xref: /linux-6.15/include/linux/usb.h (revision 2e4c77be)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 
24 struct usb_device;
25 struct usb_driver;
26 struct wusb_dev;
27 
28 /*-------------------------------------------------------------------------*/
29 
30 /*
31  * Host-side wrappers for standard USB descriptors ... these are parsed
32  * from the data provided by devices.  Parsing turns them from a flat
33  * sequence of descriptors into a hierarchy:
34  *
35  *  - devices have one (usually) or more configs;
36  *  - configs have one (often) or more interfaces;
37  *  - interfaces have one (usually) or more settings;
38  *  - each interface setting has zero or (usually) more endpoints.
39  *
40  * And there might be other descriptors mixed in with those.
41  *
42  * Devices may also have class-specific or vendor-specific descriptors.
43  */
44 
45 struct ep_device;
46 
47 /**
48  * struct usb_host_endpoint - host-side endpoint descriptor and queue
49  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
50  * @urb_list: urbs queued to this endpoint; maintained by usbcore
51  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
52  *	with one or more transfer descriptors (TDs) per urb
53  * @ep_dev: ep_device for sysfs info
54  * @extra: descriptors following this endpoint in the configuration
55  * @extralen: how many bytes of "extra" are valid
56  * @enabled: URBs may be submitted to this endpoint
57  *
58  * USB requests are always queued to a given endpoint, identified by a
59  * descriptor within an active interface in a given USB configuration.
60  */
61 struct usb_host_endpoint {
62 	struct usb_endpoint_descriptor	desc;
63 	struct list_head		urb_list;
64 	void				*hcpriv;
65 	struct ep_device 		*ep_dev;	/* For sysfs info */
66 
67 	unsigned char *extra;   /* Extra descriptors */
68 	int extralen;
69 	int enabled;
70 };
71 
72 /* host-side wrapper for one interface setting's parsed descriptors */
73 struct usb_host_interface {
74 	struct usb_interface_descriptor	desc;
75 
76 	/* array of desc.bNumEndpoint endpoints associated with this
77 	 * interface setting.  these will be in no particular order.
78 	 */
79 	struct usb_host_endpoint *endpoint;
80 
81 	char *string;		/* iInterface string, if present */
82 	unsigned char *extra;   /* Extra descriptors */
83 	int extralen;
84 };
85 
86 enum usb_interface_condition {
87 	USB_INTERFACE_UNBOUND = 0,
88 	USB_INTERFACE_BINDING,
89 	USB_INTERFACE_BOUND,
90 	USB_INTERFACE_UNBINDING,
91 };
92 
93 /**
94  * struct usb_interface - what usb device drivers talk to
95  * @altsetting: array of interface structures, one for each alternate
96  * 	setting that may be selected.  Each one includes a set of
97  * 	endpoint configurations.  They will be in no particular order.
98  * @cur_altsetting: the current altsetting.
99  * @num_altsetting: number of altsettings defined.
100  * @intf_assoc: interface association descriptor
101  * @minor: the minor number assigned to this interface, if this
102  *	interface is bound to a driver that uses the USB major number.
103  *	If this interface does not use the USB major, this field should
104  *	be unused.  The driver should set this value in the probe()
105  *	function of the driver, after it has been assigned a minor
106  *	number from the USB core by calling usb_register_dev().
107  * @condition: binding state of the interface: not bound, binding
108  *	(in probe()), bound to a driver, or unbinding (in disconnect())
109  * @is_active: flag set when the interface is bound and not suspended.
110  * @sysfs_files_created: sysfs attributes exist
111  * @ep_devs_created: endpoint child pseudo-devices exist
112  * @unregistering: flag set when the interface is being unregistered
113  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
114  *	capability during autosuspend.
115  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
116  *	has been deferred.
117  * @needs_binding: flag set when the driver should be re-probed or unbound
118  *	following a reset or suspend operation it doesn't support.
119  * @dev: driver model's view of this device
120  * @usb_dev: if an interface is bound to the USB major, this will point
121  *	to the sysfs representation for that device.
122  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
123  *	allowed unless the counter is 0.
124  * @reset_ws: Used for scheduling resets from atomic context.
125  * @reset_running: set to 1 if the interface is currently running a
126  *      queued reset so that usb_cancel_queued_reset() doesn't try to
127  *      remove from the workqueue when running inside the worker
128  *      thread. See __usb_queue_reset_device().
129  *
130  * USB device drivers attach to interfaces on a physical device.  Each
131  * interface encapsulates a single high level function, such as feeding
132  * an audio stream to a speaker or reporting a change in a volume control.
133  * Many USB devices only have one interface.  The protocol used to talk to
134  * an interface's endpoints can be defined in a usb "class" specification,
135  * or by a product's vendor.  The (default) control endpoint is part of
136  * every interface, but is never listed among the interface's descriptors.
137  *
138  * The driver that is bound to the interface can use standard driver model
139  * calls such as dev_get_drvdata() on the dev member of this structure.
140  *
141  * Each interface may have alternate settings.  The initial configuration
142  * of a device sets altsetting 0, but the device driver can change
143  * that setting using usb_set_interface().  Alternate settings are often
144  * used to control the use of periodic endpoints, such as by having
145  * different endpoints use different amounts of reserved USB bandwidth.
146  * All standards-conformant USB devices that use isochronous endpoints
147  * will use them in non-default settings.
148  *
149  * The USB specification says that alternate setting numbers must run from
150  * 0 to one less than the total number of alternate settings.  But some
151  * devices manage to mess this up, and the structures aren't necessarily
152  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
153  * look up an alternate setting in the altsetting array based on its number.
154  */
155 struct usb_interface {
156 	/* array of alternate settings for this interface,
157 	 * stored in no particular order */
158 	struct usb_host_interface *altsetting;
159 
160 	struct usb_host_interface *cur_altsetting;	/* the currently
161 					 * active alternate setting */
162 	unsigned num_altsetting;	/* number of alternate settings */
163 
164 	/* If there is an interface association descriptor then it will list
165 	 * the associated interfaces */
166 	struct usb_interface_assoc_descriptor *intf_assoc;
167 
168 	int minor;			/* minor number this interface is
169 					 * bound to */
170 	enum usb_interface_condition condition;		/* state of binding */
171 	unsigned is_active:1;		/* the interface is not suspended */
172 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
173 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
174 	unsigned unregistering:1;	/* unregistration is in progress */
175 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
176 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
177 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
178 	unsigned reset_running:1;
179 
180 	struct device dev;		/* interface specific device info */
181 	struct device *usb_dev;
182 	int pm_usage_cnt;		/* usage counter for autosuspend */
183 	struct work_struct reset_ws;	/* for resets in atomic context */
184 };
185 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
186 #define	interface_to_usbdev(intf) \
187 	container_of(intf->dev.parent, struct usb_device, dev)
188 
189 static inline void *usb_get_intfdata(struct usb_interface *intf)
190 {
191 	return dev_get_drvdata(&intf->dev);
192 }
193 
194 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
195 {
196 	dev_set_drvdata(&intf->dev, data);
197 }
198 
199 struct usb_interface *usb_get_intf(struct usb_interface *intf);
200 void usb_put_intf(struct usb_interface *intf);
201 
202 /* this maximum is arbitrary */
203 #define USB_MAXINTERFACES	32
204 #define USB_MAXIADS		USB_MAXINTERFACES/2
205 
206 /**
207  * struct usb_interface_cache - long-term representation of a device interface
208  * @num_altsetting: number of altsettings defined.
209  * @ref: reference counter.
210  * @altsetting: variable-length array of interface structures, one for
211  *	each alternate setting that may be selected.  Each one includes a
212  *	set of endpoint configurations.  They will be in no particular order.
213  *
214  * These structures persist for the lifetime of a usb_device, unlike
215  * struct usb_interface (which persists only as long as its configuration
216  * is installed).  The altsetting arrays can be accessed through these
217  * structures at any time, permitting comparison of configurations and
218  * providing support for the /proc/bus/usb/devices pseudo-file.
219  */
220 struct usb_interface_cache {
221 	unsigned num_altsetting;	/* number of alternate settings */
222 	struct kref ref;		/* reference counter */
223 
224 	/* variable-length array of alternate settings for this interface,
225 	 * stored in no particular order */
226 	struct usb_host_interface altsetting[0];
227 };
228 #define	ref_to_usb_interface_cache(r) \
229 		container_of(r, struct usb_interface_cache, ref)
230 #define	altsetting_to_usb_interface_cache(a) \
231 		container_of(a, struct usb_interface_cache, altsetting[0])
232 
233 /**
234  * struct usb_host_config - representation of a device's configuration
235  * @desc: the device's configuration descriptor.
236  * @string: pointer to the cached version of the iConfiguration string, if
237  *	present for this configuration.
238  * @intf_assoc: list of any interface association descriptors in this config
239  * @interface: array of pointers to usb_interface structures, one for each
240  *	interface in the configuration.  The number of interfaces is stored
241  *	in desc.bNumInterfaces.  These pointers are valid only while the
242  *	the configuration is active.
243  * @intf_cache: array of pointers to usb_interface_cache structures, one
244  *	for each interface in the configuration.  These structures exist
245  *	for the entire life of the device.
246  * @extra: pointer to buffer containing all extra descriptors associated
247  *	with this configuration (those preceding the first interface
248  *	descriptor).
249  * @extralen: length of the extra descriptors buffer.
250  *
251  * USB devices may have multiple configurations, but only one can be active
252  * at any time.  Each encapsulates a different operational environment;
253  * for example, a dual-speed device would have separate configurations for
254  * full-speed and high-speed operation.  The number of configurations
255  * available is stored in the device descriptor as bNumConfigurations.
256  *
257  * A configuration can contain multiple interfaces.  Each corresponds to
258  * a different function of the USB device, and all are available whenever
259  * the configuration is active.  The USB standard says that interfaces
260  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
261  * of devices get this wrong.  In addition, the interface array is not
262  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
263  * look up an interface entry based on its number.
264  *
265  * Device drivers should not attempt to activate configurations.  The choice
266  * of which configuration to install is a policy decision based on such
267  * considerations as available power, functionality provided, and the user's
268  * desires (expressed through userspace tools).  However, drivers can call
269  * usb_reset_configuration() to reinitialize the current configuration and
270  * all its interfaces.
271  */
272 struct usb_host_config {
273 	struct usb_config_descriptor	desc;
274 
275 	char *string;		/* iConfiguration string, if present */
276 
277 	/* List of any Interface Association Descriptors in this
278 	 * configuration. */
279 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
280 
281 	/* the interfaces associated with this configuration,
282 	 * stored in no particular order */
283 	struct usb_interface *interface[USB_MAXINTERFACES];
284 
285 	/* Interface information available even when this is not the
286 	 * active configuration */
287 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
288 
289 	unsigned char *extra;   /* Extra descriptors */
290 	int extralen;
291 };
292 
293 int __usb_get_extra_descriptor(char *buffer, unsigned size,
294 	unsigned char type, void **ptr);
295 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
296 				__usb_get_extra_descriptor((ifpoint)->extra, \
297 				(ifpoint)->extralen, \
298 				type, (void **)ptr)
299 
300 /* ----------------------------------------------------------------------- */
301 
302 /* USB device number allocation bitmap */
303 struct usb_devmap {
304 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
305 };
306 
307 /*
308  * Allocated per bus (tree of devices) we have:
309  */
310 struct usb_bus {
311 	struct device *controller;	/* host/master side hardware */
312 	int busnum;			/* Bus number (in order of reg) */
313 	const char *bus_name;		/* stable id (PCI slot_name etc) */
314 	u8 uses_dma;			/* Does the host controller use DMA? */
315 	u8 otg_port;			/* 0, or number of OTG/HNP port */
316 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
317 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
318 
319 	int devnum_next;		/* Next open device number in
320 					 * round-robin allocation */
321 
322 	struct usb_devmap devmap;	/* device address allocation map */
323 	struct usb_device *root_hub;	/* Root hub */
324 	struct list_head bus_list;	/* list of busses */
325 
326 	int bandwidth_allocated;	/* on this bus: how much of the time
327 					 * reserved for periodic (intr/iso)
328 					 * requests is used, on average?
329 					 * Units: microseconds/frame.
330 					 * Limits: Full/low speed reserve 90%,
331 					 * while high speed reserves 80%.
332 					 */
333 	int bandwidth_int_reqs;		/* number of Interrupt requests */
334 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
335 
336 #ifdef CONFIG_USB_DEVICEFS
337 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
338 #endif
339 	struct device *dev;		/* device for this bus */
340 
341 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
342 	struct mon_bus *mon_bus;	/* non-null when associated */
343 	int monitored;			/* non-zero when monitored */
344 #endif
345 };
346 
347 /* ----------------------------------------------------------------------- */
348 
349 /* This is arbitrary.
350  * From USB 2.0 spec Table 11-13, offset 7, a hub can
351  * have up to 255 ports. The most yet reported is 10.
352  *
353  * Current Wireless USB host hardware (Intel i1480 for example) allows
354  * up to 22 devices to connect. Upcoming hardware might raise that
355  * limit. Because the arrays need to add a bit for hub status data, we
356  * do 31, so plus one evens out to four bytes.
357  */
358 #define USB_MAXCHILDREN		(31)
359 
360 struct usb_tt;
361 
362 /**
363  * struct usb_device - kernel's representation of a USB device
364  * @devnum: device number; address on a USB bus
365  * @devpath: device ID string for use in messages (e.g., /port/...)
366  * @state: device state: configured, not attached, etc.
367  * @speed: device speed: high/full/low (or error)
368  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
369  * @ttport: device port on that tt hub
370  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
371  * @parent: our hub, unless we're the root
372  * @bus: bus we're part of
373  * @ep0: endpoint 0 data (default control pipe)
374  * @dev: generic device interface
375  * @descriptor: USB device descriptor
376  * @config: all of the device's configs
377  * @actconfig: the active configuration
378  * @ep_in: array of IN endpoints
379  * @ep_out: array of OUT endpoints
380  * @rawdescriptors: raw descriptors for each config
381  * @bus_mA: Current available from the bus
382  * @portnum: parent port number (origin 1)
383  * @level: number of USB hub ancestors
384  * @can_submit: URBs may be submitted
385  * @discon_suspended: disconnected while suspended
386  * @persist_enabled:  USB_PERSIST enabled for this device
387  * @have_langid: whether string_langid is valid
388  * @authorized: policy has said we can use it;
389  *	(user space) policy determines if we authorize this device to be
390  *	used or not. By default, wired USB devices are authorized.
391  *	WUSB devices are not, until we authorize them from user space.
392  *	FIXME -- complete doc
393  * @authenticated: Crypto authentication passed
394  * @wusb: device is Wireless USB
395  * @string_langid: language ID for strings
396  * @product: iProduct string, if present (static)
397  * @manufacturer: iManufacturer string, if present (static)
398  * @serial: iSerialNumber string, if present (static)
399  * @filelist: usbfs files that are open to this device
400  * @usb_classdev: USB class device that was created for usbfs device
401  *	access from userspace
402  * @usbfs_dentry: usbfs dentry entry for the device
403  * @maxchild: number of ports if hub
404  * @children: child devices - USB devices that are attached to this hub
405  * @pm_usage_cnt: usage counter for autosuspend
406  * @quirks: quirks of the whole device
407  * @urbnum: number of URBs submitted for the whole device
408  * @active_duration: total time device is not suspended
409  * @autosuspend: for delayed autosuspends
410  * @autoresume: for autoresumes requested while in_interrupt
411  * @pm_mutex: protects PM operations
412  * @last_busy: time of last use
413  * @autosuspend_delay: in jiffies
414  * @connect_time: time device was first connected
415  * @auto_pm: autosuspend/resume in progress
416  * @do_remote_wakeup:  remote wakeup should be enabled
417  * @reset_resume: needs reset instead of resume
418  * @autosuspend_disabled: autosuspend disabled by the user
419  * @autoresume_disabled: autoresume disabled by the user
420  * @skip_sys_resume: skip the next system resume
421  *
422  * Notes:
423  * Usbcore drivers should not set usbdev->state directly.  Instead use
424  * usb_set_device_state().
425  */
426 struct usb_device {
427 	int		devnum;
428 	char		devpath [16];
429 	enum usb_device_state	state;
430 	enum usb_device_speed	speed;
431 
432 	struct usb_tt	*tt;
433 	int		ttport;
434 
435 	unsigned int toggle[2];
436 
437 	struct usb_device *parent;
438 	struct usb_bus *bus;
439 	struct usb_host_endpoint ep0;
440 
441 	struct device dev;
442 
443 	struct usb_device_descriptor descriptor;
444 	struct usb_host_config *config;
445 
446 	struct usb_host_config *actconfig;
447 	struct usb_host_endpoint *ep_in[16];
448 	struct usb_host_endpoint *ep_out[16];
449 
450 	char **rawdescriptors;
451 
452 	unsigned short bus_mA;
453 	u8 portnum;
454 	u8 level;
455 
456 	unsigned can_submit:1;
457 	unsigned discon_suspended:1;
458 	unsigned persist_enabled:1;
459 	unsigned have_langid:1;
460 	unsigned authorized:1;
461  	unsigned authenticated:1;
462 	unsigned wusb:1;
463 	int string_langid;
464 
465 	/* static strings from the device */
466 	char *product;
467 	char *manufacturer;
468 	char *serial;
469 
470 	struct list_head filelist;
471 #ifdef CONFIG_USB_DEVICE_CLASS
472 	struct device *usb_classdev;
473 #endif
474 #ifdef CONFIG_USB_DEVICEFS
475 	struct dentry *usbfs_dentry;
476 #endif
477 
478 	int maxchild;
479 	struct usb_device *children[USB_MAXCHILDREN];
480 
481 	int pm_usage_cnt;
482 	u32 quirks;
483 	atomic_t urbnum;
484 
485 	unsigned long active_duration;
486 
487 #ifdef CONFIG_PM
488 	struct delayed_work autosuspend;
489 	struct work_struct autoresume;
490 	struct mutex pm_mutex;
491 
492 	unsigned long last_busy;
493 	int autosuspend_delay;
494 	unsigned long connect_time;
495 
496 	unsigned auto_pm:1;
497 	unsigned do_remote_wakeup:1;
498 	unsigned reset_resume:1;
499 	unsigned autosuspend_disabled:1;
500 	unsigned autoresume_disabled:1;
501 	unsigned skip_sys_resume:1;
502 #endif
503 	struct wusb_dev *wusb_dev;
504 };
505 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
506 
507 extern struct usb_device *usb_get_dev(struct usb_device *dev);
508 extern void usb_put_dev(struct usb_device *dev);
509 
510 /* USB device locking */
511 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
512 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
513 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
514 extern int usb_lock_device_for_reset(struct usb_device *udev,
515 				     const struct usb_interface *iface);
516 
517 /* USB port reset for device reinitialization */
518 extern int usb_reset_device(struct usb_device *dev);
519 extern void usb_queue_reset_device(struct usb_interface *dev);
520 
521 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
522 
523 /* USB autosuspend and autoresume */
524 #ifdef CONFIG_USB_SUSPEND
525 extern int usb_autopm_set_interface(struct usb_interface *intf);
526 extern int usb_autopm_get_interface(struct usb_interface *intf);
527 extern void usb_autopm_put_interface(struct usb_interface *intf);
528 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
529 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
530 
531 static inline void usb_autopm_enable(struct usb_interface *intf)
532 {
533 	intf->pm_usage_cnt = 0;
534 	usb_autopm_set_interface(intf);
535 }
536 
537 static inline void usb_autopm_disable(struct usb_interface *intf)
538 {
539 	intf->pm_usage_cnt = 1;
540 	usb_autopm_set_interface(intf);
541 }
542 
543 static inline void usb_mark_last_busy(struct usb_device *udev)
544 {
545 	udev->last_busy = jiffies;
546 }
547 
548 #else
549 
550 static inline int usb_autopm_set_interface(struct usb_interface *intf)
551 { return 0; }
552 
553 static inline int usb_autopm_get_interface(struct usb_interface *intf)
554 { return 0; }
555 
556 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
557 { return 0; }
558 
559 static inline void usb_autopm_put_interface(struct usb_interface *intf)
560 { }
561 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
562 { }
563 static inline void usb_autopm_enable(struct usb_interface *intf)
564 { }
565 static inline void usb_autopm_disable(struct usb_interface *intf)
566 { }
567 static inline void usb_mark_last_busy(struct usb_device *udev)
568 { }
569 #endif
570 
571 /*-------------------------------------------------------------------------*/
572 
573 /* for drivers using iso endpoints */
574 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
575 
576 /* used these for multi-interface device registration */
577 extern int usb_driver_claim_interface(struct usb_driver *driver,
578 			struct usb_interface *iface, void *priv);
579 
580 /**
581  * usb_interface_claimed - returns true iff an interface is claimed
582  * @iface: the interface being checked
583  *
584  * Returns true (nonzero) iff the interface is claimed, else false (zero).
585  * Callers must own the driver model's usb bus readlock.  So driver
586  * probe() entries don't need extra locking, but other call contexts
587  * may need to explicitly claim that lock.
588  *
589  */
590 static inline int usb_interface_claimed(struct usb_interface *iface)
591 {
592 	return (iface->dev.driver != NULL);
593 }
594 
595 extern void usb_driver_release_interface(struct usb_driver *driver,
596 			struct usb_interface *iface);
597 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
598 					 const struct usb_device_id *id);
599 extern int usb_match_one_id(struct usb_interface *interface,
600 			    const struct usb_device_id *id);
601 
602 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
603 		int minor);
604 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
605 		unsigned ifnum);
606 extern struct usb_host_interface *usb_altnum_to_altsetting(
607 		const struct usb_interface *intf, unsigned int altnum);
608 
609 
610 /**
611  * usb_make_path - returns stable device path in the usb tree
612  * @dev: the device whose path is being constructed
613  * @buf: where to put the string
614  * @size: how big is "buf"?
615  *
616  * Returns length of the string (> 0) or negative if size was too small.
617  *
618  * This identifier is intended to be "stable", reflecting physical paths in
619  * hardware such as physical bus addresses for host controllers or ports on
620  * USB hubs.  That makes it stay the same until systems are physically
621  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
622  * controllers.  Adding and removing devices, including virtual root hubs
623  * in host controller driver modules, does not change these path identifers;
624  * neither does rebooting or re-enumerating.  These are more useful identifiers
625  * than changeable ("unstable") ones like bus numbers or device addresses.
626  *
627  * With a partial exception for devices connected to USB 2.0 root hubs, these
628  * identifiers are also predictable.  So long as the device tree isn't changed,
629  * plugging any USB device into a given hub port always gives it the same path.
630  * Because of the use of "companion" controllers, devices connected to ports on
631  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
632  * high speed, and a different one if they are full or low speed.
633  */
634 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
635 {
636 	int actual;
637 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
638 			  dev->devpath);
639 	return (actual >= (int)size) ? -1 : actual;
640 }
641 
642 /*-------------------------------------------------------------------------*/
643 
644 /**
645  * usb_endpoint_num - get the endpoint's number
646  * @epd: endpoint to be checked
647  *
648  * Returns @epd's number: 0 to 15.
649  */
650 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
651 {
652 	return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
653 }
654 
655 /**
656  * usb_endpoint_type - get the endpoint's transfer type
657  * @epd: endpoint to be checked
658  *
659  * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
660  * to @epd's transfer type.
661  */
662 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
663 {
664 	return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
665 }
666 
667 /**
668  * usb_endpoint_dir_in - check if the endpoint has IN direction
669  * @epd: endpoint to be checked
670  *
671  * Returns true if the endpoint is of type IN, otherwise it returns false.
672  */
673 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
674 {
675 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
676 }
677 
678 /**
679  * usb_endpoint_dir_out - check if the endpoint has OUT direction
680  * @epd: endpoint to be checked
681  *
682  * Returns true if the endpoint is of type OUT, otherwise it returns false.
683  */
684 static inline int usb_endpoint_dir_out(
685 				const struct usb_endpoint_descriptor *epd)
686 {
687 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
688 }
689 
690 /**
691  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
692  * @epd: endpoint to be checked
693  *
694  * Returns true if the endpoint is of type bulk, otherwise it returns false.
695  */
696 static inline int usb_endpoint_xfer_bulk(
697 				const struct usb_endpoint_descriptor *epd)
698 {
699 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
700 		USB_ENDPOINT_XFER_BULK);
701 }
702 
703 /**
704  * usb_endpoint_xfer_control - check if the endpoint has control transfer type
705  * @epd: endpoint to be checked
706  *
707  * Returns true if the endpoint is of type control, otherwise it returns false.
708  */
709 static inline int usb_endpoint_xfer_control(
710 				const struct usb_endpoint_descriptor *epd)
711 {
712 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
713 		USB_ENDPOINT_XFER_CONTROL);
714 }
715 
716 /**
717  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
718  * @epd: endpoint to be checked
719  *
720  * Returns true if the endpoint is of type interrupt, otherwise it returns
721  * false.
722  */
723 static inline int usb_endpoint_xfer_int(
724 				const struct usb_endpoint_descriptor *epd)
725 {
726 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
727 		USB_ENDPOINT_XFER_INT);
728 }
729 
730 /**
731  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
732  * @epd: endpoint to be checked
733  *
734  * Returns true if the endpoint is of type isochronous, otherwise it returns
735  * false.
736  */
737 static inline int usb_endpoint_xfer_isoc(
738 				const struct usb_endpoint_descriptor *epd)
739 {
740 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
741 		USB_ENDPOINT_XFER_ISOC);
742 }
743 
744 /**
745  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
746  * @epd: endpoint to be checked
747  *
748  * Returns true if the endpoint has bulk transfer type and IN direction,
749  * otherwise it returns false.
750  */
751 static inline int usb_endpoint_is_bulk_in(
752 				const struct usb_endpoint_descriptor *epd)
753 {
754 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
755 }
756 
757 /**
758  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
759  * @epd: endpoint to be checked
760  *
761  * Returns true if the endpoint has bulk transfer type and OUT direction,
762  * otherwise it returns false.
763  */
764 static inline int usb_endpoint_is_bulk_out(
765 				const struct usb_endpoint_descriptor *epd)
766 {
767 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
768 }
769 
770 /**
771  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
772  * @epd: endpoint to be checked
773  *
774  * Returns true if the endpoint has interrupt transfer type and IN direction,
775  * otherwise it returns false.
776  */
777 static inline int usb_endpoint_is_int_in(
778 				const struct usb_endpoint_descriptor *epd)
779 {
780 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
781 }
782 
783 /**
784  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
785  * @epd: endpoint to be checked
786  *
787  * Returns true if the endpoint has interrupt transfer type and OUT direction,
788  * otherwise it returns false.
789  */
790 static inline int usb_endpoint_is_int_out(
791 				const struct usb_endpoint_descriptor *epd)
792 {
793 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
794 }
795 
796 /**
797  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
798  * @epd: endpoint to be checked
799  *
800  * Returns true if the endpoint has isochronous transfer type and IN direction,
801  * otherwise it returns false.
802  */
803 static inline int usb_endpoint_is_isoc_in(
804 				const struct usb_endpoint_descriptor *epd)
805 {
806 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
807 }
808 
809 /**
810  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
811  * @epd: endpoint to be checked
812  *
813  * Returns true if the endpoint has isochronous transfer type and OUT direction,
814  * otherwise it returns false.
815  */
816 static inline int usb_endpoint_is_isoc_out(
817 				const struct usb_endpoint_descriptor *epd)
818 {
819 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
820 }
821 
822 /*-------------------------------------------------------------------------*/
823 
824 #define USB_DEVICE_ID_MATCH_DEVICE \
825 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
826 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
827 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
828 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
829 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
830 #define USB_DEVICE_ID_MATCH_DEV_INFO \
831 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
832 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
833 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
834 #define USB_DEVICE_ID_MATCH_INT_INFO \
835 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
836 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
837 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
838 
839 /**
840  * USB_DEVICE - macro used to describe a specific usb device
841  * @vend: the 16 bit USB Vendor ID
842  * @prod: the 16 bit USB Product ID
843  *
844  * This macro is used to create a struct usb_device_id that matches a
845  * specific device.
846  */
847 #define USB_DEVICE(vend,prod) \
848 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
849 	.idVendor = (vend), \
850 	.idProduct = (prod)
851 /**
852  * USB_DEVICE_VER - describe a specific usb device with a version range
853  * @vend: the 16 bit USB Vendor ID
854  * @prod: the 16 bit USB Product ID
855  * @lo: the bcdDevice_lo value
856  * @hi: the bcdDevice_hi value
857  *
858  * This macro is used to create a struct usb_device_id that matches a
859  * specific device, with a version range.
860  */
861 #define USB_DEVICE_VER(vend, prod, lo, hi) \
862 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
863 	.idVendor = (vend), \
864 	.idProduct = (prod), \
865 	.bcdDevice_lo = (lo), \
866 	.bcdDevice_hi = (hi)
867 
868 /**
869  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
870  * @vend: the 16 bit USB Vendor ID
871  * @prod: the 16 bit USB Product ID
872  * @pr: bInterfaceProtocol value
873  *
874  * This macro is used to create a struct usb_device_id that matches a
875  * specific interface protocol of devices.
876  */
877 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
878 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
879 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
880 	.idVendor = (vend), \
881 	.idProduct = (prod), \
882 	.bInterfaceProtocol = (pr)
883 
884 /**
885  * USB_DEVICE_INFO - macro used to describe a class of usb devices
886  * @cl: bDeviceClass value
887  * @sc: bDeviceSubClass value
888  * @pr: bDeviceProtocol value
889  *
890  * This macro is used to create a struct usb_device_id that matches a
891  * specific class of devices.
892  */
893 #define USB_DEVICE_INFO(cl, sc, pr) \
894 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
895 	.bDeviceClass = (cl), \
896 	.bDeviceSubClass = (sc), \
897 	.bDeviceProtocol = (pr)
898 
899 /**
900  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
901  * @cl: bInterfaceClass value
902  * @sc: bInterfaceSubClass value
903  * @pr: bInterfaceProtocol value
904  *
905  * This macro is used to create a struct usb_device_id that matches a
906  * specific class of interfaces.
907  */
908 #define USB_INTERFACE_INFO(cl, sc, pr) \
909 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
910 	.bInterfaceClass = (cl), \
911 	.bInterfaceSubClass = (sc), \
912 	.bInterfaceProtocol = (pr)
913 
914 /**
915  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
916  * @vend: the 16 bit USB Vendor ID
917  * @prod: the 16 bit USB Product ID
918  * @cl: bInterfaceClass value
919  * @sc: bInterfaceSubClass value
920  * @pr: bInterfaceProtocol value
921  *
922  * This macro is used to create a struct usb_device_id that matches a
923  * specific device with a specific class of interfaces.
924  *
925  * This is especially useful when explicitly matching devices that have
926  * vendor specific bDeviceClass values, but standards-compliant interfaces.
927  */
928 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
929 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
930 		| USB_DEVICE_ID_MATCH_DEVICE, \
931 	.idVendor = (vend), \
932 	.idProduct = (prod), \
933 	.bInterfaceClass = (cl), \
934 	.bInterfaceSubClass = (sc), \
935 	.bInterfaceProtocol = (pr)
936 
937 /* ----------------------------------------------------------------------- */
938 
939 /* Stuff for dynamic usb ids */
940 struct usb_dynids {
941 	spinlock_t lock;
942 	struct list_head list;
943 };
944 
945 struct usb_dynid {
946 	struct list_head node;
947 	struct usb_device_id id;
948 };
949 
950 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
951 				struct device_driver *driver,
952 				const char *buf, size_t count);
953 
954 /**
955  * struct usbdrv_wrap - wrapper for driver-model structure
956  * @driver: The driver-model core driver structure.
957  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
958  */
959 struct usbdrv_wrap {
960 	struct device_driver driver;
961 	int for_devices;
962 };
963 
964 /**
965  * struct usb_driver - identifies USB interface driver to usbcore
966  * @name: The driver name should be unique among USB drivers,
967  *	and should normally be the same as the module name.
968  * @probe: Called to see if the driver is willing to manage a particular
969  *	interface on a device.  If it is, probe returns zero and uses
970  *	usb_set_intfdata() to associate driver-specific data with the
971  *	interface.  It may also use usb_set_interface() to specify the
972  *	appropriate altsetting.  If unwilling to manage the interface,
973  *	return -ENODEV, if genuine IO errors occured, an appropriate
974  *	negative errno value.
975  * @disconnect: Called when the interface is no longer accessible, usually
976  *	because its device has been (or is being) disconnected or the
977  *	driver module is being unloaded.
978  * @ioctl: Used for drivers that want to talk to userspace through
979  *	the "usbfs" filesystem.  This lets devices provide ways to
980  *	expose information to user space regardless of where they
981  *	do (or don't) show up otherwise in the filesystem.
982  * @suspend: Called when the device is going to be suspended by the system.
983  * @resume: Called when the device is being resumed by the system.
984  * @reset_resume: Called when the suspended device has been reset instead
985  *	of being resumed.
986  * @pre_reset: Called by usb_reset_device() when the device
987  *	is about to be reset.
988  * @post_reset: Called by usb_reset_device() after the device
989  *	has been reset
990  * @id_table: USB drivers use ID table to support hotplugging.
991  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
992  *	or your driver's probe function will never get called.
993  * @dynids: used internally to hold the list of dynamically added device
994  *	ids for this driver.
995  * @drvwrap: Driver-model core structure wrapper.
996  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
997  *	added to this driver by preventing the sysfs file from being created.
998  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
999  *	for interfaces bound to this driver.
1000  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1001  *	endpoints before calling the driver's disconnect method.
1002  *
1003  * USB interface drivers must provide a name, probe() and disconnect()
1004  * methods, and an id_table.  Other driver fields are optional.
1005  *
1006  * The id_table is used in hotplugging.  It holds a set of descriptors,
1007  * and specialized data may be associated with each entry.  That table
1008  * is used by both user and kernel mode hotplugging support.
1009  *
1010  * The probe() and disconnect() methods are called in a context where
1011  * they can sleep, but they should avoid abusing the privilege.  Most
1012  * work to connect to a device should be done when the device is opened,
1013  * and undone at the last close.  The disconnect code needs to address
1014  * concurrency issues with respect to open() and close() methods, as
1015  * well as forcing all pending I/O requests to complete (by unlinking
1016  * them as necessary, and blocking until the unlinks complete).
1017  */
1018 struct usb_driver {
1019 	const char *name;
1020 
1021 	int (*probe) (struct usb_interface *intf,
1022 		      const struct usb_device_id *id);
1023 
1024 	void (*disconnect) (struct usb_interface *intf);
1025 
1026 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
1027 			void *buf);
1028 
1029 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1030 	int (*resume) (struct usb_interface *intf);
1031 	int (*reset_resume)(struct usb_interface *intf);
1032 
1033 	int (*pre_reset)(struct usb_interface *intf);
1034 	int (*post_reset)(struct usb_interface *intf);
1035 
1036 	const struct usb_device_id *id_table;
1037 
1038 	struct usb_dynids dynids;
1039 	struct usbdrv_wrap drvwrap;
1040 	unsigned int no_dynamic_id:1;
1041 	unsigned int supports_autosuspend:1;
1042 	unsigned int soft_unbind:1;
1043 };
1044 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1045 
1046 /**
1047  * struct usb_device_driver - identifies USB device driver to usbcore
1048  * @name: The driver name should be unique among USB drivers,
1049  *	and should normally be the same as the module name.
1050  * @probe: Called to see if the driver is willing to manage a particular
1051  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1052  *	to associate driver-specific data with the device.  If unwilling
1053  *	to manage the device, return a negative errno value.
1054  * @disconnect: Called when the device is no longer accessible, usually
1055  *	because it has been (or is being) disconnected or the driver's
1056  *	module is being unloaded.
1057  * @suspend: Called when the device is going to be suspended by the system.
1058  * @resume: Called when the device is being resumed by the system.
1059  * @drvwrap: Driver-model core structure wrapper.
1060  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1061  *	for devices bound to this driver.
1062  *
1063  * USB drivers must provide all the fields listed above except drvwrap.
1064  */
1065 struct usb_device_driver {
1066 	const char *name;
1067 
1068 	int (*probe) (struct usb_device *udev);
1069 	void (*disconnect) (struct usb_device *udev);
1070 
1071 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1072 	int (*resume) (struct usb_device *udev, pm_message_t message);
1073 	struct usbdrv_wrap drvwrap;
1074 	unsigned int supports_autosuspend:1;
1075 };
1076 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1077 		drvwrap.driver)
1078 
1079 extern struct bus_type usb_bus_type;
1080 
1081 /**
1082  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1083  * @name: the usb class device name for this driver.  Will show up in sysfs.
1084  * @fops: pointer to the struct file_operations of this driver.
1085  * @minor_base: the start of the minor range for this driver.
1086  *
1087  * This structure is used for the usb_register_dev() and
1088  * usb_unregister_dev() functions, to consolidate a number of the
1089  * parameters used for them.
1090  */
1091 struct usb_class_driver {
1092 	char *name;
1093 	const struct file_operations *fops;
1094 	int minor_base;
1095 };
1096 
1097 /*
1098  * use these in module_init()/module_exit()
1099  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1100  */
1101 extern int usb_register_driver(struct usb_driver *, struct module *,
1102 			       const char *);
1103 static inline int usb_register(struct usb_driver *driver)
1104 {
1105 	return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1106 }
1107 extern void usb_deregister(struct usb_driver *);
1108 
1109 extern int usb_register_device_driver(struct usb_device_driver *,
1110 			struct module *);
1111 extern void usb_deregister_device_driver(struct usb_device_driver *);
1112 
1113 extern int usb_register_dev(struct usb_interface *intf,
1114 			    struct usb_class_driver *class_driver);
1115 extern void usb_deregister_dev(struct usb_interface *intf,
1116 			       struct usb_class_driver *class_driver);
1117 
1118 extern int usb_disabled(void);
1119 
1120 /* ----------------------------------------------------------------------- */
1121 
1122 /*
1123  * URB support, for asynchronous request completions
1124  */
1125 
1126 /*
1127  * urb->transfer_flags:
1128  *
1129  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1130  */
1131 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1132 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
1133 					 * ignored */
1134 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1135 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
1136 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1137 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1138 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1139 					 * needed */
1140 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1141 
1142 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1143 #define URB_DIR_OUT		0
1144 #define URB_DIR_MASK		URB_DIR_IN
1145 
1146 struct usb_iso_packet_descriptor {
1147 	unsigned int offset;
1148 	unsigned int length;		/* expected length */
1149 	unsigned int actual_length;
1150 	int status;
1151 };
1152 
1153 struct urb;
1154 
1155 struct usb_anchor {
1156 	struct list_head urb_list;
1157 	wait_queue_head_t wait;
1158 	spinlock_t lock;
1159 	unsigned int poisoned:1;
1160 };
1161 
1162 static inline void init_usb_anchor(struct usb_anchor *anchor)
1163 {
1164 	INIT_LIST_HEAD(&anchor->urb_list);
1165 	init_waitqueue_head(&anchor->wait);
1166 	spin_lock_init(&anchor->lock);
1167 }
1168 
1169 typedef void (*usb_complete_t)(struct urb *);
1170 
1171 /**
1172  * struct urb - USB Request Block
1173  * @urb_list: For use by current owner of the URB.
1174  * @anchor_list: membership in the list of an anchor
1175  * @anchor: to anchor URBs to a common mooring
1176  * @ep: Points to the endpoint's data structure.  Will eventually
1177  *	replace @pipe.
1178  * @pipe: Holds endpoint number, direction, type, and more.
1179  *	Create these values with the eight macros available;
1180  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1181  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1182  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1183  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1184  *	is a different endpoint (and pipe) from "out" endpoint two.
1185  *	The current configuration controls the existence, type, and
1186  *	maximum packet size of any given endpoint.
1187  * @dev: Identifies the USB device to perform the request.
1188  * @status: This is read in non-iso completion functions to get the
1189  *	status of the particular request.  ISO requests only use it
1190  *	to tell whether the URB was unlinked; detailed status for
1191  *	each frame is in the fields of the iso_frame-desc.
1192  * @transfer_flags: A variety of flags may be used to affect how URB
1193  *	submission, unlinking, or operation are handled.  Different
1194  *	kinds of URB can use different flags.
1195  * @transfer_buffer:  This identifies the buffer to (or from) which
1196  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1197  *	is set).  This buffer must be suitable for DMA; allocate it with
1198  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1199  *	of this buffer will be modified.  This buffer is used for the data
1200  *	stage of control transfers.
1201  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1202  *	the device driver is saying that it provided this DMA address,
1203  *	which the host controller driver should use in preference to the
1204  *	transfer_buffer.
1205  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1206  *	be broken up into chunks according to the current maximum packet
1207  *	size for the endpoint, which is a function of the configuration
1208  *	and is encoded in the pipe.  When the length is zero, neither
1209  *	transfer_buffer nor transfer_dma is used.
1210  * @actual_length: This is read in non-iso completion functions, and
1211  *	it tells how many bytes (out of transfer_buffer_length) were
1212  *	transferred.  It will normally be the same as requested, unless
1213  *	either an error was reported or a short read was performed.
1214  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1215  *	short reads be reported as errors.
1216  * @setup_packet: Only used for control transfers, this points to eight bytes
1217  *	of setup data.  Control transfers always start by sending this data
1218  *	to the device.  Then transfer_buffer is read or written, if needed.
1219  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1220  *	device driver has provided this DMA address for the setup packet.
1221  *	The host controller driver should use this in preference to
1222  *	setup_packet.
1223  * @start_frame: Returns the initial frame for isochronous transfers.
1224  * @number_of_packets: Lists the number of ISO transfer buffers.
1225  * @interval: Specifies the polling interval for interrupt or isochronous
1226  *	transfers.  The units are frames (milliseconds) for for full and low
1227  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
1228  * @error_count: Returns the number of ISO transfers that reported errors.
1229  * @context: For use in completion functions.  This normally points to
1230  *	request-specific driver context.
1231  * @complete: Completion handler. This URB is passed as the parameter to the
1232  *	completion function.  The completion function may then do what
1233  *	it likes with the URB, including resubmitting or freeing it.
1234  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1235  *	collect the transfer status for each buffer.
1236  *
1237  * This structure identifies USB transfer requests.  URBs must be allocated by
1238  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1239  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1240  * are submitted using usb_submit_urb(), and pending requests may be canceled
1241  * using usb_unlink_urb() or usb_kill_urb().
1242  *
1243  * Data Transfer Buffers:
1244  *
1245  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1246  * taken from the general page pool.  That is provided by transfer_buffer
1247  * (control requests also use setup_packet), and host controller drivers
1248  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1249  * mapping operations can be expensive on some platforms (perhaps using a dma
1250  * bounce buffer or talking to an IOMMU),
1251  * although they're cheap on commodity x86 and ppc hardware.
1252  *
1253  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1254  * which tell the host controller driver that no such mapping is needed since
1255  * the device driver is DMA-aware.  For example, a device driver might
1256  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1257  * When these transfer flags are provided, host controller drivers will
1258  * attempt to use the dma addresses found in the transfer_dma and/or
1259  * setup_dma fields rather than determining a dma address themselves.  (Note
1260  * that transfer_buffer and setup_packet must still be set because not all
1261  * host controllers use DMA, nor do virtual root hubs).
1262  *
1263  * Initialization:
1264  *
1265  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1266  * zero), and complete fields.  All URBs must also initialize
1267  * transfer_buffer and transfer_buffer_length.  They may provide the
1268  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1269  * to be treated as errors; that flag is invalid for write requests.
1270  *
1271  * Bulk URBs may
1272  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1273  * should always terminate with a short packet, even if it means adding an
1274  * extra zero length packet.
1275  *
1276  * Control URBs must provide a setup_packet.  The setup_packet and
1277  * transfer_buffer may each be mapped for DMA or not, independently of
1278  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1279  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1280  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1281  *
1282  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1283  * or, for highspeed devices, 125 microsecond units)
1284  * to poll for transfers.  After the URB has been submitted, the interval
1285  * field reflects how the transfer was actually scheduled.
1286  * The polling interval may be more frequent than requested.
1287  * For example, some controllers have a maximum interval of 32 milliseconds,
1288  * while others support intervals of up to 1024 milliseconds.
1289  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1290  * endpoints, as well as high speed interrupt endpoints, the encoding of
1291  * the transfer interval in the endpoint descriptor is logarithmic.
1292  * Device drivers must convert that value to linear units themselves.)
1293  *
1294  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1295  * the host controller to schedule the transfer as soon as bandwidth
1296  * utilization allows, and then set start_frame to reflect the actual frame
1297  * selected during submission.  Otherwise drivers must specify the start_frame
1298  * and handle the case where the transfer can't begin then.  However, drivers
1299  * won't know how bandwidth is currently allocated, and while they can
1300  * find the current frame using usb_get_current_frame_number () they can't
1301  * know the range for that frame number.  (Ranges for frame counter values
1302  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1303  *
1304  * Isochronous URBs have a different data transfer model, in part because
1305  * the quality of service is only "best effort".  Callers provide specially
1306  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1307  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1308  * URBs are normally queued, submitted by drivers to arrange that
1309  * transfers are at least double buffered, and then explicitly resubmitted
1310  * in completion handlers, so
1311  * that data (such as audio or video) streams at as constant a rate as the
1312  * host controller scheduler can support.
1313  *
1314  * Completion Callbacks:
1315  *
1316  * The completion callback is made in_interrupt(), and one of the first
1317  * things that a completion handler should do is check the status field.
1318  * The status field is provided for all URBs.  It is used to report
1319  * unlinked URBs, and status for all non-ISO transfers.  It should not
1320  * be examined before the URB is returned to the completion handler.
1321  *
1322  * The context field is normally used to link URBs back to the relevant
1323  * driver or request state.
1324  *
1325  * When the completion callback is invoked for non-isochronous URBs, the
1326  * actual_length field tells how many bytes were transferred.  This field
1327  * is updated even when the URB terminated with an error or was unlinked.
1328  *
1329  * ISO transfer status is reported in the status and actual_length fields
1330  * of the iso_frame_desc array, and the number of errors is reported in
1331  * error_count.  Completion callbacks for ISO transfers will normally
1332  * (re)submit URBs to ensure a constant transfer rate.
1333  *
1334  * Note that even fields marked "public" should not be touched by the driver
1335  * when the urb is owned by the hcd, that is, since the call to
1336  * usb_submit_urb() till the entry into the completion routine.
1337  */
1338 struct urb {
1339 	/* private: usb core and host controller only fields in the urb */
1340 	struct kref kref;		/* reference count of the URB */
1341 	void *hcpriv;			/* private data for host controller */
1342 	atomic_t use_count;		/* concurrent submissions counter */
1343 	atomic_t reject;		/* submissions will fail */
1344 	int unlinked;			/* unlink error code */
1345 
1346 	/* public: documented fields in the urb that can be used by drivers */
1347 	struct list_head urb_list;	/* list head for use by the urb's
1348 					 * current owner */
1349 	struct list_head anchor_list;	/* the URB may be anchored */
1350 	struct usb_anchor *anchor;
1351 	struct usb_device *dev; 	/* (in) pointer to associated device */
1352 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1353 	unsigned int pipe;		/* (in) pipe information */
1354 	int status;			/* (return) non-ISO status */
1355 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1356 	void *transfer_buffer;		/* (in) associated data buffer */
1357 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1358 	int transfer_buffer_length;	/* (in) data buffer length */
1359 	int actual_length;		/* (return) actual transfer length */
1360 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1361 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1362 	int start_frame;		/* (modify) start frame (ISO) */
1363 	int number_of_packets;		/* (in) number of ISO packets */
1364 	int interval;			/* (modify) transfer interval
1365 					 * (INT/ISO) */
1366 	int error_count;		/* (return) number of ISO errors */
1367 	void *context;			/* (in) context for completion */
1368 	usb_complete_t complete;	/* (in) completion routine */
1369 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1370 					/* (in) ISO ONLY */
1371 };
1372 
1373 /* ----------------------------------------------------------------------- */
1374 
1375 /**
1376  * usb_fill_control_urb - initializes a control urb
1377  * @urb: pointer to the urb to initialize.
1378  * @dev: pointer to the struct usb_device for this urb.
1379  * @pipe: the endpoint pipe
1380  * @setup_packet: pointer to the setup_packet buffer
1381  * @transfer_buffer: pointer to the transfer buffer
1382  * @buffer_length: length of the transfer buffer
1383  * @complete_fn: pointer to the usb_complete_t function
1384  * @context: what to set the urb context to.
1385  *
1386  * Initializes a control urb with the proper information needed to submit
1387  * it to a device.
1388  */
1389 static inline void usb_fill_control_urb(struct urb *urb,
1390 					struct usb_device *dev,
1391 					unsigned int pipe,
1392 					unsigned char *setup_packet,
1393 					void *transfer_buffer,
1394 					int buffer_length,
1395 					usb_complete_t complete_fn,
1396 					void *context)
1397 {
1398 	urb->dev = dev;
1399 	urb->pipe = pipe;
1400 	urb->setup_packet = setup_packet;
1401 	urb->transfer_buffer = transfer_buffer;
1402 	urb->transfer_buffer_length = buffer_length;
1403 	urb->complete = complete_fn;
1404 	urb->context = context;
1405 }
1406 
1407 /**
1408  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1409  * @urb: pointer to the urb to initialize.
1410  * @dev: pointer to the struct usb_device for this urb.
1411  * @pipe: the endpoint pipe
1412  * @transfer_buffer: pointer to the transfer buffer
1413  * @buffer_length: length of the transfer buffer
1414  * @complete_fn: pointer to the usb_complete_t function
1415  * @context: what to set the urb context to.
1416  *
1417  * Initializes a bulk urb with the proper information needed to submit it
1418  * to a device.
1419  */
1420 static inline void usb_fill_bulk_urb(struct urb *urb,
1421 				     struct usb_device *dev,
1422 				     unsigned int pipe,
1423 				     void *transfer_buffer,
1424 				     int buffer_length,
1425 				     usb_complete_t complete_fn,
1426 				     void *context)
1427 {
1428 	urb->dev = dev;
1429 	urb->pipe = pipe;
1430 	urb->transfer_buffer = transfer_buffer;
1431 	urb->transfer_buffer_length = buffer_length;
1432 	urb->complete = complete_fn;
1433 	urb->context = context;
1434 }
1435 
1436 /**
1437  * usb_fill_int_urb - macro to help initialize a interrupt urb
1438  * @urb: pointer to the urb to initialize.
1439  * @dev: pointer to the struct usb_device for this urb.
1440  * @pipe: the endpoint pipe
1441  * @transfer_buffer: pointer to the transfer buffer
1442  * @buffer_length: length of the transfer buffer
1443  * @complete_fn: pointer to the usb_complete_t function
1444  * @context: what to set the urb context to.
1445  * @interval: what to set the urb interval to, encoded like
1446  *	the endpoint descriptor's bInterval value.
1447  *
1448  * Initializes a interrupt urb with the proper information needed to submit
1449  * it to a device.
1450  * Note that high speed interrupt endpoints use a logarithmic encoding of
1451  * the endpoint interval, and express polling intervals in microframes
1452  * (eight per millisecond) rather than in frames (one per millisecond).
1453  */
1454 static inline void usb_fill_int_urb(struct urb *urb,
1455 				    struct usb_device *dev,
1456 				    unsigned int pipe,
1457 				    void *transfer_buffer,
1458 				    int buffer_length,
1459 				    usb_complete_t complete_fn,
1460 				    void *context,
1461 				    int interval)
1462 {
1463 	urb->dev = dev;
1464 	urb->pipe = pipe;
1465 	urb->transfer_buffer = transfer_buffer;
1466 	urb->transfer_buffer_length = buffer_length;
1467 	urb->complete = complete_fn;
1468 	urb->context = context;
1469 	if (dev->speed == USB_SPEED_HIGH)
1470 		urb->interval = 1 << (interval - 1);
1471 	else
1472 		urb->interval = interval;
1473 	urb->start_frame = -1;
1474 }
1475 
1476 extern void usb_init_urb(struct urb *urb);
1477 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1478 extern void usb_free_urb(struct urb *urb);
1479 #define usb_put_urb usb_free_urb
1480 extern struct urb *usb_get_urb(struct urb *urb);
1481 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1482 extern int usb_unlink_urb(struct urb *urb);
1483 extern void usb_kill_urb(struct urb *urb);
1484 extern void usb_poison_urb(struct urb *urb);
1485 extern void usb_unpoison_urb(struct urb *urb);
1486 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1487 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1488 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1489 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1490 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1491 extern void usb_unanchor_urb(struct urb *urb);
1492 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1493 					 unsigned int timeout);
1494 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1495 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1496 extern int usb_anchor_empty(struct usb_anchor *anchor);
1497 
1498 /**
1499  * usb_urb_dir_in - check if an URB describes an IN transfer
1500  * @urb: URB to be checked
1501  *
1502  * Returns 1 if @urb describes an IN transfer (device-to-host),
1503  * otherwise 0.
1504  */
1505 static inline int usb_urb_dir_in(struct urb *urb)
1506 {
1507 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1508 }
1509 
1510 /**
1511  * usb_urb_dir_out - check if an URB describes an OUT transfer
1512  * @urb: URB to be checked
1513  *
1514  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1515  * otherwise 0.
1516  */
1517 static inline int usb_urb_dir_out(struct urb *urb)
1518 {
1519 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1520 }
1521 
1522 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1523 	gfp_t mem_flags, dma_addr_t *dma);
1524 void usb_buffer_free(struct usb_device *dev, size_t size,
1525 	void *addr, dma_addr_t dma);
1526 
1527 #if 0
1528 struct urb *usb_buffer_map(struct urb *urb);
1529 void usb_buffer_dmasync(struct urb *urb);
1530 void usb_buffer_unmap(struct urb *urb);
1531 #endif
1532 
1533 struct scatterlist;
1534 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1535 		      struct scatterlist *sg, int nents);
1536 #if 0
1537 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1538 			   struct scatterlist *sg, int n_hw_ents);
1539 #endif
1540 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1541 			 struct scatterlist *sg, int n_hw_ents);
1542 
1543 /*-------------------------------------------------------------------*
1544  *                         SYNCHRONOUS CALL SUPPORT                  *
1545  *-------------------------------------------------------------------*/
1546 
1547 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1548 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1549 	void *data, __u16 size, int timeout);
1550 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1551 	void *data, int len, int *actual_length, int timeout);
1552 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1553 	void *data, int len, int *actual_length,
1554 	int timeout);
1555 
1556 /* wrappers around usb_control_msg() for the most common standard requests */
1557 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1558 	unsigned char descindex, void *buf, int size);
1559 extern int usb_get_status(struct usb_device *dev,
1560 	int type, int target, void *data);
1561 extern int usb_string(struct usb_device *dev, int index,
1562 	char *buf, size_t size);
1563 
1564 /* wrappers that also update important state inside usbcore */
1565 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1566 extern int usb_reset_configuration(struct usb_device *dev);
1567 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1568 
1569 /* this request isn't really synchronous, but it belongs with the others */
1570 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1571 
1572 /*
1573  * timeouts, in milliseconds, used for sending/receiving control messages
1574  * they typically complete within a few frames (msec) after they're issued
1575  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1576  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1577  */
1578 #define USB_CTRL_GET_TIMEOUT	5000
1579 #define USB_CTRL_SET_TIMEOUT	5000
1580 
1581 
1582 /**
1583  * struct usb_sg_request - support for scatter/gather I/O
1584  * @status: zero indicates success, else negative errno
1585  * @bytes: counts bytes transferred.
1586  *
1587  * These requests are initialized using usb_sg_init(), and then are used
1588  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1589  * members of the request object aren't for driver access.
1590  *
1591  * The status and bytecount values are valid only after usb_sg_wait()
1592  * returns.  If the status is zero, then the bytecount matches the total
1593  * from the request.
1594  *
1595  * After an error completion, drivers may need to clear a halt condition
1596  * on the endpoint.
1597  */
1598 struct usb_sg_request {
1599 	int			status;
1600 	size_t			bytes;
1601 
1602 	/*
1603 	 * members below are private: to usbcore,
1604 	 * and are not provided for driver access!
1605 	 */
1606 	spinlock_t		lock;
1607 
1608 	struct usb_device	*dev;
1609 	int			pipe;
1610 	struct scatterlist	*sg;
1611 	int			nents;
1612 
1613 	int			entries;
1614 	struct urb		**urbs;
1615 
1616 	int			count;
1617 	struct completion	complete;
1618 };
1619 
1620 int usb_sg_init(
1621 	struct usb_sg_request	*io,
1622 	struct usb_device	*dev,
1623 	unsigned		pipe,
1624 	unsigned		period,
1625 	struct scatterlist	*sg,
1626 	int			nents,
1627 	size_t			length,
1628 	gfp_t			mem_flags
1629 );
1630 void usb_sg_cancel(struct usb_sg_request *io);
1631 void usb_sg_wait(struct usb_sg_request *io);
1632 
1633 
1634 /* ----------------------------------------------------------------------- */
1635 
1636 /*
1637  * For various legacy reasons, Linux has a small cookie that's paired with
1638  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1639  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1640  * an unsigned int encoded as:
1641  *
1642  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1643  *					 1 = Device-to-Host [In] ...
1644  *					like endpoint bEndpointAddress)
1645  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1646  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1647  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1648  *					 10 = control, 11 = bulk)
1649  *
1650  * Given the device address and endpoint descriptor, pipes are redundant.
1651  */
1652 
1653 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1654 /* (yet ... they're the values used by usbfs) */
1655 #define PIPE_ISOCHRONOUS		0
1656 #define PIPE_INTERRUPT			1
1657 #define PIPE_CONTROL			2
1658 #define PIPE_BULK			3
1659 
1660 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1661 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1662 
1663 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1664 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1665 
1666 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1667 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1668 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1669 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1670 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1671 
1672 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1673 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1674 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1675 #define usb_settoggle(dev, ep, out, bit) \
1676 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1677 		 ((bit) << (ep)))
1678 
1679 
1680 static inline unsigned int __create_pipe(struct usb_device *dev,
1681 		unsigned int endpoint)
1682 {
1683 	return (dev->devnum << 8) | (endpoint << 15);
1684 }
1685 
1686 /* Create various pipes... */
1687 #define usb_sndctrlpipe(dev,endpoint)	\
1688 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1689 #define usb_rcvctrlpipe(dev,endpoint)	\
1690 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1691 #define usb_sndisocpipe(dev,endpoint)	\
1692 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1693 #define usb_rcvisocpipe(dev,endpoint)	\
1694 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1695 #define usb_sndbulkpipe(dev,endpoint)	\
1696 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1697 #define usb_rcvbulkpipe(dev,endpoint)	\
1698 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1699 #define usb_sndintpipe(dev,endpoint)	\
1700 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1701 #define usb_rcvintpipe(dev,endpoint)	\
1702 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1703 
1704 /*-------------------------------------------------------------------------*/
1705 
1706 static inline __u16
1707 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1708 {
1709 	struct usb_host_endpoint	*ep;
1710 	unsigned			epnum = usb_pipeendpoint(pipe);
1711 
1712 	if (is_out) {
1713 		WARN_ON(usb_pipein(pipe));
1714 		ep = udev->ep_out[epnum];
1715 	} else {
1716 		WARN_ON(usb_pipeout(pipe));
1717 		ep = udev->ep_in[epnum];
1718 	}
1719 	if (!ep)
1720 		return 0;
1721 
1722 	/* NOTE:  only 0x07ff bits are for packet size... */
1723 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1724 }
1725 
1726 /* ----------------------------------------------------------------------- */
1727 
1728 /* Events from the usb core */
1729 #define USB_DEVICE_ADD		0x0001
1730 #define USB_DEVICE_REMOVE	0x0002
1731 #define USB_BUS_ADD		0x0003
1732 #define USB_BUS_REMOVE		0x0004
1733 extern void usb_register_notify(struct notifier_block *nb);
1734 extern void usb_unregister_notify(struct notifier_block *nb);
1735 
1736 #ifdef DEBUG
1737 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1738 	__FILE__ , ## arg)
1739 #else
1740 #define dbg(format, arg...) do {} while (0)
1741 #endif
1742 
1743 #define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \
1744 	format "\n" , ## arg)
1745 
1746 #endif  /* __KERNEL__ */
1747 
1748 #endif
1749