array, and the number of errors is reported in 838 * error_count. Completion callbacks for ISO transfers will normally 839 * (re)submit URBs to ensure a constant transfer rate. 840 * 841 * Note that even fields marked "public" should not be touched by the driver 842 * when the urb is owned by the hcd, that is, since the call to 843 * usb_submit_urb() till the entry into the completion routine. 844 */ 845 struct urb 846 { 847 /* private: usb core and host controller only fields in the urb */ 848 struct kref kref; /* reference count of the URB */ 849 spinlock_t lock; /* lock for the URB */ 850 void *hcpriv; /* private data for host controller */ 851 int bandwidth; /* bandwidth for INT/ISO request */ 852 atomic_t use_count; /* concurrent submissions counter */ 853 u8 reject; /* submissions will fail */ 854 855 /* public: documented fields in the urb that can be used by drivers */ 856 struct list_head urb_list; /* list head for use by the urb's 857 * current owner */ 858 struct usb_device *dev; /* (in) pointer to associated device */ 859 unsigned int pipe; /* (in) pipe information */ 860 int status; /* (return) non-ISO status */ 861 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 862 void *transfer_buffer; /* (in) associated data buffer */ 863 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 864 int transfer_buffer_length; /* (in) data buffer length */ 865 int actual_length; /* (return) actual transfer length */ 866 unsigned char *setup_packet; /* (in) setup packet (control only) */ 867 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 868 int start_frame; /* (modify) start frame (ISO) */ 869 int number_of_packets; /* (in) number of ISO packets */ 870 int interval; /* (modify) transfer interval 871 * (INT/ISO) */ 872 int error_count; /* (return) number of ISO errors */ 873 void *context; /* (in) context for completion */ 874 usb_complete_t complete; /* (in) completion routine */ 875 struct usb_iso_packet_descriptor iso_frame_desc[0]; 876 /* (in) ISO ONLY */ 877 }; 878 879 /* ----------------------------------------------------------------------- */ 880 881 /** 882 * usb_fill_control_urb - initializes a control urb 883 * @urb: pointer to the urb to initialize. 884 * @dev: pointer to the struct usb_device for this urb. 885 * @pipe: the endpoint pipe 886 * @setup_packet: pointer to the setup_packet buffer 887 * @transfer_buffer: pointer to the transfer buffer 888 * @buffer_length: length of the transfer buffer 889 * @complete: pointer to the usb_complete_t function 890 * @context: what to set the urb context to. 891 * 892 * Initializes a control urb with the proper information needed to submit 893 * it to a device. 894 */ 895 static inline void usb_fill_control_urb (struct urb *urb, 896 struct usb_device *dev, 897 unsigned int pipe, 898 unsigned char *setup_packet, 899 void *transfer_buffer, 900 int buffer_length, 901 usb_complete_t complete, 902 void *context) 903 { 904 spin_lock_init(&urb->lock); 905 urb->dev = dev; 906 urb->pipe = pipe; 907 urb->setup_packet = setup_packet; 908 urb->transfer_buffer = transfer_buffer; 909 urb->transfer_buffer_length = buffer_length; 910 urb->complete = complete; 911 urb->context = context; 912 } 913 914 /** 915 * usb_fill_bulk_urb - macro to help initialize a bulk urb 916 * @urb: pointer to the urb to initialize. 917 * @dev: pointer to the struct usb_device for this urb. 918 * @pipe: the endpoint pipe 919 * @transfer_buffer: pointer to the transfer buffer 920 * @buffer_length: length of the transfer buffer 921 * @complete: pointer to the usb_complete_t function 922 * @context: what to set the urb context to. 923 * 924 * Initializes a bulk urb with the proper information needed to submit it 925 * to a device. 926 */ 927 static inline void usb_fill_bulk_urb (struct urb *urb, 928 struct usb_device *dev, 929 unsigned int pipe, 930 void *transfer_buffer, 931 int buffer_length, 932 usb_complete_t complete, 933 void *context) 934 { 935 spin_lock_init(&urb->lock); 936 urb->dev = dev; 937 urb->pipe = pipe; 938 urb->transfer_buffer = transfer_buffer; 939 urb->transfer_buffer_length = buffer_length; 940 urb->complete = complete; 941 urb->context = context; 942 } 943 944 /** 945 * usb_fill_int_urb - macro to help initialize a interrupt urb 946 * @urb: pointer to the urb to initialize. 947 * @dev: pointer to the struct usb_device for this urb. 948 * @pipe: the endpoint pipe 949 * @transfer_buffer: pointer to the transfer buffer 950 * @buffer_length: length of the transfer buffer 951 * @complete: pointer to the usb_complete_t function 952 * @context: what to set the urb context to. 953 * @interval: what to set the urb interval to, encoded like 954 * the endpoint descriptor's bInterval value. 955 * 956 * Initializes a interrupt urb with the proper information needed to submit 957 * it to a device. 958 * Note that high speed interrupt endpoints use a logarithmic encoding of 959 * the endpoint interval, and express polling intervals in microframes 960 * (eight per millisecond) rather than in frames (one per millisecond). 961 */ 962 static inline void usb_fill_int_urb (struct urb *urb, 963 struct usb_device *dev, 964 unsigned int pipe, 965 void *transfer_buffer, 966 int buffer_length, 967 usb_complete_t complete, 968 void *context, 969 int interval) 970 { 971 spin_lock_init(&urb->lock); 972 urb->dev = dev; 973 urb->pipe = pipe; 974 urb->transfer_buffer = transfer_buffer; 975 urb->transfer_buffer_length = buffer_length; 976 urb->complete = complete; 977 urb->context = context; 978 if (dev->speed == USB_SPEED_HIGH) 979 urb->interval = 1 << (interval - 1); 980 else 981 urb->interval = interval; 982 urb->start_frame = -1; 983 } 984 985 extern void usb_init_urb(struct urb *urb); 986 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 987 extern void usb_free_urb(struct urb *urb); 988 #define usb_put_urb usb_free_urb 989 extern struct urb *usb_get_urb(struct urb *urb); 990 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 991 extern int usb_unlink_urb(struct urb *urb); 992 extern void usb_kill_urb(struct urb *urb); 993 994 #define HAVE_USB_BUFFERS 995 void *usb_buffer_alloc (struct usb_device *dev, size_t size, 996 gfp_t mem_flags, dma_addr_t *dma); 997 void usb_buffer_free (struct usb_device *dev, size_t size, 998 void *addr, dma_addr_t dma); 999 1000 #if 0 1001 struct urb *usb_buffer_map (struct urb *urb); 1002 void usb_buffer_dmasync (struct urb *urb); 1003 void usb_buffer_unmap (struct urb *urb); 1004 #endif 1005 1006 struct scatterlist; 1007 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, 1008 struct scatterlist *sg, int nents); 1009 #if 0 1010 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, 1011 struct scatterlist *sg, int n_hw_ents); 1012 #endif 1013 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, 1014 struct scatterlist *sg, int n_hw_ents); 1015 1016 /*-------------------------------------------------------------------* 1017 * SYNCHRONOUS CALL SUPPORT * 1018 *-------------------------------------------------------------------*/ 1019 1020 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1021 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1022 void *data, __u16 size, int timeout); 1023 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1024 void *data, int len, int *actual_length, int timeout); 1025 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1026 void *data, int len, int *actual_length, 1027 int timeout); 1028 1029 /* wrappers around usb_control_msg() for the most common standard requests */ 1030 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1031 unsigned char descindex, void *buf, int size); 1032 extern int usb_get_status(struct usb_device *dev, 1033 int type, int target, void *data); 1034 extern int usb_string(struct usb_device *dev, int index, 1035 char *buf, size_t size); 1036 1037 /* wrappers that also update important state inside usbcore */ 1038 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1039 extern int usb_reset_configuration(struct usb_device *dev); 1040 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1041 1042 /* 1043 * timeouts, in milliseconds, used for sending/receiving control messages 1044 * they typically complete within a few frames (msec) after they're issued 1045 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1046 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1047 */ 1048 #define USB_CTRL_GET_TIMEOUT 5000 1049 #define USB_CTRL_SET_TIMEOUT 5000 1050 1051 1052 /** 1053 * struct usb_sg_request - support for scatter/gather I/O 1054 * @status: zero indicates success, else negative errno 1055 * @bytes: counts bytes transferred. 1056 * 1057 * These requests are initialized using usb_sg_init(), and then are used 1058 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1059 * members of the request object aren't for driver access. 1060 * 1061 * The status and bytecount values are valid only after usb_sg_wait() 1062 * returns. If the status is zero, then the bytecount matches the total 1063 * from the request. 1064 * 1065 * After an error completion, drivers may need to clear a halt condition 1066 * on the endpoint. 1067 */ 1068 struct usb_sg_request { 1069 int status; 1070 size_t bytes; 1071 1072 /* 1073 * members below are private: to usbcore, 1074 * and are not provided for driver access! 1075 */ 1076 spinlock_t lock; 1077 1078 struct usb_device *dev; 1079 int pipe; 1080 struct scatterlist *sg; 1081 int nents; 1082 1083 int entries; 1084 struct urb **urbs; 1085 1086 int count; 1087 struct completion complete; 1088 }; 1089 1090 int usb_sg_init ( 1091 struct usb_sg_request *io, 1092 struct usb_device *dev, 1093 unsigned pipe, 1094 unsigned period, 1095 struct scatterlist *sg, 1096 int nents, 1097 size_t length, 1098 gfp_t mem_flags 1099 ); 1100 void usb_sg_cancel (struct usb_sg_request *io); 1101 void usb_sg_wait (struct usb_sg_request *io); 1102 1103 1104 /* ----------------------------------------------------------------------- */ 1105 1106 /* 1107 * For various legacy reasons, Linux has a small cookie that's paired with 1108 * a struct usb_device to identify an endpoint queue. Queue characteristics 1109 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1110 * an unsigned int encoded as: 1111 * 1112 * - direction: bit 7 (0 = Host-to-Device [Out], 1113 * 1 = Device-to-Host [In] ... 1114 * like endpoint bEndpointAddress) 1115 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1116 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1117 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1118 * 10 = control, 11 = bulk) 1119 * 1120 * Given the device address and endpoint descriptor, pipes are redundant. 1121 */ 1122 1123 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1124 /* (yet ... they're the values used by usbfs) */ 1125 #define PIPE_ISOCHRONOUS 0 1126 #define PIPE_INTERRUPT 1 1127 #define PIPE_CONTROL 2 1128 #define PIPE_BULK 3 1129 1130 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1131 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1132 1133 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1134 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1135 1136 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1137 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1138 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1139 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1140 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1141 1142 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1143 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1144 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1145 #define usb_settoggle(dev, ep, out, bit) \ 1146 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1147 ((bit) << (ep))) 1148 1149 1150 static inline unsigned int __create_pipe(struct usb_device *dev, 1151 unsigned int endpoint) 1152 { 1153 return (dev->devnum << 8) | (endpoint << 15); 1154 } 1155 1156 /* Create various pipes... */ 1157 #define usb_sndctrlpipe(dev,endpoint) \ 1158 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1159 #define usb_rcvctrlpipe(dev,endpoint) \ 1160 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1161 #define usb_sndisocpipe(dev,endpoint) \ 1162 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1163 #define usb_rcvisocpipe(dev,endpoint) \ 1164 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1165 #define usb_sndbulkpipe(dev,endpoint) \ 1166 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1167 #define usb_rcvbulkpipe(dev,endpoint) \ 1168 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1169 #define usb_sndintpipe(dev,endpoint) \ 1170 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1171 #define usb_rcvintpipe(dev,endpoint) \ 1172 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1173 1174 /*-------------------------------------------------------------------------*/ 1175 1176 static inline __u16 1177 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1178 { 1179 struct usb_host_endpoint *ep; 1180 unsigned epnum = usb_pipeendpoint(pipe); 1181 1182 if (is_out) { 1183 WARN_ON(usb_pipein(pipe)); 1184 ep = udev->ep_out[epnum]; 1185 } else { 1186 WARN_ON(usb_pipeout(pipe)); 1187 ep = udev->ep_in[epnum]; 1188 } 1189 if (!ep) 1190 return 0; 1191 1192 /* NOTE: only 0x07ff bits are for packet size... */ 1193 return le16_to_cpu(ep->desc.wMaxPacketSize); 1194 } 1195 1196 /* ----------------------------------------------------------------------- */ 1197 1198 /* Events from the usb core */ 1199 #define USB_DEVICE_ADD 0x0001 1200 #define USB_DEVICE_REMOVE 0x0002 1201 #define USB_BUS_ADD 0x0003 1202 #define USB_BUS_REMOVE 0x0004 1203 extern void usb_register_notify(struct notifier_block *nb); 1204 extern void usb_unregister_notify(struct notifier_block *nb); 1205 1206 #ifdef DEBUG 1207 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1208 __FILE__ , ## arg) 1209 #else 1210 #define dbg(format, arg...) do {} while (0) 1211 #endif 1212 1213 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1214 __FILE__ , ## arg) 1215 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1216 __FILE__ , ## arg) 1217 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1218 __FILE__ , ## arg) 1219 1220 1221 #endif /* __KERNEL__ */ 1222 1223 #endif 1224