xref: /linux-6.15/include/linux/usb.h (revision 4bedea94)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb_ch9.h>
6 
7 #define USB_MAJOR			180
8 
9 
10 #ifdef __KERNEL__
11 
12 #include <linux/config.h>
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 
23 struct usb_device;
24 struct usb_driver;
25 
26 /*-------------------------------------------------------------------------*/
27 
28 /*
29  * Host-side wrappers for standard USB descriptors ... these are parsed
30  * from the data provided by devices.  Parsing turns them from a flat
31  * sequence of descriptors into a hierarchy:
32  *
33  *  - devices have one (usually) or more configs;
34  *  - configs have one (often) or more interfaces;
35  *  - interfaces have one (usually) or more settings;
36  *  - each interface setting has zero or (usually) more endpoints.
37  *
38  * And there might be other descriptors mixed in with those.
39  *
40  * Devices may also have class-specific or vendor-specific descriptors.
41  */
42 
43 /**
44  * struct usb_host_endpoint - host-side endpoint descriptor and queue
45  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
46  * @urb_list: urbs queued to this endpoint; maintained by usbcore
47  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
48  *	with one or more transfer descriptors (TDs) per urb
49  * @extra: descriptors following this endpoint in the configuration
50  * @extralen: how many bytes of "extra" are valid
51  *
52  * USB requests are always queued to a given endpoint, identified by a
53  * descriptor within an active interface in a given USB configuration.
54  */
55 struct usb_host_endpoint {
56 	struct usb_endpoint_descriptor	desc;
57 	struct list_head		urb_list;
58 	void				*hcpriv;
59 
60 	unsigned char *extra;   /* Extra descriptors */
61 	int extralen;
62 };
63 
64 /* host-side wrapper for one interface setting's parsed descriptors */
65 struct usb_host_interface {
66 	struct usb_interface_descriptor	desc;
67 
68 	/* array of desc.bNumEndpoint endpoints associated with this
69 	 * interface setting.  these will be in no particular order.
70 	 */
71 	struct usb_host_endpoint *endpoint;
72 
73 	char *string;		/* iInterface string, if present */
74 	unsigned char *extra;   /* Extra descriptors */
75 	int extralen;
76 };
77 
78 enum usb_interface_condition {
79 	USB_INTERFACE_UNBOUND = 0,
80 	USB_INTERFACE_BINDING,
81 	USB_INTERFACE_BOUND,
82 	USB_INTERFACE_UNBINDING,
83 };
84 
85 /**
86  * struct usb_interface - what usb device drivers talk to
87  * @altsetting: array of interface structures, one for each alternate
88  * 	setting that may be selected.  Each one includes a set of
89  * 	endpoint configurations.  They will be in no particular order.
90  * @num_altsetting: number of altsettings defined.
91  * @cur_altsetting: the current altsetting.
92  * @driver: the USB driver that is bound to this interface.
93  * @minor: the minor number assigned to this interface, if this
94  *	interface is bound to a driver that uses the USB major number.
95  *	If this interface does not use the USB major, this field should
96  *	be unused.  The driver should set this value in the probe()
97  *	function of the driver, after it has been assigned a minor
98  *	number from the USB core by calling usb_register_dev().
99  * @condition: binding state of the interface: not bound, binding
100  *	(in probe()), bound to a driver, or unbinding (in disconnect())
101  * @dev: driver model's view of this device
102  * @class_dev: driver model's class view of this device.
103  *
104  * USB device drivers attach to interfaces on a physical device.  Each
105  * interface encapsulates a single high level function, such as feeding
106  * an audio stream to a speaker or reporting a change in a volume control.
107  * Many USB devices only have one interface.  The protocol used to talk to
108  * an interface's endpoints can be defined in a usb "class" specification,
109  * or by a product's vendor.  The (default) control endpoint is part of
110  * every interface, but is never listed among the interface's descriptors.
111  *
112  * The driver that is bound to the interface can use standard driver model
113  * calls such as dev_get_drvdata() on the dev member of this structure.
114  *
115  * Each interface may have alternate settings.  The initial configuration
116  * of a device sets altsetting 0, but the device driver can change
117  * that setting using usb_set_interface().  Alternate settings are often
118  * used to control the the use of periodic endpoints, such as by having
119  * different endpoints use different amounts of reserved USB bandwidth.
120  * All standards-conformant USB devices that use isochronous endpoints
121  * will use them in non-default settings.
122  *
123  * The USB specification says that alternate setting numbers must run from
124  * 0 to one less than the total number of alternate settings.  But some
125  * devices manage to mess this up, and the structures aren't necessarily
126  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
127  * look up an alternate setting in the altsetting array based on its number.
128  */
129 struct usb_interface {
130 	/* array of alternate settings for this interface,
131 	 * stored in no particular order */
132 	struct usb_host_interface *altsetting;
133 
134 	struct usb_host_interface *cur_altsetting;	/* the currently
135 					 * active alternate setting */
136 	unsigned num_altsetting;	/* number of alternate settings */
137 
138 	int minor;			/* minor number this interface is bound to */
139 	enum usb_interface_condition condition;		/* state of binding */
140 	struct device dev;		/* interface specific device info */
141 	struct class_device *class_dev;
142 };
143 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
144 #define	interface_to_usbdev(intf) \
145 	container_of(intf->dev.parent, struct usb_device, dev)
146 
147 static inline void *usb_get_intfdata (struct usb_interface *intf)
148 {
149 	return dev_get_drvdata (&intf->dev);
150 }
151 
152 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
153 {
154 	dev_set_drvdata(&intf->dev, data);
155 }
156 
157 struct usb_interface *usb_get_intf(struct usb_interface *intf);
158 void usb_put_intf(struct usb_interface *intf);
159 
160 /* this maximum is arbitrary */
161 #define USB_MAXINTERFACES	32
162 
163 /**
164  * struct usb_interface_cache - long-term representation of a device interface
165  * @num_altsetting: number of altsettings defined.
166  * @ref: reference counter.
167  * @altsetting: variable-length array of interface structures, one for
168  *	each alternate setting that may be selected.  Each one includes a
169  *	set of endpoint configurations.  They will be in no particular order.
170  *
171  * These structures persist for the lifetime of a usb_device, unlike
172  * struct usb_interface (which persists only as long as its configuration
173  * is installed).  The altsetting arrays can be accessed through these
174  * structures at any time, permitting comparison of configurations and
175  * providing support for the /proc/bus/usb/devices pseudo-file.
176  */
177 struct usb_interface_cache {
178 	unsigned num_altsetting;	/* number of alternate settings */
179 	struct kref ref;		/* reference counter */
180 
181 	/* variable-length array of alternate settings for this interface,
182 	 * stored in no particular order */
183 	struct usb_host_interface altsetting[0];
184 };
185 #define	ref_to_usb_interface_cache(r) \
186 		container_of(r, struct usb_interface_cache, ref)
187 #define	altsetting_to_usb_interface_cache(a) \
188 		container_of(a, struct usb_interface_cache, altsetting[0])
189 
190 /**
191  * struct usb_host_config - representation of a device's configuration
192  * @desc: the device's configuration descriptor.
193  * @string: pointer to the cached version of the iConfiguration string, if
194  *	present for this configuration.
195  * @interface: array of pointers to usb_interface structures, one for each
196  *	interface in the configuration.  The number of interfaces is stored
197  *	in desc.bNumInterfaces.  These pointers are valid only while the
198  *	the configuration is active.
199  * @intf_cache: array of pointers to usb_interface_cache structures, one
200  *	for each interface in the configuration.  These structures exist
201  *	for the entire life of the device.
202  * @extra: pointer to buffer containing all extra descriptors associated
203  *	with this configuration (those preceding the first interface
204  *	descriptor).
205  * @extralen: length of the extra descriptors buffer.
206  *
207  * USB devices may have multiple configurations, but only one can be active
208  * at any time.  Each encapsulates a different operational environment;
209  * for example, a dual-speed device would have separate configurations for
210  * full-speed and high-speed operation.  The number of configurations
211  * available is stored in the device descriptor as bNumConfigurations.
212  *
213  * A configuration can contain multiple interfaces.  Each corresponds to
214  * a different function of the USB device, and all are available whenever
215  * the configuration is active.  The USB standard says that interfaces
216  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
217  * of devices get this wrong.  In addition, the interface array is not
218  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
219  * look up an interface entry based on its number.
220  *
221  * Device drivers should not attempt to activate configurations.  The choice
222  * of which configuration to install is a policy decision based on such
223  * considerations as available power, functionality provided, and the user's
224  * desires (expressed through hotplug scripts).  However, drivers can call
225  * usb_reset_configuration() to reinitialize the current configuration and
226  * all its interfaces.
227  */
228 struct usb_host_config {
229 	struct usb_config_descriptor	desc;
230 
231 	char *string;
232 	/* the interfaces associated with this configuration,
233 	 * stored in no particular order */
234 	struct usb_interface *interface[USB_MAXINTERFACES];
235 
236 	/* Interface information available even when this is not the
237 	 * active configuration */
238 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
239 
240 	unsigned char *extra;   /* Extra descriptors */
241 	int extralen;
242 };
243 
244 int __usb_get_extra_descriptor(char *buffer, unsigned size,
245 	unsigned char type, void **ptr);
246 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
247 	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
248 		type,(void**)ptr)
249 
250 /* -------------------------------------------------------------------------- */
251 
252 struct usb_operations;
253 
254 /* USB device number allocation bitmap */
255 struct usb_devmap {
256 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
257 };
258 
259 /*
260  * Allocated per bus (tree of devices) we have:
261  */
262 struct usb_bus {
263 	struct device *controller;	/* host/master side hardware */
264 	int busnum;			/* Bus number (in order of reg) */
265 	char *bus_name;			/* stable id (PCI slot_name etc) */
266 	u8 otg_port;			/* 0, or number of OTG/HNP port */
267 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
268 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
269 
270 	int devnum_next;		/* Next open device number in round-robin allocation */
271 
272 	struct usb_devmap devmap;	/* device address allocation map */
273 	struct usb_operations *op;	/* Operations (specific to the HC) */
274 	struct usb_device *root_hub;	/* Root hub */
275 	struct list_head bus_list;	/* list of busses */
276 	void *hcpriv;                   /* Host Controller private data */
277 
278 	int bandwidth_allocated;	/* on this bus: how much of the time
279 					 * reserved for periodic (intr/iso)
280 					 * requests is used, on average?
281 					 * Units: microseconds/frame.
282 					 * Limits: Full/low speed reserve 90%,
283 					 * while high speed reserves 80%.
284 					 */
285 	int bandwidth_int_reqs;		/* number of Interrupt requests */
286 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
287 
288 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
289 
290 	struct class_device *class_dev;	/* class device for this bus */
291 	struct kref kref;		/* handles reference counting this bus */
292 	void (*release)(struct usb_bus *bus);	/* function to destroy this bus's memory */
293 #if defined(CONFIG_USB_MON)
294 	struct mon_bus *mon_bus;	/* non-null when associated */
295 	int monitored;			/* non-zero when monitored */
296 #endif
297 };
298 
299 /* -------------------------------------------------------------------------- */
300 
301 /* This is arbitrary.
302  * From USB 2.0 spec Table 11-13, offset 7, a hub can
303  * have up to 255 ports. The most yet reported is 10.
304  */
305 #define USB_MAXCHILDREN		(16)
306 
307 struct usb_tt;
308 
309 /*
310  * struct usb_device - kernel's representation of a USB device
311  *
312  * FIXME: Write the kerneldoc!
313  *
314  * Usbcore drivers should not set usbdev->state directly.  Instead use
315  * usb_set_device_state().
316  */
317 struct usb_device {
318 	int		devnum;		/* Address on USB bus */
319 	char		devpath [16];	/* Use in messages: /port/port/... */
320 	enum usb_device_state	state;	/* configured, not attached, etc */
321 	enum usb_device_speed	speed;	/* high/full/low (or error) */
322 
323 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
324 	int		ttport;		/* device port on that tt hub */
325 
326 	struct semaphore serialize;
327 
328 	unsigned int toggle[2];		/* one bit for each endpoint ([0] = IN, [1] = OUT) */
329 
330 	struct usb_device *parent;	/* our hub, unless we're the root */
331 	struct usb_bus *bus;		/* Bus we're part of */
332 	struct usb_host_endpoint ep0;
333 
334 	struct device dev;		/* Generic device interface */
335 
336 	struct usb_device_descriptor descriptor;/* Descriptor */
337 	struct usb_host_config *config;	/* All of the configs */
338 
339 	struct usb_host_config *actconfig;/* the active configuration */
340 	struct usb_host_endpoint *ep_in[16];
341 	struct usb_host_endpoint *ep_out[16];
342 
343 	char **rawdescriptors;		/* Raw descriptors for each config */
344 
345 	int have_langid;		/* whether string_langid is valid yet */
346 	int string_langid;		/* language ID for strings */
347 
348 	char *product;
349 	char *manufacturer;
350 	char *serial;			/* static strings from the device */
351 	struct list_head filelist;
352 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
353 
354 	/*
355 	 * Child devices - these can be either new devices
356 	 * (if this is a hub device), or different instances
357 	 * of this same device.
358 	 *
359 	 * Each instance needs its own set of data structures.
360 	 */
361 
362 	int maxchild;			/* Number of ports if hub */
363 	struct usb_device *children[USB_MAXCHILDREN];
364 };
365 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
366 
367 extern struct usb_device *usb_get_dev(struct usb_device *dev);
368 extern void usb_put_dev(struct usb_device *dev);
369 
370 extern void usb_lock_device(struct usb_device *udev);
371 extern int usb_trylock_device(struct usb_device *udev);
372 extern int usb_lock_device_for_reset(struct usb_device *udev,
373 		struct usb_interface *iface);
374 extern void usb_unlock_device(struct usb_device *udev);
375 
376 /* USB port reset for device reinitialization */
377 extern int usb_reset_device(struct usb_device *dev);
378 
379 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
380 
381 /*-------------------------------------------------------------------------*/
382 
383 /* for drivers using iso endpoints */
384 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
385 
386 /* used these for multi-interface device registration */
387 extern int usb_driver_claim_interface(struct usb_driver *driver,
388 			struct usb_interface *iface, void* priv);
389 
390 /**
391  * usb_interface_claimed - returns true iff an interface is claimed
392  * @iface: the interface being checked
393  *
394  * Returns true (nonzero) iff the interface is claimed, else false (zero).
395  * Callers must own the driver model's usb bus readlock.  So driver
396  * probe() entries don't need extra locking, but other call contexts
397  * may need to explicitly claim that lock.
398  *
399  */
400 static inline int usb_interface_claimed(struct usb_interface *iface) {
401 	return (iface->dev.driver != NULL);
402 }
403 
404 extern void usb_driver_release_interface(struct usb_driver *driver,
405 			struct usb_interface *iface);
406 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
407 					 const struct usb_device_id *id);
408 
409 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
410 		int minor);
411 extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
412 		unsigned ifnum);
413 extern struct usb_host_interface *usb_altnum_to_altsetting(
414 		struct usb_interface *intf, unsigned int altnum);
415 
416 
417 /**
418  * usb_make_path - returns stable device path in the usb tree
419  * @dev: the device whose path is being constructed
420  * @buf: where to put the string
421  * @size: how big is "buf"?
422  *
423  * Returns length of the string (> 0) or negative if size was too small.
424  *
425  * This identifier is intended to be "stable", reflecting physical paths in
426  * hardware such as physical bus addresses for host controllers or ports on
427  * USB hubs.  That makes it stay the same until systems are physically
428  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
429  * controllers.  Adding and removing devices, including virtual root hubs
430  * in host controller driver modules, does not change these path identifers;
431  * neither does rebooting or re-enumerating.  These are more useful identifiers
432  * than changeable ("unstable") ones like bus numbers or device addresses.
433  *
434  * With a partial exception for devices connected to USB 2.0 root hubs, these
435  * identifiers are also predictable.  So long as the device tree isn't changed,
436  * plugging any USB device into a given hub port always gives it the same path.
437  * Because of the use of "companion" controllers, devices connected to ports on
438  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
439  * high speed, and a different one if they are full or low speed.
440  */
441 static inline int usb_make_path (struct usb_device *dev, char *buf, size_t size)
442 {
443 	int actual;
444 	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, dev->devpath);
445 	return (actual >= (int)size) ? -1 : actual;
446 }
447 
448 /*-------------------------------------------------------------------------*/
449 
450 #define USB_DEVICE_ID_MATCH_DEVICE		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
451 #define USB_DEVICE_ID_MATCH_DEV_RANGE		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
452 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION	(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
453 #define USB_DEVICE_ID_MATCH_DEV_INFO \
454 	(USB_DEVICE_ID_MATCH_DEV_CLASS | USB_DEVICE_ID_MATCH_DEV_SUBCLASS | USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
455 #define USB_DEVICE_ID_MATCH_INT_INFO \
456 	(USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL)
457 
458 /**
459  * USB_DEVICE - macro used to describe a specific usb device
460  * @vend: the 16 bit USB Vendor ID
461  * @prod: the 16 bit USB Product ID
462  *
463  * This macro is used to create a struct usb_device_id that matches a
464  * specific device.
465  */
466 #define USB_DEVICE(vend,prod) \
467 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), .idProduct = (prod)
468 /**
469  * USB_DEVICE_VER - macro used to describe a specific usb device with a version range
470  * @vend: the 16 bit USB Vendor ID
471  * @prod: the 16 bit USB Product ID
472  * @lo: the bcdDevice_lo value
473  * @hi: the bcdDevice_hi value
474  *
475  * This macro is used to create a struct usb_device_id that matches a
476  * specific device, with a version range.
477  */
478 #define USB_DEVICE_VER(vend,prod,lo,hi) \
479 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, .idVendor = (vend), .idProduct = (prod), .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
480 
481 /**
482  * USB_DEVICE_INFO - macro used to describe a class of usb devices
483  * @cl: bDeviceClass value
484  * @sc: bDeviceSubClass value
485  * @pr: bDeviceProtocol value
486  *
487  * This macro is used to create a struct usb_device_id that matches a
488  * specific class of devices.
489  */
490 #define USB_DEVICE_INFO(cl,sc,pr) \
491 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
492 
493 /**
494  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
495  * @cl: bInterfaceClass value
496  * @sc: bInterfaceSubClass value
497  * @pr: bInterfaceProtocol value
498  *
499  * This macro is used to create a struct usb_device_id that matches a
500  * specific class of interfaces.
501  */
502 #define USB_INTERFACE_INFO(cl,sc,pr) \
503 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
504 
505 /* -------------------------------------------------------------------------- */
506 
507 /**
508  * struct usb_driver - identifies USB driver to usbcore
509  * @owner: Pointer to the module owner of this driver; initialize
510  *	it using THIS_MODULE.
511  * @name: The driver name should be unique among USB drivers,
512  *	and should normally be the same as the module name.
513  * @probe: Called to see if the driver is willing to manage a particular
514  *	interface on a device.  If it is, probe returns zero and uses
515  *	dev_set_drvdata() to associate driver-specific data with the
516  *	interface.  It may also use usb_set_interface() to specify the
517  *	appropriate altsetting.  If unwilling to manage the interface,
518  *	return a negative errno value.
519  * @disconnect: Called when the interface is no longer accessible, usually
520  *	because its device has been (or is being) disconnected or the
521  *	driver module is being unloaded.
522  * @ioctl: Used for drivers that want to talk to userspace through
523  *	the "usbfs" filesystem.  This lets devices provide ways to
524  *	expose information to user space regardless of where they
525  *	do (or don't) show up otherwise in the filesystem.
526  * @suspend: Called when the device is going to be suspended by the system.
527  * @resume: Called when the device is being resumed by the system.
528  * @id_table: USB drivers use ID table to support hotplugging.
529  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
530  *	or your driver's probe function will never get called.
531  * @driver: the driver model core driver structure.
532  *
533  * USB drivers must provide a name, probe() and disconnect() methods,
534  * and an id_table.  Other driver fields are optional.
535  *
536  * The id_table is used in hotplugging.  It holds a set of descriptors,
537  * and specialized data may be associated with each entry.  That table
538  * is used by both user and kernel mode hotplugging support.
539  *
540  * The probe() and disconnect() methods are called in a context where
541  * they can sleep, but they should avoid abusing the privilege.  Most
542  * work to connect to a device should be done when the device is opened,
543  * and undone at the last close.  The disconnect code needs to address
544  * concurrency issues with respect to open() and close() methods, as
545  * well as forcing all pending I/O requests to complete (by unlinking
546  * them as necessary, and blocking until the unlinks complete).
547  */
548 struct usb_driver {
549 	struct module *owner;
550 
551 	const char *name;
552 
553 	int (*probe) (struct usb_interface *intf,
554 		      const struct usb_device_id *id);
555 
556 	void (*disconnect) (struct usb_interface *intf);
557 
558 	int (*ioctl) (struct usb_interface *intf, unsigned int code, void *buf);
559 
560 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
561 	int (*resume) (struct usb_interface *intf);
562 
563 	const struct usb_device_id *id_table;
564 
565 	struct device_driver driver;
566 };
567 #define	to_usb_driver(d) container_of(d, struct usb_driver, driver)
568 
569 extern struct bus_type usb_bus_type;
570 
571 /**
572  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
573  * @name: devfs name for this driver.  Will also be used by the driver
574  *	class code to create a usb class device.
575  * @fops: pointer to the struct file_operations of this driver.
576  * @mode: the mode for the devfs file to be created for this driver.
577  * @minor_base: the start of the minor range for this driver.
578  *
579  * This structure is used for the usb_register_dev() and
580  * usb_unregister_dev() functions, to consolidate a number of the
581  * parameters used for them.
582  */
583 struct usb_class_driver {
584 	char *name;
585 	struct file_operations *fops;
586 	mode_t mode;
587 	int minor_base;
588 };
589 
590 /*
591  * use these in module_init()/module_exit()
592  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
593  */
594 extern int usb_register(struct usb_driver *);
595 extern void usb_deregister(struct usb_driver *);
596 
597 extern int usb_register_dev(struct usb_interface *intf,
598 			    struct usb_class_driver *class_driver);
599 extern void usb_deregister_dev(struct usb_interface *intf,
600 			       struct usb_class_driver *class_driver);
601 
602 extern int usb_disabled(void);
603 
604 /* -------------------------------------------------------------------------- */
605 
606 /*
607  * URB support, for asynchronous request completions
608  */
609 
610 /*
611  * urb->transfer_flags:
612  */
613 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
614 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame ignored */
615 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
616 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
617 #define URB_ASYNC_UNLINK	0x0010	/* usb_unlink_urb() returns asap */
618 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
619 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUTs with short packet */
620 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt needed */
621 
622 struct usb_iso_packet_descriptor {
623 	unsigned int offset;
624 	unsigned int length;		/* expected length */
625 	unsigned int actual_length;
626 	unsigned int status;
627 };
628 
629 struct urb;
630 struct pt_regs;
631 
632 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
633 
634 /**
635  * struct urb - USB Request Block
636  * @urb_list: For use by current owner of the URB.
637  * @pipe: Holds endpoint number, direction, type, and more.
638  *	Create these values with the eight macros available;
639  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
640  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
641  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
642  *	numbers range from zero to fifteen.  Note that "in" endpoint two
643  *	is a different endpoint (and pipe) from "out" endpoint two.
644  *	The current configuration controls the existence, type, and
645  *	maximum packet size of any given endpoint.
646  * @dev: Identifies the USB device to perform the request.
647  * @status: This is read in non-iso completion functions to get the
648  *	status of the particular request.  ISO requests only use it
649  *	to tell whether the URB was unlinked; detailed status for
650  *	each frame is in the fields of the iso_frame-desc.
651  * @transfer_flags: A variety of flags may be used to affect how URB
652  *	submission, unlinking, or operation are handled.  Different
653  *	kinds of URB can use different flags.
654  * @transfer_buffer:  This identifies the buffer to (or from) which
655  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
656  *	is set).  This buffer must be suitable for DMA; allocate it with
657  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
658  *	of this buffer will be modified.  This buffer is used for the data
659  *	stage of control transfers.
660  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
661  *	the device driver is saying that it provided this DMA address,
662  *	which the host controller driver should use in preference to the
663  *	transfer_buffer.
664  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
665  *	be broken up into chunks according to the current maximum packet
666  *	size for the endpoint, which is a function of the configuration
667  *	and is encoded in the pipe.  When the length is zero, neither
668  *	transfer_buffer nor transfer_dma is used.
669  * @actual_length: This is read in non-iso completion functions, and
670  *	it tells how many bytes (out of transfer_buffer_length) were
671  *	transferred.  It will normally be the same as requested, unless
672  *	either an error was reported or a short read was performed.
673  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
674  *	short reads be reported as errors.
675  * @setup_packet: Only used for control transfers, this points to eight bytes
676  *	of setup data.  Control transfers always start by sending this data
677  *	to the device.  Then transfer_buffer is read or written, if needed.
678  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
679  *	device driver has provided this DMA address for the setup packet.
680  *	The host controller driver should use this in preference to
681  *	setup_packet.
682  * @start_frame: Returns the initial frame for isochronous transfers.
683  * @number_of_packets: Lists the number of ISO transfer buffers.
684  * @interval: Specifies the polling interval for interrupt or isochronous
685  *	transfers.  The units are frames (milliseconds) for for full and low
686  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
687  * @error_count: Returns the number of ISO transfers that reported errors.
688  * @context: For use in completion functions.  This normally points to
689  *	request-specific driver context.
690  * @complete: Completion handler. This URB is passed as the parameter to the
691  *	completion function.  The completion function may then do what
692  *	it likes with the URB, including resubmitting or freeing it.
693  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
694  *	collect the transfer status for each buffer.
695  *
696  * This structure identifies USB transfer requests.  URBs must be allocated by
697  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
698  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
699  * are submitted using usb_submit_urb(), and pending requests may be canceled
700  * using usb_unlink_urb() or usb_kill_urb().
701  *
702  * Data Transfer Buffers:
703  *
704  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
705  * taken from the general page pool.  That is provided by transfer_buffer
706  * (control requests also use setup_packet), and host controller drivers
707  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
708  * mapping operations can be expensive on some platforms (perhaps using a dma
709  * bounce buffer or talking to an IOMMU),
710  * although they're cheap on commodity x86 and ppc hardware.
711  *
712  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
713  * which tell the host controller driver that no such mapping is needed since
714  * the device driver is DMA-aware.  For example, a device driver might
715  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
716  * When these transfer flags are provided, host controller drivers will
717  * attempt to use the dma addresses found in the transfer_dma and/or
718  * setup_dma fields rather than determining a dma address themselves.  (Note
719  * that transfer_buffer and setup_packet must still be set because not all
720  * host controllers use DMA, nor do virtual root hubs).
721  *
722  * Initialization:
723  *
724  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
725  * zero), and complete fields.
726  * The URB_ASYNC_UNLINK transfer flag affects later invocations of
727  * the usb_unlink_urb() routine.  Note: Failure to set URB_ASYNC_UNLINK
728  * with usb_unlink_urb() is deprecated.  For synchronous unlinks use
729  * usb_kill_urb() instead.
730  *
731  * All URBs must also initialize
732  * transfer_buffer and transfer_buffer_length.  They may provide the
733  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
734  * to be treated as errors; that flag is invalid for write requests.
735  *
736  * Bulk URBs may
737  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
738  * should always terminate with a short packet, even if it means adding an
739  * extra zero length packet.
740  *
741  * Control URBs must provide a setup_packet.  The setup_packet and
742  * transfer_buffer may each be mapped for DMA or not, independently of
743  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
744  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
745  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
746  *
747  * Interrupt URBs must provide an interval, saying how often (in milliseconds
748  * or, for highspeed devices, 125 microsecond units)
749  * to poll for transfers.  After the URB has been submitted, the interval
750  * field reflects how the transfer was actually scheduled.
751  * The polling interval may be more frequent than requested.
752  * For example, some controllers have a maximum interval of 32 milliseconds,
753  * while others support intervals of up to 1024 milliseconds.
754  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
755  * endpoints, as well as high speed interrupt endpoints, the encoding of
756  * the transfer interval in the endpoint descriptor is logarithmic.
757  * Device drivers must convert that value to linear units themselves.)
758  *
759  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
760  * the host controller to schedule the transfer as soon as bandwidth
761  * utilization allows, and then set start_frame to reflect the actual frame
762  * selected during submission.  Otherwise drivers must specify the start_frame
763  * and handle the case where the transfer can't begin then.  However, drivers
764  * won't know how bandwidth is currently allocated, and while they can
765  * find the current frame using usb_get_current_frame_number () they can't
766  * know the range for that frame number.  (Ranges for frame counter values
767  * are HC-specific, and can go from 256 to 65536 frames from "now".)
768  *
769  * Isochronous URBs have a different data transfer model, in part because
770  * the quality of service is only "best effort".  Callers provide specially
771  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
772  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
773  * URBs are normally queued, submitted by drivers to arrange that
774  * transfers are at least double buffered, and then explicitly resubmitted
775  * in completion handlers, so
776  * that data (such as audio or video) streams at as constant a rate as the
777  * host controller scheduler can support.
778  *
779  * Completion Callbacks:
780  *
781  * The completion callback is made in_interrupt(), and one of the first
782  * things that a completion handler should do is check the status field.
783  * The status field is provided for all URBs.  It is used to report
784  * unlinked URBs, and status for all non-ISO transfers.  It should not
785  * be examined before the URB is returned to the completion handler.
786  *
787  * The context field is normally used to link URBs back to the relevant
788  * driver or request state.
789  *
790  * When the completion callback is invoked for non-isochronous URBs, the
791  * actual_length field tells how many bytes were transferred.  This field
792  * is updated even when the URB terminated with an error or was unlinked.
793  *
794  * ISO transfer status is reported in the status and actual_length fields
795  * of the iso_frame_desc array, and the number of errors is reported in
796  * error_count.  Completion callbacks for ISO transfers will normally
797  * (re)submit URBs to ensure a constant transfer rate.
798  *
799  * Note that even fields marked "public" should not be touched by the driver
800  * when the urb is owned by the hcd, that is, since the call to
801  * usb_submit_urb() till the entry into the completion routine.
802  */
803 struct urb
804 {
805 	/* private, usb core and host controller only fields in the urb */
806 	struct kref kref;		/* reference count of the URB */
807 	spinlock_t lock;		/* lock for the URB */
808 	void *hcpriv;			/* private data for host controller */
809 	int bandwidth;			/* bandwidth for INT/ISO request */
810 	atomic_t use_count;		/* concurrent submissions counter */
811 	u8 reject;			/* submissions will fail */
812 
813 	/* public, documented fields in the urb that can be used by drivers */
814 	struct list_head urb_list;	/* list head for use by the urb owner */
815 	struct usb_device *dev; 	/* (in) pointer to associated device */
816 	unsigned int pipe;		/* (in) pipe information */
817 	int status;			/* (return) non-ISO status */
818 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
819 	void *transfer_buffer;		/* (in) associated data buffer */
820 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
821 	int transfer_buffer_length;	/* (in) data buffer length */
822 	int actual_length;		/* (return) actual transfer length */
823 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
824 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
825 	int start_frame;		/* (modify) start frame (ISO) */
826 	int number_of_packets;		/* (in) number of ISO packets */
827 	int interval;			/* (modify) transfer interval (INT/ISO) */
828 	int error_count;		/* (return) number of ISO errors */
829 	void *context;			/* (in) context for completion */
830 	usb_complete_t complete;	/* (in) completion routine */
831 	struct usb_iso_packet_descriptor iso_frame_desc[0];	/* (in) ISO ONLY */
832 };
833 
834 /* -------------------------------------------------------------------------- */
835 
836 /**
837  * usb_fill_control_urb - initializes a control urb
838  * @urb: pointer to the urb to initialize.
839  * @dev: pointer to the struct usb_device for this urb.
840  * @pipe: the endpoint pipe
841  * @setup_packet: pointer to the setup_packet buffer
842  * @transfer_buffer: pointer to the transfer buffer
843  * @buffer_length: length of the transfer buffer
844  * @complete: pointer to the usb_complete_t function
845  * @context: what to set the urb context to.
846  *
847  * Initializes a control urb with the proper information needed to submit
848  * it to a device.
849  */
850 static inline void usb_fill_control_urb (struct urb *urb,
851 					 struct usb_device *dev,
852 					 unsigned int pipe,
853 					 unsigned char *setup_packet,
854 					 void *transfer_buffer,
855 					 int buffer_length,
856 					 usb_complete_t complete,
857 					 void *context)
858 {
859 	spin_lock_init(&urb->lock);
860 	urb->dev = dev;
861 	urb->pipe = pipe;
862 	urb->setup_packet = setup_packet;
863 	urb->transfer_buffer = transfer_buffer;
864 	urb->transfer_buffer_length = buffer_length;
865 	urb->complete = complete;
866 	urb->context = context;
867 }
868 
869 /**
870  * usb_fill_bulk_urb - macro to help initialize a bulk urb
871  * @urb: pointer to the urb to initialize.
872  * @dev: pointer to the struct usb_device for this urb.
873  * @pipe: the endpoint pipe
874  * @transfer_buffer: pointer to the transfer buffer
875  * @buffer_length: length of the transfer buffer
876  * @complete: pointer to the usb_complete_t function
877  * @context: what to set the urb context to.
878  *
879  * Initializes a bulk urb with the proper information needed to submit it
880  * to a device.
881  */
882 static inline void usb_fill_bulk_urb (struct urb *urb,
883 				      struct usb_device *dev,
884 				      unsigned int pipe,
885 				      void *transfer_buffer,
886 				      int buffer_length,
887 				      usb_complete_t complete,
888 				      void *context)
889 {
890 	spin_lock_init(&urb->lock);
891 	urb->dev = dev;
892 	urb->pipe = pipe;
893 	urb->transfer_buffer = transfer_buffer;
894 	urb->transfer_buffer_length = buffer_length;
895 	urb->complete = complete;
896 	urb->context = context;
897 }
898 
899 /**
900  * usb_fill_int_urb - macro to help initialize a interrupt urb
901  * @urb: pointer to the urb to initialize.
902  * @dev: pointer to the struct usb_device for this urb.
903  * @pipe: the endpoint pipe
904  * @transfer_buffer: pointer to the transfer buffer
905  * @buffer_length: length of the transfer buffer
906  * @complete: pointer to the usb_complete_t function
907  * @context: what to set the urb context to.
908  * @interval: what to set the urb interval to, encoded like
909  *	the endpoint descriptor's bInterval value.
910  *
911  * Initializes a interrupt urb with the proper information needed to submit
912  * it to a device.
913  * Note that high speed interrupt endpoints use a logarithmic encoding of
914  * the endpoint interval, and express polling intervals in microframes
915  * (eight per millisecond) rather than in frames (one per millisecond).
916  */
917 static inline void usb_fill_int_urb (struct urb *urb,
918 				     struct usb_device *dev,
919 				     unsigned int pipe,
920 				     void *transfer_buffer,
921 				     int buffer_length,
922 				     usb_complete_t complete,
923 				     void *context,
924 				     int interval)
925 {
926 	spin_lock_init(&urb->lock);
927 	urb->dev = dev;
928 	urb->pipe = pipe;
929 	urb->transfer_buffer = transfer_buffer;
930 	urb->transfer_buffer_length = buffer_length;
931 	urb->complete = complete;
932 	urb->context = context;
933 	if (dev->speed == USB_SPEED_HIGH)
934 		urb->interval = 1 << (interval - 1);
935 	else
936 		urb->interval = interval;
937 	urb->start_frame = -1;
938 }
939 
940 extern void usb_init_urb(struct urb *urb);
941 extern struct urb *usb_alloc_urb(int iso_packets, int mem_flags);
942 extern void usb_free_urb(struct urb *urb);
943 #define usb_put_urb usb_free_urb
944 extern struct urb *usb_get_urb(struct urb *urb);
945 extern int usb_submit_urb(struct urb *urb, int mem_flags);
946 extern int usb_unlink_urb(struct urb *urb);
947 extern void usb_kill_urb(struct urb *urb);
948 
949 #define HAVE_USB_BUFFERS
950 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
951 	int mem_flags, dma_addr_t *dma);
952 void usb_buffer_free (struct usb_device *dev, size_t size,
953 	void *addr, dma_addr_t dma);
954 
955 #if 0
956 struct urb *usb_buffer_map (struct urb *urb);
957 void usb_buffer_dmasync (struct urb *urb);
958 void usb_buffer_unmap (struct urb *urb);
959 #endif
960 
961 struct scatterlist;
962 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
963 		struct scatterlist *sg, int nents);
964 #if 0
965 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
966 		struct scatterlist *sg, int n_hw_ents);
967 #endif
968 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
969 		struct scatterlist *sg, int n_hw_ents);
970 
971 /*-------------------------------------------------------------------*
972  *                         SYNCHRONOUS CALL SUPPORT                  *
973  *-------------------------------------------------------------------*/
974 
975 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
976 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
977 	void *data, __u16 size, int timeout);
978 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
979 	void *data, int len, int *actual_length,
980 	int timeout);
981 
982 /* selective suspend/resume */
983 extern int usb_suspend_device(struct usb_device *dev, pm_message_t message);
984 extern int usb_resume_device(struct usb_device *dev);
985 
986 
987 /* wrappers around usb_control_msg() for the most common standard requests */
988 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
989 	unsigned char descindex, void *buf, int size);
990 extern int usb_get_status(struct usb_device *dev,
991 	int type, int target, void *data);
992 extern int usb_get_string(struct usb_device *dev,
993 	unsigned short langid, unsigned char index, void *buf, int size);
994 extern int usb_string(struct usb_device *dev, int index,
995 	char *buf, size_t size);
996 
997 /* wrappers that also update important state inside usbcore */
998 extern int usb_clear_halt(struct usb_device *dev, int pipe);
999 extern int usb_reset_configuration(struct usb_device *dev);
1000 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1001 
1002 /*
1003  * timeouts, in milliseconds, used for sending/receiving control messages
1004  * they typically complete within a few frames (msec) after they're issued
1005  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1006  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1007  */
1008 #define USB_CTRL_GET_TIMEOUT	5000
1009 #define USB_CTRL_SET_TIMEOUT	5000
1010 
1011 
1012 /**
1013  * struct usb_sg_request - support for scatter/gather I/O
1014  * @status: zero indicates success, else negative errno
1015  * @bytes: counts bytes transferred.
1016  *
1017  * These requests are initialized using usb_sg_init(), and then are used
1018  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1019  * members of the request object aren't for driver access.
1020  *
1021  * The status and bytecount values are valid only after usb_sg_wait()
1022  * returns.  If the status is zero, then the bytecount matches the total
1023  * from the request.
1024  *
1025  * After an error completion, drivers may need to clear a halt condition
1026  * on the endpoint.
1027  */
1028 struct usb_sg_request {
1029 	int			status;
1030 	size_t			bytes;
1031 
1032 	/*
1033 	 * members below are private to usbcore,
1034 	 * and are not provided for driver access!
1035 	 */
1036 	spinlock_t		lock;
1037 
1038 	struct usb_device	*dev;
1039 	int			pipe;
1040 	struct scatterlist	*sg;
1041 	int			nents;
1042 
1043 	int			entries;
1044 	struct urb		**urbs;
1045 
1046 	int			count;
1047 	struct completion	complete;
1048 };
1049 
1050 int usb_sg_init (
1051 	struct usb_sg_request	*io,
1052 	struct usb_device	*dev,
1053 	unsigned		pipe,
1054 	unsigned		period,
1055 	struct scatterlist	*sg,
1056 	int			nents,
1057 	size_t			length,
1058 	int			mem_flags
1059 );
1060 void usb_sg_cancel (struct usb_sg_request *io);
1061 void usb_sg_wait (struct usb_sg_request *io);
1062 
1063 
1064 /* -------------------------------------------------------------------------- */
1065 
1066 /*
1067  * For various legacy reasons, Linux has a small cookie that's paired with
1068  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1069  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1070  * an unsigned int encoded as:
1071  *
1072  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1073  *					 1 = Device-to-Host [In] ...
1074  *					like endpoint bEndpointAddress)
1075  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1076  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1077  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1078  *					 10 = control, 11 = bulk)
1079  *
1080  * Given the device address and endpoint descriptor, pipes are redundant.
1081  */
1082 
1083 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1084 /* (yet ... they're the values used by usbfs) */
1085 #define PIPE_ISOCHRONOUS		0
1086 #define PIPE_INTERRUPT			1
1087 #define PIPE_CONTROL			2
1088 #define PIPE_BULK			3
1089 
1090 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1091 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1092 
1093 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1094 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1095 
1096 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1097 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1098 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1099 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1100 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1101 
1102 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1103 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1104 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1105 #define usb_settoggle(dev, ep, out, bit) ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | ((bit) << (ep)))
1106 
1107 
1108 static inline unsigned int __create_pipe(struct usb_device *dev, unsigned int endpoint)
1109 {
1110 	return (dev->devnum << 8) | (endpoint << 15);
1111 }
1112 
1113 /* Create various pipes... */
1114 #define usb_sndctrlpipe(dev,endpoint)	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1115 #define usb_rcvctrlpipe(dev,endpoint)	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1116 #define usb_sndisocpipe(dev,endpoint)	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1117 #define usb_rcvisocpipe(dev,endpoint)	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1118 #define usb_sndbulkpipe(dev,endpoint)	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1119 #define usb_rcvbulkpipe(dev,endpoint)	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1120 #define usb_sndintpipe(dev,endpoint)	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1121 #define usb_rcvintpipe(dev,endpoint)	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1122 
1123 /*-------------------------------------------------------------------------*/
1124 
1125 static inline __u16
1126 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1127 {
1128 	struct usb_host_endpoint	*ep;
1129 	unsigned			epnum = usb_pipeendpoint(pipe);
1130 
1131 	if (is_out) {
1132 		WARN_ON(usb_pipein(pipe));
1133 		ep = udev->ep_out[epnum];
1134 	} else {
1135 		WARN_ON(usb_pipeout(pipe));
1136 		ep = udev->ep_in[epnum];
1137 	}
1138 	if (!ep)
1139 		return 0;
1140 
1141 	/* NOTE:  only 0x07ff bits are for packet size... */
1142 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1143 }
1144 
1145 /* -------------------------------------------------------------------------- */
1146 
1147 #ifdef DEBUG
1148 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , __FILE__ , ## arg)
1149 #else
1150 #define dbg(format, arg...) do {} while (0)
1151 #endif
1152 
1153 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , __FILE__ , ## arg)
1154 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , __FILE__ , ## arg)
1155 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , __FILE__ , ## arg)
1156 
1157 
1158 #endif  /* __KERNEL__ */
1159 
1160 #endif
1161