xref: /linux-6.15/include/linux/usb.h (revision 4e57b681)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb_ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/config.h>
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 
24 struct usb_device;
25 struct usb_driver;
26 
27 /*-------------------------------------------------------------------------*/
28 
29 /*
30  * Host-side wrappers for standard USB descriptors ... these are parsed
31  * from the data provided by devices.  Parsing turns them from a flat
32  * sequence of descriptors into a hierarchy:
33  *
34  *  - devices have one (usually) or more configs;
35  *  - configs have one (often) or more interfaces;
36  *  - interfaces have one (usually) or more settings;
37  *  - each interface setting has zero or (usually) more endpoints.
38  *
39  * And there might be other descriptors mixed in with those.
40  *
41  * Devices may also have class-specific or vendor-specific descriptors.
42  */
43 
44 /**
45  * struct usb_host_endpoint - host-side endpoint descriptor and queue
46  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
47  * @urb_list: urbs queued to this endpoint; maintained by usbcore
48  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
49  *	with one or more transfer descriptors (TDs) per urb
50  * @extra: descriptors following this endpoint in the configuration
51  * @extralen: how many bytes of "extra" are valid
52  *
53  * USB requests are always queued to a given endpoint, identified by a
54  * descriptor within an active interface in a given USB configuration.
55  */
56 struct usb_host_endpoint {
57 	struct usb_endpoint_descriptor	desc;
58 	struct list_head		urb_list;
59 	void				*hcpriv;
60 	struct kobject			*kobj;	/* For sysfs info */
61 
62 	unsigned char *extra;   /* Extra descriptors */
63 	int extralen;
64 };
65 
66 /* host-side wrapper for one interface setting's parsed descriptors */
67 struct usb_host_interface {
68 	struct usb_interface_descriptor	desc;
69 
70 	/* array of desc.bNumEndpoint endpoints associated with this
71 	 * interface setting.  these will be in no particular order.
72 	 */
73 	struct usb_host_endpoint *endpoint;
74 
75 	char *string;		/* iInterface string, if present */
76 	unsigned char *extra;   /* Extra descriptors */
77 	int extralen;
78 };
79 
80 enum usb_interface_condition {
81 	USB_INTERFACE_UNBOUND = 0,
82 	USB_INTERFACE_BINDING,
83 	USB_INTERFACE_BOUND,
84 	USB_INTERFACE_UNBINDING,
85 };
86 
87 /**
88  * struct usb_interface - what usb device drivers talk to
89  * @altsetting: array of interface structures, one for each alternate
90  * 	setting that may be selected.  Each one includes a set of
91  * 	endpoint configurations.  They will be in no particular order.
92  * @num_altsetting: number of altsettings defined.
93  * @cur_altsetting: the current altsetting.
94  * @driver: the USB driver that is bound to this interface.
95  * @minor: the minor number assigned to this interface, if this
96  *	interface is bound to a driver that uses the USB major number.
97  *	If this interface does not use the USB major, this field should
98  *	be unused.  The driver should set this value in the probe()
99  *	function of the driver, after it has been assigned a minor
100  *	number from the USB core by calling usb_register_dev().
101  * @condition: binding state of the interface: not bound, binding
102  *	(in probe()), bound to a driver, or unbinding (in disconnect())
103  * @dev: driver model's view of this device
104  * @class_dev: driver model's class view of this device.
105  *
106  * USB device drivers attach to interfaces on a physical device.  Each
107  * interface encapsulates a single high level function, such as feeding
108  * an audio stream to a speaker or reporting a change in a volume control.
109  * Many USB devices only have one interface.  The protocol used to talk to
110  * an interface's endpoints can be defined in a usb "class" specification,
111  * or by a product's vendor.  The (default) control endpoint is part of
112  * every interface, but is never listed among the interface's descriptors.
113  *
114  * The driver that is bound to the interface can use standard driver model
115  * calls such as dev_get_drvdata() on the dev member of this structure.
116  *
117  * Each interface may have alternate settings.  The initial configuration
118  * of a device sets altsetting 0, but the device driver can change
119  * that setting using usb_set_interface().  Alternate settings are often
120  * used to control the the use of periodic endpoints, such as by having
121  * different endpoints use different amounts of reserved USB bandwidth.
122  * All standards-conformant USB devices that use isochronous endpoints
123  * will use them in non-default settings.
124  *
125  * The USB specification says that alternate setting numbers must run from
126  * 0 to one less than the total number of alternate settings.  But some
127  * devices manage to mess this up, and the structures aren't necessarily
128  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
129  * look up an alternate setting in the altsetting array based on its number.
130  */
131 struct usb_interface {
132 	/* array of alternate settings for this interface,
133 	 * stored in no particular order */
134 	struct usb_host_interface *altsetting;
135 
136 	struct usb_host_interface *cur_altsetting;	/* the currently
137 					 * active alternate setting */
138 	unsigned num_altsetting;	/* number of alternate settings */
139 
140 	int minor;			/* minor number this interface is
141 					 * bound to */
142 	enum usb_interface_condition condition;		/* state of binding */
143 	struct device dev;		/* interface specific device info */
144 	struct class_device *class_dev;
145 };
146 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
147 #define	interface_to_usbdev(intf) \
148 	container_of(intf->dev.parent, struct usb_device, dev)
149 
150 static inline void *usb_get_intfdata (struct usb_interface *intf)
151 {
152 	return dev_get_drvdata (&intf->dev);
153 }
154 
155 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
156 {
157 	dev_set_drvdata(&intf->dev, data);
158 }
159 
160 struct usb_interface *usb_get_intf(struct usb_interface *intf);
161 void usb_put_intf(struct usb_interface *intf);
162 
163 /* this maximum is arbitrary */
164 #define USB_MAXINTERFACES	32
165 
166 /**
167  * struct usb_interface_cache - long-term representation of a device interface
168  * @num_altsetting: number of altsettings defined.
169  * @ref: reference counter.
170  * @altsetting: variable-length array of interface structures, one for
171  *	each alternate setting that may be selected.  Each one includes a
172  *	set of endpoint configurations.  They will be in no particular order.
173  *
174  * These structures persist for the lifetime of a usb_device, unlike
175  * struct usb_interface (which persists only as long as its configuration
176  * is installed).  The altsetting arrays can be accessed through these
177  * structures at any time, permitting comparison of configurations and
178  * providing support for the /proc/bus/usb/devices pseudo-file.
179  */
180 struct usb_interface_cache {
181 	unsigned num_altsetting;	/* number of alternate settings */
182 	struct kref ref;		/* reference counter */
183 
184 	/* variable-length array of alternate settings for this interface,
185 	 * stored in no particular order */
186 	struct usb_host_interface altsetting[0];
187 };
188 #define	ref_to_usb_interface_cache(r) \
189 		container_of(r, struct usb_interface_cache, ref)
190 #define	altsetting_to_usb_interface_cache(a) \
191 		container_of(a, struct usb_interface_cache, altsetting[0])
192 
193 /**
194  * struct usb_host_config - representation of a device's configuration
195  * @desc: the device's configuration descriptor.
196  * @string: pointer to the cached version of the iConfiguration string, if
197  *	present for this configuration.
198  * @interface: array of pointers to usb_interface structures, one for each
199  *	interface in the configuration.  The number of interfaces is stored
200  *	in desc.bNumInterfaces.  These pointers are valid only while the
201  *	the configuration is active.
202  * @intf_cache: array of pointers to usb_interface_cache structures, one
203  *	for each interface in the configuration.  These structures exist
204  *	for the entire life of the device.
205  * @extra: pointer to buffer containing all extra descriptors associated
206  *	with this configuration (those preceding the first interface
207  *	descriptor).
208  * @extralen: length of the extra descriptors buffer.
209  *
210  * USB devices may have multiple configurations, but only one can be active
211  * at any time.  Each encapsulates a different operational environment;
212  * for example, a dual-speed device would have separate configurations for
213  * full-speed and high-speed operation.  The number of configurations
214  * available is stored in the device descriptor as bNumConfigurations.
215  *
216  * A configuration can contain multiple interfaces.  Each corresponds to
217  * a different function of the USB device, and all are available whenever
218  * the configuration is active.  The USB standard says that interfaces
219  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
220  * of devices get this wrong.  In addition, the interface array is not
221  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
222  * look up an interface entry based on its number.
223  *
224  * Device drivers should not attempt to activate configurations.  The choice
225  * of which configuration to install is a policy decision based on such
226  * considerations as available power, functionality provided, and the user's
227  * desires (expressed through hotplug scripts).  However, drivers can call
228  * usb_reset_configuration() to reinitialize the current configuration and
229  * all its interfaces.
230  */
231 struct usb_host_config {
232 	struct usb_config_descriptor	desc;
233 
234 	char *string;		/* iConfiguration string, if present */
235 	/* the interfaces associated with this configuration,
236 	 * stored in no particular order */
237 	struct usb_interface *interface[USB_MAXINTERFACES];
238 
239 	/* Interface information available even when this is not the
240 	 * active configuration */
241 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
242 
243 	unsigned char *extra;   /* Extra descriptors */
244 	int extralen;
245 };
246 
247 int __usb_get_extra_descriptor(char *buffer, unsigned size,
248 	unsigned char type, void **ptr);
249 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
250 	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
251 		type,(void**)ptr)
252 
253 /* ----------------------------------------------------------------------- */
254 
255 struct usb_operations;
256 
257 /* USB device number allocation bitmap */
258 struct usb_devmap {
259 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
260 };
261 
262 /*
263  * Allocated per bus (tree of devices) we have:
264  */
265 struct usb_bus {
266 	struct device *controller;	/* host/master side hardware */
267 	int busnum;			/* Bus number (in order of reg) */
268 	char *bus_name;			/* stable id (PCI slot_name etc) */
269 	u8 otg_port;			/* 0, or number of OTG/HNP port */
270 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
271 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
272 
273 	int devnum_next;		/* Next open device number in
274 					 * round-robin allocation */
275 
276 	struct usb_devmap devmap;	/* device address allocation map */
277 	struct usb_operations *op;	/* Operations (specific to the HC) */
278 	struct usb_device *root_hub;	/* Root hub */
279 	struct list_head bus_list;	/* list of busses */
280 	void *hcpriv;                   /* Host Controller private data */
281 
282 	int bandwidth_allocated;	/* on this bus: how much of the time
283 					 * reserved for periodic (intr/iso)
284 					 * requests is used, on average?
285 					 * Units: microseconds/frame.
286 					 * Limits: Full/low speed reserve 90%,
287 					 * while high speed reserves 80%.
288 					 */
289 	int bandwidth_int_reqs;		/* number of Interrupt requests */
290 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
291 
292 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
293 
294 	struct class_device *class_dev;	/* class device for this bus */
295 	struct kref kref;		/* reference counting for this bus */
296 	void (*release)(struct usb_bus *bus);
297 
298 #if defined(CONFIG_USB_MON)
299 	struct mon_bus *mon_bus;	/* non-null when associated */
300 	int monitored;			/* non-zero when monitored */
301 #endif
302 };
303 
304 /* ----------------------------------------------------------------------- */
305 
306 /* This is arbitrary.
307  * From USB 2.0 spec Table 11-13, offset 7, a hub can
308  * have up to 255 ports. The most yet reported is 10.
309  */
310 #define USB_MAXCHILDREN		(16)
311 
312 struct usb_tt;
313 
314 /*
315  * struct usb_device - kernel's representation of a USB device
316  *
317  * FIXME: Write the kerneldoc!
318  *
319  * Usbcore drivers should not set usbdev->state directly.  Instead use
320  * usb_set_device_state().
321  */
322 struct usb_device {
323 	int		devnum;		/* Address on USB bus */
324 	char		devpath [16];	/* Use in messages: /port/port/... */
325 	enum usb_device_state	state;	/* configured, not attached, etc */
326 	enum usb_device_speed	speed;	/* high/full/low (or error) */
327 
328 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
329 	int		ttport;		/* device port on that tt hub */
330 
331 	struct semaphore serialize;
332 
333 	unsigned int toggle[2];		/* one bit for each endpoint
334 					 * ([0] = IN, [1] = OUT) */
335 
336 	struct usb_device *parent;	/* our hub, unless we're the root */
337 	struct usb_bus *bus;		/* Bus we're part of */
338 	struct usb_host_endpoint ep0;
339 
340 	struct device dev;		/* Generic device interface */
341 
342 	struct usb_device_descriptor descriptor;/* Descriptor */
343 	struct usb_host_config *config;	/* All of the configs */
344 
345 	struct usb_host_config *actconfig;/* the active configuration */
346 	struct usb_host_endpoint *ep_in[16];
347 	struct usb_host_endpoint *ep_out[16];
348 
349 	char **rawdescriptors;		/* Raw descriptors for each config */
350 
351 	int have_langid;		/* whether string_langid is valid */
352 	int string_langid;		/* language ID for strings */
353 
354 	/* static strings from the device */
355 	char *product;			/* iProduct string, if present */
356 	char *manufacturer;		/* iManufacturer string, if present */
357 	char *serial;			/* iSerialNumber string, if present */
358 
359 	struct list_head filelist;
360 	struct class_device *class_dev;
361 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
362 
363 	/*
364 	 * Child devices - these can be either new devices
365 	 * (if this is a hub device), or different instances
366 	 * of this same device.
367 	 *
368 	 * Each instance needs its own set of data structures.
369 	 */
370 
371 	int maxchild;			/* Number of ports if hub */
372 	struct usb_device *children[USB_MAXCHILDREN];
373 };
374 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
375 
376 extern struct usb_device *usb_get_dev(struct usb_device *dev);
377 extern void usb_put_dev(struct usb_device *dev);
378 
379 extern void usb_lock_device(struct usb_device *udev);
380 extern int usb_trylock_device(struct usb_device *udev);
381 extern int usb_lock_device_for_reset(struct usb_device *udev,
382 		struct usb_interface *iface);
383 extern void usb_unlock_device(struct usb_device *udev);
384 
385 /* USB port reset for device reinitialization */
386 extern int usb_reset_device(struct usb_device *dev);
387 
388 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
389 
390 /*-------------------------------------------------------------------------*/
391 
392 /* for drivers using iso endpoints */
393 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
394 
395 /* used these for multi-interface device registration */
396 extern int usb_driver_claim_interface(struct usb_driver *driver,
397 			struct usb_interface *iface, void* priv);
398 
399 /**
400  * usb_interface_claimed - returns true iff an interface is claimed
401  * @iface: the interface being checked
402  *
403  * Returns true (nonzero) iff the interface is claimed, else false (zero).
404  * Callers must own the driver model's usb bus readlock.  So driver
405  * probe() entries don't need extra locking, but other call contexts
406  * may need to explicitly claim that lock.
407  *
408  */
409 static inline int usb_interface_claimed(struct usb_interface *iface) {
410 	return (iface->dev.driver != NULL);
411 }
412 
413 extern void usb_driver_release_interface(struct usb_driver *driver,
414 			struct usb_interface *iface);
415 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
416 					 const struct usb_device_id *id);
417 
418 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
419 		int minor);
420 extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
421 		unsigned ifnum);
422 extern struct usb_host_interface *usb_altnum_to_altsetting(
423 		struct usb_interface *intf, unsigned int altnum);
424 
425 
426 /**
427  * usb_make_path - returns stable device path in the usb tree
428  * @dev: the device whose path is being constructed
429  * @buf: where to put the string
430  * @size: how big is "buf"?
431  *
432  * Returns length of the string (> 0) or negative if size was too small.
433  *
434  * This identifier is intended to be "stable", reflecting physical paths in
435  * hardware such as physical bus addresses for host controllers or ports on
436  * USB hubs.  That makes it stay the same until systems are physically
437  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
438  * controllers.  Adding and removing devices, including virtual root hubs
439  * in host controller driver modules, does not change these path identifers;
440  * neither does rebooting or re-enumerating.  These are more useful identifiers
441  * than changeable ("unstable") ones like bus numbers or device addresses.
442  *
443  * With a partial exception for devices connected to USB 2.0 root hubs, these
444  * identifiers are also predictable.  So long as the device tree isn't changed,
445  * plugging any USB device into a given hub port always gives it the same path.
446  * Because of the use of "companion" controllers, devices connected to ports on
447  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
448  * high speed, and a different one if they are full or low speed.
449  */
450 static inline int usb_make_path (struct usb_device *dev, char *buf,
451 		size_t size)
452 {
453 	int actual;
454 	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
455 			dev->devpath);
456 	return (actual >= (int)size) ? -1 : actual;
457 }
458 
459 /*-------------------------------------------------------------------------*/
460 
461 #define USB_DEVICE_ID_MATCH_DEVICE \
462 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
463 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
464 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
465 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
466 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
467 #define USB_DEVICE_ID_MATCH_DEV_INFO \
468 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
469 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
470 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
471 #define USB_DEVICE_ID_MATCH_INT_INFO \
472 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
473 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
474 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
475 
476 /**
477  * USB_DEVICE - macro used to describe a specific usb device
478  * @vend: the 16 bit USB Vendor ID
479  * @prod: the 16 bit USB Product ID
480  *
481  * This macro is used to create a struct usb_device_id that matches a
482  * specific device.
483  */
484 #define USB_DEVICE(vend,prod) \
485 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
486 			.idProduct = (prod)
487 /**
488  * USB_DEVICE_VER - macro used to describe a specific usb device with a
489  *		version range
490  * @vend: the 16 bit USB Vendor ID
491  * @prod: the 16 bit USB Product ID
492  * @lo: the bcdDevice_lo value
493  * @hi: the bcdDevice_hi value
494  *
495  * This macro is used to create a struct usb_device_id that matches a
496  * specific device, with a version range.
497  */
498 #define USB_DEVICE_VER(vend,prod,lo,hi) \
499 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
500 	.idVendor = (vend), .idProduct = (prod), \
501 	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
502 
503 /**
504  * USB_DEVICE_INFO - macro used to describe a class of usb devices
505  * @cl: bDeviceClass value
506  * @sc: bDeviceSubClass value
507  * @pr: bDeviceProtocol value
508  *
509  * This macro is used to create a struct usb_device_id that matches a
510  * specific class of devices.
511  */
512 #define USB_DEVICE_INFO(cl,sc,pr) \
513 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
514 	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
515 
516 /**
517  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
518  * @cl: bInterfaceClass value
519  * @sc: bInterfaceSubClass value
520  * @pr: bInterfaceProtocol value
521  *
522  * This macro is used to create a struct usb_device_id that matches a
523  * specific class of interfaces.
524  */
525 #define USB_INTERFACE_INFO(cl,sc,pr) \
526 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
527 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
528 
529 /* ----------------------------------------------------------------------- */
530 
531 /**
532  * struct usb_driver - identifies USB driver to usbcore
533  * @owner: Pointer to the module owner of this driver; initialize
534  *	it using THIS_MODULE.
535  * @name: The driver name should be unique among USB drivers,
536  *	and should normally be the same as the module name.
537  * @probe: Called to see if the driver is willing to manage a particular
538  *	interface on a device.  If it is, probe returns zero and uses
539  *	dev_set_drvdata() to associate driver-specific data with the
540  *	interface.  It may also use usb_set_interface() to specify the
541  *	appropriate altsetting.  If unwilling to manage the interface,
542  *	return a negative errno value.
543  * @disconnect: Called when the interface is no longer accessible, usually
544  *	because its device has been (or is being) disconnected or the
545  *	driver module is being unloaded.
546  * @ioctl: Used for drivers that want to talk to userspace through
547  *	the "usbfs" filesystem.  This lets devices provide ways to
548  *	expose information to user space regardless of where they
549  *	do (or don't) show up otherwise in the filesystem.
550  * @suspend: Called when the device is going to be suspended by the system.
551  * @resume: Called when the device is being resumed by the system.
552  * @id_table: USB drivers use ID table to support hotplugging.
553  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
554  *	or your driver's probe function will never get called.
555  * @driver: the driver model core driver structure.
556  *
557  * USB drivers must provide a name, probe() and disconnect() methods,
558  * and an id_table.  Other driver fields are optional.
559  *
560  * The id_table is used in hotplugging.  It holds a set of descriptors,
561  * and specialized data may be associated with each entry.  That table
562  * is used by both user and kernel mode hotplugging support.
563  *
564  * The probe() and disconnect() methods are called in a context where
565  * they can sleep, but they should avoid abusing the privilege.  Most
566  * work to connect to a device should be done when the device is opened,
567  * and undone at the last close.  The disconnect code needs to address
568  * concurrency issues with respect to open() and close() methods, as
569  * well as forcing all pending I/O requests to complete (by unlinking
570  * them as necessary, and blocking until the unlinks complete).
571  */
572 struct usb_driver {
573 	struct module *owner;
574 
575 	const char *name;
576 
577 	int (*probe) (struct usb_interface *intf,
578 		      const struct usb_device_id *id);
579 
580 	void (*disconnect) (struct usb_interface *intf);
581 
582 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
583 			void *buf);
584 
585 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
586 	int (*resume) (struct usb_interface *intf);
587 
588 	const struct usb_device_id *id_table;
589 
590 	struct device_driver driver;
591 };
592 #define	to_usb_driver(d) container_of(d, struct usb_driver, driver)
593 
594 extern struct bus_type usb_bus_type;
595 
596 /**
597  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
598  * @name: the usb class device name for this driver.  Will show up in sysfs.
599  * @fops: pointer to the struct file_operations of this driver.
600  * @minor_base: the start of the minor range for this driver.
601  *
602  * This structure is used for the usb_register_dev() and
603  * usb_unregister_dev() functions, to consolidate a number of the
604  * parameters used for them.
605  */
606 struct usb_class_driver {
607 	char *name;
608 	struct file_operations *fops;
609 	int minor_base;
610 };
611 
612 /*
613  * use these in module_init()/module_exit()
614  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
615  */
616 extern int usb_register(struct usb_driver *);
617 extern void usb_deregister(struct usb_driver *);
618 
619 extern int usb_register_dev(struct usb_interface *intf,
620 			    struct usb_class_driver *class_driver);
621 extern void usb_deregister_dev(struct usb_interface *intf,
622 			       struct usb_class_driver *class_driver);
623 
624 extern int usb_disabled(void);
625 
626 /* ----------------------------------------------------------------------- */
627 
628 /*
629  * URB support, for asynchronous request completions
630  */
631 
632 /*
633  * urb->transfer_flags:
634  */
635 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
636 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
637 					 * ignored */
638 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
639 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
640 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
641 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
642 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
643 					 * needed */
644 
645 struct usb_iso_packet_descriptor {
646 	unsigned int offset;
647 	unsigned int length;		/* expected length */
648 	unsigned int actual_length;
649 	unsigned int status;
650 };
651 
652 struct urb;
653 struct pt_regs;
654 
655 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
656 
657 /**
658  * struct urb - USB Request Block
659  * @urb_list: For use by current owner of the URB.
660  * @pipe: Holds endpoint number, direction, type, and more.
661  *	Create these values with the eight macros available;
662  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
663  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
664  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
665  *	numbers range from zero to fifteen.  Note that "in" endpoint two
666  *	is a different endpoint (and pipe) from "out" endpoint two.
667  *	The current configuration controls the existence, type, and
668  *	maximum packet size of any given endpoint.
669  * @dev: Identifies the USB device to perform the request.
670  * @status: This is read in non-iso completion functions to get the
671  *	status of the particular request.  ISO requests only use it
672  *	to tell whether the URB was unlinked; detailed status for
673  *	each frame is in the fields of the iso_frame-desc.
674  * @transfer_flags: A variety of flags may be used to affect how URB
675  *	submission, unlinking, or operation are handled.  Different
676  *	kinds of URB can use different flags.
677  * @transfer_buffer:  This identifies the buffer to (or from) which
678  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
679  *	is set).  This buffer must be suitable for DMA; allocate it with
680  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
681  *	of this buffer will be modified.  This buffer is used for the data
682  *	stage of control transfers.
683  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
684  *	the device driver is saying that it provided this DMA address,
685  *	which the host controller driver should use in preference to the
686  *	transfer_buffer.
687  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
688  *	be broken up into chunks according to the current maximum packet
689  *	size for the endpoint, which is a function of the configuration
690  *	and is encoded in the pipe.  When the length is zero, neither
691  *	transfer_buffer nor transfer_dma is used.
692  * @actual_length: This is read in non-iso completion functions, and
693  *	it tells how many bytes (out of transfer_buffer_length) were
694  *	transferred.  It will normally be the same as requested, unless
695  *	either an error was reported or a short read was performed.
696  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
697  *	short reads be reported as errors.
698  * @setup_packet: Only used for control transfers, this points to eight bytes
699  *	of setup data.  Control transfers always start by sending this data
700  *	to the device.  Then transfer_buffer is read or written, if needed.
701  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
702  *	device driver has provided this DMA address for the setup packet.
703  *	The host controller driver should use this in preference to
704  *	setup_packet.
705  * @start_frame: Returns the initial frame for isochronous transfers.
706  * @number_of_packets: Lists the number of ISO transfer buffers.
707  * @interval: Specifies the polling interval for interrupt or isochronous
708  *	transfers.  The units are frames (milliseconds) for for full and low
709  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
710  * @error_count: Returns the number of ISO transfers that reported errors.
711  * @context: For use in completion functions.  This normally points to
712  *	request-specific driver context.
713  * @complete: Completion handler. This URB is passed as the parameter to the
714  *	completion function.  The completion function may then do what
715  *	it likes with the URB, including resubmitting or freeing it.
716  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
717  *	collect the transfer status for each buffer.
718  *
719  * This structure identifies USB transfer requests.  URBs must be allocated by
720  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
721  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
722  * are submitted using usb_submit_urb(), and pending requests may be canceled
723  * using usb_unlink_urb() or usb_kill_urb().
724  *
725  * Data Transfer Buffers:
726  *
727  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
728  * taken from the general page pool.  That is provided by transfer_buffer
729  * (control requests also use setup_packet), and host controller drivers
730  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
731  * mapping operations can be expensive on some platforms (perhaps using a dma
732  * bounce buffer or talking to an IOMMU),
733  * although they're cheap on commodity x86 and ppc hardware.
734  *
735  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
736  * which tell the host controller driver that no such mapping is needed since
737  * the device driver is DMA-aware.  For example, a device driver might
738  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
739  * When these transfer flags are provided, host controller drivers will
740  * attempt to use the dma addresses found in the transfer_dma and/or
741  * setup_dma fields rather than determining a dma address themselves.  (Note
742  * that transfer_buffer and setup_packet must still be set because not all
743  * host controllers use DMA, nor do virtual root hubs).
744  *
745  * Initialization:
746  *
747  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
748  * zero), and complete fields.  All URBs must also initialize
749  * transfer_buffer and transfer_buffer_length.  They may provide the
750  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
751  * to be treated as errors; that flag is invalid for write requests.
752  *
753  * Bulk URBs may
754  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
755  * should always terminate with a short packet, even if it means adding an
756  * extra zero length packet.
757  *
758  * Control URBs must provide a setup_packet.  The setup_packet and
759  * transfer_buffer may each be mapped for DMA or not, independently of
760  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
761  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
762  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
763  *
764  * Interrupt URBs must provide an interval, saying how often (in milliseconds
765  * or, for highspeed devices, 125 microsecond units)
766  * to poll for transfers.  After the URB has been submitted, the interval
767  * field reflects how the transfer was actually scheduled.
768  * The polling interval may be more frequent than requested.
769  * For example, some controllers have a maximum interval of 32 milliseconds,
770  * while others support intervals of up to 1024 milliseconds.
771  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
772  * endpoints, as well as high speed interrupt endpoints, the encoding of
773  * the transfer interval in the endpoint descriptor is logarithmic.
774  * Device drivers must convert that value to linear units themselves.)
775  *
776  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
777  * the host controller to schedule the transfer as soon as bandwidth
778  * utilization allows, and then set start_frame to reflect the actual frame
779  * selected during submission.  Otherwise drivers must specify the start_frame
780  * and handle the case where the transfer can't begin then.  However, drivers
781  * won't know how bandwidth is currently allocated, and while they can
782  * find the current frame using usb_get_current_frame_number () they can't
783  * know the range for that frame number.  (Ranges for frame counter values
784  * are HC-specific, and can go from 256 to 65536 frames from "now".)
785  *
786  * Isochronous URBs have a different data transfer model, in part because
787  * the quality of service is only "best effort".  Callers provide specially
788  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
789  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
790  * URBs are normally queued, submitted by drivers to arrange that
791  * transfers are at least double buffered, and then explicitly resubmitted
792  * in completion handlers, so
793  * that data (such as audio or video) streams at as constant a rate as the
794  * host controller scheduler can support.
795  *
796  * Completion Callbacks:
797  *
798  * The completion callback is made in_interrupt(), and one of the first
799  * things that a completion handler should do is check the status field.
800  * The status field is provided for all URBs.  It is used to report
801  * unlinked URBs, and status for all non-ISO transfers.  It should not
802  * be examined before the URB is returned to the completion handler.
803  *
804  * The context field is normally used to link URBs back to the relevant
805  * driver or request state.
806  *
807  * When the completion callback is invoked for non-isochronous URBs, the
808  * actual_length field tells how many bytes were transferred.  This field
809  * is updated even when the URB terminated with an error or was unlinked.
810  *
811  * ISO transfer status is reported in the status and actual_length fields
812  * of the iso_frame_desc array, and the number of errors is reported in
813  * error_count.  Completion callbacks for ISO transfers will normally
814  * (re)submit URBs to ensure a constant transfer rate.
815  *
816  * Note that even fields marked "public" should not be touched by the driver
817  * when the urb is owned by the hcd, that is, since the call to
818  * usb_submit_urb() till the entry into the completion routine.
819  */
820 struct urb
821 {
822 	/* private, usb core and host controller only fields in the urb */
823 	struct kref kref;		/* reference count of the URB */
824 	spinlock_t lock;		/* lock for the URB */
825 	void *hcpriv;			/* private data for host controller */
826 	int bandwidth;			/* bandwidth for INT/ISO request */
827 	atomic_t use_count;		/* concurrent submissions counter */
828 	u8 reject;			/* submissions will fail */
829 
830 	/* public, documented fields in the urb that can be used by drivers */
831 	struct list_head urb_list;	/* list head for use by the urb's
832 					 * current owner */
833 	struct usb_device *dev; 	/* (in) pointer to associated device */
834 	unsigned int pipe;		/* (in) pipe information */
835 	int status;			/* (return) non-ISO status */
836 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
837 	void *transfer_buffer;		/* (in) associated data buffer */
838 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
839 	int transfer_buffer_length;	/* (in) data buffer length */
840 	int actual_length;		/* (return) actual transfer length */
841 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
842 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
843 	int start_frame;		/* (modify) start frame (ISO) */
844 	int number_of_packets;		/* (in) number of ISO packets */
845 	int interval;			/* (modify) transfer interval
846 					 * (INT/ISO) */
847 	int error_count;		/* (return) number of ISO errors */
848 	void *context;			/* (in) context for completion */
849 	usb_complete_t complete;	/* (in) completion routine */
850 	struct usb_iso_packet_descriptor iso_frame_desc[0];
851 					/* (in) ISO ONLY */
852 };
853 
854 /* ----------------------------------------------------------------------- */
855 
856 /**
857  * usb_fill_control_urb - initializes a control urb
858  * @urb: pointer to the urb to initialize.
859  * @dev: pointer to the struct usb_device for this urb.
860  * @pipe: the endpoint pipe
861  * @setup_packet: pointer to the setup_packet buffer
862  * @transfer_buffer: pointer to the transfer buffer
863  * @buffer_length: length of the transfer buffer
864  * @complete: pointer to the usb_complete_t function
865  * @context: what to set the urb context to.
866  *
867  * Initializes a control urb with the proper information needed to submit
868  * it to a device.
869  */
870 static inline void usb_fill_control_urb (struct urb *urb,
871 					 struct usb_device *dev,
872 					 unsigned int pipe,
873 					 unsigned char *setup_packet,
874 					 void *transfer_buffer,
875 					 int buffer_length,
876 					 usb_complete_t complete,
877 					 void *context)
878 {
879 	spin_lock_init(&urb->lock);
880 	urb->dev = dev;
881 	urb->pipe = pipe;
882 	urb->setup_packet = setup_packet;
883 	urb->transfer_buffer = transfer_buffer;
884 	urb->transfer_buffer_length = buffer_length;
885 	urb->complete = complete;
886 	urb->context = context;
887 }
888 
889 /**
890  * usb_fill_bulk_urb - macro to help initialize a bulk urb
891  * @urb: pointer to the urb to initialize.
892  * @dev: pointer to the struct usb_device for this urb.
893  * @pipe: the endpoint pipe
894  * @transfer_buffer: pointer to the transfer buffer
895  * @buffer_length: length of the transfer buffer
896  * @complete: pointer to the usb_complete_t function
897  * @context: what to set the urb context to.
898  *
899  * Initializes a bulk urb with the proper information needed to submit it
900  * to a device.
901  */
902 static inline void usb_fill_bulk_urb (struct urb *urb,
903 				      struct usb_device *dev,
904 				      unsigned int pipe,
905 				      void *transfer_buffer,
906 				      int buffer_length,
907 				      usb_complete_t complete,
908 				      void *context)
909 {
910 	spin_lock_init(&urb->lock);
911 	urb->dev = dev;
912 	urb->pipe = pipe;
913 	urb->transfer_buffer = transfer_buffer;
914 	urb->transfer_buffer_length = buffer_length;
915 	urb->complete = complete;
916 	urb->context = context;
917 }
918 
919 /**
920  * usb_fill_int_urb - macro to help initialize a interrupt urb
921  * @urb: pointer to the urb to initialize.
922  * @dev: pointer to the struct usb_device for this urb.
923  * @pipe: the endpoint pipe
924  * @transfer_buffer: pointer to the transfer buffer
925  * @buffer_length: length of the transfer buffer
926  * @complete: pointer to the usb_complete_t function
927  * @context: what to set the urb context to.
928  * @interval: what to set the urb interval to, encoded like
929  *	the endpoint descriptor's bInterval value.
930  *
931  * Initializes a interrupt urb with the proper information needed to submit
932  * it to a device.
933  * Note that high speed interrupt endpoints use a logarithmic encoding of
934  * the endpoint interval, and express polling intervals in microframes
935  * (eight per millisecond) rather than in frames (one per millisecond).
936  */
937 static inline void usb_fill_int_urb (struct urb *urb,
938 				     struct usb_device *dev,
939 				     unsigned int pipe,
940 				     void *transfer_buffer,
941 				     int buffer_length,
942 				     usb_complete_t complete,
943 				     void *context,
944 				     int interval)
945 {
946 	spin_lock_init(&urb->lock);
947 	urb->dev = dev;
948 	urb->pipe = pipe;
949 	urb->transfer_buffer = transfer_buffer;
950 	urb->transfer_buffer_length = buffer_length;
951 	urb->complete = complete;
952 	urb->context = context;
953 	if (dev->speed == USB_SPEED_HIGH)
954 		urb->interval = 1 << (interval - 1);
955 	else
956 		urb->interval = interval;
957 	urb->start_frame = -1;
958 }
959 
960 extern void usb_init_urb(struct urb *urb);
961 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
962 extern void usb_free_urb(struct urb *urb);
963 #define usb_put_urb usb_free_urb
964 extern struct urb *usb_get_urb(struct urb *urb);
965 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
966 extern int usb_unlink_urb(struct urb *urb);
967 extern void usb_kill_urb(struct urb *urb);
968 
969 #define HAVE_USB_BUFFERS
970 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
971 	gfp_t mem_flags, dma_addr_t *dma);
972 void usb_buffer_free (struct usb_device *dev, size_t size,
973 	void *addr, dma_addr_t dma);
974 
975 #if 0
976 struct urb *usb_buffer_map (struct urb *urb);
977 void usb_buffer_dmasync (struct urb *urb);
978 void usb_buffer_unmap (struct urb *urb);
979 #endif
980 
981 struct scatterlist;
982 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
983 		struct scatterlist *sg, int nents);
984 #if 0
985 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
986 		struct scatterlist *sg, int n_hw_ents);
987 #endif
988 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
989 		struct scatterlist *sg, int n_hw_ents);
990 
991 /*-------------------------------------------------------------------*
992  *                         SYNCHRONOUS CALL SUPPORT                  *
993  *-------------------------------------------------------------------*/
994 
995 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
996 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
997 	void *data, __u16 size, int timeout);
998 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
999 	void *data, int len, int *actual_length,
1000 	int timeout);
1001 
1002 /* wrappers around usb_control_msg() for the most common standard requests */
1003 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1004 	unsigned char descindex, void *buf, int size);
1005 extern int usb_get_status(struct usb_device *dev,
1006 	int type, int target, void *data);
1007 extern int usb_get_string(struct usb_device *dev,
1008 	unsigned short langid, unsigned char index, void *buf, int size);
1009 extern int usb_string(struct usb_device *dev, int index,
1010 	char *buf, size_t size);
1011 
1012 /* wrappers that also update important state inside usbcore */
1013 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1014 extern int usb_reset_configuration(struct usb_device *dev);
1015 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1016 
1017 /*
1018  * timeouts, in milliseconds, used for sending/receiving control messages
1019  * they typically complete within a few frames (msec) after they're issued
1020  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1021  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1022  */
1023 #define USB_CTRL_GET_TIMEOUT	5000
1024 #define USB_CTRL_SET_TIMEOUT	5000
1025 
1026 
1027 /**
1028  * struct usb_sg_request - support for scatter/gather I/O
1029  * @status: zero indicates success, else negative errno
1030  * @bytes: counts bytes transferred.
1031  *
1032  * These requests are initialized using usb_sg_init(), and then are used
1033  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1034  * members of the request object aren't for driver access.
1035  *
1036  * The status and bytecount values are valid only after usb_sg_wait()
1037  * returns.  If the status is zero, then the bytecount matches the total
1038  * from the request.
1039  *
1040  * After an error completion, drivers may need to clear a halt condition
1041  * on the endpoint.
1042  */
1043 struct usb_sg_request {
1044 	int			status;
1045 	size_t			bytes;
1046 
1047 	/*
1048 	 * members below are private to usbcore,
1049 	 * and are not provided for driver access!
1050 	 */
1051 	spinlock_t		lock;
1052 
1053 	struct usb_device	*dev;
1054 	int			pipe;
1055 	struct scatterlist	*sg;
1056 	int			nents;
1057 
1058 	int			entries;
1059 	struct urb		**urbs;
1060 
1061 	int			count;
1062 	struct completion	complete;
1063 };
1064 
1065 int usb_sg_init (
1066 	struct usb_sg_request	*io,
1067 	struct usb_device	*dev,
1068 	unsigned		pipe,
1069 	unsigned		period,
1070 	struct scatterlist	*sg,
1071 	int			nents,
1072 	size_t			length,
1073 	gfp_t			mem_flags
1074 );
1075 void usb_sg_cancel (struct usb_sg_request *io);
1076 void usb_sg_wait (struct usb_sg_request *io);
1077 
1078 
1079 /* ----------------------------------------------------------------------- */
1080 
1081 /*
1082  * For various legacy reasons, Linux has a small cookie that's paired with
1083  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1084  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1085  * an unsigned int encoded as:
1086  *
1087  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1088  *					 1 = Device-to-Host [In] ...
1089  *					like endpoint bEndpointAddress)
1090  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1091  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1092  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1093  *					 10 = control, 11 = bulk)
1094  *
1095  * Given the device address and endpoint descriptor, pipes are redundant.
1096  */
1097 
1098 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1099 /* (yet ... they're the values used by usbfs) */
1100 #define PIPE_ISOCHRONOUS		0
1101 #define PIPE_INTERRUPT			1
1102 #define PIPE_CONTROL			2
1103 #define PIPE_BULK			3
1104 
1105 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1106 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1107 
1108 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1109 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1110 
1111 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1112 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1113 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1114 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1115 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1116 
1117 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1118 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1119 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1120 #define usb_settoggle(dev, ep, out, bit) \
1121 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1122 		 ((bit) << (ep)))
1123 
1124 
1125 static inline unsigned int __create_pipe(struct usb_device *dev,
1126 		unsigned int endpoint)
1127 {
1128 	return (dev->devnum << 8) | (endpoint << 15);
1129 }
1130 
1131 /* Create various pipes... */
1132 #define usb_sndctrlpipe(dev,endpoint)	\
1133 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1134 #define usb_rcvctrlpipe(dev,endpoint)	\
1135 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1136 #define usb_sndisocpipe(dev,endpoint)	\
1137 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1138 #define usb_rcvisocpipe(dev,endpoint)	\
1139 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1140 #define usb_sndbulkpipe(dev,endpoint)	\
1141 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1142 #define usb_rcvbulkpipe(dev,endpoint)	\
1143 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1144 #define usb_sndintpipe(dev,endpoint)	\
1145 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1146 #define usb_rcvintpipe(dev,endpoint)	\
1147 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1148 
1149 /*-------------------------------------------------------------------------*/
1150 
1151 static inline __u16
1152 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1153 {
1154 	struct usb_host_endpoint	*ep;
1155 	unsigned			epnum = usb_pipeendpoint(pipe);
1156 
1157 	if (is_out) {
1158 		WARN_ON(usb_pipein(pipe));
1159 		ep = udev->ep_out[epnum];
1160 	} else {
1161 		WARN_ON(usb_pipeout(pipe));
1162 		ep = udev->ep_in[epnum];
1163 	}
1164 	if (!ep)
1165 		return 0;
1166 
1167 	/* NOTE:  only 0x07ff bits are for packet size... */
1168 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1169 }
1170 
1171 /* ----------------------------------------------------------------------- */
1172 
1173 /* Events from the usb core */
1174 #define USB_DEVICE_ADD		0x0001
1175 #define USB_DEVICE_REMOVE	0x0002
1176 #define USB_BUS_ADD		0x0003
1177 #define USB_BUS_REMOVE		0x0004
1178 extern void usb_register_notify(struct notifier_block *nb);
1179 extern void usb_unregister_notify(struct notifier_block *nb);
1180 
1181 #ifdef DEBUG
1182 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1183 	__FILE__ , ## arg)
1184 #else
1185 #define dbg(format, arg...) do {} while (0)
1186 #endif
1187 
1188 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1189 	__FILE__ , ## arg)
1190 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1191 	__FILE__ , ## arg)
1192 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1193 	__FILE__ , ## arg)
1194 
1195 
1196 #endif  /* __KERNEL__ */
1197 
1198 #endif
1199