1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb_ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/config.h> 14 #include <linux/errno.h> /* for -ENODEV */ 15 #include <linux/delay.h> /* for mdelay() */ 16 #include <linux/interrupt.h> /* for in_interrupt() */ 17 #include <linux/list.h> /* for struct list_head */ 18 #include <linux/kref.h> /* for struct kref */ 19 #include <linux/device.h> /* for struct device */ 20 #include <linux/fs.h> /* for struct file_operations */ 21 #include <linux/completion.h> /* for struct completion */ 22 #include <linux/sched.h> /* for current && schedule_timeout */ 23 24 struct usb_device; 25 struct usb_driver; 26 27 /*-------------------------------------------------------------------------*/ 28 29 /* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44 /** 45 * struct usb_host_endpoint - host-side endpoint descriptor and queue 46 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 47 * @urb_list: urbs queued to this endpoint; maintained by usbcore 48 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 49 * with one or more transfer descriptors (TDs) per urb 50 * @extra: descriptors following this endpoint in the configuration 51 * @extralen: how many bytes of "extra" are valid 52 * 53 * USB requests are always queued to a given endpoint, identified by a 54 * descriptor within an active interface in a given USB configuration. 55 */ 56 struct usb_host_endpoint { 57 struct usb_endpoint_descriptor desc; 58 struct list_head urb_list; 59 void *hcpriv; 60 struct kobject *kobj; /* For sysfs info */ 61 62 unsigned char *extra; /* Extra descriptors */ 63 int extralen; 64 }; 65 66 /* host-side wrapper for one interface setting's parsed descriptors */ 67 struct usb_host_interface { 68 struct usb_interface_descriptor desc; 69 70 /* array of desc.bNumEndpoint endpoints associated with this 71 * interface setting. these will be in no particular order. 72 */ 73 struct usb_host_endpoint *endpoint; 74 75 char *string; /* iInterface string, if present */ 76 unsigned char *extra; /* Extra descriptors */ 77 int extralen; 78 }; 79 80 enum usb_interface_condition { 81 USB_INTERFACE_UNBOUND = 0, 82 USB_INTERFACE_BINDING, 83 USB_INTERFACE_BOUND, 84 USB_INTERFACE_UNBINDING, 85 }; 86 87 /** 88 * struct usb_interface - what usb device drivers talk to 89 * @altsetting: array of interface structures, one for each alternate 90 * setting that may be selected. Each one includes a set of 91 * endpoint configurations. They will be in no particular order. 92 * @num_altsetting: number of altsettings defined. 93 * @cur_altsetting: the current altsetting. 94 * @driver: the USB driver that is bound to this interface. 95 * @minor: the minor number assigned to this interface, if this 96 * interface is bound to a driver that uses the USB major number. 97 * If this interface does not use the USB major, this field should 98 * be unused. The driver should set this value in the probe() 99 * function of the driver, after it has been assigned a minor 100 * number from the USB core by calling usb_register_dev(). 101 * @condition: binding state of the interface: not bound, binding 102 * (in probe()), bound to a driver, or unbinding (in disconnect()) 103 * @dev: driver model's view of this device 104 * @class_dev: driver model's class view of this device. 105 * 106 * USB device drivers attach to interfaces on a physical device. Each 107 * interface encapsulates a single high level function, such as feeding 108 * an audio stream to a speaker or reporting a change in a volume control. 109 * Many USB devices only have one interface. The protocol used to talk to 110 * an interface's endpoints can be defined in a usb "class" specification, 111 * or by a product's vendor. The (default) control endpoint is part of 112 * every interface, but is never listed among the interface's descriptors. 113 * 114 * The driver that is bound to the interface can use standard driver model 115 * calls such as dev_get_drvdata() on the dev member of this structure. 116 * 117 * Each interface may have alternate settings. The initial configuration 118 * of a device sets altsetting 0, but the device driver can change 119 * that setting using usb_set_interface(). Alternate settings are often 120 * used to control the the use of periodic endpoints, such as by having 121 * different endpoints use different amounts of reserved USB bandwidth. 122 * All standards-conformant USB devices that use isochronous endpoints 123 * will use them in non-default settings. 124 * 125 * The USB specification says that alternate setting numbers must run from 126 * 0 to one less than the total number of alternate settings. But some 127 * devices manage to mess this up, and the structures aren't necessarily 128 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 129 * look up an alternate setting in the altsetting array based on its number. 130 */ 131 struct usb_interface { 132 /* array of alternate settings for this interface, 133 * stored in no particular order */ 134 struct usb_host_interface *altsetting; 135 136 struct usb_host_interface *cur_altsetting; /* the currently 137 * active alternate setting */ 138 unsigned num_altsetting; /* number of alternate settings */ 139 140 int minor; /* minor number this interface is 141 * bound to */ 142 enum usb_interface_condition condition; /* state of binding */ 143 struct device dev; /* interface specific device info */ 144 struct class_device *class_dev; 145 }; 146 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 147 #define interface_to_usbdev(intf) \ 148 container_of(intf->dev.parent, struct usb_device, dev) 149 150 static inline void *usb_get_intfdata (struct usb_interface *intf) 151 { 152 return dev_get_drvdata (&intf->dev); 153 } 154 155 static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 156 { 157 dev_set_drvdata(&intf->dev, data); 158 } 159 160 struct usb_interface *usb_get_intf(struct usb_interface *intf); 161 void usb_put_intf(struct usb_interface *intf); 162 163 /* this maximum is arbitrary */ 164 #define USB_MAXINTERFACES 32 165 166 /** 167 * struct usb_interface_cache - long-term representation of a device interface 168 * @num_altsetting: number of altsettings defined. 169 * @ref: reference counter. 170 * @altsetting: variable-length array of interface structures, one for 171 * each alternate setting that may be selected. Each one includes a 172 * set of endpoint configurations. They will be in no particular order. 173 * 174 * These structures persist for the lifetime of a usb_device, unlike 175 * struct usb_interface (which persists only as long as its configuration 176 * is installed). The altsetting arrays can be accessed through these 177 * structures at any time, permitting comparison of configurations and 178 * providing support for the /proc/bus/usb/devices pseudo-file. 179 */ 180 struct usb_interface_cache { 181 unsigned num_altsetting; /* number of alternate settings */ 182 struct kref ref; /* reference counter */ 183 184 /* variable-length array of alternate settings for this interface, 185 * stored in no particular order */ 186 struct usb_host_interface altsetting[0]; 187 }; 188 #define ref_to_usb_interface_cache(r) \ 189 container_of(r, struct usb_interface_cache, ref) 190 #define altsetting_to_usb_interface_cache(a) \ 191 container_of(a, struct usb_interface_cache, altsetting[0]) 192 193 /** 194 * struct usb_host_config - representation of a device's configuration 195 * @desc: the device's configuration descriptor. 196 * @string: pointer to the cached version of the iConfiguration string, if 197 * present for this configuration. 198 * @interface: array of pointers to usb_interface structures, one for each 199 * interface in the configuration. The number of interfaces is stored 200 * in desc.bNumInterfaces. These pointers are valid only while the 201 * the configuration is active. 202 * @intf_cache: array of pointers to usb_interface_cache structures, one 203 * for each interface in the configuration. These structures exist 204 * for the entire life of the device. 205 * @extra: pointer to buffer containing all extra descriptors associated 206 * with this configuration (those preceding the first interface 207 * descriptor). 208 * @extralen: length of the extra descriptors buffer. 209 * 210 * USB devices may have multiple configurations, but only one can be active 211 * at any time. Each encapsulates a different operational environment; 212 * for example, a dual-speed device would have separate configurations for 213 * full-speed and high-speed operation. The number of configurations 214 * available is stored in the device descriptor as bNumConfigurations. 215 * 216 * A configuration can contain multiple interfaces. Each corresponds to 217 * a different function of the USB device, and all are available whenever 218 * the configuration is active. The USB standard says that interfaces 219 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 220 * of devices get this wrong. In addition, the interface array is not 221 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 222 * look up an interface entry based on its number. 223 * 224 * Device drivers should not attempt to activate configurations. The choice 225 * of which configuration to install is a policy decision based on such 226 * considerations as available power, functionality provided, and the user's 227 * desires (expressed through hotplug scripts). However, drivers can call 228 * usb_reset_configuration() to reinitialize the current configuration and 229 * all its interfaces. 230 */ 231 struct usb_host_config { 232 struct usb_config_descriptor desc; 233 234 char *string; /* iConfiguration string, if present */ 235 /* the interfaces associated with this configuration, 236 * stored in no particular order */ 237 struct usb_interface *interface[USB_MAXINTERFACES]; 238 239 /* Interface information available even when this is not the 240 * active configuration */ 241 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 242 243 unsigned char *extra; /* Extra descriptors */ 244 int extralen; 245 }; 246 247 int __usb_get_extra_descriptor(char *buffer, unsigned size, 248 unsigned char type, void **ptr); 249 #define usb_get_extra_descriptor(ifpoint,type,ptr)\ 250 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 251 type,(void**)ptr) 252 253 /* ----------------------------------------------------------------------- */ 254 255 struct usb_operations; 256 257 /* USB device number allocation bitmap */ 258 struct usb_devmap { 259 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 260 }; 261 262 /* 263 * Allocated per bus (tree of devices) we have: 264 */ 265 struct usb_bus { 266 struct device *controller; /* host/master side hardware */ 267 int busnum; /* Bus number (in order of reg) */ 268 char *bus_name; /* stable id (PCI slot_name etc) */ 269 u8 otg_port; /* 0, or number of OTG/HNP port */ 270 unsigned is_b_host:1; /* true during some HNP roleswitches */ 271 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 272 273 int devnum_next; /* Next open device number in 274 * round-robin allocation */ 275 276 struct usb_devmap devmap; /* device address allocation map */ 277 struct usb_operations *op; /* Operations (specific to the HC) */ 278 struct usb_device *root_hub; /* Root hub */ 279 struct list_head bus_list; /* list of busses */ 280 void *hcpriv; /* Host Controller private data */ 281 282 int bandwidth_allocated; /* on this bus: how much of the time 283 * reserved for periodic (intr/iso) 284 * requests is used, on average? 285 * Units: microseconds/frame. 286 * Limits: Full/low speed reserve 90%, 287 * while high speed reserves 80%. 288 */ 289 int bandwidth_int_reqs; /* number of Interrupt requests */ 290 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 291 292 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 293 294 struct class_device *class_dev; /* class device for this bus */ 295 struct kref kref; /* reference counting for this bus */ 296 void (*release)(struct usb_bus *bus); 297 298 #if defined(CONFIG_USB_MON) 299 struct mon_bus *mon_bus; /* non-null when associated */ 300 int monitored; /* non-zero when monitored */ 301 #endif 302 }; 303 304 /* ----------------------------------------------------------------------- */ 305 306 /* This is arbitrary. 307 * From USB 2.0 spec Table 11-13, offset 7, a hub can 308 * have up to 255 ports. The most yet reported is 10. 309 */ 310 #define USB_MAXCHILDREN (16) 311 312 struct usb_tt; 313 314 /* 315 * struct usb_device - kernel's representation of a USB device 316 * 317 * FIXME: Write the kerneldoc! 318 * 319 * Usbcore drivers should not set usbdev->state directly. Instead use 320 * usb_set_device_state(). 321 */ 322 struct usb_device { 323 int devnum; /* Address on USB bus */ 324 char devpath [16]; /* Use in messages: /port/port/... */ 325 enum usb_device_state state; /* configured, not attached, etc */ 326 enum usb_device_speed speed; /* high/full/low (or error) */ 327 328 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 329 int ttport; /* device port on that tt hub */ 330 331 struct semaphore serialize; 332 333 unsigned int toggle[2]; /* one bit for each endpoint 334 * ([0] = IN, [1] = OUT) */ 335 336 struct usb_device *parent; /* our hub, unless we're the root */ 337 struct usb_bus *bus; /* Bus we're part of */ 338 struct usb_host_endpoint ep0; 339 340 struct device dev; /* Generic device interface */ 341 342 struct usb_device_descriptor descriptor;/* Descriptor */ 343 struct usb_host_config *config; /* All of the configs */ 344 345 struct usb_host_config *actconfig;/* the active configuration */ 346 struct usb_host_endpoint *ep_in[16]; 347 struct usb_host_endpoint *ep_out[16]; 348 349 char **rawdescriptors; /* Raw descriptors for each config */ 350 351 int have_langid; /* whether string_langid is valid */ 352 int string_langid; /* language ID for strings */ 353 354 /* static strings from the device */ 355 char *product; /* iProduct string, if present */ 356 char *manufacturer; /* iManufacturer string, if present */ 357 char *serial; /* iSerialNumber string, if present */ 358 359 struct list_head filelist; 360 struct class_device *class_dev; 361 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 362 363 /* 364 * Child devices - these can be either new devices 365 * (if this is a hub device), or different instances 366 * of this same device. 367 * 368 * Each instance needs its own set of data structures. 369 */ 370 371 int maxchild; /* Number of ports if hub */ 372 struct usb_device *children[USB_MAXCHILDREN]; 373 }; 374 #define to_usb_device(d) container_of(d, struct usb_device, dev) 375 376 extern struct usb_device *usb_get_dev(struct usb_device *dev); 377 extern void usb_put_dev(struct usb_device *dev); 378 379 extern void usb_lock_device(struct usb_device *udev); 380 extern int usb_trylock_device(struct usb_device *udev); 381 extern int usb_lock_device_for_reset(struct usb_device *udev, 382 struct usb_interface *iface); 383 extern void usb_unlock_device(struct usb_device *udev); 384 385 /* USB port reset for device reinitialization */ 386 extern int usb_reset_device(struct usb_device *dev); 387 388 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 389 390 /*-------------------------------------------------------------------------*/ 391 392 /* for drivers using iso endpoints */ 393 extern int usb_get_current_frame_number (struct usb_device *usb_dev); 394 395 /* used these for multi-interface device registration */ 396 extern int usb_driver_claim_interface(struct usb_driver *driver, 397 struct usb_interface *iface, void* priv); 398 399 /** 400 * usb_interface_claimed - returns true iff an interface is claimed 401 * @iface: the interface being checked 402 * 403 * Returns true (nonzero) iff the interface is claimed, else false (zero). 404 * Callers must own the driver model's usb bus readlock. So driver 405 * probe() entries don't need extra locking, but other call contexts 406 * may need to explicitly claim that lock. 407 * 408 */ 409 static inline int usb_interface_claimed(struct usb_interface *iface) { 410 return (iface->dev.driver != NULL); 411 } 412 413 extern void usb_driver_release_interface(struct usb_driver *driver, 414 struct usb_interface *iface); 415 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 416 const struct usb_device_id *id); 417 418 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 419 int minor); 420 extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, 421 unsigned ifnum); 422 extern struct usb_host_interface *usb_altnum_to_altsetting( 423 struct usb_interface *intf, unsigned int altnum); 424 425 426 /** 427 * usb_make_path - returns stable device path in the usb tree 428 * @dev: the device whose path is being constructed 429 * @buf: where to put the string 430 * @size: how big is "buf"? 431 * 432 * Returns length of the string (> 0) or negative if size was too small. 433 * 434 * This identifier is intended to be "stable", reflecting physical paths in 435 * hardware such as physical bus addresses for host controllers or ports on 436 * USB hubs. That makes it stay the same until systems are physically 437 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 438 * controllers. Adding and removing devices, including virtual root hubs 439 * in host controller driver modules, does not change these path identifers; 440 * neither does rebooting or re-enumerating. These are more useful identifiers 441 * than changeable ("unstable") ones like bus numbers or device addresses. 442 * 443 * With a partial exception for devices connected to USB 2.0 root hubs, these 444 * identifiers are also predictable. So long as the device tree isn't changed, 445 * plugging any USB device into a given hub port always gives it the same path. 446 * Because of the use of "companion" controllers, devices connected to ports on 447 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 448 * high speed, and a different one if they are full or low speed. 449 */ 450 static inline int usb_make_path (struct usb_device *dev, char *buf, 451 size_t size) 452 { 453 int actual; 454 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 455 dev->devpath); 456 return (actual >= (int)size) ? -1 : actual; 457 } 458 459 /*-------------------------------------------------------------------------*/ 460 461 #define USB_DEVICE_ID_MATCH_DEVICE \ 462 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 463 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 464 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 465 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 466 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 467 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 468 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 469 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 470 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 471 #define USB_DEVICE_ID_MATCH_INT_INFO \ 472 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 473 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 474 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 475 476 /** 477 * USB_DEVICE - macro used to describe a specific usb device 478 * @vend: the 16 bit USB Vendor ID 479 * @prod: the 16 bit USB Product ID 480 * 481 * This macro is used to create a struct usb_device_id that matches a 482 * specific device. 483 */ 484 #define USB_DEVICE(vend,prod) \ 485 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 486 .idProduct = (prod) 487 /** 488 * USB_DEVICE_VER - macro used to describe a specific usb device with a 489 * version range 490 * @vend: the 16 bit USB Vendor ID 491 * @prod: the 16 bit USB Product ID 492 * @lo: the bcdDevice_lo value 493 * @hi: the bcdDevice_hi value 494 * 495 * This macro is used to create a struct usb_device_id that matches a 496 * specific device, with a version range. 497 */ 498 #define USB_DEVICE_VER(vend,prod,lo,hi) \ 499 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 500 .idVendor = (vend), .idProduct = (prod), \ 501 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 502 503 /** 504 * USB_DEVICE_INFO - macro used to describe a class of usb devices 505 * @cl: bDeviceClass value 506 * @sc: bDeviceSubClass value 507 * @pr: bDeviceProtocol value 508 * 509 * This macro is used to create a struct usb_device_id that matches a 510 * specific class of devices. 511 */ 512 #define USB_DEVICE_INFO(cl,sc,pr) \ 513 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 514 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 515 516 /** 517 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 518 * @cl: bInterfaceClass value 519 * @sc: bInterfaceSubClass value 520 * @pr: bInterfaceProtocol value 521 * 522 * This macro is used to create a struct usb_device_id that matches a 523 * specific class of interfaces. 524 */ 525 #define USB_INTERFACE_INFO(cl,sc,pr) \ 526 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 527 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 528 529 /* ----------------------------------------------------------------------- */ 530 531 /** 532 * struct usb_driver - identifies USB driver to usbcore 533 * @owner: Pointer to the module owner of this driver; initialize 534 * it using THIS_MODULE. 535 * @name: The driver name should be unique among USB drivers, 536 * and should normally be the same as the module name. 537 * @probe: Called to see if the driver is willing to manage a particular 538 * interface on a device. If it is, probe returns zero and uses 539 * dev_set_drvdata() to associate driver-specific data with the 540 * interface. It may also use usb_set_interface() to specify the 541 * appropriate altsetting. If unwilling to manage the interface, 542 * return a negative errno value. 543 * @disconnect: Called when the interface is no longer accessible, usually 544 * because its device has been (or is being) disconnected or the 545 * driver module is being unloaded. 546 * @ioctl: Used for drivers that want to talk to userspace through 547 * the "usbfs" filesystem. This lets devices provide ways to 548 * expose information to user space regardless of where they 549 * do (or don't) show up otherwise in the filesystem. 550 * @suspend: Called when the device is going to be suspended by the system. 551 * @resume: Called when the device is being resumed by the system. 552 * @id_table: USB drivers use ID table to support hotplugging. 553 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 554 * or your driver's probe function will never get called. 555 * @driver: the driver model core driver structure. 556 * 557 * USB drivers must provide a name, probe() and disconnect() methods, 558 * and an id_table. Other driver fields are optional. 559 * 560 * The id_table is used in hotplugging. It holds a set of descriptors, 561 * and specialized data may be associated with each entry. That table 562 * is used by both user and kernel mode hotplugging support. 563 * 564 * The probe() and disconnect() methods are called in a context where 565 * they can sleep, but they should avoid abusing the privilege. Most 566 * work to connect to a device should be done when the device is opened, 567 * and undone at the last close. The disconnect code needs to address 568 * concurrency issues with respect to open() and close() methods, as 569 * well as forcing all pending I/O requests to complete (by unlinking 570 * them as necessary, and blocking until the unlinks complete). 571 */ 572 struct usb_driver { 573 struct module *owner; 574 575 const char *name; 576 577 int (*probe) (struct usb_interface *intf, 578 const struct usb_device_id *id); 579 580 void (*disconnect) (struct usb_interface *intf); 581 582 int (*ioctl) (struct usb_interface *intf, unsigned int code, 583 void *buf); 584 585 int (*suspend) (struct usb_interface *intf, pm_message_t message); 586 int (*resume) (struct usb_interface *intf); 587 588 const struct usb_device_id *id_table; 589 590 struct device_driver driver; 591 }; 592 #define to_usb_driver(d) container_of(d, struct usb_driver, driver) 593 594 extern struct bus_type usb_bus_type; 595 596 /** 597 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 598 * @name: the usb class device name for this driver. Will show up in sysfs. 599 * @fops: pointer to the struct file_operations of this driver. 600 * @minor_base: the start of the minor range for this driver. 601 * 602 * This structure is used for the usb_register_dev() and 603 * usb_unregister_dev() functions, to consolidate a number of the 604 * parameters used for them. 605 */ 606 struct usb_class_driver { 607 char *name; 608 struct file_operations *fops; 609 int minor_base; 610 }; 611 612 /* 613 * use these in module_init()/module_exit() 614 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 615 */ 616 extern int usb_register(struct usb_driver *); 617 extern void usb_deregister(struct usb_driver *); 618 619 extern int usb_register_dev(struct usb_interface *intf, 620 struct usb_class_driver *class_driver); 621 extern void usb_deregister_dev(struct usb_interface *intf, 622 struct usb_class_driver *class_driver); 623 624 extern int usb_disabled(void); 625 626 /* ----------------------------------------------------------------------- */ 627 628 /* 629 * URB support, for asynchronous request completions 630 */ 631 632 /* 633 * urb->transfer_flags: 634 */ 635 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 636 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 637 * ignored */ 638 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 639 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 640 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 641 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 642 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 643 * needed */ 644 645 struct usb_iso_packet_descriptor { 646 unsigned int offset; 647 unsigned int length; /* expected length */ 648 unsigned int actual_length; 649 unsigned int status; 650 }; 651 652 struct urb; 653 struct pt_regs; 654 655 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *); 656 657 /** 658 * struct urb - USB Request Block 659 * @urb_list: For use by current owner of the URB. 660 * @pipe: Holds endpoint number, direction, type, and more. 661 * Create these values with the eight macros available; 662 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 663 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 664 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 665 * numbers range from zero to fifteen. Note that "in" endpoint two 666 * is a different endpoint (and pipe) from "out" endpoint two. 667 * The current configuration controls the existence, type, and 668 * maximum packet size of any given endpoint. 669 * @dev: Identifies the USB device to perform the request. 670 * @status: This is read in non-iso completion functions to get the 671 * status of the particular request. ISO requests only use it 672 * to tell whether the URB was unlinked; detailed status for 673 * each frame is in the fields of the iso_frame-desc. 674 * @transfer_flags: A variety of flags may be used to affect how URB 675 * submission, unlinking, or operation are handled. Different 676 * kinds of URB can use different flags. 677 * @transfer_buffer: This identifies the buffer to (or from) which 678 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 679 * is set). This buffer must be suitable for DMA; allocate it with 680 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 681 * of this buffer will be modified. This buffer is used for the data 682 * stage of control transfers. 683 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 684 * the device driver is saying that it provided this DMA address, 685 * which the host controller driver should use in preference to the 686 * transfer_buffer. 687 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 688 * be broken up into chunks according to the current maximum packet 689 * size for the endpoint, which is a function of the configuration 690 * and is encoded in the pipe. When the length is zero, neither 691 * transfer_buffer nor transfer_dma is used. 692 * @actual_length: This is read in non-iso completion functions, and 693 * it tells how many bytes (out of transfer_buffer_length) were 694 * transferred. It will normally be the same as requested, unless 695 * either an error was reported or a short read was performed. 696 * The URB_SHORT_NOT_OK transfer flag may be used to make such 697 * short reads be reported as errors. 698 * @setup_packet: Only used for control transfers, this points to eight bytes 699 * of setup data. Control transfers always start by sending this data 700 * to the device. Then transfer_buffer is read or written, if needed. 701 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 702 * device driver has provided this DMA address for the setup packet. 703 * The host controller driver should use this in preference to 704 * setup_packet. 705 * @start_frame: Returns the initial frame for isochronous transfers. 706 * @number_of_packets: Lists the number of ISO transfer buffers. 707 * @interval: Specifies the polling interval for interrupt or isochronous 708 * transfers. The units are frames (milliseconds) for for full and low 709 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 710 * @error_count: Returns the number of ISO transfers that reported errors. 711 * @context: For use in completion functions. This normally points to 712 * request-specific driver context. 713 * @complete: Completion handler. This URB is passed as the parameter to the 714 * completion function. The completion function may then do what 715 * it likes with the URB, including resubmitting or freeing it. 716 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 717 * collect the transfer status for each buffer. 718 * 719 * This structure identifies USB transfer requests. URBs must be allocated by 720 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 721 * Initialization may be done using various usb_fill_*_urb() functions. URBs 722 * are submitted using usb_submit_urb(), and pending requests may be canceled 723 * using usb_unlink_urb() or usb_kill_urb(). 724 * 725 * Data Transfer Buffers: 726 * 727 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 728 * taken from the general page pool. That is provided by transfer_buffer 729 * (control requests also use setup_packet), and host controller drivers 730 * perform a dma mapping (and unmapping) for each buffer transferred. Those 731 * mapping operations can be expensive on some platforms (perhaps using a dma 732 * bounce buffer or talking to an IOMMU), 733 * although they're cheap on commodity x86 and ppc hardware. 734 * 735 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 736 * which tell the host controller driver that no such mapping is needed since 737 * the device driver is DMA-aware. For example, a device driver might 738 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 739 * When these transfer flags are provided, host controller drivers will 740 * attempt to use the dma addresses found in the transfer_dma and/or 741 * setup_dma fields rather than determining a dma address themselves. (Note 742 * that transfer_buffer and setup_packet must still be set because not all 743 * host controllers use DMA, nor do virtual root hubs). 744 * 745 * Initialization: 746 * 747 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 748 * zero), and complete fields. All URBs must also initialize 749 * transfer_buffer and transfer_buffer_length. They may provide the 750 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 751 * to be treated as errors; that flag is invalid for write requests. 752 * 753 * Bulk URBs may 754 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 755 * should always terminate with a short packet, even if it means adding an 756 * extra zero length packet. 757 * 758 * Control URBs must provide a setup_packet. The setup_packet and 759 * transfer_buffer may each be mapped for DMA or not, independently of 760 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 761 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 762 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 763 * 764 * Interrupt URBs must provide an interval, saying how often (in milliseconds 765 * or, for highspeed devices, 125 microsecond units) 766 * to poll for transfers. After the URB has been submitted, the interval 767 * field reflects how the transfer was actually scheduled. 768 * The polling interval may be more frequent than requested. 769 * For example, some controllers have a maximum interval of 32 milliseconds, 770 * while others support intervals of up to 1024 milliseconds. 771 * Isochronous URBs also have transfer intervals. (Note that for isochronous 772 * endpoints, as well as high speed interrupt endpoints, the encoding of 773 * the transfer interval in the endpoint descriptor is logarithmic. 774 * Device drivers must convert that value to linear units themselves.) 775 * 776 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 777 * the host controller to schedule the transfer as soon as bandwidth 778 * utilization allows, and then set start_frame to reflect the actual frame 779 * selected during submission. Otherwise drivers must specify the start_frame 780 * and handle the case where the transfer can't begin then. However, drivers 781 * won't know how bandwidth is currently allocated, and while they can 782 * find the current frame using usb_get_current_frame_number () they can't 783 * know the range for that frame number. (Ranges for frame counter values 784 * are HC-specific, and can go from 256 to 65536 frames from "now".) 785 * 786 * Isochronous URBs have a different data transfer model, in part because 787 * the quality of service is only "best effort". Callers provide specially 788 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 789 * at the end. Each such packet is an individual ISO transfer. Isochronous 790 * URBs are normally queued, submitted by drivers to arrange that 791 * transfers are at least double buffered, and then explicitly resubmitted 792 * in completion handlers, so 793 * that data (such as audio or video) streams at as constant a rate as the 794 * host controller scheduler can support. 795 * 796 * Completion Callbacks: 797 * 798 * The completion callback is made in_interrupt(), and one of the first 799 * things that a completion handler should do is check the status field. 800 * The status field is provided for all URBs. It is used to report 801 * unlinked URBs, and status for all non-ISO transfers. It should not 802 * be examined before the URB is returned to the completion handler. 803 * 804 * The context field is normally used to link URBs back to the relevant 805 * driver or request state. 806 * 807 * When the completion callback is invoked for non-isochronous URBs, the 808 * actual_length field tells how many bytes were transferred. This field 809 * is updated even when the URB terminated with an error or was unlinked. 810 * 811 * ISO transfer status is reported in the status and actual_length fields 812 * of the iso_frame_desc array, and the number of errors is reported in 813 * error_count. Completion callbacks for ISO transfers will normally 814 * (re)submit URBs to ensure a constant transfer rate. 815 * 816 * Note that even fields marked "public" should not be touched by the driver 817 * when the urb is owned by the hcd, that is, since the call to 818 * usb_submit_urb() till the entry into the completion routine. 819 */ 820 struct urb 821 { 822 /* private, usb core and host controller only fields in the urb */ 823 struct kref kref; /* reference count of the URB */ 824 spinlock_t lock; /* lock for the URB */ 825 void *hcpriv; /* private data for host controller */ 826 int bandwidth; /* bandwidth for INT/ISO request */ 827 atomic_t use_count; /* concurrent submissions counter */ 828 u8 reject; /* submissions will fail */ 829 830 /* public, documented fields in the urb that can be used by drivers */ 831 struct list_head urb_list; /* list head for use by the urb's 832 * current owner */ 833 struct usb_device *dev; /* (in) pointer to associated device */ 834 unsigned int pipe; /* (in) pipe information */ 835 int status; /* (return) non-ISO status */ 836 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 837 void *transfer_buffer; /* (in) associated data buffer */ 838 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 839 int transfer_buffer_length; /* (in) data buffer length */ 840 int actual_length; /* (return) actual transfer length */ 841 unsigned char *setup_packet; /* (in) setup packet (control only) */ 842 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 843 int start_frame; /* (modify) start frame (ISO) */ 844 int number_of_packets; /* (in) number of ISO packets */ 845 int interval; /* (modify) transfer interval 846 * (INT/ISO) */ 847 int error_count; /* (return) number of ISO errors */ 848 void *context; /* (in) context for completion */ 849 usb_complete_t complete; /* (in) completion routine */ 850 struct usb_iso_packet_descriptor iso_frame_desc[0]; 851 /* (in) ISO ONLY */ 852 }; 853 854 /* ----------------------------------------------------------------------- */ 855 856 /** 857 * usb_fill_control_urb - initializes a control urb 858 * @urb: pointer to the urb to initialize. 859 * @dev: pointer to the struct usb_device for this urb. 860 * @pipe: the endpoint pipe 861 * @setup_packet: pointer to the setup_packet buffer 862 * @transfer_buffer: pointer to the transfer buffer 863 * @buffer_length: length of the transfer buffer 864 * @complete: pointer to the usb_complete_t function 865 * @context: what to set the urb context to. 866 * 867 * Initializes a control urb with the proper information needed to submit 868 * it to a device. 869 */ 870 static inline void usb_fill_control_urb (struct urb *urb, 871 struct usb_device *dev, 872 unsigned int pipe, 873 unsigned char *setup_packet, 874 void *transfer_buffer, 875 int buffer_length, 876 usb_complete_t complete, 877 void *context) 878 { 879 spin_lock_init(&urb->lock); 880 urb->dev = dev; 881 urb->pipe = pipe; 882 urb->setup_packet = setup_packet; 883 urb->transfer_buffer = transfer_buffer; 884 urb->transfer_buffer_length = buffer_length; 885 urb->complete = complete; 886 urb->context = context; 887 } 888 889 /** 890 * usb_fill_bulk_urb - macro to help initialize a bulk urb 891 * @urb: pointer to the urb to initialize. 892 * @dev: pointer to the struct usb_device for this urb. 893 * @pipe: the endpoint pipe 894 * @transfer_buffer: pointer to the transfer buffer 895 * @buffer_length: length of the transfer buffer 896 * @complete: pointer to the usb_complete_t function 897 * @context: what to set the urb context to. 898 * 899 * Initializes a bulk urb with the proper information needed to submit it 900 * to a device. 901 */ 902 static inline void usb_fill_bulk_urb (struct urb *urb, 903 struct usb_device *dev, 904 unsigned int pipe, 905 void *transfer_buffer, 906 int buffer_length, 907 usb_complete_t complete, 908 void *context) 909 { 910 spin_lock_init(&urb->lock); 911 urb->dev = dev; 912 urb->pipe = pipe; 913 urb->transfer_buffer = transfer_buffer; 914 urb->transfer_buffer_length = buffer_length; 915 urb->complete = complete; 916 urb->context = context; 917 } 918 919 /** 920 * usb_fill_int_urb - macro to help initialize a interrupt urb 921 * @urb: pointer to the urb to initialize. 922 * @dev: pointer to the struct usb_device for this urb. 923 * @pipe: the endpoint pipe 924 * @transfer_buffer: pointer to the transfer buffer 925 * @buffer_length: length of the transfer buffer 926 * @complete: pointer to the usb_complete_t function 927 * @context: what to set the urb context to. 928 * @interval: what to set the urb interval to, encoded like 929 * the endpoint descriptor's bInterval value. 930 * 931 * Initializes a interrupt urb with the proper information needed to submit 932 * it to a device. 933 * Note that high speed interrupt endpoints use a logarithmic encoding of 934 * the endpoint interval, and express polling intervals in microframes 935 * (eight per millisecond) rather than in frames (one per millisecond). 936 */ 937 static inline void usb_fill_int_urb (struct urb *urb, 938 struct usb_device *dev, 939 unsigned int pipe, 940 void *transfer_buffer, 941 int buffer_length, 942 usb_complete_t complete, 943 void *context, 944 int interval) 945 { 946 spin_lock_init(&urb->lock); 947 urb->dev = dev; 948 urb->pipe = pipe; 949 urb->transfer_buffer = transfer_buffer; 950 urb->transfer_buffer_length = buffer_length; 951 urb->complete = complete; 952 urb->context = context; 953 if (dev->speed == USB_SPEED_HIGH) 954 urb->interval = 1 << (interval - 1); 955 else 956 urb->interval = interval; 957 urb->start_frame = -1; 958 } 959 960 extern void usb_init_urb(struct urb *urb); 961 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 962 extern void usb_free_urb(struct urb *urb); 963 #define usb_put_urb usb_free_urb 964 extern struct urb *usb_get_urb(struct urb *urb); 965 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 966 extern int usb_unlink_urb(struct urb *urb); 967 extern void usb_kill_urb(struct urb *urb); 968 969 #define HAVE_USB_BUFFERS 970 void *usb_buffer_alloc (struct usb_device *dev, size_t size, 971 gfp_t mem_flags, dma_addr_t *dma); 972 void usb_buffer_free (struct usb_device *dev, size_t size, 973 void *addr, dma_addr_t dma); 974 975 #if 0 976 struct urb *usb_buffer_map (struct urb *urb); 977 void usb_buffer_dmasync (struct urb *urb); 978 void usb_buffer_unmap (struct urb *urb); 979 #endif 980 981 struct scatterlist; 982 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, 983 struct scatterlist *sg, int nents); 984 #if 0 985 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, 986 struct scatterlist *sg, int n_hw_ents); 987 #endif 988 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, 989 struct scatterlist *sg, int n_hw_ents); 990 991 /*-------------------------------------------------------------------* 992 * SYNCHRONOUS CALL SUPPORT * 993 *-------------------------------------------------------------------*/ 994 995 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 996 __u8 request, __u8 requesttype, __u16 value, __u16 index, 997 void *data, __u16 size, int timeout); 998 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 999 void *data, int len, int *actual_length, 1000 int timeout); 1001 1002 /* wrappers around usb_control_msg() for the most common standard requests */ 1003 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1004 unsigned char descindex, void *buf, int size); 1005 extern int usb_get_status(struct usb_device *dev, 1006 int type, int target, void *data); 1007 extern int usb_get_string(struct usb_device *dev, 1008 unsigned short langid, unsigned char index, void *buf, int size); 1009 extern int usb_string(struct usb_device *dev, int index, 1010 char *buf, size_t size); 1011 1012 /* wrappers that also update important state inside usbcore */ 1013 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1014 extern int usb_reset_configuration(struct usb_device *dev); 1015 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1016 1017 /* 1018 * timeouts, in milliseconds, used for sending/receiving control messages 1019 * they typically complete within a few frames (msec) after they're issued 1020 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1021 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1022 */ 1023 #define USB_CTRL_GET_TIMEOUT 5000 1024 #define USB_CTRL_SET_TIMEOUT 5000 1025 1026 1027 /** 1028 * struct usb_sg_request - support for scatter/gather I/O 1029 * @status: zero indicates success, else negative errno 1030 * @bytes: counts bytes transferred. 1031 * 1032 * These requests are initialized using usb_sg_init(), and then are used 1033 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1034 * members of the request object aren't for driver access. 1035 * 1036 * The status and bytecount values are valid only after usb_sg_wait() 1037 * returns. If the status is zero, then the bytecount matches the total 1038 * from the request. 1039 * 1040 * After an error completion, drivers may need to clear a halt condition 1041 * on the endpoint. 1042 */ 1043 struct usb_sg_request { 1044 int status; 1045 size_t bytes; 1046 1047 /* 1048 * members below are private to usbcore, 1049 * and are not provided for driver access! 1050 */ 1051 spinlock_t lock; 1052 1053 struct usb_device *dev; 1054 int pipe; 1055 struct scatterlist *sg; 1056 int nents; 1057 1058 int entries; 1059 struct urb **urbs; 1060 1061 int count; 1062 struct completion complete; 1063 }; 1064 1065 int usb_sg_init ( 1066 struct usb_sg_request *io, 1067 struct usb_device *dev, 1068 unsigned pipe, 1069 unsigned period, 1070 struct scatterlist *sg, 1071 int nents, 1072 size_t length, 1073 gfp_t mem_flags 1074 ); 1075 void usb_sg_cancel (struct usb_sg_request *io); 1076 void usb_sg_wait (struct usb_sg_request *io); 1077 1078 1079 /* ----------------------------------------------------------------------- */ 1080 1081 /* 1082 * For various legacy reasons, Linux has a small cookie that's paired with 1083 * a struct usb_device to identify an endpoint queue. Queue characteristics 1084 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1085 * an unsigned int encoded as: 1086 * 1087 * - direction: bit 7 (0 = Host-to-Device [Out], 1088 * 1 = Device-to-Host [In] ... 1089 * like endpoint bEndpointAddress) 1090 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1091 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1092 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1093 * 10 = control, 11 = bulk) 1094 * 1095 * Given the device address and endpoint descriptor, pipes are redundant. 1096 */ 1097 1098 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1099 /* (yet ... they're the values used by usbfs) */ 1100 #define PIPE_ISOCHRONOUS 0 1101 #define PIPE_INTERRUPT 1 1102 #define PIPE_CONTROL 2 1103 #define PIPE_BULK 3 1104 1105 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1106 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1107 1108 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1109 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1110 1111 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1112 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1113 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1114 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1115 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1116 1117 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1118 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1119 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1120 #define usb_settoggle(dev, ep, out, bit) \ 1121 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1122 ((bit) << (ep))) 1123 1124 1125 static inline unsigned int __create_pipe(struct usb_device *dev, 1126 unsigned int endpoint) 1127 { 1128 return (dev->devnum << 8) | (endpoint << 15); 1129 } 1130 1131 /* Create various pipes... */ 1132 #define usb_sndctrlpipe(dev,endpoint) \ 1133 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1134 #define usb_rcvctrlpipe(dev,endpoint) \ 1135 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1136 #define usb_sndisocpipe(dev,endpoint) \ 1137 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1138 #define usb_rcvisocpipe(dev,endpoint) \ 1139 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1140 #define usb_sndbulkpipe(dev,endpoint) \ 1141 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1142 #define usb_rcvbulkpipe(dev,endpoint) \ 1143 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1144 #define usb_sndintpipe(dev,endpoint) \ 1145 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1146 #define usb_rcvintpipe(dev,endpoint) \ 1147 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1148 1149 /*-------------------------------------------------------------------------*/ 1150 1151 static inline __u16 1152 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1153 { 1154 struct usb_host_endpoint *ep; 1155 unsigned epnum = usb_pipeendpoint(pipe); 1156 1157 if (is_out) { 1158 WARN_ON(usb_pipein(pipe)); 1159 ep = udev->ep_out[epnum]; 1160 } else { 1161 WARN_ON(usb_pipeout(pipe)); 1162 ep = udev->ep_in[epnum]; 1163 } 1164 if (!ep) 1165 return 0; 1166 1167 /* NOTE: only 0x07ff bits are for packet size... */ 1168 return le16_to_cpu(ep->desc.wMaxPacketSize); 1169 } 1170 1171 /* ----------------------------------------------------------------------- */ 1172 1173 /* Events from the usb core */ 1174 #define USB_DEVICE_ADD 0x0001 1175 #define USB_DEVICE_REMOVE 0x0002 1176 #define USB_BUS_ADD 0x0003 1177 #define USB_BUS_REMOVE 0x0004 1178 extern void usb_register_notify(struct notifier_block *nb); 1179 extern void usb_unregister_notify(struct notifier_block *nb); 1180 1181 #ifdef DEBUG 1182 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1183 __FILE__ , ## arg) 1184 #else 1185 #define dbg(format, arg...) do {} while (0) 1186 #endif 1187 1188 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1189 __FILE__ , ## arg) 1190 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1191 __FILE__ , ## arg) 1192 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1193 __FILE__ , ## arg) 1194 1195 1196 #endif /* __KERNEL__ */ 1197 1198 #endif 1199